M7350/kernel/drivers/thermal/msm_tsens.c
2024-09-09 08:52:07 +00:00

666 lines
19 KiB
C

/* Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/*
* Qualcomm TSENS Thermal Manager driver
*
*/
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/thermal.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <mach/msm_iomap.h>
#include <linux/pm.h>
/* Trips: from very hot to very cold */
enum tsens_trip_type {
TSENS_TRIP_STAGE3 = 0,
TSENS_TRIP_STAGE2,
TSENS_TRIP_STAGE1,
TSENS_TRIP_STAGE0,
TSENS_TRIP_NUM,
};
#define TSENS_NUM_SENSORS 1 /* There are 5 but only 1 is useful now */
#define TSENS_CAL_DEGC 30 /* degree C used for calibration */
#define TSENS_QFPROM_ADDR (MSM_QFPROM_BASE + 0x000000bc)
#define TSENS_QFPROM_RED_TEMP_SENSOR0_SHIFT 24
#define TSENS_QFPROM_TEMP_SENSOR0_SHIFT 16
#define TSENS_QFPROM_TEMP_SENSOR0_MASK (255 << TSENS_QFPROM_TEMP_SENSOR0_SHIFT)
#define TSENS_SLOPE (0.702) /* slope in (degrees_C / ADC_code) */
#define TSENS_FACTOR (1000) /* convert floating-point into integer */
#define TSENS_CONFIG 01 /* this setting found to be optimal */
#define TSENS_CONFIG_SHIFT 28
#define TSENS_CONFIG_MASK (3 << TSENS_CONFIG_SHIFT)
#define TSENS_CNTL_ADDR (MSM_CLK_CTL_BASE + 0x00003620)
#define TSENS_EN (1 << 0)
#define TSENS_SW_RST (1 << 1)
#define SENSOR0_EN (1 << 3)
#define SENSOR1_EN (1 << 4)
#define SENSOR2_EN (1 << 5)
#define SENSOR3_EN (1 << 6)
#define SENSOR4_EN (1 << 7)
#define TSENS_MIN_STATUS_MASK (1 << 8)
#define TSENS_LOWER_STATUS_CLR (1 << 9)
#define TSENS_UPPER_STATUS_CLR (1 << 10)
#define TSENS_MAX_STATUS_MASK (1 << 11)
#define TSENS_MEASURE_PERIOD 4 /* 1 sec. default as required by Willie */
#define TSENS_SLP_CLK_ENA (1 << 24)
#define TSENS_THRESHOLD_ADDR (MSM_CLK_CTL_BASE + 0x00003624)
#define TSENS_THRESHOLD_MAX_CODE (0xff)
#define TSENS_THRESHOLD_MAX_LIMIT_MASK (TSENS_THRESHOLD_MAX_CODE << 24)
#define TSENS_THRESHOLD_MIN_LIMIT_MASK (TSENS_THRESHOLD_MAX_CODE << 16)
#define TSENS_THRESHOLD_UPPER_LIMIT_MASK (TSENS_THRESHOLD_MAX_CODE << 8)
#define TSENS_THRESHOLD_LOWER_LIMIT_MASK (TSENS_THRESHOLD_MAX_CODE << 0)
/* Initial temperature threshold values */
#define TSENS_LOWER_LIMIT_TH 0x50
#define TSENS_UPPER_LIMIT_TH 0xdf
#define TSENS_MIN_LIMIT_TH 0x38
#define TSENS_MAX_LIMIT_TH 0xff
#define TSENS_S0_STATUS_ADDR (MSM_CLK_CTL_BASE + 0x00003628)
#define TSENS_INT_STATUS_ADDR (MSM_CLK_CTL_BASE + 0x0000363c)
#define TSENS_LOWER_INT_MASK (1 << 1)
#define TSENS_UPPER_INT_MASK (1 << 2)
#define TSENS_TRDY_MASK (1 << 7)
struct tsens_tm_device_sensor {
