M7350/bootable/bootloader/lk/platform/omap3/usbc.c
2024-09-09 08:52:07 +00:00

883 lines
21 KiB
C

/*
* Copyright (c) 2008 Travis Geiselbrecht
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <debug.h>
#include <string.h>
#include <stdlib.h>
#include <kernel/thread.h>
#include <dev/usbc.h>
#include <dev/twl4030.h>
#include <reg.h>
#include <platform/omap3.h>
#include <platform/interrupts.h>
#include <hw/usb.h>
#define LOCAL_TRACE 0
#define hsusb_reg8(reg) *REG8(USB_HS_BASE + (reg))
#define hsusb_reg16(reg) *REG16(USB_HS_BASE + (reg))
#define hsusb_reg32(reg) *REG32(USB_HS_BASE + (reg))
/* registers */
#define FADDR 0x0
#define POWER 0x1
#define INTRTX 0x2
#define INTRRX 0x4
#define INTRTXE 0x6
#define INTRRXE 0x8
#define INTRUSB 0xa
#define INTRUSBE 0xb
#define FRAME 0xc
#define INDEX 0xe
#define TESTMODE 0xf
// indexed endpoint regs
#define IDX_TXMAXP 0x10
#define IDX_TXCSR 0x12
#define IDX_TXCSRL 0x12
#define IDX_TXCSRH 0x13
#define IDX_RXMAXP 0x14
#define IDX_RXCSR 0x16
#define IDX_RXCSRL 0x16
#define IDX_RXCSRH 0x17
#define IDX_RXCOUNT 0x18
#define IDX_FIFOSIZE 0x1f
// if endpoint 0 is selected
#define IDX_CSR0 0x12
#define IDX_CONFIGDATA 0x1f
// endpoint FIFOs
#define FIFOBASE 0x20
#define DEVCTL 0x60
#define TXFIFOSZ 0x62
#define RXFIFOSZ 0x63
#define TXFIFOADD 0x64
#define RXFIFOADD 0x66
#define HWVERS 0x6c
#define EPINFO 0x78
#define RAMINFO 0x79
#define LINKINFO 0x7a
static void setup_dynamic_fifos(void);
enum usb_state {
USB_DEFAULT = 0,
USB_ADDRESS,
USB_CONFIGURED
};
struct usbc_ep {
bool active;
uint width;
uint blocksize;
/* current data buffer */
usbc_transfer *transfer;
/* callback when tx or rx happens on the endpoint */
int (*callback)(ep_t endpoint, usbc_callback_op_t op, usbc_transfer *transfer);
};
struct usbc_stat {
bool active;
enum usb_state state;
uint8_t active_config;
// callback for device events
usb_callback callback;
// ep0 pending tx
const void *ep0_tx_buf;
size_t ep0_tx_len;
uint ep0_tx_pos;
struct usbc_ep inep[16]; // IN endpoints (device to host)
struct usbc_ep outep[16]; // OUT endpoint (host to device)
};
static struct usbc_stat *usbc;
struct usbc_callback {
struct list_node node;
usb_callback callback;
};
static struct list_node usbc_callback_list;
static void call_all_callbacks(usbc_callback_op_t op, const union usb_callback_args *arg)
{
struct usbc_callback *cb;
list_for_every_entry(&usbc_callback_list, cb, struct usbc_callback, node) {
LTRACEF("calling %p, op %d, arg %p\n", cb->callback, op, arg);
cb->callback(op, arg);
}
}
static void print_usb_setup(const struct usb_setup *setup)
{
printf("usb_setup:\n");
printf("\ttype 0x%hhx\n", setup->request_type);
printf("\trequest 0x%hhx\n", setup->request);
printf("\tvalue 0x%hx\n", setup->value);
