M7350/kernel/drivers/scsi/ufs/ufshcd.c
2024-09-09 08:52:07 +00:00

1981 lines
52 KiB
C

/*
* Universal Flash Storage Host controller driver Core
*
* This code is based on drivers/scsi/ufs/ufshcd.c
* Copyright (C) 2011-2013 Samsung India Software Operations
*
* Authors:
* Santosh Yaraganavi <santosh.sy@samsung.com>
* Vinayak Holikatti <h.vinayak@samsung.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* See the COPYING file in the top-level directory or visit
* <http://www.gnu.org/licenses/gpl-2.0.html>
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* This program is provided "AS IS" and "WITH ALL FAULTS" and
* without warranty of any kind. You are solely responsible for
* determining the appropriateness of using and distributing
* the program and assume all risks associated with your exercise
* of rights with respect to the program, including but not limited
* to infringement of third party rights, the risks and costs of
* program errors, damage to or loss of data, programs or equipment,
* and unavailability or interruption of operations. Under no
* circumstances will the contributor of this Program be liable for
* any damages of any kind arising from your use or distribution of
* this program.
*/
#include "ufshcd.h"
enum {
UFSHCD_MAX_CHANNEL = 0,
UFSHCD_MAX_ID = 1,
UFSHCD_MAX_LUNS = 8,
UFSHCD_CMD_PER_LUN = 32,
UFSHCD_CAN_QUEUE = 32,
};
/* UFSHCD states */
enum {
UFSHCD_STATE_OPERATIONAL,
UFSHCD_STATE_RESET,
UFSHCD_STATE_ERROR,
};
/* Interrupt configuration options */
enum {
UFSHCD_INT_DISABLE,
UFSHCD_INT_ENABLE,
UFSHCD_INT_CLEAR,
};
/* Interrupt aggregation options */
enum {
INT_AGGR_RESET,
INT_AGGR_CONFIG,
};
/**
* ufshcd_get_ufs_version - Get the UFS version supported by the HBA
* @hba - Pointer to adapter instance
*
* Returns UFSHCI version supported by the controller
*/
static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
{
return readl(hba->mmio_base + REG_UFS_VERSION);
}
/**
* ufshcd_is_device_present - Check if any device connected to
* the host controller
* @reg_hcs - host controller status register value
*
* Returns 1 if device present, 0 if no device detected
*/
static inline int ufshcd_is_device_present(u32 reg_hcs)
{
return (DEVICE_PRESENT & reg_hcs) ? 1 : 0;
}
/**
* ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
* @lrb: pointer to local command reference block
*
* This function is used to get the OCS field from UTRD
* Returns the OCS field in the UTRD
*/
static inline int ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp)
{
return lrbp->utr_descriptor_ptr->header.dword_2 & MASK_OCS;
}
/**
* ufshcd_get_tmr_ocs - Get the UTMRD Overall Command Status
* @task_req_descp: pointer to utp_task_req_desc structure
*
* This function is used to get the OCS field from UTMRD
* Returns the OCS field in the UTMRD
*/
static inline int
ufshcd_get_tmr_ocs(struct utp_task_req_desc *task_req_descp)
{
return task_req_descp->header.dword_2 & MASK_OCS;
}
/**
* ufshcd_get_tm_free_slot - get a free slot for task management request
* @hba: per adapter instance
*
* Returns maximum number of task management request slots in case of
* task management queue full or returns the free slot number
*/
static inline int ufshcd_get_tm_free_slot(struct ufs_hba *hba)
{
return find_first_zero_bit(&hba->outstanding_tasks, hba->nutmrs);
}
/**
* ufshcd_utrl_clear - Clear a bit in UTRLCLR register
* @hba: per adapter instance
* @pos: position of the bit to be cleared
*/
static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 pos)
{
writel(~(1 << pos),
(hba->mmio_base + REG_UTP_TRANSFER_REQ_LIST_CLEAR));
}
/**
* ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
* @reg: Register value of host controller status
*
* Returns integer, 0 on Success and positive value if failed
*/
static inline int ufshcd_get_lists_status(u32 reg)
{
/*
* The mask 0xFF is for the following HCS register bits
* Bit Description
* 0 Device Present
* 1 UTRLRDY
* 2 UTMRLRDY
* 3 UCRDY
* 4 HEI
* 5 DEI
* 6-7 reserved
*/
return (((reg) & (0xFF)) >> 1) ^ (0x07);
}
/**
* ufshcd_get_uic_cmd_result - Get the UIC command result
* @hba: Pointer to adapter instance
*
* This function gets the result of UIC command completion
* Returns 0 on success, non zero value on error
*/
static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
{
return readl(hba->mmio_base + REG_UIC_COMMAND_ARG_2) &
MASK_UIC_COMMAND_RESULT;
}
/**
* ufshcd_free_hba_memory - Free allocated memory for LRB, request
* and task lists
* @hba: Pointer to adapter instance
*/
static inline void ufshcd_free_hba_memory(struct ufs_hba *hba)
{
size_t utmrdl_size, utrdl_size, ucdl_size;
kfree(hba->lrb);
if (hba->utmrdl_base_addr) {
utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
dma_free_coherent(hba->dev, utmrdl_size,
hba->utmrdl_base_addr, hba->utmrdl_dma_addr);
}
if (hba->utrdl_base_addr) {
utrdl_size =
(sizeof(struct utp_transfer_req_desc) * hba->nutrs);
dma_free_coherent(hba->dev, utrdl_size,
hba->utrdl_base_addr, hba->utrdl_dma_addr);
}
if (hba->ucdl_base_addr) {
ucdl_size =
(sizeof(struct utp_transfer_cmd_desc) * hba->nutrs);
dma_free_coherent(hba->dev, ucdl_size,
hba->ucdl_base_addr, hba->ucdl_dma_addr);
}
}
/**
* ufshcd_get_req_rsp - returns the TR response
* @ucd_rsp_ptr: pointer to response UPIU
*/
static inline int
ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
{
return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
}
/**
* ufshcd_get_rsp_upiu_result - Get the result from response UPIU
* @ucd_rsp_ptr: pointer to response UPIU
*
* This function gets the response status and scsi_status from response UPIU
* Returns the response result code.
*/
static inline int
ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
{
return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
}
/**
* ufshcd_config_int_aggr - Configure interrupt aggregation values.
* Currently there is no use case where we want to configure
* interrupt aggregation dynamically. So to configure interrupt
* aggregation, #define INT_AGGR_COUNTER_THRESHOLD_VALUE and
* INT_AGGR_TIMEOUT_VALUE are used.