struct thermal_zone_device *tz_dev;
enum thermal_device_mode mode;
unsigned int sensor_num;
};
struct tsens_tm_device {
struct tsens_tm_device_sensor sensor[TSENS_NUM_SENSORS];
bool prev_reading_avail;
int offset;
struct work_struct work;
uint32_t pm_tsens_thr_data;
};
struct tsens_tm_device *tmdev;
/* Temperature on y axis and ADC-code on x-axis */
static int tsens_tz_code_to_degC(int adc_code)
{
int degC, degcbeforefactor;
degcbeforefactor = adc_code * (int)(TSENS_SLOPE * TSENS_FACTOR)
+ tmdev->offset;
if (degcbeforefactor == 0)
degC = degcbeforefactor;
else if (degcbeforefactor > 0)
degC = (degcbeforefactor + TSENS_FACTOR/2) / TSENS_FACTOR;
else /* rounding for negative degrees */
degC = (degcbeforefactor - TSENS_FACTOR/2) / TSENS_FACTOR;
return degC;
}
static int tsens_tz_degC_to_code(int degC)
{
int code = (degC * TSENS_FACTOR - tmdev->offset
+ (int)(TSENS_FACTOR * TSENS_SLOPE)/2)
/ (int)(TSENS_FACTOR * TSENS_SLOPE);
if (code > 255) /* upper bound */
code = 255;
else if (code < 0) /* lower bound */
code = 0;
return code;
}
static int tsens_tz_get_temp(struct thermal_zone_device *thermal,
unsigned long *temp)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
unsigned int code;
if (!tm_sensor || tm_sensor->mode != THERMAL_DEVICE_ENABLED || !temp)
return -EINVAL;
if (!tmdev->prev_reading_avail) {
while (!(readl(TSENS_INT_STATUS_ADDR) & TSENS_TRDY_MASK))
msleep(1);
tmdev->prev_reading_avail = 1;
}
code = readl(TSENS_S0_STATUS_ADDR + (tm_sensor->sensor_num << 2));
*temp = tsens_tz_code_to_degC(code);
return 0;
}
static int tsens_tz_get_mode(struct thermal_zone_device *thermal,
enum thermal_device_mode *mode)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
if (!tm_sensor || !mode)
return -EINVAL;
*mode = tm_sensor->mode;
return 0;
}
static int tsens_tz_set_mode(struct thermal_zone_device *thermal,
enum thermal_device_mode mode)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
unsigned int reg, mask;
if (!tm_sensor)
return -EINVAL;
if (mode != tm_sensor->mode) {
pr_info("%s: mode: %d --> %d\n", __func__, tm_sensor->mode,
mode);
reg = readl(TSENS_CNTL_ADDR);
mask = 1 << (tm_sensor->sensor_num + 3);
if (mode == THERMAL_DEVICE_ENABLED) {
writel(reg | TSENS_SW_RST, TSENS_CNTL_ADDR);
reg |= mask | TSENS_SLP_CLK_ENA | TSENS_EN;
tmdev->prev_reading_avail = 0;
} else {
reg &= ~mask;
if (!(reg & (((1 << TSENS_NUM_SENSORS) - 1) << 3)))
reg &= ~(TSENS_SLP_CLK_ENA | TSENS_EN);
}
writel(reg, TSENS_CNTL_ADDR);
}
tm_sensor->mode = mode;
return 0;
}