printf("\tindex 0x%hx\n", setup->index);
printf("\tlength 0x%hx\n", setup->length);
}
static void select_ep(uint ep)
{
DEBUG_ASSERT(ep < 16);
hsusb_reg8(INDEX) = ep;
}
static void dump_ep_regs(uint ep)
{
#if 0
select_ep(ep);
LTRACEF("%d txmaxp 0x%hx\n", ep, hsusb_reg16(IDX_TXMAXP));
LTRACEF("%d rxmaxp 0x%hx\n", ep, hsusb_reg16(IDX_RXMAXP));
LTRACEF("%d txfifosz 0x%hhx\n", ep, hsusb_reg8(TXFIFOSZ));
LTRACEF("%d rxfifosz 0x%hhx\n", ep, hsusb_reg8(RXFIFOSZ));
LTRACEF("%d txfifoadd 0x%hx\n", ep, hsusb_reg16(TXFIFOADD));
LTRACEF("%d rxfifoadd 0x%hx\n", ep, hsusb_reg16(RXFIFOADD));
#endif
}
#define MULOF4(val) (((uint32_t)(val) & 0x3) == 0)
static int read_ep_fifo(uint ep, void *_buf, size_t maxlen)
{
char *buf = (void *)_buf;
select_ep(ep);
uint8_t fifo_reg = FIFOBASE + ep * 4;
size_t rxcount = hsusb_reg16(IDX_RXCOUNT);
if (rxcount > maxlen)
rxcount = maxlen;
if (MULOF4(buf) && MULOF4(rxcount)) {
uint i;
uint32_t *buf32 = (uint32_t *)_buf;
for (i=0; i < rxcount / 4; i++) {
buf32[i] = hsusb_reg32(fifo_reg);
}
} else {
/* slow path */
uint i;
for (i=0; i < rxcount; i++) {
buf[i] = hsusb_reg8(fifo_reg);
}
}
return rxcount;
}
static int write_ep_fifo(uint ep, const void *_buf, size_t len)
{
char *buf = (void *)_buf;
select_ep(ep);
uint8_t fifo_reg = FIFOBASE + ep * 4;
if (MULOF4(buf) && MULOF4(len)) {
uint i;
uint32_t *buf32 = (uint32_t *)_buf;
for (i=0; i < len / 4; i++) {
hsusb_reg32(fifo_reg) = buf32[i];
}
} else {
/* slow path */
uint i;
for (i=0; i < len; i++) {
hsusb_reg8(fifo_reg) = buf[i];
}
}
return len;
}
#undef MULOF4
void usbc_ep0_send(const void *buf, size_t len, size_t maxlen)
{
LTRACEF("buf %p, len %zu, maxlen %zu\n", buf, len, maxlen);
// trim the transfer
len = MIN(len, maxlen);
size_t transfer_len = MIN(64, len);
// write the first 64 bytes
write_ep_fifo(0, buf, transfer_len);
// set txpktready
select_ep(0);
if (len > 64) {
// we have more data to send, don't mark data end
hsusb_reg16(IDX_CSR0) |= (1<<1); // TxPktRdy
// save our position so we can continue
usbc->ep0_tx_buf = buf;
usbc->ep0_tx_pos = 64;
usbc->ep0_tx_len = len;
} else {
hsusb_reg16(IDX_CSR0) |= (1<<3) | (1<<1); // DataEnd, TxPktRdy
usbc->ep0_tx_buf = NULL;
}
}
static void ep0_control_send_resume(void)
{
DEBUG_ASSERT(usbc->ep0_tx_buf != NULL);
DEBUG_ASSERT(usbc->ep0_tx_len > usbc->ep0_tx_pos);
LTRACEF("buf %p pos %d len %d\n", usbc->ep0_tx_buf, usbc->ep0_tx_pos, usbc->ep0_tx_len);
size_t transfer_len = MIN(64, usbc->ep0_tx_len - usbc->ep0_tx_pos);
write_ep_fifo(0, (const uint8_t *)usbc->ep0_tx_buf + usbc->ep0_tx_pos, transfer_len);
usbc->ep0_tx_pos += transfer_len;
if (usbc->ep0_tx_pos >= usbc->ep0_tx_len) {
// completes the transfer
hsusb_reg16(IDX_CSR0) |= (1<<3) | (1<<1); // DataEnd, TxPktRdy