* @hba: per adapter instance
* @option: Interrupt aggregation option
*/
static inline void
ufshcd_config_int_aggr(struct ufs_hba *hba, int option)
{
switch (option) {
case INT_AGGR_RESET:
writel((INT_AGGR_ENABLE |
INT_AGGR_COUNTER_AND_TIMER_RESET),
(hba->mmio_base +
REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL));
break;
case INT_AGGR_CONFIG:
writel((INT_AGGR_ENABLE |
INT_AGGR_PARAM_WRITE |
INT_AGGR_COUNTER_THRESHOLD_VALUE |
INT_AGGR_TIMEOUT_VALUE),
(hba->mmio_base +
REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL));
break;
}
}
/**
* ufshcd_enable_run_stop_reg - Enable run-stop registers,
* When run-stop registers are set to 1, it indicates the
* host controller that it can process the requests
* @hba: per adapter instance
*/
static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
{
writel(UTP_TASK_REQ_LIST_RUN_STOP_BIT,
(hba->mmio_base +
REG_UTP_TASK_REQ_LIST_RUN_STOP));
writel(UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
(hba->mmio_base +
REG_UTP_TRANSFER_REQ_LIST_RUN_STOP));
}
/**
* ufshcd_hba_start - Start controller initialization sequence
* @hba: per adapter instance
*/
static inline void ufshcd_hba_start(struct ufs_hba *hba)
{
writel(CONTROLLER_ENABLE , (hba->mmio_base + REG_CONTROLLER_ENABLE));
}
/**
* ufshcd_is_hba_active - Get controller state
* @hba: per adapter instance
*
* Returns zero if controller is active, 1 otherwise
*/
static inline int ufshcd_is_hba_active(struct ufs_hba *hba)
{
return (readl(hba->mmio_base + REG_CONTROLLER_ENABLE) & 0x1) ? 0 : 1;
}
/**
* ufshcd_send_command - Send SCSI or device management commands
* @hba: per adapter instance
* @task_tag: Task tag of the command
*/
static inline
void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
{
__set_bit(task_tag, &hba->outstanding_reqs);
writel((1 << task_tag),
(hba->mmio_base + REG_UTP_TRANSFER_REQ_DOOR_BELL));
}
/**
* ufshcd_copy_sense_data - Copy sense data in case of check condition
* @lrb - pointer to local reference block
*/
static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
{
int len;
if (lrbp->sense_buffer) {
len = be16_to_cpu(lrbp->ucd_rsp_ptr->sc.sense_data_len);
memcpy(lrbp->sense_buffer,
lrbp->ucd_rsp_ptr->sc.sense_data,
min_t(int, len, SCSI_SENSE_BUFFERSIZE));
}
}
/**
* ufshcd_query_to_cpu() - formats the received buffer in to the native cpu
* endian
* @response: upiu query response to convert
*/
static inline void ufshcd_query_to_cpu(struct utp_upiu_query *response)
{
response->length = be16_to_cpu(response->length);
response->value = be32_to_cpu(response->value);
}
/**
* ufshcd_query_to_be() - formats the buffer before sending in to big endian
* @response: upiu query request to convert
*/
static inline void ufshcd_query_to_be(struct utp_upiu_query *request)
{
request->length = cpu_to_be16(request->length);
request->value = cpu_to_be32(request->value);
}
/**
* ufshcd_copy_query_response() - Copy Query Response and descriptor
* @lrb - pointer to local reference block
* @query_res - pointer to the query result
*/
static
void ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
struct ufs_query_res *query_res = hba->query.response;
/* Get the UPIU response */
if (query_res) {
query_res->response = ufshcd_get_rsp_upiu_result(
lrbp->ucd_rsp_ptr) >> UPIU_RSP_CODE_OFFSET;
memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr,
QUERY_OSF_SIZE);
ufshcd_query_to_cpu(&query_res->upiu_res);
}
/* Get the descriptor */
if (hba->query.descriptor && lrbp->ucd_rsp_ptr->qr.opcode ==
UPIU_QUERY_OPCODE_READ_DESC) {
u8 *descp = (u8 *)&lrbp->ucd_rsp_ptr +
GENERAL_UPIU_REQUEST_SIZE;
u16 len;
/* data segment length */
len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
MASK_QUERY_DATA_SEG_LEN;
memcpy(hba->query.descriptor, descp,
min_t(u16, len, UPIU_HEADER_DATA_SEGMENT_MAX_SIZE));
}
}
/**
* ufshcd_hba_capabilities - Read controller capabilities
* @hba: per adapter instance
*/
static inline void ufshcd_hba_capabilities(struct ufs_hba *hba)
{
hba->capabilities =
readl(hba->mmio_base + REG_CONTROLLER_CAPABILITIES);
/* nutrs and nutmrs are 0 based values */
hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
hba->nutmrs =
((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
}
/**
* ufshcd_send_uic_command - Send UIC commands to unipro layers
* @hba: per adapter instance
* @uic_command: UIC command
*/
static inline void
ufshcd_send_uic_command(struct ufs_hba *hba, struct uic_command *uic_cmnd)
{
/* Write Args */
writel(uic_cmnd->argument1,
(hba->mmio_base + REG_UIC_COMMAND_ARG_1));
writel(uic_cmnd->argument2,
(hba->mmio_base + REG_UIC_COMMAND_ARG_2));
writel(uic_cmnd->argument3,
(hba->mmio_base + REG_UIC_COMMAND_ARG_3));
/* Write UIC Cmd */
writel((uic_cmnd->command & COMMAND_OPCODE_MASK),
(hba->mmio_base + REG_UIC_COMMAND));
}
/**
* ufshcd_map_sg - Map scatter-gather list to prdt
* @lrbp - pointer to local reference block
*
* Returns 0 in case of success, non-zero value in case of failure
*/
static int ufshcd_map_sg(struct ufshcd_lrb *lrbp)
{
struct ufshcd_sg_entry *prd_table;
struct scatterlist *sg;
struct scsi_cmnd *cmd;
int sg_segments;
int i;
cmd = lrbp->cmd;
sg_segments = scsi_dma_map(cmd);
if (sg_segments < 0)
return sg_segments;
if (sg_segments) {
lrbp->utr_descriptor_ptr->prd_table_length =
cpu_to_le16((u16) (sg_segments));
prd_table = (struct ufshcd_sg_entry *)lrbp->ucd_prdt_ptr;
scsi_for_each_sg(cmd, sg, sg_segments, i) {
prd_table[i].size =
cpu_to_le32(((u32) sg_dma_len(sg))-1);
prd_table[i].base_addr =
cpu_to_le32(lower_32_bits(sg->dma_address));
prd_table[i].upper_addr =
cpu_to_le32(upper_32_bits(sg->dma_address));
}
} else {
lrbp->utr_descriptor_ptr->prd_table_length = 0;
}
return 0;
}
/**
* ufshcd_int_config - enable/disable interrupts
* @hba: per adapter instance
* @option: interrupt option
*/
static void ufshcd_int_config(struct ufs_hba *hba, u32 option)
{
switch (option) {
case UFSHCD_INT_ENABLE:
writel(hba->int_enable_mask,
(hba->mmio_base + REG_INTERRUPT_ENABLE));
break;
case UFSHCD_INT_DISABLE:
if (hba->ufs_version == UFSHCI_VERSION_10)
writel(INTERRUPT_DISABLE_MASK_10,
(hba->mmio_base + REG_INTERRUPT_ENABLE));
else
writel(INTERRUPT_DISABLE_MASK_11,
(hba->mmio_base + REG_INTERRUPT_ENABLE));
break;
}
}
/**
* ufshcd_prepare_req_desc - Fills the requests header
* descriptor according to request
* lrbp: pointer to local reference block
* upiu_flags: flags required in the header
*/
static void ufshcd_prepare_req_desc(struct ufshcd_lrb *lrbp, u32 *upiu_flags)
{
struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
enum dma_data_direction cmd_dir =
lrbp->cmd->sc_data_direction;
u32 data_direction;
u32 dword_0;
if (cmd_dir == DMA_FROM_DEVICE) {
data_direction = UTP_DEVICE_TO_HOST;
*upiu_flags = UPIU_CMD_FLAGS_READ;
} else if (cmd_dir == DMA_TO_DEVICE) {
data_direction = UTP_HOST_TO_DEVICE;
*upiu_flags = UPIU_CMD_FLAGS_WRITE;
} else {
