/* * Copyright (c) 2008 Travis Geiselbrecht * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files * (the "Software"), to deal in the Software without restriction, * including without limitation the rights to use, copy, modify, merge, * publish, distribute, sublicense, and/or sell copies of the Software, * and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #define LOCAL_TRACE 0 #define hsusb_reg8(reg) *REG8(USB_HS_BASE + (reg)) #define hsusb_reg16(reg) *REG16(USB_HS_BASE + (reg)) #define hsusb_reg32(reg) *REG32(USB_HS_BASE + (reg)) /* registers */ #define FADDR 0x0 #define POWER 0x1 #define INTRTX 0x2 #define INTRRX 0x4 #define INTRTXE 0x6 #define INTRRXE 0x8 #define INTRUSB 0xa #define INTRUSBE 0xb #define FRAME 0xc #define INDEX 0xe #define TESTMODE 0xf // indexed endpoint regs #define IDX_TXMAXP 0x10 #define IDX_TXCSR 0x12 #define IDX_TXCSRL 0x12 #define IDX_TXCSRH 0x13 #define IDX_RXMAXP 0x14 #define IDX_RXCSR 0x16 #define IDX_RXCSRL 0x16 #define IDX_RXCSRH 0x17 #define IDX_RXCOUNT 0x18 #define IDX_FIFOSIZE 0x1f // if endpoint 0 is selected #define IDX_CSR0 0x12 #define IDX_CONFIGDATA 0x1f // endpoint FIFOs #define FIFOBASE 0x20 #define DEVCTL 0x60 #define TXFIFOSZ 0x62 #define RXFIFOSZ 0x63 #define TXFIFOADD 0x64 #define RXFIFOADD 0x66 #define HWVERS 0x6c #define EPINFO 0x78 #define RAMINFO 0x79 #define LINKINFO 0x7a static void setup_dynamic_fifos(void); enum usb_state { USB_DEFAULT = 0, USB_ADDRESS, USB_CONFIGURED }; struct usbc_ep { bool active; uint width; uint blocksize; /* current data buffer */ usbc_transfer *transfer; /* callback when tx or rx happens on the endpoint */ int (*callback)(ep_t endpoint, usbc_callback_op_t op, usbc_transfer *transfer); }; struct usbc_stat { bool active; enum usb_state state; uint8_t active_config; // callback for device events usb_callback callback; // ep0 pending tx const void *ep0_tx_buf; size_t ep0_tx_len; uint ep0_tx_pos; struct usbc_ep inep[16]; // IN endpoints (device to host) struct usbc_ep outep[16]; // OUT endpoint (host to device) }; static struct usbc_stat *usbc; struct usbc_callback { struct list_node node; usb_callback callback; }; static struct list_node usbc_callback_list; static void call_all_callbacks(usbc_callback_op_t op, const union usb_callback_args *arg) { struct usbc_callback *cb; list_for_every_entry(&usbc_callback_list, cb, struct usbc_callback, node) { LTRACEF("calling %p, op %d, arg %p\n", cb->callback, op, arg); cb->callback(op, arg); } } static void print_usb_setup(const struct usb_setup *setup) { printf("usb_setup:\n"); printf("\ttype 0x%hhx\n", setup->request_type); printf("\trequest 0x%hhx\n", setup->request); printf("\tvalue 0x%hx\n", setup->value); printf("\tindex 0x%hx\n", setup->index); printf("\tlength 0x%hx\n", setup->length); } static void select_ep(uint ep) { DEBUG_ASSERT(ep < 16); hsusb_reg8(INDEX) = ep; } static void dump_ep_regs(uint ep) { #if 0 select_ep(ep); LTRACEF("%d txmaxp 0x%hx\n", ep, hsusb_reg16(IDX_TXMAXP)); LTRACEF("%d rxmaxp 0x%hx\n", ep, hsusb_reg16(IDX_RXMAXP)); LTRACEF("%d txfifosz 