usbc->ep0_tx_buf = NULL;
} else {
hsusb_reg16(IDX_CSR0) |= (1<<1); // TxPktRdy
}
}
void usbc_ep0_ack(void)
{
hsusb_reg16(IDX_CSR0) |= (1<<6)|(1<<3); // servicedrxpktrdy & dataend
}
void usbc_ep0_stall(void)
{
printf("USB STALL\n");
}
static void usb_shutdown_endpoints(void)
{
// iterate through all the endpoints, cancelling any pending io and shut down the endpoint
ep_t i;
for (i=1; i < 16; i++) {
if (usbc->inep[i].active && usbc->inep[i].transfer) {
// pool's closed
usbc_transfer *t = usbc->inep[i].transfer;
usbc->inep[i].transfer = NULL;
t->result = USB_TRANSFER_RESULT_CANCELLED;
usbc->inep[i].callback(i, CB_EP_TRANSFER_CANCELLED, t);
}
if (usbc->outep[i].active && usbc->outep[i].transfer) {
// pool's closed
usbc_transfer *t = usbc->outep[i].transfer;
usbc->outep[i].transfer = NULL;
t->result = USB_TRANSFER_RESULT_CANCELLED;
usbc->outep[i].callback(i, CB_EP_TRANSFER_CANCELLED, t);
}
}
// clear pending ep0 data
usbc->ep0_tx_buf = 0;
}
static void usb_enable_endpoints(void)
{
setup_dynamic_fifos();
}
static void usb_disconnect(void)
{
// we've been disconnected
usbc->state = USB_DEFAULT;
usbc->active_config = 0;
usb_shutdown_endpoints();
}
static void usb_reset(void)
{
// this wipes out our endpoint interrupt disables
hsusb_reg16(INTRTXE) = (1<<0);
hsusb_reg16(INTRRXE) = 0;
usb_shutdown_endpoints();
}
static int handle_ep_rx(int ep)
{
struct usbc_ep *e = &usbc->outep[ep];
DEBUG_ASSERT(e->active);
DEBUG_ASSERT(e->transfer); // can't rx to no transfer
usbc_transfer *t = e->transfer;
uint rxcount = hsusb_reg16(IDX_RXCOUNT);
uint readcount = MIN(rxcount, t->buflen - t->bufpos);
readcount = MIN(readcount, e->blocksize);
int len = read_ep_fifo(ep, (uint8_t *)t->buf + t->bufpos, readcount);
LTRACEF("read %d bytes from the fifo\n", len);
// no more packet ready
hsusb_reg16(IDX_RXCSRL) &= ~(1<<0); // clear rxpktrdy
t->bufpos += len;
if (rxcount < e->blocksize || t->bufpos >= t->buflen) {
// we're done with this transfer, clear it and disable the endpoint
e->transfer = NULL;
hsusb_reg16(INTRRXE) &= ~(1<<ep);
t->result = USB_TRANSFER_RESULT_OK;
DEBUG_ASSERT(e->callback);
e->callback(ep, CB_EP_RXCOMPLETE, t);
return 1;
}
return 0;
}
bool usbc_is_highspeed(void)
{
return (hsusb_reg8(POWER) & (1<<4)) ? true : false;
}
static enum handler_return hsusb_interrupt(void *arg)
{
uint16_t intrtx = hsusb_reg16(INTRTX);
uint16_t intrrx = hsusb_reg16(INTRRX);
uint8_t intrusb = hsusb_reg8(INTRUSB);
enum handler_return ret = INT_NO_RESCHEDULE;
LTRACEF("intrtx 0x%hx (0x%x), intrrx 0x%hx (0x%x), intrusb 0x%hhx, intrusbe 0x%hhx\n",
intrtx, hsusb_reg16(INTRTXE), intrrx, hsusb_reg16(INTRRXE), intrusb, hsusb_reg8(INTRUSBE));
dump_ep_regs(2);
// look for global usb interrupts
intrusb &= hsusb_reg8(INTRUSBE);