data_direction = UTP_NO_DATA_TRANSFER;
*upiu_flags = UPIU_CMD_FLAGS_NONE;
}
dword_0 = data_direction | (lrbp->command_type
<< UPIU_COMMAND_TYPE_OFFSET);
/* Transfer request descriptor header fields */
req_desc->header.dword_0 = cpu_to_le32(dword_0);
/*
* assigning invalid value for command status. Controller
* updates OCS on command completion, with the command
* status
*/
req_desc->header.dword_2 =
cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
}
static inline bool ufshcd_is_query_req(struct ufshcd_lrb *lrbp)
{
return lrbp->cmd ? lrbp->cmd->cmnd[0] == UFS_QUERY_RESERVED_SCSI_CMD :
false;
}
/**
* ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
* for scsi commands
* @lrbp - local reference block pointer
* @upiu_flags - flags
*/
static
void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u32 upiu_flags)
{
struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
/* command descriptor fields */
ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
UPIU_TRANSACTION_COMMAND, upiu_flags,
lrbp->lun, lrbp->task_tag);
ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
/* Total EHS length and Data segment length will be zero */
ucd_req_ptr->header.dword_2 = 0;
ucd_req_ptr->sc.exp_data_transfer_len =
cpu_to_be32(lrbp->cmd->sdb.length);
memcpy(ucd_req_ptr->sc.cdb, lrbp->cmd->cmnd,
(min_t(unsigned short, lrbp->cmd->cmd_len, MAX_CDB_SIZE)));
}
/**
* ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc,
* for query requsts
* @hba: UFS hba
* @lrbp: local reference block pointer
* @upiu_flags: flags
*/
static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp,
u32 upiu_flags)
{
struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
u16 len = hba->query.request->upiu_req.length;
u8 *descp = (u8 *)lrbp->ucd_req_ptr + GENERAL_UPIU_REQUEST_SIZE;
/* Query request header */
ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
lrbp->lun, lrbp->task_tag);
ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
0, hba->query.request->query_func, 0, 0);
/* Data segment length */
ucd_req_ptr->header.dword_2 = UPIU_HEADER_DWORD(
0, 0, len >> 8, (u8)len);
/* Copy the Query Request buffer as is */
memcpy(&lrbp->ucd_req_ptr->qr, &hba->query.request->upiu_req,
QUERY_OSF_SIZE);
ufshcd_query_to_be(&lrbp->ucd_req_ptr->qr);
/* Copy the Descriptor */
if (hba->query.descriptor != NULL && len > 0 &&
(hba->query.request->upiu_req.opcode ==
UPIU_QUERY_OPCODE_WRITE_DESC)) {
memcpy(descp, hba->query.descriptor,
min_t(u16, len, UPIU_HEADER_DATA_SEGMENT_MAX_SIZE));
}
}
/**
* ufshcd_compose_upiu - form UFS Protocol Information Unit(UPIU)
* @hba - UFS hba
* @lrb - pointer to local reference block
*/
static int ufshcd_compose_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
u32 upiu_flags;
int ret = 0;
switch (lrbp->command_type) {
case UTP_CMD_TYPE_SCSI:
case UTP_CMD_TYPE_DEV_MANAGE:
ufshcd_prepare_req_desc(lrbp, &upiu_flags);
if (lrbp->command_type == UTP_CMD_TYPE_SCSI)
ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
else
ufshcd_prepare_utp_query_req_upiu(hba, lrbp,
upiu_flags);
break;
case UTP_CMD_TYPE_UFS:
/* For UFS native command implementation */
dev_err(hba->dev, "%s: UFS native command are not supported\n",
__func__);
ret = -ENOTSUPP;
break;
default:
ret = -ENOTSUPP;
dev_err(hba->dev, "%s: unknown command type: 0x%x\n",
__func__, lrbp->command_type);
break;
} /* end of switch */
return ret;
}
/**
* ufshcd_queuecommand - main entry point for SCSI requests
* @cmd: command from SCSI Midlayer
* @done: call back function
*
* Returns 0 for success, non-zero in case of failure
*/
static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
{
struct ufshcd_lrb *lrbp;
struct ufs_hba *hba;
unsigned long flags;
int tag;
int err = 0;
hba = shost_priv(host);
tag = cmd->request->tag;
if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
err = SCSI_MLQUEUE_HOST_BUSY;
goto out;
}
lrbp = &hba->lrb[tag];
lrbp->cmd = cmd;
lrbp->sense_bufflen = SCSI_SENSE_BUFFERSIZE;
lrbp->sense_buffer = cmd->sense_buffer;
lrbp->task_tag = tag;
lrbp->lun = cmd->device->lun;
if (ufshcd_is_query_req(lrbp))
lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
else
lrbp->command_type = UTP_CMD_TYPE_SCSI;
/* form UPIU before issuing the command */
ufshcd_compose_upiu(hba, lrbp);
err = ufshcd_map_sg(lrbp);
if (err)
goto out;
/* issue command to the controller */
spin_lock_irqsave(hba->host->host_lock, flags);
ufshcd_send_command(hba, tag);
spin_unlock_irqrestore(hba->host->host_lock, flags);
out:
return err;
}
/**
* ufshcd_query_request() - Entry point for issuing query request to a
* ufs device.
* @hba: ufs driver context
* @query: params for query request
* @descriptor: buffer for sending/receiving descriptor
* @response: pointer to a buffer that will contain the response code and
* response upiu
* @timeout: time limit for the command in seconds
* @retries: number of times to try executing the command
*
* The query request is submitted to the same request queue as the rest of
* the scsi commands passed to the UFS controller. In order to use this
* queue, we need to receive a tag, same as all other commands. The tags
* are issued from the block layer. To simulate a request from the block
* layer, we use the same interface as the SCSI layer does when it issues
* commands not generated by users. To distinguish a query request from
* the SCSI commands, we use a vendor specific unused SCSI command
* op-code. This op-code is not part of the SCSI command subset used in
* UFS. In such way it is easy to check the command in the driver and
* handle it appropriately.
*
* All necessary fields for issuing a query and receiving its response are
* stored in the UFS hba struct. We can use this method since we know
* there is only one active query request at all times.
*
* The request that will pass to the device is stored in "query" argument
* passed to this function, while the "response" argument (which is output
* field) will hold the query response from the device along with the
* response code.
*/
int ufshcd_query_request(struct ufs_hba *hba,
struct ufs_query_req *query,
u8 *descriptor,
struct ufs_query_res *response,
int timeout,
int retries)
{
struct scsi_device *sdev;
u8 cmd[UFS_QUERY_CMD_SIZE] = {0};
int result;
bool sdev_lookup = true;
if (!hba || !query || !response) {
pr_err("%s: NULL pointer hba = %p, query = %p response = %p\n",
__func__, hba, query, response);
return -EINVAL;
}
/*
* A SCSI command structure is composed from opcode at the
* begining and 0 at the end.
*/
cmd[0] = UFS_QUERY_RESERVED_SCSI_CMD;
/* extracting the SCSI Device */
sdev = scsi_device_lookup(hba->host, 0, 0, 0);
if (!sdev) {
/**
* There are some Query Requests that are sent during device
* initialization, this happens before the scsi device was
* initialized. If there is no scsi device, we generate a
* temporary device to allow the Query Request flow.
