/* * Universal Flash Storage Host controller driver Core * * This code is based on drivers/scsi/ufs/ufshcd.c * Copyright (C) 2011-2013 Samsung India Software Operations * * Authors: * Santosh Yaraganavi * Vinayak Holikatti * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * See the COPYING file in the top-level directory or visit * * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * This program is provided "AS IS" and "WITH ALL FAULTS" and * without warranty of any kind. You are solely responsible for * determining the appropriateness of using and distributing * the program and assume all risks associated with your exercise * of rights with respect to the program, including but not limited * to infringement of third party rights, the risks and costs of * program errors, damage to or loss of data, programs or equipment, * and unavailability or interruption of operations. Under no * circumstances will the contributor of this Program be liable for * any damages of any kind arising from your use or distribution of * this program. */ #include "ufshcd.h" enum { UFSHCD_MAX_CHANNEL = 0, UFSHCD_MAX_ID = 1, UFSHCD_MAX_LUNS = 8, UFSHCD_CMD_PER_LUN = 32, UFSHCD_CAN_QUEUE = 32, }; /* UFSHCD states */ enum { UFSHCD_STATE_OPERATIONAL, UFSHCD_STATE_RESET, UFSHCD_STATE_ERROR, }; /* Interrupt configuration options */ enum { UFSHCD_INT_DISABLE, UFSHCD_INT_ENABLE, UFSHCD_INT_CLEAR, }; /* Interrupt aggregation options */ enum { INT_AGGR_RESET, INT_AGGR_CONFIG, }; /** * ufshcd_get_ufs_version - Get the UFS version supported by the HBA * @hba - Pointer to adapter instance * * Returns UFSHCI version supported by the controller */ static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba) { return readl(hba->mmio_base + REG_UFS_VERSION); } /** * ufshcd_is_device_present - Check if any device connected to * the host controller * @reg_hcs - host controller status register value * * Returns 1 if device present, 0 if no device detected */ static inline int ufshcd_is_device_present(u32 reg_hcs) { return (DEVICE_PRESENT & reg_hcs) ? 1 : 0; } /** * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status * @lrb: pointer to local command reference block * * This function is used to get the OCS field from UTRD * Returns the OCS field in the UTRD */ static inline int ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp) { return lrbp->utr_descriptor_ptr->header.dword_2 & MASK_OCS; } /** * ufshcd_get_tmr_ocs - Get the UTMRD Overall Command Status * @task_req_descp: pointer to utp_task_req_desc structure * * This function is used to get the OCS field from UTMRD * Returns the OCS field in the UTMRD */ static inline int ufshcd_get_tmr_ocs(struct utp_task_req_desc *task_req_descp) { return task_req_descp->header.dword_2 & MASK_OCS; } /** * ufshcd_get_tm_free_slot - get a free slot for task management request * @hba: per adapter instance * * Returns maximum number of task management request slots in case of * task management queue full or returns the free slot number */ static inline int ufshcd_get_tm_free_slot(struct ufs_hba *hba) { return find_first_zero_bit(&hba->outstanding_tasks, hba->nutmrs); } /** * ufshcd_utrl_clear - Clear a bit in UTRLCLR register * @hba: per adapter instance * @pos: position of the bit to be cleared */ static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 pos) { writel(~(1 << pos), (hba->mmio_base + REG_UTP_TRANSFER_REQ_LIST_CLEAR)); } /** * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY * @reg: Register value of host controller status * * Returns integer, 0 on Success and positive value if failed */ static inline int ufshcd_get_lists_status(u32 reg) { /* * The mask 0xFF is for the following HCS register bits * Bit Description * 0 Device Present * 1 UTRLRDY * 2 UTMRLRDY * 3 UCRDY * 4 HEI * 5 DEI * 6-7 reserved */ return (((reg) & (0xFF)) >> 1) ^ (0x07); } /** * ufshcd_get_uic_cmd_result - Get the UIC command result * @hba: Pointer to adapter instance * * This function gets the result of UIC command completion * Returns 0 on success, non zero value on error */ static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba) { return readl(hba->mmio_base + REG_UIC_COMMAND_ARG_2) & MASK_UIC_COMMAND_RESULT; } /** * ufshcd_free_hba_memory - Free allocated memory for LRB, request * and task lists * @hba: Pointer to adapter instance */ static inline void ufshcd_free_hba_memory(struct ufs_hba *hba) { size_t utmrdl_size, utrdl_size, ucdl_size; kfree(hba->lrb); if (hba->utmrdl_base_addr) { utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs; dma_free_coherent(hba->dev, utmrdl_size, hba->utmrdl_base_addr, hba->utmrdl_dma_addr); } if (hba->utrdl_base_addr) { utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs); dma_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr, hba->utrdl_dma_addr); } if (hba->ucdl_base_addr) { ucdl_size = (sizeof(struct