/* Copyright (c) 2010-2011, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ /* * Qualcomm TSENS Thermal Manager driver * */ #include #include #include #include #include #include #include #include #include /* Trips: from very hot to very cold */ enum tsens_trip_type { TSENS_TRIP_STAGE3 = 0, TSENS_TRIP_STAGE2, TSENS_TRIP_STAGE1, TSENS_TRIP_STAGE0, TSENS_TRIP_NUM, }; #define TSENS_NUM_SENSORS 1 /* There are 5 but only 1 is useful now */ #define TSENS_CAL_DEGC 30 /* degree C used for calibration */ #define TSENS_QFPROM_ADDR (MSM_QFPROM_BASE + 0x000000bc) #define TSENS_QFPROM_RED_TEMP_SENSOR0_SHIFT 24 #define TSENS_QFPROM_TEMP_SENSOR0_SHIFT 16 #define TSENS_QFPROM_TEMP_SENSOR0_MASK (255 << TSENS_QFPROM_TEMP_SENSOR0_SHIFT) #define TSENS_SLOPE (0.702) /* slope in (degrees_C / ADC_code) */ #define TSENS_FACTOR (1000) /* convert floating-point into integer */ #define TSENS_CONFIG 01 /* this setting found to be optimal */ #define TSENS_CONFIG_SHIFT 28 #define TSENS_CONFIG_MASK (3 << TSENS_CONFIG_SHIFT) #define TSENS_CNTL_ADDR (MSM_CLK_CTL_BASE + 0x00003620) #define TSENS_EN (1 << 0) #define TSENS_SW_RST (1 << 1) #define SENSOR0_EN (1 << 3) #define SENSOR1_EN (1 << 4) #define SENSOR2_EN (1 << 5) #define SENSOR3_EN (1 << 6) #define SENSOR4_EN (1 << 7) #define TSENS_MIN_STATUS_MASK (1 << 8) #define TSENS_LOWER_STATUS_CLR (1 << 9) #define TSENS_UPPER_STATUS_CLR (1 << 10) #define TSENS_MAX_STATUS_MASK (1 << 11) #define TSENS_MEASURE_PERIOD 4 /* 1 sec. default as required by Willie */ #define TSENS_SLP_CLK_ENA (1 << 24) #define TSENS_THRESHOLD_ADDR (MSM_CLK_CTL_BASE + 0x00003624) #define TSENS_THRESHOLD_MAX_CODE (0xff) #define TSENS_THRESHOLD_MAX_LIMIT_MASK (TSENS_THRESHOLD_MAX_CODE << 24) #define TSENS_THRESHOLD_MIN_LIMIT_MASK (TSENS_THRESHOLD_MAX_CODE << 16) #define TSENS_THRESHOLD_UPPER_LIMIT_MASK (TSENS_THRESHOLD_MAX_CODE << 8) #define TSENS_THRESHOLD_LOWER_LIMIT_MASK (TSENS_THRESHOLD_MAX_CODE << 0) /* Initial temperature threshold values */ #define TSENS_LOWER_LIMIT_TH 0x50 #define TSENS_UPPER_LIMIT_TH 0xdf #define TSENS_MIN_LIMIT_TH 0x38 #define TSENS_MAX_LIMIT_TH 0xff #define TSENS_S0_STATUS_ADDR (MSM_CLK_CTL_BASE + 0x00003628) #define TSENS_INT_STATUS_ADDR (MSM_CLK_CTL_BASE + 0x0000363c) #define TSENS_LOWER_INT_MASK (1 << 1) #define TSENS_UPPER_INT_MASK (1 << 2) #define TSENS_TRDY_MASK (1 << 7) struct tsens_tm_device_sensor { struct thermal_zone_device *tz_dev; enum thermal_device_mode mode; unsigned int sensor_num; }; struct tsens_tm_device { struct tsens_tm_device_sensor sensor[TSENS_NUM_SENSORS]; bool prev_reading_avail; int offset; struct work_struct work; uint32_t pm_tsens_thr_data; }; struct tsens_tm_device *tmdev; /* Temperature on y axis and ADC-code on x-axis */ static int tsens_tz_code_to_degC(int adc_code) { int degC, degcbeforefactor; degcbeforefactor = adc_code * (int)(TSENS_SLOPE * TSENS_FACTOR) + tmdev->offset; if (degcbeforefactor == 0) degC = degcbeforefactor; else if (degcbeforefactor > 0) degC = (degcbeforefactor + TSENS_FACTOR/2) / TSENS_FACTOR; else /* rounding for negative degrees */ degC = (degcbeforefactor - TSENS_FACTOR/2) / TSENS_FACTOR; return degC; } static int tsens_tz_degC_to_code(int degC) { int code = (degC * TSENS_FACTOR - tmdev->offset + (int)(TSENS_FACTOR * TSENS_SLOPE)/2) / (int)(TSENS_FACTOR * TSENS_SLOPE); if (code > 255) /* upper bound */ code = 255; else if (code < 0) /* lower bound */ code = 0; return code; } static int tsens_tz_get_temp(struct thermal_zone_device *thermal, unsigned long *temp) { struct tsens_tm_device_sensor *tm_sensor = thermal->devdata; unsigned int code; if (!tm_sensor || tm_sensor->mode != THERMAL_DEVICE_ENABLED || !temp) return -EINVAL; if (!tmdev->prev_reading_avail) { while (!(readl(TSENS_INT_STATUS_ADDR) & TSENS_TRDY_MASK)) msleep(1); tmdev->prev_reading_avail = 1; } code = readl(TSENS_S0_STATUS_ADDR + (tm_sensor->sensor_num << 2)); *temp = tsens_tz_code_to_degC(code); return 0; } static int tsens_tz_get_mode(struct thermal_zone_device *thermal, enum thermal_device_mode *mode) { struct tsens_tm_device_sensor *tm_sensor = thermal->devdata; if (!tm_sensor || !mode) return -EINVAL; *mode = tm_sensor->mode; return 0; } static int tsens_tz_set_mode(struct thermal_zone_device *thermal, enum thermal_device_mode mode) { struct tsens_tm_device_sensor *tm_sensor = thermal->devdata; unsigned int reg, mask; if (!tm_sensor) return -EINVAL; if (mode != tm_sensor->mode) { pr_info("%s: mode: %d --> %d\n", __func__, tm_sensor->mode, mode); reg = readl(TSENS_CNTL_ADDR); mask = 1 << (tm_sensor->sensor_num + 3); if (mode == THERMAL_DEVICE_ENABLED) { writel(reg | TSENS_SW_RST, TSENS_CNTL_ADDR); reg |= mask | TSENS_SLP_CLK_ENA | TSENS_EN; tmdev->prev_reading_avail = 0; } else { reg &= ~mask; if (!(reg & (((1 << TSENS_NUM_SENSORS) - 1) << 3))) reg &= ~(TSENS_SLP_CLK_ENA | TSENS_EN); } writel(reg, TSENS_CNTL_ADDR); } tm_sensor->mode = mode; return 0; } static int tsens_tz_get_trip_type(struct thermal_zone_device *thermal, int trip, enum thermal_trip_type *type) { struct tsens_tm_device_sensor *tm_sensor = thermal->devdata; if (!tm_sensor || trip < 0 || !type) return -EINVAL; switch (trip) { case TSENS_TRIP_STAGE3: *type = THERMAL_TRIP_CRITICAL; break; case TSENS_TRIP_STAGE2: *type = THERMAL_TRIP_CONFIGURABLE_HI; break; case TSENS_TRIP_STAGE1: *type = THERMAL_TRIP_CONFIGURABLE_LOW; break; case TSENS_TRIP_STAGE0: *type = THERMAL_TRIP_CRITICAL_LOW; break; default: return -EINVAL; } return 0; } static int tsens_tz_activate_trip_type(struct thermal_zone_device *thermal, int trip, enum thermal_trip_activation_mode mode) { struct tsens_tm_device_sensor *tm_sensor = thermal->devdata; unsigned int reg_cntl, reg_th, code, hi_code, lo_code, mask; if (!tm_sensor || trip < 0) return -EINVAL; lo_code = 0; hi_code = TSENS_THRESHOLD_MAX_CODE; reg_cntl = readl(TSENS_CNTL_ADDR); reg_th = readl(TSENS_THRESHOLD_ADDR); switch (trip) { case TSENS_TRIP_STAGE3: code = (reg_th & TSENS_THRESHOLD_MAX_LIMIT_MASK) >> 24; mask = TSENS_MAX_STATUS_MASK; if (!