*/
sdev_lookup = false;
sdev = scsi_get_host_dev(hba->host);
}
if (!sdev) {
dev_err(hba->dev, "%s: Could not fetch scsi device\n",
__func__);
return -ENODEV;
}
mutex_lock(&hba->query.lock_ufs_query);
hba->query.request = query;
hba->query.descriptor = descriptor;
hba->query.response = response;
/* wait until request is completed */
result = scsi_execute(sdev, cmd, DMA_NONE, NULL, 0, NULL,
timeout, retries, 0, NULL);
if (result) {
dev_err(hba->dev,
"%s: Query with opcode 0x%x, failed with result %d\n",
__func__, query->upiu_req.opcode, result);
result = -EIO;
}
hba->query.request = NULL;
hba->query.descriptor = NULL;
hba->query.response = NULL;
mutex_unlock(&hba->query.lock_ufs_query);
/* Releasing scsi device resource */
if (sdev_lookup)
scsi_device_put(sdev);
else
scsi_free_host_dev(sdev);
return result;
}
/**
* ufshcd_memory_alloc - allocate memory for host memory space data structures
* @hba: per adapter instance
*
* 1. Allocate DMA memory for Command Descriptor array
* Each command descriptor consist of Command UPIU, Response UPIU and PRDT
* 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
* 3. Allocate DMA memory for UTP Task Management Request Descriptor List
* (UTMRDL)
* 4. Allocate memory for local reference block(lrb).
*
* Returns 0 for success, non-zero in case of failure
*/
static int ufshcd_memory_alloc(struct ufs_hba *hba)
{
size_t utmrdl_size, utrdl_size, ucdl_size;
/* Allocate memory for UTP command descriptors */
ucdl_size = (sizeof(struct utp_transfer_cmd_desc) * hba->nutrs);
hba->ucdl_base_addr = dma_alloc_coherent(hba->dev,
ucdl_size,
&hba->ucdl_dma_addr,
GFP_KERNEL);
/*
* UFSHCI requires UTP command descriptor to be 128 byte aligned.
* make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE
* if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will
* be aligned to 128 bytes as well
*/
if (!hba->ucdl_base_addr ||
WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) {
dev_err(hba->dev,
"Command Descriptor Memory allocation failed\n");
goto out;
}
/*
* Allocate memory for UTP Transfer descriptors
* UFSHCI requires 1024 byte alignment of UTRD
*/
utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
hba->utrdl_base_addr = dma_alloc_coherent(hba->dev,
utrdl_size,
&hba->utrdl_dma_addr,
GFP_KERNEL);
if (!hba->utrdl_base_addr ||
WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) {
dev_err(hba->dev,
"Transfer Descriptor Memory allocation failed\n");
goto out;
}
/*
* Allocate memory for UTP Task Management descriptors
* UFSHCI requires 1024 byte alignment of UTMRD
*/
utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
hba->utmrdl_base_addr = dma_alloc_coherent(hba->dev,
utmrdl_size,
&hba->utmrdl_dma_addr,
GFP_KERNEL);
if (!hba->utmrdl_base_addr ||
WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) {
dev_err(hba->dev,
"Task Management Descriptor Memory allocation failed\n");
goto out;
}
/* Allocate memory for local reference block */
hba->lrb = kcalloc(hba->nutrs, sizeof(struct ufshcd_lrb), GFP_KERNEL);
if (!hba->lrb) {
dev_err(hba->dev, "LRB Memory allocation failed\n");
goto out;
}
return 0;
out:
ufshcd_free_hba_memory(hba);
return -ENOMEM;
}
/**
* ufshcd_host_memory_configure - configure local reference block with
* memory offsets
* @hba: per adapter instance
*
* Configure Host memory space
* 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
* address.
* 2. Update each UTRD with Response UPIU offset, Response UPIU length
* and PRDT offset.
* 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
* into local reference block.
*/
static void ufshcd_host_memory_configure(struct ufs_hba *hba)
{
struct utp_transfer_cmd_desc *cmd_descp;
struct utp_transfer_req_desc *utrdlp;
dma_addr_t cmd_desc_dma_addr;
dma_addr_t cmd_desc_element_addr;
u16 response_offset;
u16 prdt_offset;
int cmd_desc_size;
int i;
utrdlp = hba->utrdl_base_addr;
cmd_descp = hba->ucdl_base_addr;
response_offset =
offsetof(struct utp_transfer_cmd_desc, response_upiu);
prdt_offset =
offsetof(struct utp_transfer_cmd_desc, prd_table);
cmd_desc_size = sizeof(struct utp_transfer_cmd_desc);
cmd_desc_dma_addr = hba->ucdl_dma_addr;
for (i = 0; i < hba->nutrs; i++) {
/* Configure UTRD with command descriptor base address */
cmd_desc_element_addr =
(cmd_desc_dma_addr + (cmd_desc_size * i));
utrdlp[i].command_desc_base_addr_lo =
cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
utrdlp[i].command_desc_base_addr_hi =
cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
/* Response upiu and prdt offset should be in double words */
utrdlp[i].response_upiu_offset =
cpu_to_le16((response_offset >> 2));
utrdlp[i].prd_table_offset =
cpu_to_le16((prdt_offset >> 2));
utrdlp[i].response_upiu_length =
cpu_to_le16(ALIGNED_UPIU_SIZE);
hba->lrb[i].utr_descriptor_ptr = (utrdlp + i);
hba->lrb[i].ucd_req_ptr =
(struct utp_upiu_req *)(cmd_descp + i);
hba->lrb[i].ucd_rsp_ptr =
(struct utp_upiu_rsp *)cmd_descp[i].response_upiu;
hba->lrb[i].ucd_prdt_ptr =
(struct ufshcd_sg_entry *)cmd_descp[i].prd_table;
}
}
/**
* ufshcd_dme_link_startup - Notify Unipro to perform link startup
* @hba: per adapter instance
*
* UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
* in order to initialize the Unipro link startup procedure.
* Once the Unipro links are up, the device connected to the controller
* is detected.