static int tsens_tz_get_trip_type(struct thermal_zone_device *thermal,
int trip, enum thermal_trip_type *type)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
if (!tm_sensor || trip < 0 || !type)
return -EINVAL;
switch (trip) {
case TSENS_TRIP_STAGE3:
*type = THERMAL_TRIP_CRITICAL;
break;
case TSENS_TRIP_STAGE2:
*type = THERMAL_TRIP_CONFIGURABLE_HI;
break;
case TSENS_TRIP_STAGE1:
*type = THERMAL_TRIP_CONFIGURABLE_LOW;
break;
case TSENS_TRIP_STAGE0:
*type = THERMAL_TRIP_CRITICAL_LOW;
break;
default:
return -EINVAL;
}
return 0;
}
static int tsens_tz_activate_trip_type(struct thermal_zone_device *thermal,
int trip, enum thermal_trip_activation_mode mode)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
unsigned int reg_cntl, reg_th, code, hi_code, lo_code, mask;
if (!tm_sensor || trip < 0)
return -EINVAL;
lo_code = 0;
hi_code = TSENS_THRESHOLD_MAX_CODE;
reg_cntl = readl(TSENS_CNTL_ADDR);
reg_th = readl(TSENS_THRESHOLD_ADDR);
switch (trip) {
case TSENS_TRIP_STAGE3:
code = (reg_th & TSENS_THRESHOLD_MAX_LIMIT_MASK) >> 24;
mask = TSENS_MAX_STATUS_MASK;
if (!(reg_cntl & TSENS_UPPER_STATUS_CLR))
lo_code = (reg_th & TSENS_THRESHOLD_UPPER_LIMIT_MASK)
>> 8;
else if (!(reg_cntl & TSENS_LOWER_STATUS_CLR))
lo_code = (reg_th & TSENS_THRESHOLD_LOWER_LIMIT_MASK);
else if (!(reg_cntl & TSENS_MIN_STATUS_MASK))
lo_code = (reg_th & TSENS_THRESHOLD_MIN_LIMIT_MASK)
>> 16;
break;
case TSENS_TRIP_STAGE2:
code = (reg_th & TSENS_THRESHOLD_UPPER_LIMIT_MASK) >> 8;
mask = TSENS_UPPER_STATUS_CLR;
if (!(reg_cntl & TSENS_MAX_STATUS_MASK))
hi_code = (reg_th & TSENS_THRESHOLD_MAX_LIMIT_MASK)
>> 24;
if (!(reg_cntl & TSENS_LOWER_STATUS_CLR))
lo_code = (reg_th & TSENS_THRESHOLD_LOWER_LIMIT_MASK);
else if (!(reg_cntl & TSENS_MIN_STATUS_MASK))
lo_code = (reg_th & TSENS_THRESHOLD_MIN_LIMIT_MASK)
>> 16;
break;
case TSENS_TRIP_STAGE1:
code = (reg_th & TSENS_THRESHOLD_LOWER_LIMIT_MASK) >> 0;
mask = TSENS_LOWER_STATUS_CLR;
if (!(reg_cntl & TSENS_MIN_STATUS_MASK))
lo_code = (reg_th & TSENS_THRESHOLD_MIN_LIMIT_MASK)
>> 16;
if (!(reg_cntl & TSENS_UPPER_STATUS_CLR))
hi_code = (reg_th & TSENS_THRESHOLD_UPPER_LIMIT_MASK)
>> 8;
else if (!(reg_cntl & TSENS_MAX_STATUS_MASK))
hi_code = (reg_th & TSENS_THRESHOLD_MAX_LIMIT_MASK)
>> 24;
break;
case TSENS_TRIP_STAGE0:
code = (reg_th & TSENS_THRESHOLD_MIN_LIMIT_MASK) >> 16;
mask = TSENS_MIN_STATUS_MASK;
if (!(reg_cntl & TSENS_LOWER_STATUS_CLR))
hi_code = (reg_th & TSENS_THRESHOLD_LOWER_LIMIT_MASK);
else if (!(reg_cntl & TSENS_UPPER_STATUS_CLR))
hi_code = (reg_th & TSENS_THRESHOLD_UPPER_LIMIT_MASK)