utp_transfer_cmd_desc) * hba->nutrs); dma_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr, hba->ucdl_dma_addr); } } /** * ufshcd_get_req_rsp - returns the TR response * @ucd_rsp_ptr: pointer to response UPIU */ static inline int ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr) { return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24; } /** * ufshcd_get_rsp_upiu_result - Get the result from response UPIU * @ucd_rsp_ptr: pointer to response UPIU * * This function gets the response status and scsi_status from response UPIU * Returns the response result code. */ static inline int ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr) { return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT; } /** * ufshcd_config_int_aggr - Configure interrupt aggregation values. * Currently there is no use case where we want to configure * interrupt aggregation dynamically. So to configure interrupt * aggregation, #define INT_AGGR_COUNTER_THRESHOLD_VALUE and * INT_AGGR_TIMEOUT_VALUE are used. * @hba: per adapter instance * @option: Interrupt aggregation option */ static inline void ufshcd_config_int_aggr(struct ufs_hba *hba, int option) { switch (option) { case INT_AGGR_RESET: writel((INT_AGGR_ENABLE | INT_AGGR_COUNTER_AND_TIMER_RESET), (hba->mmio_base + REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL)); break; case INT_AGGR_CONFIG: writel((INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE | INT_AGGR_COUNTER_THRESHOLD_VALUE | INT_AGGR_TIMEOUT_VALUE), (hba->mmio_base + REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL)); break; } } /** * ufshcd_enable_run_stop_reg - Enable run-stop registers, * When run-stop registers are set to 1, it indicates the * host controller that it can process the requests * @hba: per adapter instance */ static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba) { writel(UTP_TASK_REQ_LIST_RUN_STOP_BIT, (hba->mmio_base + REG_UTP_TASK_REQ_LIST_RUN_STOP)); writel(UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT, (hba->mmio_base + REG_UTP_TRANSFER_REQ_LIST_RUN_STOP)); } /** * ufshcd_hba_start - Start controller initialization sequence * @hba: per adapter instance */ static inline void ufshcd_hba_start(struct ufs_hba *hba) { writel(CONTROLLER_ENABLE , (hba->mmio_base + REG_CONTROLLER_ENABLE)); } /** * ufshcd_is_hba_active - Get controller state * @hba: per adapter instance * * Returns zero if controller is active, 1 otherwise */ static inline int ufshcd_is_hba_active(struct ufs_hba *hba) { return (readl(hba->mmio_base + REG_CONTROLLER_ENABLE) & 0x1) ? 0 : 1; } /** * ufshcd_send_command - Send SCSI or device management commands * @hba: per adapter instance * @task_tag: Task tag of the command */ static inline void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag) { __set_bit(task_tag, &hba->outstanding_reqs); writel((1 << task_tag), (hba->mmio_base + REG_UTP_TRANSFER_REQ_DOOR_BELL)); } /** * ufshcd_copy_sense_data - Copy sense data in case of check condition * @lrb - pointer to local reference block */ static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp) { int len; if (lrbp->sense_buffer) { len = be16_to_cpu(lrbp->ucd_rsp_ptr->sc.sense_data_len); memcpy(lrbp->sense_buffer, lrbp->ucd_rsp_ptr->sc.sense_data, min_t(int, len, SCSI_SENSE_BUFFERSIZE)); } } /** * ufshcd_query_to_cpu() - formats the received buffer in to the native cpu * endian * @response: upiu query response to convert */ static inline void ufshcd_query_to_cpu(struct utp_upiu_query *response) { response->length = be16_to_cpu(response->length); response->value = be32_to_cpu(response->value); } /** * ufshcd_query_to_be() - formats the buffer before sending in to big endian * @response: upiu query request to convert */ static inline void ufshcd_query_to_be(struct utp_upiu_query *request) { request->length = cpu_to_be16(request->length); request->value = cpu_to_be32(request->value); } /** * ufshcd_copy_query_response() - Copy Query Response and descriptor * @lrb - pointer to local reference block * @query_res - pointer to the query result */ static void ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) { struct ufs_query_res *query_res = hba->query.response; /* Get the UPIU response */ if (query_res) { query_res->response = ufshcd_get_rsp_upiu_result( lrbp->ucd_rsp_ptr) >> UPIU_RSP_CODE_OFFSET; memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE); ufshcd_query_to_cpu(&query_res->upiu_res); } /* Get the descriptor */ if (hba->query.descriptor && lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) { u8 *descp = (u8 *)&lrbp->ucd_rsp_ptr + GENERAL_UPIU_REQUEST_SIZE; u16 len; /* data segment length */ len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) & MASK_QUERY_DATA_SEG_LEN; memcpy(hba->query.descriptor, descp, min_t(u16, len, UPIU_HEADER_DATA_SEGMENT_MAX_SIZE)); } } /** * ufshcd_hba_capabilities - Read controller capabilities * @hba: per adapter instance */ static inline void ufshcd_hba_capabilities(struct ufs_hba *hba) { hba->capabilities = readl(hba->mmio_base + REG_CONTROLLER_CAPABILITIES); /* nutrs and nutmrs are 0 based values */ hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1; hba->nutmrs = ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1; } /** * ufshcd_send_uic_command - Send UIC commands to unipro layers * @hba: per adapter instance * @uic_command: UIC command */ static inline void ufshcd_send_uic_command(struct ufs_hba *hba, struct uic_command *uic_cmnd) { /* Write Args */ writel(uic_cmnd->argument1, (hba->mmio_base + REG_UIC_COMMAND_ARG_1)); writel(uic_cmnd->argument2, (hba->mmio_base + REG_UIC_COMMAND_ARG_2)); writel(uic_cmnd->argument3, (hba->mmio_base + REG_UIC_COMMAND_ARG_3)); /* Write UIC Cmd */ writel((uic_cmnd->command & COMMAND_OPCODE_MASK), (hba->mmio_base + REG_UIC_COMMAND)); } /** * ufshcd_map_sg - Map scatter-gather list to prdt * @lrbp - pointer to local reference block * * Returns 0 in case of success, non-zero value in case of failure */ static int ufshcd_map_sg(struct ufshcd_lrb *lrbp) { struct ufshcd_sg_entry *prd_table; struct scatterlist *sg; struct scsi_cmnd *cmd; int sg_segments; int i; cmd = lrbp->cmd; sg_segments = scsi_dma_map(cmd); if (sg_segments < 0) return sg_segments; if (sg_segments) { lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16((u16) (sg_segments)); prd_table = (struct ufshcd_sg_entry *)lrbp->ucd_prdt_ptr; scsi_for_each_sg(cmd, sg, sg_segments, i) { prd_table[i].size = cpu_to_le32(((u32) sg_dma_len(sg))-1); prd_table[i].base_addr = cpu_to_le32(lower_32_bits(sg->dma_address)); prd_table[i].upper_addr = cpu_to_le32(upper_32_bits(sg->dma_address)); } } else { lrbp->utr_descriptor_ptr->prd_table_length = 0; } return 0; } /** * ufshcd_int_config - enable/disable interrupts * @hba: per adapter instance * @option: interrupt option */ static void ufshcd_int_config(struct ufs_hba *hba, u32 option) { switch (option) { case UFSHCD_INT_ENABLE: writel(hba->int_enable_mask, (hba->mmio_base + REG_INTERRUPT_ENABLE)); break; case UFSHCD_INT_DISABLE: if (hba->ufs_version == UFSHCI_VERSION_10) writel(INTERRUPT_DISABLE_MASK_10, (hba->mmio_base + REG_INTERRUPT_ENABLE)); else writel(INTERRUPT_DISABLE_MASK_11, (hba->mmio_base + REG_INTERRUPT_ENABLE)); break; } } /** * ufshcd_prepare_req_desc - Fills the requests header * descriptor according to request * lrbp: pointer to local reference block * upiu_flags: flags required in the header */ static void ufshcd_prepare_req_desc(struct ufshcd_lrb *lrbp, u32 *upiu_flags) { struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr; enum dma_data_direction cmd_dir = lrbp->cmd->sc_data_direction; u32 data_direction; u32 dword_0; if (cmd_dir == DMA_FROM_DEVICE) { data_direction = UTP_DEVICE_TO_HOST; *upiu_flags = UPIU_CMD_FLAGS_READ; } else if (cmd_dir == DMA_TO_DEVICE) { data_direction = UTP_HOST_TO_DEVICE; *upiu_flags = UPIU_CMD_FLAGS_WRITE; } else { data_direction = UTP_NO_DATA_TRANSFER; *upiu_flags = UPIU_CMD_FLAGS_NONE; } dword_0 = data_direction | (lrbp->command_type << UPIU_COMMAND_TYPE_OFFSET); /* Transfer request descriptor header fields */ req_desc->header.dword_0 = cpu_to_le32(dword_0); /* * assigning invalid value for command status. Controller * updates OCS on command completion, with the command * status */ req_desc->header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS); } static inline bool ufshcd_is_query_req(struct ufshcd_lrb *lrbp) { return lrbp->cmd ? lrbp->cmd->cmnd[0] == UFS_QUERY_RESERVED_SCSI_CMD : false; } /** * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc, * for scsi commands * @lrbp - local reference block pointer * @upiu_flags - flags */ static void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u32 upiu_flags) { struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; /* command descriptor fields */ ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD( UPIU_TRANSACTION_COMMAND, upiu_flags, lrbp->lun, lrbp->task_tag); ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD( UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0); /* Total EHS length and Data segment length will be zero */ ucd_req_ptr->header.dword_2 = 0; ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(lrbp->cmd->sdb.length); memcpy(ucd_req_ptr->sc.cdb, lrbp->cmd->cmnd, (min_t(unsigned short, lrbp->cmd->cmd_len, MAX_CDB_SIZE))); } /** * ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc, * for query requsts * @hba: UFS hba * @lrbp: local reference block pointer * @upiu_flags: flags */ static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, u32 upiu_flags) { struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; u16 len = hba->query.request->upiu_req.length; u8 *descp = (u8 *)lrbp->ucd_req_ptr + GENERAL_UPIU_REQUEST_SIZE; /* Query request header */ ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD( UPIU_TRANSACTION_QUERY_REQ, upiu_flags, lrbp->lun, lrbp->task_tag); ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD( 