(reg_cntl & TSENS_UPPER_STATUS_CLR)) lo_code = (reg_th & TSENS_THRESHOLD_UPPER_LIMIT_MASK) >> 8; else if (!(reg_cntl & TSENS_LOWER_STATUS_CLR)) lo_code = (reg_th & TSENS_THRESHOLD_LOWER_LIMIT_MASK); else if (!(reg_cntl & TSENS_MIN_STATUS_MASK)) lo_code = (reg_th & TSENS_THRESHOLD_MIN_LIMIT_MASK) >> 16; break; case TSENS_TRIP_STAGE2: code = (reg_th & TSENS_THRESHOLD_UPPER_LIMIT_MASK) >> 8; mask = TSENS_UPPER_STATUS_CLR; if (!(reg_cntl & TSENS_MAX_STATUS_MASK)) hi_code = (reg_th & TSENS_THRESHOLD_MAX_LIMIT_MASK) >> 24; if (!(reg_cntl & TSENS_LOWER_STATUS_CLR)) lo_code = (reg_th & TSENS_THRESHOLD_LOWER_LIMIT_MASK); else if (!(reg_cntl & TSENS_MIN_STATUS_MASK)) lo_code = (reg_th & TSENS_THRESHOLD_MIN_LIMIT_MASK) >> 16; break; case TSENS_TRIP_STAGE1: code = (reg_th & TSENS_THRESHOLD_LOWER_LIMIT_MASK) >> 0; mask = TSENS_LOWER_STATUS_CLR; if (!(reg_cntl & TSENS_MIN_STATUS_MASK)) lo_code = (reg_th & TSENS_THRESHOLD_MIN_LIMIT_MASK) >> 16; if (!(reg_cntl & TSENS_UPPER_STATUS_CLR)) hi_code = (reg_th & TSENS_THRESHOLD_UPPER_LIMIT_MASK) >> 8; else if (!(reg_cntl & TSENS_MAX_STATUS_MASK)) hi_code = (reg_th & TSENS_THRESHOLD_MAX_LIMIT_MASK) >> 24; break; case TSENS_TRIP_STAGE0: code = (reg_th & TSENS_THRESHOLD_MIN_LIMIT_MASK) >> 16; mask = TSENS_MIN_STATUS_MASK; if (!(reg_cntl & TSENS_LOWER_STATUS_CLR)) hi_code = (reg_th & TSENS_THRESHOLD_LOWER_LIMIT_MASK); else if (!(reg_cntl & TSENS_UPPER_STATUS_CLR)) hi_code = (reg_th & TSENS_THRESHOLD_UPPER_LIMIT_MASK) >> 8; else if (!(reg_cntl & TSENS_MAX_STATUS_MASK)) hi_code = (reg_th & TSENS_THRESHOLD_MAX_LIMIT_MASK) >> 24; break; default: return -EINVAL; } if (mode == THERMAL_TRIP_ACTIVATION_DISABLED) writel(reg_cntl | mask, TSENS_CNTL_ADDR); else { if (code < lo_code || code > hi_code) return -EINVAL; writel(reg_cntl & ~mask, TSENS_CNTL_ADDR); } return 0; } static int tsens_tz_get_trip_temp(struct thermal_zone_device *thermal, int trip, unsigned long *temp) { struct tsens_tm_device_sensor *tm_sensor = thermal->devdata; unsigned int reg; if (!tm_sensor || trip < 0 || !temp) return -EINVAL; reg = readl(TSENS_THRESHOLD_ADDR); switch (trip) { case TSENS_TRIP_STAGE3: reg = (reg & TSENS_THRESHOLD_MAX_LIMIT_MASK) >> 24; break; case TSENS_TRIP_STAGE2: reg = (reg & TSENS_THRESHOLD_UPPER_LIMIT_MASK) >> 8; break; case TSENS_TRIP_STAGE1: reg = (reg & TSENS_THRESHOLD_LOWER_LIMIT_MASK) >> 0; break; case TSENS_TRIP_STAGE0: reg = (reg & TSENS_THRESHOLD_MIN_LIMIT_MASK) >> 16; break; default: return -EINVAL; } *temp = tsens_tz_code_to_degC(reg); return 0; } static int tsens_tz_get_crit_temp(struct thermal_zone_device *thermal, unsigned long *temp) { return tsens_tz_get_trip_temp(thermal, TSENS_TRIP_STAGE3, temp); } static int tsens_tz_set_trip_temp(struct thermal_zone_device *thermal, int trip, long temp) { struct