*
* Returns 0 on success, non-zero value on failure
*/
static int ufshcd_dme_link_startup(struct ufs_hba *hba)
{
struct uic_command *uic_cmd;
unsigned long flags;
/* check if controller is ready to accept UIC commands */
if (((readl(hba->mmio_base + REG_CONTROLLER_STATUS)) &
UIC_COMMAND_READY) == 0x0) {
dev_err(hba->dev,
"Controller not ready"
" to accept UIC commands\n");
return -EIO;
}
spin_lock_irqsave(hba->host->host_lock, flags);
/* form UIC command */
uic_cmd = &hba->active_uic_cmd;
uic_cmd->command = UIC_CMD_DME_LINK_STARTUP;
uic_cmd->argument1 = 0;
uic_cmd->argument2 = 0;
uic_cmd->argument3 = 0;
/* enable UIC related interrupts */
hba->int_enable_mask |= UIC_COMMAND_COMPL;
ufshcd_int_config(hba, UFSHCD_INT_ENABLE);
/* sending UIC commands to controller */
ufshcd_send_uic_command(hba, uic_cmd);
spin_unlock_irqrestore(hba->host->host_lock, flags);
return 0;
}
/**
* ufshcd_make_hba_operational - Make UFS controller operational
* @hba: per adapter instance
*
* To bring UFS host controller to operational state,
* 1. Check if device is present
* 2. Configure run-stop-registers
* 3. Enable required interrupts
* 4. Configure interrupt aggregation
*
* Returns 0 on success, non-zero value on failure
*/
static int ufshcd_make_hba_operational(struct ufs_hba *hba)
{
int err = 0;
u32 reg;
/* check if device present */
reg = readl((hba->mmio_base + REG_CONTROLLER_STATUS));
if (!ufshcd_is_device_present(reg)) {
dev_err(hba->dev, "cc: Device not present\n");
err = -ENXIO;
goto out;
}
/*
* UCRDY, UTMRLDY and UTRLRDY bits must be 1
* DEI, HEI bits must be 0
*/
if (!(ufshcd_get_lists_status(reg))) {
ufshcd_enable_run_stop_reg(hba);
} else {
dev_err(hba->dev,
"Host controller not ready to process requests");
err = -EIO;
goto out;
}
/* Enable required interrupts */
hba->int_enable_mask |= (UTP_TRANSFER_REQ_COMPL |
UIC_ERROR |
UTP_TASK_REQ_COMPL |
DEVICE_FATAL_ERROR |
CONTROLLER_FATAL_ERROR |
SYSTEM_BUS_FATAL_ERROR);
ufshcd_int_config(hba, UFSHCD_INT_ENABLE);
/* Configure interrupt aggregation */
ufshcd_config_int_aggr(hba, INT_AGGR_CONFIG);
if (hba->ufshcd_state == UFSHCD_STATE_RESET)
scsi_unblock_requests(hba->host);
hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
scsi_scan_host(hba->host);
out:
return err;
}
/**
* ufshcd_hba_enable - initialize the controller
* @hba: per adapter instance
*
* The controller resets itself and controller firmware initialization
* sequence kicks off. When controller is ready it will set
* the Host Controller Enable bit to 1.
*
* Returns 0 on success, non-zero value on failure
*/
static int ufshcd_hba_enable(struct ufs_hba *hba)
{
int retry;
/*
* msleep of 1 and 5 used in this function might result in msleep(20),
* but it was necessary to send the UFS FPGA to reset mode during
* development and testing of this driver. msleep can be changed to
* mdelay and retry count can be reduced based on the controller.
*/
if (!ufshcd_is_hba_active(hba)) {
/* change controller state to "reset state" */
ufshcd_hba_stop(hba);
/*
* This delay is based on the testing done with UFS host
* controller FPGA. The delay can be changed based on the
* host controller used.
*/
msleep(5);
}
/* start controller initialization sequence */
ufshcd_hba_start(hba);
/*
* To initialize a UFS host controller HCE bit must be set to 1.
* During initialization the HCE bit value changes from 1->0->1.
* When the host controller completes initialization sequence
* it sets the value of HCE bit to 1. The same HCE bit is read back
* to check if the controller has completed initialization sequence.
* So without this delay the value HCE = 1, set in the previous
* instruction might be read back.
* This delay can be changed based on the controller.
*/
msleep(1);
/* wait for the host controller to complete initialization */
retry = 10;
while (ufshcd_is_hba_active(hba)) {
if (retry) {
retry--;
} else {
dev_err(hba->dev,
"Controller enable failed\n");
return -EIO;
}
msleep(5);
}
return 0;
}
/**
* ufshcd_initialize_hba - start the initialization process
* @hba: per adapter instance
*
* 1. Enable the controller via ufshcd_hba_enable.
* 2. Program the Transfer Request List Address with the starting address of
* UTRDL.
* 3. Program the Task Management Request List Address with starting address
* of UTMRDL.
*
* Returns 0 on success, non-zero value on failure.
*/
static int ufshcd_initialize_hba(struct ufs_hba *hba)
{
if (ufshcd_hba_enable(hba))
return -EIO;
/* Configure UTRL and UTMRL base address registers */
writel(lower_32_bits(hba->utrdl_dma_addr),
(hba->mmio_base + REG_UTP_TRANSFER_REQ_LIST_BASE_L));
writel(upper_32_bits(hba->utrdl_dma_addr),
(hba->mmio_base + REG_UTP_TRANSFER_REQ_LIST_BASE_H));
writel(lower_32_bits(hba->utmrdl_dma_addr),
(hba->mmio_base + REG_UTP_TASK_REQ_LIST_BASE_L));
writel(upper_32_bits(hba->utmrdl_dma_addr),
(hba->mmio_base + REG_UTP_TASK_REQ_LIST_BASE_H));
/* Initialize unipro link startup procedure */
return ufshcd_dme_link_startup(hba);
}
/**
* ufshcd_do_reset - reset the host controller
* @hba: per adapter instance
*
* Returns SUCCESS/FAILED
*/
static int ufshcd_do_reset(struct ufs_hba *hba)
{
struct ufshcd_lrb *lrbp;
unsigned long flags;
int tag;
/* block commands from midlayer */
scsi_block_requests(hba->host);
spin_lock_irqsave(hba->host->host_lock, flags);
hba->ufshcd_state = UFSHCD_STATE_RESET;
/* send controller to reset state */
ufshcd_hba_stop(hba);
spin_unlock_irqrestore(hba->host->host_lock, flags);
/* abort outstanding commands */
for (tag = 0; tag < hba->nutrs; tag++) {
if (test_bit(tag, &hba->outstanding_reqs)) {
lrbp = &hba->lrb[tag];
scsi_dma_unmap(lrbp->cmd);
lrbp->cmd->result = DID_RESET << 16;
lrbp->cmd->scsi_done(lrbp->cmd);
lrbp->cmd = NULL;
}
}
/* clear outstanding request/task bit maps */
hba->outstanding_reqs = 0;
hba->outstanding_tasks = 0;
/* start the initialization process */
if (ufshcd_initialize_hba(hba)) {
dev_err(hba->dev,
"Reset: Controller initialization failed\n");
return FAILED;
}
return SUCCESS;
}
/**
* ufshcd_slave_alloc - handle initial SCSI device configurations
* @sdev: pointer to SCSI device
*
* Returns success
*/
static int ufshcd_slave_alloc(struct scsi_device *sdev)
{
struct ufs_hba *hba;
hba = shost_priv(sdev->host);
sdev->tagged_supported = 1;
/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
sdev->use_10_for_ms = 1;
scsi_set_tag_type(sdev, MSG_SIMPLE_TAG);
/*
* Inform SCSI Midlayer that the LUN queue depth is same as the
* controller queue depth. If a LUN queue depth is less than the
* controller queue depth and if the LUN reports
* SAM_STAT_TASK_SET_FULL, the LUN queue depth will be adjusted
* with scsi_adjust_queue_depth.