0, hba->query.request->query_func, 0, 0); /* Data segment length */ ucd_req_ptr->header.dword_2 = UPIU_HEADER_DWORD( 0, 0, len >> 8, (u8)len); /* Copy the Query Request buffer as is */ memcpy(&lrbp->ucd_req_ptr->qr, &hba->query.request->upiu_req, QUERY_OSF_SIZE); ufshcd_query_to_be(&lrbp->ucd_req_ptr->qr); /* Copy the Descriptor */ if (hba->query.descriptor != NULL && len > 0 && (hba->query.request->upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)) { memcpy(descp, hba->query.descriptor, min_t(u16, len, UPIU_HEADER_DATA_SEGMENT_MAX_SIZE)); } } /** * ufshcd_compose_upiu - form UFS Protocol Information Unit(UPIU) * @hba - UFS hba * @lrb - pointer to local reference block */ static int ufshcd_compose_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) { u32 upiu_flags; int ret = 0; switch (lrbp->command_type) { case UTP_CMD_TYPE_SCSI: case UTP_CMD_TYPE_DEV_MANAGE: ufshcd_prepare_req_desc(lrbp, &upiu_flags); if (lrbp->command_type == UTP_CMD_TYPE_SCSI) ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags); else ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags); break; case UTP_CMD_TYPE_UFS: /* For UFS native command implementation */ dev_err(hba->dev, "%s: UFS native command are not supported\n", __func__); ret = -ENOTSUPP; break; default: ret = -ENOTSUPP; dev_err(hba->dev, "%s: unknown command type: 0x%x\n", __func__, lrbp->command_type); break; } /* end of switch */ return ret; } /** * ufshcd_queuecommand - main entry point for SCSI requests * @cmd: command from SCSI Midlayer * @done: call back function * * Returns 0 for success, non-zero in case of failure */ static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd) { struct ufshcd_lrb *lrbp; struct ufs_hba *hba; unsigned long flags; int tag; int err = 0; hba = shost_priv(host); tag = cmd->request->tag; if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) { err = SCSI_MLQUEUE_HOST_BUSY; goto out; } lrbp = &hba->lrb[tag]; lrbp->cmd = cmd; lrbp->sense_bufflen = SCSI_SENSE_BUFFERSIZE; lrbp->sense_buffer = cmd->sense_buffer; lrbp->task_tag = tag; lrbp->lun = cmd->device->lun; if (ufshcd_is_query_req(lrbp)) lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE; else lrbp->command_type = UTP_CMD_TYPE_SCSI; /* form UPIU before issuing the command */ ufshcd_compose_upiu(hba, lrbp); err = ufshcd_map_sg(lrbp); if (err) goto out; /* issue command to the controller */ spin_lock_irqsave(hba->host->host_lock, flags); ufshcd_send_command(hba, tag); spin_unlock_irqrestore(hba->host->host_lock, flags); out: return err; } /** * ufshcd_query_request() - Entry point for issuing query request to a * ufs device. * @hba: ufs driver context * @query: params for query request * @descriptor: buffer for sending/receiving descriptor * @response: pointer to a buffer that will contain the response code and * response upiu * @timeout: time limit for the command in seconds * @retries: number of times to try executing the command * * The query request is submitted to the same request queue as the rest of * the scsi commands passed to the UFS controller. In order to use this * queue, we need to receive a tag, same as all other commands. The tags * are issued from the block layer. To simulate a request from the block * layer, we use the same interface as the SCSI layer does when it issues * commands not generated by users. To distinguish a query request from * the SCSI commands, we use a vendor specific unused SCSI command * op-code. This op-code is not part of the SCSI command subset used in * UFS. In such way it is easy to check the command in the driver and * handle it appropriately. * * All necessary fields for issuing a query and receiving its response are * stored in the UFS hba struct. We can use this method since we know * there is only one active query request at all times. * * The request that will pass to the device is stored in "query" argument * passed to this function, while the "response" argument (which is output * field) will hold the query response from the device along with the * response code. */ int ufshcd_query_request(struct ufs_hba *hba, struct ufs_query_req *query, u8 *descriptor, struct ufs_query_res *response, int timeout, int retries) { struct scsi_device *sdev; u8 cmd[UFS_QUERY_CMD_SIZE] = {0}; int result; bool sdev_lookup = true; if (!hba || !query || !response) { pr_err("%s: NULL pointer hba = %p, query = %p response = %p\n", __func__, hba, query, response); return -EINVAL; } /* * A SCSI command structure is composed from opcode at the * begining and 0 at the end. */ cmd[0] = UFS_QUERY_RESERVED_SCSI_CMD; /* extracting the SCSI Device */ sdev = scsi_device_lookup(hba->host, 0, 0, 0); if (!sdev) { /** * There are some Query Requests that are sent during device * initialization, this happens before the scsi device was * initialized. If there is no scsi device, we generate a * temporary device to allow the Query Request flow. */ sdev_lookup = false; sdev = scsi_get_host_dev(hba->host); } if (!sdev) { dev_err(hba->dev, "%s: Could not fetch scsi device\n", __func__); return -ENODEV; } mutex_lock(&hba->query.lock_ufs_query); hba->query.request = query; hba->query.descriptor = descriptor; hba->query.response = response; /* wait until request is completed */ result = scsi_execute(sdev, cmd, DMA_NONE, NULL, 0, NULL, timeout, retries, 0, NULL); if (result) { dev_err(hba->dev, "%s: Query with opcode 0x%x, failed with result %d\n", __func__, query->upiu_req.opcode, result); result = -EIO; } hba->query.request = NULL; hba->query.descriptor = NULL; hba->query.response = NULL; mutex_unlock(&hba->query.lock_ufs_query); /* Releasing scsi device resource */ if (sdev_lookup) scsi_device_put(sdev); else scsi_free_host_dev(sdev); return result; } /** * ufshcd_memory_alloc - allocate memory for host memory space data structures * @hba: per adapter instance * * 1. Allocate DMA memory for Command Descriptor array * Each command descriptor consist of Command UPIU, Response UPIU and PRDT * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL). * 3. Allocate DMA memory for UTP Task Management Request Descriptor List * (UTMRDL) * 4. Allocate memory for local reference block(lrb). * * Returns 0 for success, non-zero in case of failure */ static int ufshcd_memory_alloc(struct ufs_hba *hba) { size_t utmrdl_size, utrdl_size, ucdl_size; /* Allocate memory for UTP command descriptors */ ucdl_size = (sizeof(struct utp_transfer_cmd_desc) * hba->nutrs); hba->ucdl_base_addr = dma_alloc_coherent(hba->dev, ucdl_size, &hba->ucdl_dma_addr, GFP_KERNEL); /* * UFSHCI requires UTP command descriptor to be 128 byte aligned. * make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE * if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will * be aligned to 128 bytes as well */ if (!hba->ucdl_base_addr || WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) { dev_err(hba->dev, "Command Descriptor Memory allocation failed\n"); goto out; } /* * Allocate memory for UTP Transfer descriptors * UFSHCI requires 1024 byte alignment of UTRD */ utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs); hba->utrdl_base_addr = dma_alloc_coherent(hba->dev, utrdl_size, &hba->utrdl_dma_addr, GFP_KERNEL); if (!hba->utrdl_base_addr || WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) { dev_err(hba->dev, "Transfer Descriptor Memory allocation failed\n"); goto out; } /* * Allocate memory for UTP Task Management descriptors * UFSHCI requires 1024 byte alignment of UTMRD */ utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs; hba->utmrdl_base_addr = dma_alloc_coherent(hba->dev, utmrdl_size, &hba->utmrdl_dma_addr, GFP_KERNEL); if (!hba->utmrdl_base_addr || WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) { dev_err(hba->dev, "Task Management Descriptor Memory allocation failed\n"); goto out; } /* Allocate memory for local reference block */ hba->lrb = kcalloc(hba->nutrs, sizeof(struct ufshcd_lrb), GFP_KERNEL); if (!hba->lrb) { dev_err(hba->dev, "LRB Memory allocation failed\n"); goto out; } return 0; out: ufshcd_free_hba_memory(hba); return -ENOMEM; } /** * ufshcd_host_memory_configure - configure local reference block with * memory offsets * @hba: per adapter instance * * Configure Host memory space * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA * address. * 2. Update each UTRD with Response UPIU offset, Response UPIU length * and PRDT offset. * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT * into local reference block. */ static void ufshcd_host_memory_configure(struct ufs_hba *hba) { struct utp_transfer_cmd_desc *cmd_descp; struct utp_transfer_req_desc *utrdlp; dma_addr_t cmd_desc_dma_addr; dma_addr_t cmd_desc_element_addr; u16 response_offset; u16 prdt_offset; int cmd_desc_size; int i; utrdlp = hba->utrdl_base_addr; cmd_descp = hba->ucdl_base_addr; response_offset = offsetof(struct utp_transfer_cmd_desc, response_upiu); prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table); cmd_desc_size = sizeof(struct utp_transfer_cmd_desc); cmd_desc_dma_addr = hba->ucdl_dma_addr; for (i = 0; i < hba->nutrs; i++) { /* Configure UTRD with command descriptor base address */ cmd_desc_element_addr = (cmd_desc_dma_addr + (cmd_desc_size * i)); utrdlp[i].command_desc_base_addr_lo = cpu_to_le32(lower_32_bits(cmd_desc_element_addr)); utrdlp[i].command_desc_base_addr_hi = cpu_to_le32(upper_32_bits(cmd_desc_element_addr)); /* Response upiu and prdt offset should be in double words */ utrdlp[i].response_upiu_offset = cpu_to_le16((response_offset >> 2)); utrdlp[i].prd_table_offset = cpu_to_le16((prdt_offset >> 2)); utrdlp[i].response_upiu_length = cpu_to_le16(ALIGNED_UPIU_SIZE); hba->lrb[i].utr_descriptor_ptr = (utrdlp + i); hba->lrb[i].ucd_req_ptr = (struct utp_upiu_req *)(cmd_descp + i); hba->lrb[i].ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp[i].response_upiu; hba->lrb[i].ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp[i].prd_table; } } /** * ufshcd_dme_link_startup - Notify Unipro to perform link startup * @hba: per adapter instance * * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer, * in order to initialize the Unipro link startup procedure. * Once the Unipro links are up, the device connected to the controller * is detected. * * Returns 0 on success, non-zero value on failure */ static int ufshcd_dme_link_startup(struct ufs_hba *hba) { struct uic_command *uic_cmd; unsigned long flags; /* check if controller is ready to accept UIC commands */ if (((readl(hba->mmio_base + REG_CONTROLLER_STATUS)) & UIC_COMMAND_READY) == 0x0) { dev_err(hba->dev, "Controller not ready" " to accept UIC commands\n"); return -EIO; } spin_lock_irqsave(hba->host->host_lock, flags); /* form UIC command */ uic_cmd = &hba->active_uic_cmd; uic_cmd->command = UIC_CMD_DME_LINK_STARTUP; uic_cmd->argument1 = 0; uic_cmd->argument2 = 0; uic_cmd->argument3 = 0; /* enable UIC related interrupts */ hba->int_enable_mask |= UIC_COMMAND_COMPL; ufshcd_int_config(hba, UFSHCD_INT_ENABLE); /* sending UIC commands to controller */ ufshcd_send_uic_command(hba, uic_cmd); spin_unlock_irqrestore(hba->host->host_lock, flags); return 0; } /** * ufshcd_make_hba_operational - Make UFS controller operational * @hba: per adapter instance * * To bring UFS host controller to operational state, * 1. Check if device is present * 2. Configure run-stop-registers * 3. Enable required interrupts * 4. Configure interrupt aggregation * * Returns 0 on success, non-zero value on failure */ static int ufshcd_make_hba_operational(struct ufs_hba *hba) { int err = 0; u32 reg; /* check if device present */ reg = readl((hba->mmio_base + REG_CONTROLLER_STATUS)); if (!ufshcd_is_device_present(reg)) { dev_err(hba->dev, "cc: Device not present\n"); err = -ENXIO; goto out; } /* * UCRDY, UTMRLDY and UTRLRDY bits must be 1 * DEI, HEI bits must be 0 */ if (!(ufshcd_get_lists_status(reg))) { ufshcd_enable_run_stop_reg(hba); } else { dev_err(hba->dev, "Host controller not ready to process requests"); err = -EIO; goto out; } /* Enable required interrupts */ hba->int_enable_mask |= (UTP_TRANSFER_REQ_COMPL | UIC_ERROR | UTP_TASK_REQ_COMPL | DEVICE_FATAL_ERROR | CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR); ufshcd_int_config(hba, UFSHCD_INT_ENABLE); /* Configure interrupt aggregation */ ufshcd_config_int_aggr(hba, INT_AGGR_CONFIG); if (hba->ufshcd_state == UFSHCD_STATE_RESET) scsi_unblock_requests(hba->host); hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; scsi_scan_host(hba->host); out: return err; } /** * ufshcd_hba_enable - initialize the controller * @hba: per adapter instance * * The controller resets itself and controller firmware initialization * sequence kicks off. When controller is ready it will set * the Host Controller Enable bit to 1. * * Returns 0 on success, non-zero value on failure */ static int ufshcd_hba_enable(struct ufs_hba *hba) { int retry; /* * msleep of 1 and 5 used in this function might result in msleep(20), * but it was necessary to send the UFS FPGA to reset mode during * development and testing of this driver. msleep can be changed to * mdelay and retry count can be reduced based on the controller. */ if (!ufshcd_is_hba_active(hba)) { /* change controller state to "reset state" */ ufshcd_hba_stop(hba); /* * This delay is based on the testing done with UFS host * controller FPGA. The delay can be changed based on the * host controller used. */ msleep(5); } /* start controller initialization sequence */ ufshcd_hba_start(hba); /* * To initialize a UFS host controller HCE bit must be set to 1. * During initialization the HCE bit value changes from 1->0->1. * When the host controller completes initialization sequence * it sets the value of HCE bit to 1. The same HCE bit is read back * to check if the controller has completed initialization sequence. * So without this delay the value HCE = 1, set in the previous * instruction might be read back. * This delay can be changed based on the controller. */ msleep(1); /* wait for the host controller to complete initialization */ retry = 10; while (ufshcd_is_hba_active(hba)) { if (retry) { retry--; } else { dev_err(hba->dev, "Controller enable failed\n"); return -EIO; } msleep(5); } return 0; } /** * ufshcd_initialize_hba - start the initialization process * @hba: per adapter instance * * 1. Enable the controller via ufshcd_hba_enable. * 2. Program the Transfer Request List Address with the starting address of * UTRDL. * 3. Program the Task Management Request List Address with starting address * of UTMRDL. * * Returns 0 on success, non-zero value on failure. */ static int ufshcd_initialize_hba(struct ufs_hba *hba) { if (ufshcd_hba_enable(hba)) return -EIO; /* Configure UTRL and UTMRL base address registers */ writel(lower_32_bits(hba->utrdl_dma_addr), (hba->mmio_base + REG_UTP_TRANSFER_REQ_LIST_BASE_L)); writel(upper_32_bits(hba->utrdl_dma_addr), (hba->mmio_base + REG_UTP_TRANSFER_REQ_LIST_BASE_H)); writel(lower_32_bits(hba->utmrdl_dma_addr), (hba->mmio_base + REG_UTP_TASK_REQ_LIST_BASE_L)); writel(upper_32_bits(hba->utmrdl_dma_addr), (hba->mmio_base + REG_UTP_TASK_REQ_LIST_BASE_H)); /* Initialize unipro link startup procedure */ return ufshcd_dme_link_startup(hba); } /** * ufshcd_do_reset - reset the host controller * @hba: per adapter instance * * Returns SUCCESS/FAILED */ static int ufshcd_do_reset(struct ufs_hba *hba) { struct ufshcd_lrb *lrbp; unsigned long flags; int tag; /* block commands from midlayer */ scsi_block_requests(hba->host); spin_lock_irqsave(hba->host->host_lock, flags); hba->ufshcd_state = UFSHCD_STATE_RESET; /* send controller to reset state */ ufshcd_hba_stop(hba); spin_unlock_irqrestore(hba->host->host_lock, flags); /* abort outstanding commands */ for (tag = 0; tag < hba->nutrs; tag++) { if (test_bit(tag, &hba->outstanding_reqs)) { lrbp = &hba->lrb[tag]; scsi_dma_unmap(lrbp->cmd); lrbp->cmd->result = DID_RESET << 16; lrbp->cmd->scsi_done(lrbp->cmd); lrbp->cmd = NULL; } } /* clear outstanding request/task bit maps */ hba->outstanding_reqs = 0; hba->outstanding_tasks = 0; /* start the initialization process */ if (ufshcd_initialize_hba(hba)) { dev_err(hba->dev, "Reset: Controller initialization failed\n"); return FAILED; } return SUCCESS; } /** * ufshcd_slave_alloc - handle initial SCSI device configurations * @sdev: pointer to SCSI device * * Returns success */ static int ufshcd_slave_alloc(struct scsi_device *sdev) { struct ufs_hba *hba; hba = shost_priv(sdev->host); sdev->tagged_supported = 1; /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */ sdev->use_10_for_ms = 1; scsi_set_tag_type(sdev, MSG_SIMPLE_TAG); /* * Inform SCSI Midlayer that the LUN queue depth is same as the * controller queue depth. If a LUN queue depth is less than the * controller queue depth and if the LUN reports * SAM_STAT_TASK_SET_FULL, the LUN queue depth will be adjusted * with scsi_adjust_queue_depth. */ scsi_activate_tcq(sdev, hba->nutrs); return 0; } /** * ufshcd_slave_destroy - remove SCSI device configurations * @sdev: pointer to SCSI device */ static void ufshcd_slave_destroy(struct scsi_device *sdev) { struct ufs_hba *hba; hba = shost_priv(sdev->host); scsi_deactivate_tcq(sdev, hba->nutrs); } /** * ufshcd_task_req_compl - handle task management request completion * @hba: per adapter instance * @index: index of the completed request * * Returns SUCCESS/FAILED */ static int ufshcd_task_req_compl(struct ufs_hba *hba, u32 index) { struct utp_task_req_desc *task_req_descp; struct utp_upiu_task_rsp *task_rsp_upiup; unsigned long flags; int ocs_value; int task_result; spin_lock_irqsave(hba->host->host_lock, flags); /* Clear completed tasks from outstanding_tasks */ __clear_bit(index, &hba->outstanding_tasks); task_req_descp = hba->utmrdl_base_addr; ocs_value = ufshcd_get_tmr_ocs(&task_req_descp[index]); if (ocs_value == OCS_SUCCESS) { task_rsp_upiup = (struct utp_upiu_task_rsp *) task_req_descp[index].task_rsp_upiu; task_result = be32_to_cpu(task_rsp_upiup->header.dword_1); task_result = ((task_result & MASK_TASK_RESPONSE) >> 8); if (task_result != UPIU_TASK_MANAGEMENT_FUNC_COMPL && task_result != UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) task_result = FAILED; else task_result = SUCCESS; } else { task_result = FAILED; dev_err(hba->dev, "trc: Invalid ocs = %x\n", ocs_value); } spin_unlock_irqrestore(hba->host->host_lock, flags); return task_result; } /** * ufshcd_adjust_lun_qdepth - Update LUN queue depth if device responds with * SAM_STAT_TASK_SET_FULL SCSI command status. * @cmd: pointer to SCSI command */ static void ufshcd_adjust_lun_qdepth(struct scsi_cmnd *cmd) { struct ufs_hba *hba; int i; int lun_qdepth = 0; hba = shost_priv(cmd->device->host); /* * LUN queue depth can be obtained by counting outstanding commands * on the LUN. */ for (i = 0; i < hba->nutrs; i++) { if (test_bit(i, &hba->outstanding_reqs)) { /* * Check if the outstanding command belongs * to the LUN which reported SAM_STAT_TASK_SET_FULL. */ if (cmd->device->lun == hba->lrb[i].lun) lun_qdepth++; } } /* * LUN queue depth will be total outstanding commands, except the * command for which the LUN reported SAM_STAT_TASK_SET_FULL. */ scsi_adjust_queue_depth(cmd->device, MSG_SIMPLE_TAG, lun_qdepth - 1); } /** * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status * @lrb: pointer to local reference block of completed command * @scsi_status: SCSI command status * * Returns value base on SCSI command status */ static inline int ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status) { int result = 0; switch (scsi_status) { case SAM_STAT_GOOD: result |= DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; break; case SAM_STAT_CHECK_CONDITION: result |= DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; ufshcd_copy_sense_data(lrbp); break; case