0x%hhx\n", ep, hsusb_reg8(TXFIFOSZ)); LTRACEF("%d rxfifosz 0x%hhx\n", ep, hsusb_reg8(RXFIFOSZ)); LTRACEF("%d txfifoadd 0x%hx\n", ep, hsusb_reg16(TXFIFOADD)); LTRACEF("%d rxfifoadd 0x%hx\n", ep, hsusb_reg16(RXFIFOADD)); #endif } #define MULOF4(val) (((uint32_t)(val) & 0x3) == 0) static int read_ep_fifo(uint ep, void *_buf, size_t maxlen) { char *buf = (void *)_buf; select_ep(ep); uint8_t fifo_reg = FIFOBASE + ep * 4; size_t rxcount = hsusb_reg16(IDX_RXCOUNT); if (rxcount > maxlen) rxcount = maxlen; if (MULOF4(buf) && MULOF4(rxcount)) { uint i; uint32_t *buf32 = (uint32_t *)_buf; for (i=0; i < rxcount / 4; i++) { buf32[i] = hsusb_reg32(fifo_reg); } } else { /* slow path */ uint i; for (i=0; i < rxcount; i++) { buf[i] = hsusb_reg8(fifo_reg); } } return rxcount; } static int write_ep_fifo(uint ep, const void *_buf, size_t len) { char *buf = (void *)_buf; select_ep(ep); uint8_t fifo_reg = FIFOBASE + ep * 4; if (MULOF4(buf) && MULOF4(len)) { uint i; uint32_t *buf32 = (uint32_t *)_buf; for (i=0; i < len / 4; i++) { hsusb_reg32(fifo_reg) = buf32[i]; } } else { /* slow path */ uint i; for (i=0; i < len; i++) { hsusb_reg8(fifo_reg) = buf[i]; } } return len; } #undef MULOF4 void usbc_ep0_send(const void *buf, size_t len, size_t maxlen) { LTRACEF("buf %p, len %zu, maxlen %zu\n", buf, len, maxlen); // trim the transfer len = MIN(len, maxlen); size_t transfer_len = MIN(64, len); // write the first 64 bytes write_ep_fifo(0, buf, transfer_len); // set txpktready select_ep(0); if (len > 64) { // we have more data to send, don't mark data end hsusb_reg16(IDX_CSR0) |= (1<<1); // TxPktRdy // save our position so we can continue usbc->ep0_tx_buf = buf; usbc->ep0_tx_pos = 64; usbc->ep0_tx_len = len; } else { hsusb_reg16(IDX_CSR0) |= (1<<3) | (1<<1); // DataEnd, TxPktRdy usbc->ep0_tx_buf = NULL; } } static void ep0_control_send_resume(void) { DEBUG_ASSERT(usbc->ep0_tx_buf != NULL); DEBUG_ASSERT(usbc->ep0_tx_len > usbc->ep0_tx_pos); LTRACEF("buf %p pos %d len %d\n", usbc->ep0_tx_buf, usbc->ep0_tx_pos, usbc->ep0_tx_len); size_t transfer_len = MIN(64, usbc->ep0_tx_len - usbc->ep0_tx_pos); write_ep_fifo(0, (const uint8_t *)usbc->ep0_tx_buf + usbc->ep0_tx_pos, transfer_len); usbc->ep0_tx_pos += transfer_len; if (usbc->ep0_tx_pos >= usbc->ep0_tx_len) { // completes the transfer hsusb_reg16(IDX_CSR0) |= (1<<3) | (1<<1); // DataEnd, TxPktRdy usbc->ep0_tx_buf = NULL; } else { hsusb_reg16(IDX_CSR0) |= (1<<1); // TxPktRdy } } void usbc_ep0_ack(void) { hsusb_reg16(IDX_CSR0) |= (1<<6)|(1<<3); // servicedrxpktrdy & dataend } void usbc_ep0_stall(void) { printf("USB STALL\n"); } static void usb_shutdown_endpoints(void) { // iterate through all the endpoints, cancelling any pending io and shut down the endpoint ep_t i; for (i=1; i < 16; i++) { if (usbc->inep[i].active && usbc->inep[i].transfer) { // pool's closed usbc_transfer *t = usbc->inep[i].transfer; usbc->inep[i].transfer = NULL; t->result = USB_TRANSFER_RESULT_CANCELLED; usbc->inep[i].callback(i, CB_EP_TRANSFER_CANCELLED, t); } if (usbc->outep[i].active && usbc->outep[i].transfer) { // pool's