tsens_tm_device_sensor *tm_sensor = thermal->devdata; unsigned int reg_th, reg_cntl; int code, hi_code, lo_code, code_err_chk; code_err_chk = code = tsens_tz_degC_to_code(temp); if (!tm_sensor || trip < 0) return -EINVAL; lo_code = 0; hi_code = TSENS_THRESHOLD_MAX_CODE; reg_cntl = readl(TSENS_CNTL_ADDR); reg_th = readl(TSENS_THRESHOLD_ADDR); switch (trip) { case TSENS_TRIP_STAGE3: code <<= 24; reg_th &= ~TSENS_THRESHOLD_MAX_LIMIT_MASK; if (!(reg_cntl & TSENS_UPPER_STATUS_CLR)) lo_code = (reg_th & TSENS_THRESHOLD_UPPER_LIMIT_MASK) >> 8; else if (!(reg_cntl & TSENS_LOWER_STATUS_CLR)) lo_code = (reg_th & TSENS_THRESHOLD_LOWER_LIMIT_MASK); else if (!(reg_cntl & TSENS_MIN_STATUS_MASK)) lo_code = (reg_th & TSENS_THRESHOLD_MIN_LIMIT_MASK) >> 16; break; case TSENS_TRIP_STAGE2: code <<= 8; reg_th &= ~TSENS_THRESHOLD_UPPER_LIMIT_MASK; if (!(reg_cntl & TSENS_MAX_STATUS_MASK)) hi_code = (reg_th & TSENS_THRESHOLD_MAX_LIMIT_MASK) >> 24; if (!(reg_cntl & TSENS_LOWER_STATUS_CLR)) lo_code = (reg_th & TSENS_THRESHOLD_LOWER_LIMIT_MASK); else if (!(reg_cntl & TSENS_MIN_STATUS_MASK)) lo_code = (reg_th & TSENS_THRESHOLD_MIN_LIMIT_MASK) >> 16; break; case TSENS_TRIP_STAGE1: reg_th &= ~TSENS_THRESHOLD_LOWER_LIMIT_MASK; if (!(reg_cntl & TSENS_MIN_STATUS_MASK)) lo_code = (reg_th & TSENS_THRESHOLD_MIN_LIMIT_MASK) >> 16; if (!(reg_cntl & TSENS_UPPER_STATUS_CLR)) hi_code = (reg_th & TSENS_THRESHOLD_UPPER_LIMIT_MASK) >> 8; else if (!(reg_cntl & TSENS_MAX_STATUS_MASK)) hi_code = (reg_th & TSENS_THRESHOLD_MAX_LIMIT_MASK) >> 24; break; case TSENS_TRIP_STAGE0: code <<= 16; reg_th &= ~TSENS_THRESHOLD_MIN_LIMIT_MASK; if (!(reg_cntl & TSENS_LOWER_STATUS_CLR)) hi_code = (reg_th & TSENS_THRESHOLD_LOWER_LIMIT_MASK); else if (!(reg_cntl & TSENS_UPPER_STATUS_CLR)) hi_code = (reg_th & TSENS_THRESHOLD_UPPER_LIMIT_MASK) >> 8; else if (!(reg_cntl & TSENS_MAX_STATUS_MASK)) hi_code = (reg_th & TSENS_THRESHOLD_MAX_LIMIT_MASK) >> 24; break; default: return -EINVAL; } if (code_err_chk < lo_code || code_err_chk > hi_code) return -EINVAL; writel(reg_th | code, TSENS_THRESHOLD_ADDR); return 0; } static struct thermal_zone_device_ops tsens_thermal_zone_ops = { .get_temp = tsens_tz_get_temp, .get_mode = tsens_tz_get_mode, .set_mode = tsens_tz_set_mode, .get_trip_type = tsens_tz_get_trip_type, .activate_trip_type = tsens_tz_activate_trip_type, .get_trip_temp = tsens_tz_get_trip_temp, .set_trip_temp = tsens_tz_set_trip_temp, .get_crit_temp = tsens_tz_get_crit_temp, }; static void notify_uspace_tsens_fn(struct work_struct *work) { struct tsens_tm_device *tm = container_of(work, struct tsens_tm_device, work); /* Currently only Sensor0 is supported. We added support to notify only the supported Sensor and this portion needs to be revisited once other sensors are supported */ sysfs_notify(&tm->sensor[0].tz_dev->device.kobj, NULL, "type"); } static irqreturn_t tsens_isr(int irq, void *data) { unsigned int reg = readl(TSENS_CNTL_ADDR); writel(reg | TSENS_LOWER_STATUS_CLR | TSENS_UPPER_STATUS_CLR, TSENS_CNTL_ADDR); return IRQ_WAKE_THREAD; } static irqreturn_t tsens_isr_thread(int irq, void *data) { struct tsens_tm_device *tm = data; unsigned int threshold, threshold_low, i, code, reg, sensor, mask; bool upper_th_x, lower_th_x; int adc_code; mask = ~(TSENS_LOWER_STATUS_CLR | TSENS_UPPER_STATUS_CLR); threshold = readl(TSENS_THRESHOLD_ADDR); threshold_low = threshold & TSENS_THRESHOLD_LOWER_LIMIT_MASK; threshold = (threshold & TSENS_THRESHOLD_UPPER_LIMIT_MASK) >> 8; reg = sensor = readl(TSENS_CNTL_ADDR); sensor &= (SENSOR0_EN | SENSOR1_EN | SENSOR2_EN | SENSOR3_EN | SENSOR4_EN); sensor >>= 3; for (i = 0; i < TSENS_NUM_SENSORS; i++) { if (sensor & 1) { code = readl(TSENS_S0_STATUS_ADDR + (i << 2)); upper_th_x = code >= threshold; lower_th_x = code <= threshold_low; if (upper_th_x) mask |= TSENS_UPPER_STATUS_CLR; if (lower_th_x) mask |= TSENS_LOWER_STATUS_CLR; if (upper_th_x || lower_th_x) { /* Notify user space */ schedule_work(&tm->work); adc_code = readl(TSENS_S0_STATUS_ADDR + (i << 2)); printk(KERN_INFO"\nTrip point triggered by " "current temperature (%d degrees) " "measured by Temperature-Sensor %d\n", tsens_tz_code_to_degC(adc_code), i); } } sensor >>= 1; } writel(reg & mask, TSENS_CNTL_ADDR); return IRQ_HANDLED; } #ifdef CONFIG_PM static int tsens_suspend(struct device *dev) { unsigned int reg; tmdev->pm_tsens_thr_data = readl_relaxed(TSENS_THRESHOLD_ADDR); reg = readl_relaxed(TSENS_CNTL_ADDR); writel_relaxed(reg & ~(TSENS_SLP_CLK_ENA | TSENS_EN), TSENS_CNTL_ADDR); tmdev->prev_reading_avail = 0; disable_irq_nosync(TSENS_UPPER_LOWER_INT); mb(); return 0; } static int tsens_resume(struct device *dev) { unsigned int reg; reg = readl_relaxed(TSENS_CNTL_ADDR); writel_relaxed(reg | TSENS_SW_RST, TSENS_CNTL_ADDR); reg |= TSENS_SLP_CLK_ENA | TSENS_EN | (TSENS_MEASURE_PERIOD << 16) | TSENS_MIN_STATUS_MASK | TSENS_MAX_STATUS_MASK | (((1 << TSENS_NUM_SENSORS) - 1) << 3); reg = (reg & ~TSENS_CONFIG_MASK) | (TSENS_CONFIG << TSENS_CONFIG_SHIFT); writel_relaxed(reg, TSENS_CNTL_ADDR); if (tmdev->sensor->mode == THERMAL_DEVICE_DISABLED) { writel_relaxed(reg & ~((((1 << TSENS_NUM_SENSORS) - 1) << 3) | TSENS_SLP_CLK_ENA | TSENS_EN), TSENS_CNTL_ADDR); } writel_relaxed(tmdev->pm_tsens_thr_data, TSENS_THRESHOLD_ADDR); enable_irq(TSENS_UPPER_LOWER_INT); mb(); return 0; } static const struct dev_pm_ops tsens_pm_ops = { .suspend = tsens_suspend, .resume = tsens_resume, }; #endif static int __devinit tsens_tm_probe(struct platform_device *pdev) { unsigned int reg, i, calib_data, calib_data_backup; int rc; calib_data = (readl(TSENS_QFPROM_ADDR) & TSENS_QFPROM_TEMP_SENSOR0_MASK) >> TSENS_QFPROM_TEMP_SENSOR0_SHIFT; calib_data_backup = readl(TSENS_QFPROM_ADDR) >> TSENS_QFPROM_RED_TEMP_SENSOR0_SHIFT; if (calib_data_backup) calib_data = calib_data_backup; if (!calib_data) { pr_err("%s: No temperature sensor data for calibration" " in QFPROM!