>> 8;
else if (!(reg_cntl & TSENS_MAX_STATUS_MASK))
hi_code = (reg_th & TSENS_THRESHOLD_MAX_LIMIT_MASK)
>> 24;
break;
default:
return -EINVAL;
}
if (mode == THERMAL_TRIP_ACTIVATION_DISABLED)
writel(reg_cntl | mask, TSENS_CNTL_ADDR);
else {
if (code < lo_code || code > hi_code)
return -EINVAL;
writel(reg_cntl & ~mask, TSENS_CNTL_ADDR);
}
return 0;
}
static int tsens_tz_get_trip_temp(struct thermal_zone_device *thermal,
int trip, unsigned long *temp)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
unsigned int reg;
if (!tm_sensor || trip < 0 || !temp)
return -EINVAL;
reg = readl(TSENS_THRESHOLD_ADDR);
switch (trip) {
case TSENS_TRIP_STAGE3:
reg = (reg & TSENS_THRESHOLD_MAX_LIMIT_MASK) >> 24;
break;
case TSENS_TRIP_STAGE2:
reg = (reg & TSENS_THRESHOLD_UPPER_LIMIT_MASK) >> 8;
break;
case TSENS_TRIP_STAGE1:
reg = (reg & TSENS_THRESHOLD_LOWER_LIMIT_MASK) >> 0;
break;
case TSENS_TRIP_STAGE0:
reg = (reg & TSENS_THRESHOLD_MIN_LIMIT_MASK) >> 16;
break;
default:
return -EINVAL;
}
*temp = tsens_tz_code_to_degC(reg);
return 0;
}
static int tsens_tz_get_crit_temp(struct thermal_zone_device *thermal,
unsigned long *temp)
{
return tsens_tz_get_trip_temp(thermal, TSENS_TRIP_STAGE3, temp);
}
static int tsens_tz_set_trip_temp(struct thermal_zone_device *thermal,
int trip, long temp)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
unsigned int reg_th, reg_cntl;
int code, hi_code, lo_code, code_err_chk;
code_err_chk = code = tsens_tz_degC_to_code(temp);
if (!tm_sensor || trip < 0)
return -EINVAL;
lo_code = 0;
hi_code = TSENS_THRESHOLD_MAX_CODE;
reg_cntl = readl(TSENS_CNTL_ADDR);
reg_th = readl(TSENS_THRESHOLD_ADDR);
switch (trip) {
case TSENS_TRIP_STAGE3:
code <<= 24;
reg_th &= ~TSENS_THRESHOLD_MAX_LIMIT_MASK;
if (!(reg_cntl & TSENS_UPPER_STATUS_CLR))
lo_code = (reg_th & TSENS_THRESHOLD_UPPER_LIMIT_MASK)
>> 8;
else if (!(reg_cntl & TSENS_LOWER_STATUS_CLR))
lo_code = (reg_th & TSENS_THRESHOLD_LOWER_LIMIT_MASK);
else if (!(reg_cntl & TSENS_MIN_STATUS_MASK))
lo_code = (reg_th & TSENS_THRESHOLD_MIN_LIMIT_MASK)
>> 16;
break;
case TSENS_TRIP_STAGE2:
code <<= 8;
reg_th &= ~TSENS_THRESHOLD_UPPER_LIMIT_MASK;
if (!(reg_cntl & TSENS_MAX_STATUS_MASK))
hi_code = (reg_th & TSENS_THRESHOLD_MAX_LIMIT_MASK)
>> 24;
if (!(reg_cntl & TSENS_LOWER_STATUS_CLR))
lo_code = (reg_th & TSENS_THRESHOLD_LOWER_LIMIT_MASK);
else if (!(reg_cntl & TSENS_MIN_STATUS_MASK))
lo_code = (reg_th & TSENS_THRESHOLD_MIN_LIMIT_MASK)
>> 16;
break;
case TSENS_TRIP_STAGE1:
reg_th &= ~TSENS_THRESHOLD_LOWER_LIMIT_MASK;