if (intrusb) {
if (intrusb & (1<<0)) {
// suspend
TRACEF("suspend\n");
call_all_callbacks(CB_SUSPEND, 0);
ret = INT_RESCHEDULE;
}
if (intrusb & (1<<1)) {
// resume
TRACEF("resume\n");
call_all_callbacks(CB_RESUME, 0);
ret = INT_RESCHEDULE;
}
if (intrusb & (1<<2)) {
// reset
TRACEF("reset\n");
TRACEF("high speed %d\n", hsusb_reg8(POWER) & (1<<4) ? 1 : 0);
call_all_callbacks(CB_RESET, 0);
usb_reset();
ret = INT_RESCHEDULE;
}
if (intrusb & (1<<3)) {
// SOF
TRACEF("sof\n");
}
if (intrusb & (1<<4)) {
// connect (host only)
TRACEF("connect\n");
}
if (intrusb & (1<<5)) {
// disconnect
TRACEF("disconnect\n");
call_all_callbacks(CB_DISCONNECT, 0);
usb_disconnect();
ret = INT_RESCHEDULE;
}
if (intrusb & (1<<6)) {
// session request (A device only)
TRACEF("session request\n");
}
if (intrusb & (1<<7)) {
// vbus error (A device only)
TRACEF("vbus error\n");
}
}
// look for endpoint 0 interrupt
if (intrtx & 1) {
select_ep(0);
uint16_t csr = hsusb_reg16(IDX_CSR0);
LTRACEF("ep0 csr 0x%hhx\n", csr);
// clear the stall bit
if (csr & (1<<2))
hsusb_reg16(IDX_CSR0) &= ~(1<<2);
// do we have any pending tx data?
if (usbc->ep0_tx_buf != NULL) {
if (csr & (1<<4)) { // setup end
// we got an abort on the data transfer
usbc->ep0_tx_buf = NULL;
} else {
// send more data
ep0_control_send_resume();
}
}
// clear the setup end bit
if (csr & (1<<4)) {
hsusb_reg16(IDX_CSR0) |= (1<<7); // servicedsetupend
}
if (csr & 0x1) {
// rxpktrdy
LTRACEF("ep0: rxpktrdy, count %d\n", hsusb_reg16(IDX_RXCOUNT));
struct usb_setup setup;
read_ep_fifo(0, (void *)&setup, sizeof(setup));
// print_usb_setup(&setup);
hsusb_reg16(IDX_CSR0) |= (1<<6); // servicedrxpktrdy
union usb_callback_args args;
args.setup = &setup;
call_all_callbacks(CB_SETUP_MSG, &args);
switch (setup.request) {
case SET_ADDRESS: {
LTRACEF("got SET_ADDRESS: value %d\n", setup.value);
dprintf(INFO, "usb: got assigned address %d\n", setup.value);
usbc_ep0_ack();
hsusb_reg8(FADDR) = setup.value;
if (setup.value == 0)
usbc->state = USB_DEFAULT;
else
usbc->state = USB_ADDRESS;
break;
}
case SET_CONFIGURATION:
LTRACEF("got SET_CONFIGURATION, config %d\n", setup.value);
if (setup.value == 0) {
if (usbc->state == USB_CONFIGURED)
usbc->state = USB_ADDRESS;
call_all_callbacks(CB_OFFLINE, 0);
} else {
usbc->state = USB_CONFIGURED;
call_all_callbacks(CB_ONLINE, 0);
}
usbc->active_config = setup.value;
ret = INT_RESCHEDULE;
// set up all of the endpoints
usb_enable_endpoints();
break;
}
}
}
// handle endpoint interrupts
// mask out ones we don't want to play with
intrtx &= hsusb_reg16(INTRTXE);
intrrx &= hsusb_reg16(INTRRXE);
int i;
for (i=1; i < 16; i++) {
if (intrtx & (1<<i)) {
select_ep(i);
LTRACEF("txcsr %i: 0x%hx\n", i, hsusb_reg16(IDX_TXCSR));