closed usbc_transfer *t = usbc->outep[i].transfer; usbc->outep[i].transfer = NULL; t->result = USB_TRANSFER_RESULT_CANCELLED; usbc->outep[i].callback(i, CB_EP_TRANSFER_CANCELLED, t); } } // clear pending ep0 data usbc->ep0_tx_buf = 0; } static void usb_enable_endpoints(void) { setup_dynamic_fifos(); } static void usb_disconnect(void) { // we've been disconnected usbc->state = USB_DEFAULT; usbc->active_config = 0; usb_shutdown_endpoints(); } static void usb_reset(void) { // this wipes out our endpoint interrupt disables hsusb_reg16(INTRTXE) = (1<<0); hsusb_reg16(INTRRXE) = 0; usb_shutdown_endpoints(); } static int handle_ep_rx(int ep) { struct usbc_ep *e = &usbc->outep[ep]; DEBUG_ASSERT(e->active); DEBUG_ASSERT(e->transfer); // can't rx to no transfer usbc_transfer *t = e->transfer; uint rxcount = hsusb_reg16(IDX_RXCOUNT); uint readcount = MIN(rxcount, t->buflen - t->bufpos); readcount = MIN(readcount, e->blocksize); int len = read_ep_fifo(ep, (uint8_t *)t->buf + t->bufpos, readcount); LTRACEF("read %d bytes from the fifo\n", len); // no more packet ready hsusb_reg16(IDX_RXCSRL) &= ~(1<<0); // clear rxpktrdy t->bufpos += len; if (rxcount < e->blocksize || t->bufpos >= t->buflen) { // we're done with this transfer, clear it and disable the endpoint e->transfer = NULL; hsusb_reg16(INTRRXE) &= ~(1<result = USB_TRANSFER_RESULT_OK; DEBUG_ASSERT(e->callback); e->callback(ep, CB_EP_RXCOMPLETE, t); return 1; } return 0; } bool usbc_is_highspeed(void) { return (hsusb_reg8(POWER) & (1<<4)) ? true : false; } static enum handler_return hsusb_interrupt(void *arg) { uint16_t intrtx = hsusb_reg16(INTRTX); uint16_t intrrx = hsusb_reg16(INTRRX); uint8_t intrusb = hsusb_reg8(INTRUSB); enum handler_return ret = INT_NO_RESCHEDULE; LTRACEF("intrtx 0x%hx (0x%x), intrrx 0x%hx (0x%x), intrusb 0x%hhx, intrusbe 0x%hhx\n", intrtx, hsusb_reg16(INTRTXE), intrrx, hsusb_reg16(INTRRXE), intrusb, hsusb_reg8(INTRUSBE)); dump_ep_regs(2); // look for global usb interrupts intrusb &= hsusb_reg8(INTRUSBE); if (intrusb) { if (intrusb & (1<<0)) { // suspend TRACEF("suspend\n"); call_all_callbacks(CB_SUSPEND, 0); ret = INT_RESCHEDULE; } if (intrusb & (1<<1)) { // resume TRACEF("resume\n"); call_all_callbacks(CB_RESUME, 0); ret = INT_RESCHEDULE; } if (intrusb & (1<<2)) { // reset TRACEF("reset\n"); TRACEF("high speed %d\n", hsusb_reg8(POWER) & (1<<4) ? 1 : 0); call_all_callbacks(CB_RESET, 0); usb_reset(); ret = INT_RESCHEDULE; } if (intrusb & (1<<3)) { // SOF TRACEF("sof\n"); } if (intrusb & (1<<4)) { // connect (host only) TRACEF("connect\n"); } if (intrusb & (1<<5)) { // disconnect TRACEF("disconnect\n"); call_all_callbacks(CB_DISCONNECT, 0); usb_disconnect(); ret = INT_RESCHEDULE; } if (intrusb & (1<<6)) { // session request (A device only) TRACEF("session request\n"); } if (intrusb & (1<<7)) { // vbus error (A device only) TRACEF("vbus error\n"); } } // look for endpoint 0 interrupt if (intrtx & 1) { select_ep(0); uint16_t csr = hsusb_reg16(IDX_CSR0); LTRACEF("ep0 csr 0x%hhx\n", csr); // clear the stall bit if (csr & (1<<2)) hsusb_reg16(IDX_CSR0) &= ~(1<<2); // do we have any pending tx data? if (usbc->ep0_tx_buf != NULL) { if (csr & (1<<4)) { // setup end // we got an abort on the data transfer usbc->ep0_tx_buf = NULL; } else { // send more data ep0_control_send_resume(); } } // clear the setup end bit if (csr & (1<<4)) { hsusb_reg16(IDX_CSR0) |= (1<<7); // servicedsetupend } if (csr & 0x1) { // rxpktrdy LTRACEF("ep0: rxpktrdy, count %d\n", hsusb_reg16(IDX_RXCOUNT)); struct usb_setup setup; read_ep_fifo(0, (void *)&setup, sizeof(setup)); // print_usb_setup(&setup); hsusb_reg16(IDX_CSR0) |= (1<<6); // servicedrxpktrdy union usb_callback_args args; args.setup = &setup; call_all_callbacks(CB_SETUP_MSG, &args); switch (setup.request) { case SET_ADDRESS: { LTRACEF("got SET_ADDRESS: value %d\n", setup.value); dprintf(INFO, "usb: got assigned address %d\n", setup.value); usbc_ep0_ack(); hsusb_reg8(FADDR) = setup.value; if (setup.value == 0) usbc->state = USB_DEFAULT; else usbc->state = USB_ADDRESS; break; } case SET_CONFIGURATION: LTRACEF("got SET_CONFIGURATION, config %d\n", setup.value); if (setup.value == 0) { if (usbc->state == USB_CONFIGURED) usbc->state = USB_ADDRESS; call_all_callbacks(CB_OFFLINE, 0); } else { usbc->state = USB_CONFIGURED; call_all_callbacks(CB_ONLINE, 0); } usbc->active_config = setup.value; ret = INT_RESCHEDULE; // set up all of the endpoints usb_enable_endpoints(); break; } } } // handle endpoint interrupts // mask out ones we don't want to play with intrtx &= hsusb_reg16(INTRTXE); intrrx &= hsusb_reg16(INTRRXE); int i; for (i=1; i < 16; i++) { if (intrtx & (1<inep[i]; DEBUG_ASSERT(e->transfer); // interrupts shouldn't be enabled if there isn't a transfer queued usbc_transfer *t = e->transfer; if (t->bufpos < t->buflen) { // cram more stuff in the buffer uint queuelen = MIN(e->blocksize, t->buflen - t->bufpos); LTRACEF("writing more tx data into fifo: len %u, remaining %zu\n", queuelen, t->buflen - t->bufpos); write_ep_fifo(i, (uint8_t *)t->buf + t->bufpos, queuelen); t->bufpos += queuelen; // start the transfer hsusb_reg16(IDX_TXCSR) |= (1<<0); // txpktrdy } else { // we're done, callback e->transfer = NULL; hsusb_reg16(INTRTXE) &= ~(1<result = USB_TRANSFER_RESULT_OK; DEBUG_ASSERT(e->callback); e->callback(i, CB_EP_TXCOMPLETE, t); ret = INT_RESCHEDULE; } } if (intrrx & (1<outep[i]; if (!e->active) { // stall it hsusb_reg16(IDX_RXCSR) |= (1<<6); // stall hsusb_reg16(IDX_RXCSR) |= (1<<4); // flush fifo panic("rx on inactive endpoint\n"); continue; } if (handle_ep_rx(i) > 0) ret = INT_RESCHEDULE; } } } return ret; } static enum handler_return hsusb_dma_interrupt(void *arg) { LTRACE; return INT_NO_RESCHEDULE; } void usbc_setup_endpoint(ep_t ep, ep_dir_t dir, bool active, ep_callback callback, uint width, uint blocksize) { DEBUG_ASSERT(ep != 0); DEBUG_ASSERT(ep < 16); DEBUG_ASSERT(dir == IN || dir == OUT); struct usbc_ep *e; if (dir == IN) e = &usbc->inep[ep]; else e = &usbc->outep[ep]; // for now we can only make active e->active = active; e->callback = callback; e->width = width; e->blocksize = blocksize; } int usbc_queue_rx(ep_t ep, usbc_transfer *transfer) { LTRACE; struct usbc_ep *e = &usbc->outep[ep]; DEBUG_ASSERT(ep != 0); DEBUG_ASSERT(ep < 16); DEBUG_ASSERT(e->active); DEBUG_ASSERT(transfer); DEBUG_ASSERT(transfer->buf); DEBUG_ASSERT(e->transfer == NULL); // can only queue up multiples of the endpoint blocksize DEBUG_ASSERT(transfer->buflen >= e->blocksize && (transfer->buflen % e->blocksize) == 0); enter_critical_section(); if (usbc->state != USB_CONFIGURED) { // can't transfer now exit_critical_section(); return -1; } e->transfer = transfer; // make sure the ep is set up right // select_ep(ep); // hsusb_reg8(IDX_RXCSRH) = 0; dump_ep_regs(ep); select_ep(ep); if (hsusb_reg16(IDX_RXCSR) & (1<<0)) { // packet already ready LTRACEF("****packet already ready (%d)\n", hsusb_reg16(IDX_RXCOUNT)); int rc = handle_ep_rx(ep); if (rc > 0) { // the transfer was completed goto done; } } // unmask irqs for this endpoint hsusb_reg16(INTRRXE) |= (1<buf, transfer->buflen); struct usbc_ep *e = &usbc->inep[ep]; DEBUG_ASSERT(ep != 0); DEBUG_ASSERT(ep < 16); DEBUG_ASSERT(e->active); DEBUG_ASSERT(e->transfer == NULL); enter_critical_section(); if (usbc->state != USB_CONFIGURED) { // can't transfer now exit_critical_section(); return -1; } e->transfer = transfer; select_ep(ep); // set this endpoint in tx mode // hsusb_reg8(IDX_TXCSRH) = (1<<7)|(1<<5); // autoset, tx direction dump_ep_regs(ep); // unmask irqs for this endpoint hsusb_reg16(INTRTXE) |= (1<blocksize, transfer->buflen); write_ep_fifo(ep, transfer->buf, queuelen); transfer->bufpos = queuelen; // start the transfer hsusb_reg16(IDX_TXCSR) |= (1<<0); // txpktrdy } exit_critical_section(); return 0; } int usbc_set_callback(usb_callback callback) { DEBUG_ASSERT(callback != NULL); struct usbc_callback *cb = malloc(sizeof(struct usbc_callback)); enter_critical_section(); cb->callback = callback; list_add_head(&usbc_callback_list, &cb->node); exit_critical_section(); return 0; } int usbc_set_active(bool active) { LTRACEF("active %d\n", active); if (active) { DEBUG_ASSERT(!usbc->active); hsusb_reg8(POWER) |= (1<<6); // soft conn twl4030_set_usb_pullup(true); usbc->active = true; } else { hsusb_reg8(POWER) &= ~(1<<6); // soft conn twl4030_set_usb_pullup(false); usbc->active = false; } return 0; } static void setup_dynamic_fifos(void) { // LTRACE; #if LOCAL_TRACE uint8_t raminfo = hsusb_reg8(RAMINFO); size_t ramsize = (1 << ((raminfo & 0xf) + 2)); LTRACEF("%zd bytes of onboard ram\n", ramsize); #endif uint32_t offset = 128; int highspeed = hsusb_reg8(POWER) & (1<<4); int i; for (i=1; i < 16; i++) { select_ep(i); if (usbc->inep[i].active) { hsusb_reg8(TXFIFOSZ) = (1<<4)|(0x6); // 512 byte, double buffered hsusb_reg8(RXFIFOSZ) = 0; hsusb_reg16(TXFIFOADD) = offset / 8; hsusb_reg16(RXFIFOADD) = 0; if (highspeed) { hsusb_reg16(IDX_TXMAXP) = usbc->inep[i].width; } else { hsusb_reg16(IDX_TXMAXP) = (((usbc->inep[i].blocksize / 64) - 1) << 11) | 64; // hsusb_reg16(IDX_TXMAXP) = 64; // usbc->inep[i].blocksize = 64; } hsusb_reg16(IDX_RXMAXP) = 0; LTRACEF("%d: txmaxp 0x%hx\n", i, hsusb_reg16(IDX_TXMAXP)); hsusb_reg8(IDX_TXCSRH) = (1<<5)|(1<<3); hsusb_reg8(IDX_TXCSRL) = (1<<3); hsusb_reg8(IDX_TXCSRL) = (1<<3); offset += 512*2; } else { hsusb_reg8(TXFIFOSZ) = 0; hsusb_reg16(TXFIFOADD) = 0; hsusb_reg16(IDX_TXMAXP) = 0; } if (usbc->outep[i].active) { hsusb_reg8(TXFIFOSZ) = 0; hsusb_reg8(RXFIFOSZ) = (0<<4)|(0x6); // 512 byte, single buffered hsusb_reg16(TXFIFOADD) = 0; hsusb_reg16(RXFIFOADD) = offset / 8; hsusb_reg16(IDX_TXMAXP) = 0; if (highspeed) { hsusb_reg16(IDX_RXMAXP) = usbc->inep[i].width; } else { hsusb_reg16(IDX_RXMAXP) = (((usbc->outep[i].blocksize / 64) - 1) << 11) | 64; // hsusb_reg16(IDX_RXMAXP) = 64; // usbc->outep[i].blocksize = 64; } LTRACEF("%d: rxmaxp 0x%hx\n", i, hsusb_reg16(IDX_RXMAXP)); offset += 512; hsusb_reg8(IDX_RXCSRH) = (1<<7); hsusb_reg8(IDX_RXCSRL) = (1<<7); // LTRACEF("rxcsr 0x%hx\n", hsusb_reg16(IDX_RXCSR)); } else { hsusb_reg8(RXFIFOSZ) = 0; hsusb_reg16(RXFIFOADD) = 0; hsusb_reg16(IDX_RXMAXP) = 0; } // LTRACEF("%d txfifosz 0x%hhx\n", i, hsusb_reg8(TXFIFOSZ)); // LTRACEF("%d rxfifosz 0x%hhx\n", i, hsusb_reg8(RXFIFOSZ)); // LTRACEF("%d txfifoadd 0x%hx\n", i, hsusb_reg16(TXFIFOADD)); // LTRACEF("%d rxfifoadd 0x%hx\n", i, hsusb_reg16(RXFIFOADD)); } } static void otg_reset(void) { /* reset the chip */ *REG32(OTG_SYSCONFIG) |= (1<<1); while ((*REG32(OTG_SYSSTATUS) & 1) == 0) ; /* power up the controller */ *REG32(OTG_FORCESTDBY) = 0; // disable forced standby *REG32(OTG_SYSCONFIG) &= ~(1<<1); // autoidle off *REG32(OTG_SYSCONFIG) = (2<<12) | (2<<3) | (0<<0); // master in smart-standby, periph in smart-idle, autoidle off *REG32(OTG_SYSCONFIG) |= 1; // autoidle on *REG32(OTG_INTERFSEL) = 1; // 8 bit ULPI } static void hsusb_init(void) { LTRACE_ENTRY; // select endpoint 0 dprintf(SPEW, "hwvers 0x%hx\n", hsusb_reg16(HWVERS)); dprintf(SPEW, "epinfo 0x%hhx\n", hsusb_reg8(EPINFO)); dprintf(SPEW, "raminfo 0x%hhx\n", hsusb_reg8(RAMINFO)); hsusb_reg8(INDEX) = 0; dprintf(SPEW, "config 0x%hhx\n", hsusb_reg8(IDX_CONFIGDATA)); // assert that we have dynamic fifo sizing DEBUG_ASSERT(hsusb_reg8(IDX_CONFIGDATA) & (1<<2)); // mask all the interrupts for the endpoints (except 0) hsusb_reg16(INTRTXE) = (1<<0); hsusb_reg16(INTRRXE) = 0; twl4030_usb_reset(); twl4030_init_hs(); hsusb_reg8(DEVCTL) = 0; // peripheral mode // hsusb_reg8(POWER) &= (1<<5); // disable high speed hsusb_reg8(POWER) |= (1<<5); // enable high speed hsusb_reg8(INTRUSBE) = (1<<5)|(1<<2)|(1<<1)|(1<<0); // disconnect, reset, resume, suspend LTRACE_EXIT; } void usbc_init(void) { LTRACE_ENTRY; // enable the clock RMWREG32(CM_ICLKEN1_CORE, 4, 1, 1); // allocate some ram for the usb struct usbc = malloc(sizeof(struct usbc_stat)); memset(usbc, 0, sizeof(struct usbc_stat)); usbc->state = USB_DEFAULT; // initialize the callback list list_initialize(&usbc_callback_list); // register the interrupt handlers register_int_handler(92, hsusb_interrupt, NULL); // register_int_handler(93, hsusb_dma_interrupt, NULL); otg_reset(); hsusb_init(); unmask_interrupt(92); // unmask_interrupt(93); LTRACE_EXIT; }