if (!(reg_cntl & TSENS_MIN_STATUS_MASK))
lo_code = (reg_th & TSENS_THRESHOLD_MIN_LIMIT_MASK)
>> 16;
if (!(reg_cntl & TSENS_UPPER_STATUS_CLR))
hi_code = (reg_th & TSENS_THRESHOLD_UPPER_LIMIT_MASK)
>> 8;
else if (!(reg_cntl & TSENS_MAX_STATUS_MASK))
hi_code = (reg_th & TSENS_THRESHOLD_MAX_LIMIT_MASK)
>> 24;
break;
case TSENS_TRIP_STAGE0:
code <<= 16;
reg_th &= ~TSENS_THRESHOLD_MIN_LIMIT_MASK;
if (!(reg_cntl & TSENS_LOWER_STATUS_CLR))
hi_code = (reg_th & TSENS_THRESHOLD_LOWER_LIMIT_MASK);
else if (!(reg_cntl & TSENS_UPPER_STATUS_CLR))
hi_code = (reg_th & TSENS_THRESHOLD_UPPER_LIMIT_MASK)
>> 8;
else if (!(reg_cntl & TSENS_MAX_STATUS_MASK))
hi_code = (reg_th & TSENS_THRESHOLD_MAX_LIMIT_MASK)
>> 24;
break;
default:
return -EINVAL;
}
if (code_err_chk < lo_code || code_err_chk > hi_code)
return -EINVAL;
writel(reg_th | code, TSENS_THRESHOLD_ADDR);
return 0;
}
static struct thermal_zone_device_ops tsens_thermal_zone_ops = {
.get_temp = tsens_tz_get_temp,
.get_mode = tsens_tz_get_mode,
.set_mode = tsens_tz_set_mode,
.get_trip_type = tsens_tz_get_trip_type,
.activate_trip_type = tsens_tz_activate_trip_type,
.get_trip_temp = tsens_tz_get_trip_temp,
.set_trip_temp = tsens_tz_set_trip_temp,
.get_crit_temp = tsens_tz_get_crit_temp,
};
static void notify_uspace_tsens_fn(struct work_struct *work)
{
struct tsens_tm_device *tm = container_of(work, struct tsens_tm_device,
work);
/* Currently only Sensor0 is supported. We added support
to notify only the supported Sensor and this portion
needs to be revisited once other sensors are supported */
sysfs_notify(&tm->sensor[0].tz_dev->device.kobj,
NULL, "type");
}
static irqreturn_t tsens_isr(int irq, void *data)
{
unsigned int reg = readl(TSENS_CNTL_ADDR);
writel(reg | TSENS_LOWER_STATUS_CLR | TSENS_UPPER_STATUS_CLR,
TSENS_CNTL_ADDR);
return IRQ_WAKE_THREAD;
}
static irqreturn_t tsens_isr_thread(int irq, void *data)
{
struct tsens_tm_device *tm = data;
unsigned int threshold, threshold_low, i, code, reg, sensor, mask;
bool upper_th_x, lower_th_x;
int adc_code;
mask = ~(TSENS_LOWER_STATUS_CLR | TSENS_UPPER_STATUS_CLR);
threshold = readl(TSENS_THRESHOLD_ADDR);
threshold_low = threshold & TSENS_THRESHOLD_LOWER_LIMIT_MASK;
threshold = (threshold & TSENS_THRESHOLD_UPPER_LIMIT_MASK) >> 8;
reg = sensor = readl(TSENS_CNTL_ADDR);
sensor &= (SENSOR0_EN | SENSOR1_EN | SENSOR2_EN |
SENSOR3_EN | SENSOR4_EN);
sensor >>= 3;
for (i = 0; i < TSENS_NUM_SENSORS; i++) {
if (sensor & 1) {
code = readl(TSENS_S0_STATUS_ADDR + (i << 2));
upper_th_x = code >= threshold;