// data was sent, see if we have more to send
struct usbc_ep *e = &usbc->inep[i];
DEBUG_ASSERT(e->transfer); // interrupts shouldn't be enabled if there isn't a transfer queued
usbc_transfer *t = e->transfer;
if (t->bufpos < t->buflen) {
// cram more stuff in the buffer
uint queuelen = MIN(e->blocksize, t->buflen - t->bufpos);
LTRACEF("writing more tx data into fifo: len %u, remaining %zu\n", queuelen, t->buflen - t->bufpos);
write_ep_fifo(i, (uint8_t *)t->buf + t->bufpos, queuelen);
t->bufpos += queuelen;
// start the transfer
hsusb_reg16(IDX_TXCSR) |= (1<<0); // txpktrdy
} else {
// we're done, callback
e->transfer = NULL;
hsusb_reg16(INTRTXE) &= ~(1<<i);
t->result = USB_TRANSFER_RESULT_OK;
DEBUG_ASSERT(e->callback);
e->callback(i, CB_EP_TXCOMPLETE, t);
ret = INT_RESCHEDULE;
}
}
if (intrrx & (1<<i)) {
select_ep(i);
uint16_t csr = hsusb_reg16(IDX_RXCSR);
LTRACEF("rxcsr %i: 0x%hx\n", i, csr);
if (csr & 0x1) { // rxpktrdy
// see if the endpoint is ready
struct usbc_ep *e = &usbc->outep[i];
if (!e->active) {
// stall it
hsusb_reg16(IDX_RXCSR) |= (1<<6); // stall
hsusb_reg16(IDX_RXCSR) |= (1<<4); // flush fifo
panic("rx on inactive endpoint\n");
continue;
}
if (handle_ep_rx(i) > 0)
ret = INT_RESCHEDULE;
}
}
}
return ret;
}
static enum handler_return hsusb_dma_interrupt(void *arg)
{
LTRACE;
return INT_NO_RESCHEDULE;
}
void usbc_setup_endpoint(ep_t ep, ep_dir_t dir, bool active, ep_callback callback, uint width, uint blocksize)
{
DEBUG_ASSERT(ep != 0);
DEBUG_ASSERT(ep < 16);
DEBUG_ASSERT(dir == IN || dir == OUT);
struct usbc_ep *e;
if (dir == IN)
e = &usbc->inep[ep];
else
e = &usbc->outep[ep];
// for now we can only make active
e->active = active;
e->callback = callback;
e->width = width;
e->blocksize = blocksize;
}
int usbc_queue_rx(ep_t ep, usbc_transfer *transfer)
{
LTRACE;
struct usbc_ep *e = &usbc->outep[ep];
DEBUG_ASSERT(ep != 0);
DEBUG_ASSERT(ep < 16);
DEBUG_ASSERT(e->active);
DEBUG_ASSERT(transfer);
DEBUG_ASSERT(transfer->buf);
DEBUG_ASSERT(e->transfer == NULL);
// can only queue up multiples of the endpoint blocksize
DEBUG_ASSERT(transfer->buflen >= e->blocksize && (transfer->buflen % e->blocksize) == 0);
enter_critical_section();
if (usbc->state != USB_CONFIGURED) {
// can't transfer now
exit_critical_section();
return -1;
}
e->transfer = transfer;
// make sure the ep is set up right
// select_ep(ep);
// hsusb_reg8(IDX_RXCSRH) = 0;
dump_ep_regs(ep);
select_ep(ep);
if (hsusb_reg16(IDX_RXCSR) & (1<<0)) {
// packet already ready
LTRACEF("****packet already ready (%d)\n", hsusb_reg16(IDX_RXCOUNT));
int rc = handle_ep_rx(ep);
if (rc > 0) {
// the transfer was completed
goto done;
}
}
// unmask irqs for this endpoint
hsusb_reg16(INTRRXE) |= (1<<ep);
done:
exit_critical_section();