*/
scsi_activate_tcq(sdev, hba->nutrs);
return 0;
}
/**
* ufshcd_slave_destroy - remove SCSI device configurations
* @sdev: pointer to SCSI device
*/
static void ufshcd_slave_destroy(struct scsi_device *sdev)
{
struct ufs_hba *hba;
hba = shost_priv(sdev->host);
scsi_deactivate_tcq(sdev, hba->nutrs);
}
/**
* ufshcd_task_req_compl - handle task management request completion
* @hba: per adapter instance
* @index: index of the completed request
*
* Returns SUCCESS/FAILED
*/
static int ufshcd_task_req_compl(struct ufs_hba *hba, u32 index)
{
struct utp_task_req_desc *task_req_descp;
struct utp_upiu_task_rsp *task_rsp_upiup;
unsigned long flags;
int ocs_value;
int task_result;
spin_lock_irqsave(hba->host->host_lock, flags);
/* Clear completed tasks from outstanding_tasks */
__clear_bit(index, &hba->outstanding_tasks);
task_req_descp = hba->utmrdl_base_addr;
ocs_value = ufshcd_get_tmr_ocs(&task_req_descp[index]);
if (ocs_value == OCS_SUCCESS) {
task_rsp_upiup = (struct utp_upiu_task_rsp *)
task_req_descp[index].task_rsp_upiu;
task_result = be32_to_cpu(task_rsp_upiup->header.dword_1);
task_result = ((task_result & MASK_TASK_RESPONSE) >> 8);
if (task_result != UPIU_TASK_MANAGEMENT_FUNC_COMPL &&
task_result != UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED)
task_result = FAILED;
else
task_result = SUCCESS;
} else {
task_result = FAILED;
dev_err(hba->dev,
"trc: Invalid ocs = %x\n", ocs_value);
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
return task_result;
}
/**
* ufshcd_adjust_lun_qdepth - Update LUN queue depth if device responds with
* SAM_STAT_TASK_SET_FULL SCSI command status.
* @cmd: pointer to SCSI command
*/
static void ufshcd_adjust_lun_qdepth(struct scsi_cmnd *cmd)
{
struct ufs_hba *hba;
int i;
int lun_qdepth = 0;
hba = shost_priv(cmd->device->host);
/*
* LUN queue depth can be obtained by counting outstanding commands
* on the LUN.
*/
for (i = 0; i < hba->nutrs; i++) {
if (test_bit(i, &hba->outstanding_reqs)) {
/*
* Check if the outstanding command belongs
* to the LUN which reported SAM_STAT_TASK_SET_FULL.
*/
if (cmd->device->lun == hba->lrb[i].lun)
lun_qdepth++;
}
}
/*
* LUN queue depth will be total outstanding commands, except the
* command for which the LUN reported SAM_STAT_TASK_SET_FULL.
*/
scsi_adjust_queue_depth(cmd->device, MSG_SIMPLE_TAG, lun_qdepth - 1);
}
/**
* ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
* @lrb: pointer to local reference block of completed command
* @scsi_status: SCSI command status
*
* Returns value base on SCSI command status
*/
static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
{
int result = 0;
switch (scsi_status) {
case SAM_STAT_GOOD:
result |= DID_OK << 16 |
COMMAND_COMPLETE << 8 |
SAM_STAT_GOOD;
break;
case SAM_STAT_CHECK_CONDITION:
result |= DID_OK << 16 |
COMMAND_COMPLETE << 8 |
SAM_STAT_CHECK_CONDITION;
ufshcd_copy_sense_data(lrbp);
break;
case SAM_STAT_BUSY:
result |= SAM_STAT_BUSY;
break;
case SAM_STAT_TASK_SET_FULL:
/*
* If a LUN reports SAM_STAT_TASK_SET_FULL, then the LUN queue
* depth needs to be adjusted to the exact number of
* outstanding commands the LUN can handle at any given time.
*/
ufshcd_adjust_lun_qdepth(lrbp->cmd);
result |= SAM_STAT_TASK_SET_FULL;
break;
case SAM_STAT_TASK_ABORTED:
result |= SAM_STAT_TASK_ABORTED;
break;
default:
result |= DID_ERROR << 16;
break;
} /* end of switch */
return result;
}
/**
* ufshcd_transfer_rsp_status - Get overall status of the response
* @hba: per adapter instance
* @lrb: pointer to local reference block of completed command
*
* Returns result of the command to notify SCSI midlayer. In
* case of query request specific result, returns DID_OK, and
* the error will be handled by the dispatcher.
*/
static inline int
ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
int result = 0;
int scsi_status;
int ocs;
/* overall command status of utrd */
ocs = ufshcd_get_tr_ocs(lrbp);
switch (ocs) {
case OCS_SUCCESS:
/* check if the returned transfer response is valid */
result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
switch (result) {
case UPIU_TRANSACTION_RESPONSE:
/*
* get the response UPIU result to extract
* the SCSI command status
*/
result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
/*
* get the result based on SCSI status response
* to notify the SCSI midlayer of the command status
*/
scsi_status = result & MASK_SCSI_STATUS;
result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
break;
case UPIU_TRANSACTION_QUERY_RSP:
/*
* Return result = ok, since SCSI layer wouldn't
* know how to handle errors from query requests.
* The result is saved with the response so that
* the ufs_core layer will handle it.
*/
result = DID_OK << 16;
ufshcd_copy_query_response(hba, lrbp);
break;
case UPIU_TRANSACTION_REJECT_UPIU:
/* TODO: handle Reject UPIU Response */
result = DID_ERROR << 16;
dev_err(hba->dev,
"Reject UPIU not fully implemented\n");
break;
default:
result = DID_ERROR << 16;
dev_err(hba->dev,
"Unexpected request response code = %x\n",
result);
}
break;
case OCS_ABORTED:
result |= DID_ABORT << 16;
break;
case OCS_INVALID_CMD_TABLE_ATTR:
case OCS_INVALID_PRDT_ATTR:
case OCS_MISMATCH_DATA_BUF_SIZE:
case OCS_MISMATCH_RESP_UPIU_SIZE:
case OCS_PEER_COMM_FAILURE:
case OCS_FATAL_ERROR:
default:
result |= DID_ERROR << 16;
dev_err(hba->dev,
"OCS error from controller = %x\n", ocs);
break;
} /* end of switch */
return result;
}
/**
* ufshcd_transfer_req_compl - handle SCSI and query command completion
* @hba: per adapter instance
*/
static void ufshcd_transfer_req_compl(struct ufs_hba *hba)
{
struct ufshcd_lrb *lrb;
unsigned long completed_reqs;
u32 tr_doorbell;
int result;
int index;
lrb = hba->lrb;
tr_doorbell =
readl(hba->mmio_base + REG_UTP_TRANSFER_REQ_DOOR_BELL);
completed_reqs = tr_doorbell ^ hba->outstanding_reqs;
for (index = 0; index < hba->nutrs; index++) {
if (test_bit(index, &completed_reqs)) {
result = ufshcd_transfer_rsp_status(hba, &lrb[index]);
if (lrb[index].cmd) {
scsi_dma_unmap(lrb[index].cmd);
lrb[index].cmd->result = result;
lrb[index].cmd->scsi_done(lrb[index].cmd);
/* Mark completed command as NULL in LRB */
lrb[index].cmd = NULL;
}
} /* end of if */