lower_th_x = code <= threshold_low;
if (upper_th_x)
mask |= TSENS_UPPER_STATUS_CLR;
if (lower_th_x)
mask |= TSENS_LOWER_STATUS_CLR;
if (upper_th_x || lower_th_x) {
/* Notify user space */
schedule_work(&tm->work);
adc_code = readl(TSENS_S0_STATUS_ADDR
+ (i << 2));
printk(KERN_INFO"\nTrip point triggered by "
"current temperature (%d degrees) "
"measured by Temperature-Sensor %d\n",
tsens_tz_code_to_degC(adc_code), i);
}
}
sensor >>= 1;
}
writel(reg & mask, TSENS_CNTL_ADDR);
return IRQ_HANDLED;
}
#ifdef CONFIG_PM
static int tsens_suspend(struct device *dev)
{
unsigned int reg;
tmdev->pm_tsens_thr_data = readl_relaxed(TSENS_THRESHOLD_ADDR);
reg = readl_relaxed(TSENS_CNTL_ADDR);
writel_relaxed(reg & ~(TSENS_SLP_CLK_ENA | TSENS_EN), TSENS_CNTL_ADDR);
tmdev->prev_reading_avail = 0;
disable_irq_nosync(TSENS_UPPER_LOWER_INT);
mb();
return 0;
}
static int tsens_resume(struct device *dev)
{
unsigned int reg;
reg = readl_relaxed(TSENS_CNTL_ADDR);
writel_relaxed(reg | TSENS_SW_RST, TSENS_CNTL_ADDR);
reg |= TSENS_SLP_CLK_ENA | TSENS_EN | (TSENS_MEASURE_PERIOD << 16) |
TSENS_MIN_STATUS_MASK | TSENS_MAX_STATUS_MASK |
(((1 << TSENS_NUM_SENSORS) - 1) << 3);
reg = (reg & ~TSENS_CONFIG_MASK) | (TSENS_CONFIG << TSENS_CONFIG_SHIFT);
writel_relaxed(reg, TSENS_CNTL_ADDR);
if (tmdev->sensor->mode == THERMAL_DEVICE_DISABLED) {
writel_relaxed(reg & ~((((1 << TSENS_NUM_SENSORS) - 1) << 3)
| TSENS_SLP_CLK_ENA | TSENS_EN), TSENS_CNTL_ADDR);
}
writel_relaxed(tmdev->pm_tsens_thr_data, TSENS_THRESHOLD_ADDR);
enable_irq(TSENS_UPPER_LOWER_INT);
mb();
return 0;
}
static const struct dev_pm_ops tsens_pm_ops = {
.suspend = tsens_suspend,
.resume = tsens_resume,
};
#endif
static int __devinit tsens_tm_probe(struct platform_device *pdev)
{
unsigned int reg, i, calib_data, calib_data_backup;
int rc;
calib_data = (readl(TSENS_QFPROM_ADDR) & TSENS_QFPROM_TEMP_SENSOR0_MASK)
>> TSENS_QFPROM_TEMP_SENSOR0_SHIFT;
calib_data_backup = readl(TSENS_QFPROM_ADDR)
>> TSENS_QFPROM_RED_TEMP_SENSOR0_SHIFT;
if (calib_data_backup)
calib_data = calib_data_backup;
if (!calib_data) {
pr_err("%s: No temperature sensor data for calibration"
" in QFPROM!\n", __func__);
return -ENODEV;
}
tmdev = kzalloc(sizeof(struct tsens_tm_device), GFP_KERNEL);
if (tmdev == NULL) {
pr_err("%s: kzalloc() failed.\n", __func__);
return -ENOMEM;
}
platform_set_drvdata(pdev, tmdev);
tmdev->offset = TSENS_FACTOR * TSENS_CAL_DEGC
- (int)(TSENS_FACTOR * TSENS_SLOPE) * calib_data;
tmdev->prev_reading_avail = 0;
INIT_WORK(&tmdev->work, notify_uspace_tsens_fn);