return 0;
}
int usbc_queue_tx(ep_t ep, usbc_transfer *transfer)
{
LTRACEF("ep %u, transfer %p (buf %p, len %zu)\n", ep, transfer, transfer->buf, transfer->buflen);
struct usbc_ep *e = &usbc->inep[ep];
DEBUG_ASSERT(ep != 0);
DEBUG_ASSERT(ep < 16);
DEBUG_ASSERT(e->active);
DEBUG_ASSERT(e->transfer == NULL);
enter_critical_section();
if (usbc->state != USB_CONFIGURED) {
// can't transfer now
exit_critical_section();
return -1;
}
e->transfer = transfer;
select_ep(ep);
// set this endpoint in tx mode
// hsusb_reg8(IDX_TXCSRH) = (1<<7)|(1<<5); // autoset, tx direction
dump_ep_regs(ep);
// unmask irqs for this endpoint
hsusb_reg16(INTRTXE) |= (1<<ep);
// if the fifo is empty, start the transfer
if ((hsusb_reg16(IDX_TXCSR) & (1<<1)) == 0) {
// dump the start of the transfer in the fifo
uint queuelen = MIN(e->blocksize, transfer->buflen);
write_ep_fifo(ep, transfer->buf, queuelen);
transfer->bufpos = queuelen;
// start the transfer
hsusb_reg16(IDX_TXCSR) |= (1<<0); // txpktrdy
}
exit_critical_section();
return 0;
}
int usbc_set_callback(usb_callback callback)
{
DEBUG_ASSERT(callback != NULL);
struct usbc_callback *cb = malloc(sizeof(struct usbc_callback));
enter_critical_section();
cb->callback = callback;
list_add_head(&usbc_callback_list, &cb->node);
exit_critical_section();
return 0;
}
int usbc_set_active(bool active)
{
LTRACEF("active %d\n", active);
if (active) {
DEBUG_ASSERT(!usbc->active);
hsusb_reg8(POWER) |= (1<<6); // soft conn
twl4030_set_usb_pullup(true);
usbc->active = true;
} else {
hsusb_reg8(POWER) &= ~(1<<6); // soft conn
twl4030_set_usb_pullup(false);
usbc->active = false;
}
return 0;
}
static void setup_dynamic_fifos(void)
{
// LTRACE;
#if LOCAL_TRACE
uint8_t raminfo = hsusb_reg8(RAMINFO);
size_t ramsize = (1 << ((raminfo & 0xf) + 2));
LTRACEF("%zd bytes of onboard ram\n", ramsize);
#endif
uint32_t offset = 128;
int highspeed = hsusb_reg8(POWER) & (1<<4);
int i;
for (i=1; i < 16; i++) {
select_ep(i);
if (usbc->inep[i].active) {
hsusb_reg8(TXFIFOSZ) = (1<<4)|(0x6); // 512 byte, double buffered
hsusb_reg8(RXFIFOSZ) = 0;
hsusb_reg16(TXFIFOADD) = offset / 8;
hsusb_reg16(RXFIFOADD) = 0;
if (highspeed) {
hsusb_reg16(IDX_TXMAXP) = usbc->inep[i].width;
} else {
hsusb_reg16(IDX_TXMAXP) = (((usbc->inep[i].blocksize / 64) - 1) << 11) | 64;
// hsusb_reg16(IDX_TXMAXP) = 64;
// usbc->inep[i].blocksize = 64;
}
hsusb_reg16(IDX_RXMAXP) = 0;
LTRACEF("%d: txmaxp 0x%hx\n", i, hsusb_reg16(IDX_TXMAXP));
hsusb_reg8(IDX_TXCSRH) = (1<<5)|(1<<3);
hsusb_reg8(IDX_TXCSRL) = (1<<3);
hsusb_reg8(IDX_TXCSRL) = (1<<3);
offset += 512*2;
} else {
hsusb_reg8(TXFIFOSZ) = 0;
hsusb_reg16(TXFIFOADD) = 0;
hsusb_reg16(IDX_TXMAXP) = 0;
}
if (usbc->outep[i].active) {
hsusb_reg8(TXFIFOSZ) = 0;