} /* end of for */
/* clear corresponding bits of completed commands */
hba->outstanding_reqs ^= completed_reqs;
/* Reset interrupt aggregation counters */
ufshcd_config_int_aggr(hba, INT_AGGR_RESET);
}
/**
* ufshcd_uic_cc_handler - handle UIC command completion
* @work: pointer to a work queue structure
*
* Returns 0 on success, non-zero value on failure
*/
static void ufshcd_uic_cc_handler (struct work_struct *work)
{
struct ufs_hba *hba;
hba = container_of(work, struct ufs_hba, uic_workq);
if ((hba->active_uic_cmd.command == UIC_CMD_DME_LINK_STARTUP) &&
!(ufshcd_get_uic_cmd_result(hba))) {
if (ufshcd_make_hba_operational(hba))
dev_err(hba->dev,
"cc: hba not operational state\n");
return;
}
}
/**
* ufshcd_fatal_err_handler - handle fatal errors
* @hba: per adapter instance
*/
static void ufshcd_fatal_err_handler(struct work_struct *work)
{
struct ufs_hba *hba;
hba = container_of(work, struct ufs_hba, feh_workq);
/* check if reset is already in progress */
if (hba->ufshcd_state != UFSHCD_STATE_RESET)
ufshcd_do_reset(hba);
}
/**
* ufshcd_err_handler - Check for fatal errors
* @work: pointer to a work queue structure
*/
static void ufshcd_err_handler(struct ufs_hba *hba)
{
u32 reg;
if (hba->errors & INT_FATAL_ERRORS)
goto fatal_eh;
if (hba->errors & UIC_ERROR) {
reg = readl(hba->mmio_base +
REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
goto fatal_eh;
}
return;
fatal_eh:
hba->ufshcd_state = UFSHCD_STATE_ERROR;
schedule_work(&hba->feh_workq);
}
/**
* ufshcd_tmc_handler - handle task management function completion
* @hba: per adapter instance
*/
static void ufshcd_tmc_handler(struct ufs_hba *hba)
{
u32 tm_doorbell;
tm_doorbell = readl(hba->mmio_base + REG_UTP_TASK_REQ_DOOR_BELL);
hba->tm_condition = tm_doorbell ^ hba->outstanding_tasks;
wake_up_interruptible(&hba->ufshcd_tm_wait_queue);
}
/**
* ufshcd_sl_intr - Interrupt service routine
* @hba: per adapter instance
* @intr_status: contains interrupts generated by the controller
*/
static void ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
{
hba->errors = UFSHCD_ERROR_MASK & intr_status;
if (hba->errors)
ufshcd_err_handler(hba);
if (intr_status & UIC_COMMAND_COMPL)
schedule_work(&hba->uic_workq);
if (intr_status & UTP_TASK_REQ_COMPL)
ufshcd_tmc_handler(hba);
if (intr_status & UTP_TRANSFER_REQ_COMPL)
ufshcd_transfer_req_compl(hba);
}
/**
* ufshcd_intr - Main interrupt service routine
* @irq: irq number
* @__hba: pointer to adapter instance
*
* Returns IRQ_HANDLED - If interrupt is valid
* IRQ_NONE - If invalid interrupt
*/
static irqreturn_t ufshcd_intr(int irq, void *__hba)
{
u32 intr_status;
irqreturn_t retval = IRQ_NONE;
struct ufs_hba *hba = __hba;
spin_lock(hba->host->host_lock);
intr_status = readl(hba->mmio_base + REG_INTERRUPT_STATUS);
if (intr_status) {
ufshcd_sl_intr(hba, intr_status);
/* If UFSHCI 1.0 then clear interrupt status register */
if (hba->ufs_version == UFSHCI_VERSION_10)
writel(intr_status,
(hba->mmio_base + REG_INTERRUPT_STATUS));
retval = IRQ_HANDLED;
}
spin_unlock(hba->host->host_lock);
return retval;
}
/**
* ufshcd_issue_tm_cmd - issues task management commands to controller
* @hba: per adapter instance
* @lrbp: pointer to local reference block
*
* Returns SUCCESS/FAILED
*/
static int
ufshcd_issue_tm_cmd(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp,
u8 tm_function)
{
struct utp_task_req_desc *task_req_descp;
struct utp_upiu_task_req *task_req_upiup;
struct Scsi_Host *host;
unsigned long flags;
int free_slot = 0;
int err;
host = hba->host;
spin_lock_irqsave(host->host_lock, flags);
/* If task management queue is full */
free_slot = ufshcd_get_tm_free_slot(hba);
if (free_slot >= hba->nutmrs) {
spin_unlock_irqrestore(host->host_lock, flags);
dev_err(hba->dev, "Task management queue full\n");
err = FAILED;
goto out;
}
task_req_descp = hba->utmrdl_base_addr;
task_req_descp += free_slot;
/* Configure task request descriptor */
task_req_descp->header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
task_req_descp->header.dword_2 =
cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
/* Configure task request UPIU */
task_req_upiup =
(struct utp_upiu_task_req *) task_req_descp->task_req_upiu;
task_req_upiup->header.dword_0 =
UPIU_HEADER_DWORD(UPIU_TRANSACTION_TASK_REQ, 0,
lrbp->lun, lrbp->task_tag);
task_req_upiup->header.dword_1 =
UPIU_HEADER_DWORD(0, tm_function, 0, 0);
task_req_upiup->input_param1 = lrbp->lun;
task_req_upiup->input_param1 =
cpu_to_be32(task_req_upiup->input_param1);
task_req_upiup->input_param2 = lrbp->task_tag;
task_req_upiup->input_param2 =
cpu_to_be32(task_req_upiup->input_param2);
/* send command to the controller */
__set_bit(free_slot, &hba->outstanding_tasks);
writel((1 << free_slot),
(hba->mmio_base + REG_UTP_TASK_REQ_DOOR_BELL));
spin_unlock_irqrestore(host->host_lock, flags);
/* wait until the task management command is completed */
err =
wait_event_interruptible_timeout(hba->ufshcd_tm_wait_queue,
(test_bit(free_slot,
&hba->tm_condition) != 0),
60 * HZ);
if (!err) {
dev_err(hba->dev,
"Task management command timed-out\n");
err = FAILED;
goto out;
}
clear_bit(free_slot, &hba->tm_condition);
err = ufshcd_task_req_compl(hba, free_slot);
out:
return err;
}
/**
* ufshcd_device_reset - reset device and abort all the pending commands
* @cmd: SCSI command pointer
*
* Returns SUCCESS/FAILED
*/
static int ufshcd_device_reset(struct scsi_cmnd *cmd)
{
struct Scsi_Host *host;
struct ufs_hba *hba;
unsigned int tag;
u32 pos;
int err;
host = cmd->device->host;
hba = shost_priv(host);
tag = cmd->request->tag;
err = ufshcd_issue_tm_cmd(hba, &hba->lrb[tag], UFS_LOGICAL_RESET);
if (err == FAILED)
goto out;
for (pos = 0; pos < hba->nutrs; pos++) {
if (test_bit(pos, &hba->outstanding_reqs) &&
(hba->lrb[tag].lun == hba->lrb[pos].lun)) {
/* clear the respective UTRLCLR register bit */
ufshcd_utrl_clear(hba, pos);
clear_bit(pos, &hba->outstanding_reqs);
if (hba->lrb[pos].cmd) {
scsi_dma_unmap(hba->lrb[pos].cmd);
hba->lrb[pos].cmd->result =
DID_ABORT << 16;
hba->lrb[pos].cmd->scsi_done(cmd);
hba->lrb[pos].cmd = NULL;
}
}
} /* end of for */
out:
return err;
}
/**
* ufshcd_host_reset - Main reset function registered with scsi layer