reg = readl(TSENS_CNTL_ADDR);
writel(reg | TSENS_SW_RST, TSENS_CNTL_ADDR);
reg |= TSENS_SLP_CLK_ENA | TSENS_EN | (TSENS_MEASURE_PERIOD << 16) |
TSENS_LOWER_STATUS_CLR | TSENS_UPPER_STATUS_CLR |
TSENS_MIN_STATUS_MASK | TSENS_MAX_STATUS_MASK |
(((1 << TSENS_NUM_SENSORS) - 1) << 3);
/* set TSENS_CONFIG bits (bits 29:28 of TSENS_CNTL) to '01';
this setting found to be optimal. */
reg = (reg & ~TSENS_CONFIG_MASK) | (TSENS_CONFIG << TSENS_CONFIG_SHIFT);
writel(reg, TSENS_CNTL_ADDR);
writel((TSENS_LOWER_LIMIT_TH << 0) | (TSENS_UPPER_LIMIT_TH << 8) |
(TSENS_MIN_LIMIT_TH << 16) | (TSENS_MAX_LIMIT_TH << 24),
TSENS_THRESHOLD_ADDR);
for (i = 0; i < TSENS_NUM_SENSORS; i++) {
char name[17];
sprintf(name, "tsens_tz_sensor%d", i);
tmdev->sensor[i].mode = THERMAL_DEVICE_ENABLED;
tmdev->sensor[i].tz_dev = thermal_zone_device_register(name,
TSENS_TRIP_NUM, &tmdev->sensor[i],
&tsens_thermal_zone_ops, 0, 0, 0, 0);
if (tmdev->sensor[i].tz_dev == NULL) {
pr_err("%s: thermal_zone_device_register() failed.\n",
__func__);
kfree(tmdev);
return -ENODEV;
}
tmdev->sensor[i].sensor_num = i;
tmdev->sensor[i].mode = THERMAL_DEVICE_DISABLED;
}
rc = request_threaded_irq(TSENS_UPPER_LOWER_INT, tsens_isr,
tsens_isr_thread, 0, "tsens", tmdev);
if (rc < 0) {
pr_err("%s: request_irq FAIL: %d\n", __func__, rc);
kfree(tmdev);
return rc;
}
writel(reg & ~((((1 << TSENS_NUM_SENSORS) - 1) << 3)
| TSENS_SLP_CLK_ENA | TSENS_EN), TSENS_CNTL_ADDR);
pr_notice("%s: OK\n", __func__);
return 0;
}
static int __devexit tsens_tm_remove(struct platform_device *pdev)
{
struct tsens_tm_device *tmdev = platform_get_drvdata(pdev);
unsigned int reg, i;
reg = readl(TSENS_CNTL_ADDR);
writel(reg & ~(TSENS_SLP_CLK_ENA | TSENS_EN), TSENS_CNTL_ADDR);
for (i = 0; i < TSENS_NUM_SENSORS; i++)
thermal_zone_device_unregister(tmdev->sensor[i].tz_dev);
platform_set_drvdata(pdev, NULL);
free_irq(TSENS_UPPER_LOWER_INT, tmdev);
kfree(tmdev);
return 0;
}
static struct platform_driver tsens_tm_driver = {
.probe = tsens_tm_probe,
.remove = __devexit_p(tsens_tm_remove),
.driver = {
.name = "tsens-tm",
.owner = THIS_MODULE,
#ifdef CONFIG_PM
.pm = &tsens_pm_ops,
#endif
},
};
static int __init tsens_init(void)
{
return platform_driver_register(&tsens_tm_driver);
}
static void __exit tsens_exit(void)
{
platform_driver_unregister(&tsens_tm_driver);
}
module_init(tsens_init);
module_exit(tsens_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MSM Temperature Sensor driver");
MODULE_VERSION("1.0");
MODULE_ALIAS("platform:tsens-tm");