hsusb_reg8(RXFIFOSZ) = (0<<4)|(0x6); // 512 byte, single buffered
hsusb_reg16(TXFIFOADD) = 0;
hsusb_reg16(RXFIFOADD) = offset / 8;
hsusb_reg16(IDX_TXMAXP) = 0;
if (highspeed) {
hsusb_reg16(IDX_RXMAXP) = usbc->inep[i].width;
} else {
hsusb_reg16(IDX_RXMAXP) = (((usbc->outep[i].blocksize / 64) - 1) << 11) | 64;
// hsusb_reg16(IDX_RXMAXP) = 64;
// usbc->outep[i].blocksize = 64;
}
LTRACEF("%d: rxmaxp 0x%hx\n", i, hsusb_reg16(IDX_RXMAXP));
offset += 512;
hsusb_reg8(IDX_RXCSRH) = (1<<7);
hsusb_reg8(IDX_RXCSRL) = (1<<7);
// LTRACEF("rxcsr 0x%hx\n", hsusb_reg16(IDX_RXCSR));
} else {
hsusb_reg8(RXFIFOSZ) = 0;
hsusb_reg16(RXFIFOADD) = 0;
hsusb_reg16(IDX_RXMAXP) = 0;
}
// LTRACEF("%d txfifosz 0x%hhx\n", i, hsusb_reg8(TXFIFOSZ));
// LTRACEF("%d rxfifosz 0x%hhx\n", i, hsusb_reg8(RXFIFOSZ));
// LTRACEF("%d txfifoadd 0x%hx\n", i, hsusb_reg16(TXFIFOADD));
// LTRACEF("%d rxfifoadd 0x%hx\n", i, hsusb_reg16(RXFIFOADD));
}
}
static void otg_reset(void)
{
/* reset the chip */
*REG32(OTG_SYSCONFIG) |= (1<<1);
while ((*REG32(OTG_SYSSTATUS) & 1) == 0)
;
/* power up the controller */
*REG32(OTG_FORCESTDBY) = 0; // disable forced standby
*REG32(OTG_SYSCONFIG) &= ~(1<<1); // autoidle off
*REG32(OTG_SYSCONFIG) = (2<<12) | (2<<3) | (0<<0); // master in smart-standby, periph in smart-idle, autoidle off
*REG32(OTG_SYSCONFIG) |= 1; // autoidle on
*REG32(OTG_INTERFSEL) = 1; // 8 bit ULPI
}
static void hsusb_init(void)
{
LTRACE_ENTRY;
// select endpoint 0
dprintf(SPEW, "hwvers 0x%hx\n", hsusb_reg16(HWVERS));
dprintf(SPEW, "epinfo 0x%hhx\n", hsusb_reg8(EPINFO));
dprintf(SPEW, "raminfo 0x%hhx\n", hsusb_reg8(RAMINFO));
hsusb_reg8(INDEX) = 0;
dprintf(SPEW, "config 0x%hhx\n", hsusb_reg8(IDX_CONFIGDATA));
// assert that we have dynamic fifo sizing
DEBUG_ASSERT(hsusb_reg8(IDX_CONFIGDATA) & (1<<2));
// mask all the interrupts for the endpoints (except 0)
hsusb_reg16(INTRTXE) = (1<<0);
hsusb_reg16(INTRRXE) = 0;
twl4030_usb_reset();
twl4030_init_hs();
hsusb_reg8(DEVCTL) = 0; // peripheral mode
// hsusb_reg8(POWER) &= (1<<5); // disable high speed
hsusb_reg8(POWER) |= (1<<5); // enable high speed
hsusb_reg8(INTRUSBE) = (1<<5)|(1<<2)|(1<<1)|(1<<0); // disconnect, reset, resume, suspend
LTRACE_EXIT;
}
void usbc_init(void)
{
LTRACE_ENTRY;
// enable the clock
RMWREG32(CM_ICLKEN1_CORE, 4, 1, 1);
// allocate some ram for the usb struct
usbc = malloc(sizeof(struct usbc_stat));
memset(usbc, 0, sizeof(struct usbc_stat));
usbc->state = USB_DEFAULT;
// initialize the callback list
list_initialize(&usbc_callback_list);
// register the interrupt handlers
register_int_handler(92, hsusb_interrupt, NULL);
// register_int_handler(93, hsusb_dma_interrupt, NULL);
otg_reset();
hsusb_init();
unmask_interrupt(92);
// unmask_interrupt(93);
LTRACE_EXIT;
}