* @cmd: SCSI command pointer
*
* Returns SUCCESS/FAILED
*/
static int ufshcd_host_reset(struct scsi_cmnd *cmd)
{
struct ufs_hba *hba;
hba = shost_priv(cmd->device->host);
if (hba->ufshcd_state == UFSHCD_STATE_RESET)
return SUCCESS;
return ufshcd_do_reset(hba);
}
/**
* ufshcd_abort - abort a specific command
* @cmd: SCSI command pointer
*
* Returns SUCCESS/FAILED
*/
static int ufshcd_abort(struct scsi_cmnd *cmd)
{
struct Scsi_Host *host;
struct ufs_hba *hba;
unsigned long flags;
unsigned int tag;
int err;
host = cmd->device->host;
hba = shost_priv(host);
tag = cmd->request->tag;
spin_lock_irqsave(host->host_lock, flags);
/* check if command is still pending */
if (!(test_bit(tag, &hba->outstanding_reqs))) {
err = FAILED;
spin_unlock_irqrestore(host->host_lock, flags);
goto out;
}
spin_unlock_irqrestore(host->host_lock, flags);
err = ufshcd_issue_tm_cmd(hba, &hba->lrb[tag], UFS_ABORT_TASK);
if (err == FAILED)
goto out;
scsi_dma_unmap(cmd);
spin_lock_irqsave(host->host_lock, flags);
/* clear the respective UTRLCLR register bit */
ufshcd_utrl_clear(hba, tag);
__clear_bit(tag, &hba->outstanding_reqs);
hba->lrb[tag].cmd = NULL;
spin_unlock_irqrestore(host->host_lock, flags);
out:
return err;
}
static struct scsi_host_template ufshcd_driver_template = {
.module = THIS_MODULE,
.name = UFSHCD,
.proc_name = UFSHCD,
.queuecommand = ufshcd_queuecommand,
.slave_alloc = ufshcd_slave_alloc,
.slave_destroy = ufshcd_slave_destroy,
.eh_abort_handler = ufshcd_abort,
.eh_device_reset_handler = ufshcd_device_reset,
.eh_host_reset_handler = ufshcd_host_reset,
.this_id = -1,
.sg_tablesize = SG_ALL,
.cmd_per_lun = UFSHCD_CMD_PER_LUN,
.can_queue = UFSHCD_CAN_QUEUE,
};
/**
* ufshcd_suspend - suspend power management function
* @hba: per adapter instance
* @state: power state
*
* Returns -ENOSYS
*/
int ufshcd_suspend(struct ufs_hba *hba, pm_message_t state)
{
/*
* TODO:
* 1. Block SCSI requests from SCSI midlayer
* 2. Change the internal driver state to non operational
* 3. Set UTRLRSR and UTMRLRSR bits to zero
* 4. Wait until outstanding commands are completed
* 5. Set HCE to zero to send the UFS host controller to reset state
*/
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(ufshcd_suspend);
/**
* ufshcd_resume - resume power management function
* @hba: per adapter instance
*
* Returns -ENOSYS
*/
int ufshcd_resume(struct ufs_hba *hba)
{
/*
* TODO:
* 1. Set HCE to 1, to start the UFS host controller
* initialization process
* 2. Set UTRLRSR and UTMRLRSR bits to 1
* 3. Change the internal driver state to operational
* 4. Unblock SCSI requests from SCSI midlayer
*/
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(ufshcd_resume);
/**
* ufshcd_hba_free - free allocated memory for
* host memory space data structures
* @hba: per adapter instance
*/
static void ufshcd_hba_free(struct ufs_hba *hba)
{
iounmap(hba->mmio_base);
ufshcd_free_hba_memory(hba);
}
/**
* ufshcd_remove - de-allocate SCSI host and host memory space
* data structure memory
* @hba - per adapter instance
*/
void ufshcd_remove(struct ufs_hba *hba)
{
/* disable interrupts */
ufshcd_int_config(hba, UFSHCD_INT_DISABLE);
ufshcd_hba_stop(hba);
ufshcd_hba_free(hba);
scsi_remove_host(hba->host);
scsi_host_put(hba->host);
}
EXPORT_SYMBOL_GPL(ufshcd_remove);
/**
* ufshcd_init - Driver initialization routine
* @dev: pointer to device handle
* @hba_handle: driver private handle
* @mmio_base: base register address
* @irq: Interrupt line of device
* Returns 0 on success, non-zero value on failure
*/
int ufshcd_init(struct device *dev, struct ufs_hba **hba_handle,
void __iomem *mmio_base, unsigned int irq)
{
struct Scsi_Host *host;
struct ufs_hba *hba;
int err;
if (!dev) {
dev_err(dev,
"Invalid memory reference for dev is NULL\n");
err = -ENODEV;
goto out_error;
}
if (!mmio_base) {
dev_err(dev,
"Invalid memory reference for mmio_base is NULL\n");
err = -ENODEV;
goto out_error;
}
host = scsi_host_alloc(&ufshcd_driver_template,
sizeof(struct ufs_hba));
if (!host) {
dev_err(dev, "scsi_host_alloc failed\n");
err = -ENOMEM;
goto out_error;
}
hba = shost_priv(host);
hba->host = host;
hba->dev = dev;
hba->mmio_base = mmio_base;
hba->irq = irq;
/* Read capabilities registers */
ufshcd_hba_capabilities(hba);
/* Get UFS version supported by the controller */
hba->ufs_version = ufshcd_get_ufs_version(hba);
/* Allocate memory for host memory space */
err = ufshcd_memory_alloc(hba);
if (err) {
dev_err(hba->dev, "Memory allocation failed\n");
goto out_disable;
}
/* Configure LRB */
ufshcd_host_memory_configure(hba);
host->can_queue = hba->nutrs;
host->cmd_per_lun = hba->nutrs;
host->max_id = UFSHCD_MAX_ID;
host->max_lun = UFSHCD_MAX_LUNS;
host->max_channel = UFSHCD_MAX_CHANNEL;
host->unique_id = host->host_no;
host->max_cmd_len = MAX_CDB_SIZE;
/* Initailize wait queue for task management */
init_waitqueue_head(&hba->ufshcd_tm_wait_queue);
/* Initialize work queues */
INIT_WORK(&hba->uic_workq, ufshcd_uic_cc_handler);
INIT_WORK(&hba->feh_workq, ufshcd_fatal_err_handler);
/* Initialize mutex for query requests */
mutex_init(&hba->query.lock_ufs_query);
/* IRQ registration */
err = request_irq(irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
if (err) {
dev_err(hba->dev, "request irq failed\n");
goto out_lrb_free;
}
/* Enable SCSI tag mapping */
err = scsi_init_shared_tag_map(host, host->can_queue);
if (err) {
dev_err(hba->dev, "init shared queue failed\n");
goto out_free_irq;
}
err = scsi_add_host(host, hba->dev);
if (err) {
dev_err(hba->dev, "scsi_add_host failed\n");
goto out_free_irq;
}
/* Initialization routine */
err = ufshcd_initialize_hba(hba);
if (err) {
dev_err(hba->dev, "Initialization failed\n");
goto out_remove_scsi_host;
}
*hba_handle = hba;
return 0;
out_remove_scsi_host:
scsi_remove_host(hba->host);
out_free_irq:
free_irq(irq, hba);
out_lrb_free:
ufshcd_free_hba_memory(hba);
out_disable:
scsi_host_put(host);
out_error:
return err;
}
EXPORT_SYMBOL_GPL(ufshcd_init);
MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
MODULE_DESCRIPTION("Generic UFS host controller driver Core");
MODULE_LICENSE("GPL");
MODULE_VERSION(UFSHCD_DRIVER_VERSION);