\n", __func__); return -ENODEV; } tmdev = kzalloc(sizeof(struct tsens_tm_device), GFP_KERNEL); if (tmdev == NULL) { pr_err("%s: kzalloc() failed.\n", __func__); return -ENOMEM; } platform_set_drvdata(pdev, tmdev); tmdev->offset = TSENS_FACTOR * TSENS_CAL_DEGC - (int)(TSENS_FACTOR * TSENS_SLOPE) * calib_data; tmdev->prev_reading_avail = 0; INIT_WORK(&tmdev->work, notify_uspace_tsens_fn); reg = readl(TSENS_CNTL_ADDR); writel(reg | TSENS_SW_RST, TSENS_CNTL_ADDR); reg |= TSENS_SLP_CLK_ENA | TSENS_EN | (TSENS_MEASURE_PERIOD << 16) | TSENS_LOWER_STATUS_CLR | TSENS_UPPER_STATUS_CLR | TSENS_MIN_STATUS_MASK | TSENS_MAX_STATUS_MASK | (((1 << TSENS_NUM_SENSORS) - 1) << 3); /* set TSENS_CONFIG bits (bits 29:28 of TSENS_CNTL) to '01'; this setting found to be optimal. */ reg = (reg & ~TSENS_CONFIG_MASK) | (TSENS_CONFIG << TSENS_CONFIG_SHIFT); writel(reg, TSENS_CNTL_ADDR); writel((TSENS_LOWER_LIMIT_TH << 0) | (TSENS_UPPER_LIMIT_TH << 8) | (TSENS_MIN_LIMIT_TH << 16) | (TSENS_MAX_LIMIT_TH << 24), TSENS_THRESHOLD_ADDR); for (i = 0; i < TSENS_NUM_SENSORS; i++) { char name[17]; sprintf(name, "tsens_tz_sensor%d", i); tmdev->sensor[i].mode = THERMAL_DEVICE_ENABLED; tmdev->sensor[i].tz_dev = thermal_zone_device_register(name, TSENS_TRIP_NUM, &tmdev->sensor[i], &tsens_thermal_zone_ops, 0, 0, 0, 0); if (tmdev->sensor[i].tz_dev == NULL) { pr_err("%s: thermal_zone_device_register() failed.\n", __func__); kfree(tmdev); return -ENODEV; } tmdev->sensor[i].sensor_num = i; tmdev->sensor[i].mode = THERMAL_DEVICE_DISABLED; } rc = request_threaded_irq(TSENS_UPPER_LOWER_INT, tsens_isr, tsens_isr_thread, 0, "tsens", tmdev); if (rc < 0) { pr_err("%s: request_irq FAIL: %d\n", __func__, rc); kfree(tmdev); return rc; } writel(reg & ~((((1 << TSENS_NUM_SENSORS) - 1) << 3) | TSENS_SLP_CLK_ENA | TSENS_EN), TSENS_CNTL_ADDR); pr_notice("%s: OK\n", __func__); return 0; } static int __devexit tsens_tm_remove(struct platform_device *pdev) { struct tsens_tm_device *tmdev = platform_get_drvdata(pdev); unsigned int reg, i; reg = readl(TSENS_CNTL_ADDR); writel(reg & ~(TSENS_SLP_CLK_ENA | TSENS_EN), TSENS_CNTL_ADDR); for (i = 0; i < TSENS_NUM_SENSORS; i++) thermal_zone_device_unregister(tmdev->sensor[i].tz_dev); platform_set_drvdata(pdev, NULL); free_irq(TSENS_UPPER_LOWER_INT, tmdev); kfree(tmdev); return 0; } static struct platform_driver tsens_tm_driver = { .probe = tsens_tm_probe, .remove = __devexit_p(tsens_tm_remove), .driver = { .name = "tsens-tm", .owner = THIS_MODULE, #ifdef CONFIG_PM .pm = &tsens_pm_ops, #endif }, }; static int __init tsens_init(void) { return platform_driver_register(&tsens_tm_driver); } static void __exit tsens_exit(void) { platform_driver_unregister(&tsens_tm_driver); } module_init(tsens_init); module_exit(tsens_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("MSM Temperature Sensor driver"); MODULE_VERSION("1.0"); MODULE_ALIAS("platform:tsens-tm");