SAM_STAT_BUSY: result |= SAM_STAT_BUSY; break; case SAM_STAT_TASK_SET_FULL: /* * If a LUN reports SAM_STAT_TASK_SET_FULL, then the LUN queue * depth needs to be adjusted to the exact number of * outstanding commands the LUN can handle at any given time. */ ufshcd_adjust_lun_qdepth(lrbp->cmd); result |= SAM_STAT_TASK_SET_FULL; break; case SAM_STAT_TASK_ABORTED: result |= SAM_STAT_TASK_ABORTED; break; default: result |= DID_ERROR << 16; break; } /* end of switch */ return result; } /** * ufshcd_transfer_rsp_status - Get overall status of the response * @hba: per adapter instance * @lrb: pointer to local reference block of completed command * * Returns result of the command to notify SCSI midlayer. In * case of query request specific result, returns DID_OK, and * the error will be handled by the dispatcher. */ static inline int ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) { int result = 0; int scsi_status; int ocs; /* overall command status of utrd */ ocs = ufshcd_get_tr_ocs(lrbp); switch (ocs) { case OCS_SUCCESS: /* check if the returned transfer response is valid */ result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr); switch (result) { case UPIU_TRANSACTION_RESPONSE: /* * get the response UPIU result to extract * the SCSI command status */ result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr); /* * get the result based on SCSI status response * to notify the SCSI midlayer of the command status */ scsi_status = result & MASK_SCSI_STATUS; result = ufshcd_scsi_cmd_status(lrbp, scsi_status); break; case UPIU_TRANSACTION_QUERY_RSP: /* * Return result = ok, since SCSI layer wouldn't * know how to handle errors from query requests. * The result is saved with the response so that * the ufs_core layer will handle it. */ result = DID_OK << 16; ufshcd_copy_query_response(hba, lrbp); break; case UPIU_TRANSACTION_REJECT_UPIU: /* TODO: handle Reject UPIU Response */ result = DID_ERROR << 16; dev_err(hba->dev, "Reject UPIU not fully implemented\n"); break; default: result = DID_ERROR << 16; dev_err(hba->dev, "Unexpected request response code = %x\n", result); } break; case OCS_ABORTED: result |= DID_ABORT << 16; break; case OCS_INVALID_CMD_TABLE_ATTR: case OCS_INVALID_PRDT_ATTR: case OCS_MISMATCH_DATA_BUF_SIZE: case OCS_MISMATCH_RESP_UPIU_SIZE: case OCS_PEER_COMM_FAILURE: case OCS_FATAL_ERROR: default: result |= DID_ERROR << 16; dev_err(hba->dev, "OCS error from controller = %x\n", ocs); break; } /* end of switch */ return result; } /** * ufshcd_transfer_req_compl - handle SCSI and query command completion * @hba: per adapter instance */ static void ufshcd_transfer_req_compl(struct ufs_hba *hba) { struct ufshcd_lrb *lrb; unsigned long completed_reqs; u32 tr_doorbell; int result; int index; lrb = hba->lrb; tr_doorbell = readl(hba->mmio_base + REG_UTP_TRANSFER_REQ_DOOR_BELL); completed_reqs = tr_doorbell ^ hba->outstanding_reqs; for (index = 0; index < hba->nutrs; index++) { if (test_bit(index, &completed_reqs)) { result = ufshcd_transfer_rsp_status(hba, &lrb[index]); if (lrb[index].cmd) { scsi_dma_unmap(lrb[index].cmd); lrb[index].cmd->result = result; lrb[index].cmd->scsi_done(lrb[index].cmd); /* Mark completed command as NULL in LRB */ lrb[index].cmd = NULL; } } /* end of if */ } /* end of for */ /* clear corresponding bits of completed commands */ hba->outstanding_reqs ^= completed_reqs; /* Reset interrupt aggregation counters */ ufshcd_config_int_aggr(hba, INT_AGGR_RESET); } /** * ufshcd_uic_cc_handler - handle UIC command completion * @work: pointer to a work queue structure * * Returns 0 on success, non-zero value on failure */ static void ufshcd_uic_cc_handler (struct work_struct *work) { struct ufs_hba *hba; hba = container_of(work, struct ufs_hba, uic_workq); if ((hba->active_uic_cmd.command == UIC_CMD_DME_LINK_STARTUP) && !(ufshcd_get_uic_cmd_result(hba))) { if (ufshcd_make_hba_operational(hba)) dev_err(hba->dev, "cc: hba not operational state\n"); return; } } /** * ufshcd_fatal_err_handler - handle fatal errors * @hba: per adapter instance */ static void ufshcd_fatal_err_handler(struct work_struct *work) { struct ufs_hba *hba; hba = container_of(work, struct ufs_hba, feh_workq); /* check if reset is already in progress */ if (hba->ufshcd_state != UFSHCD_STATE_RESET) ufshcd_do_reset(hba); } /** * ufshcd_err_handler - Check for fatal errors * @work: pointer to a work queue structure */ static void ufshcd_err_handler(struct ufs_hba *hba) { u32 reg; if (hba->errors & INT_FATAL_ERRORS) goto fatal_eh; if (hba->errors & UIC_ERROR) { reg = readl(hba->mmio_base + REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT) goto fatal_eh; } return; fatal_eh: hba->ufshcd_state = UFSHCD_STATE_ERROR; schedule_work(&hba->feh_workq); } /** * ufshcd_tmc_handler - handle task management function completion * @hba: per adapter instance */ static void ufshcd_tmc_handler(struct ufs_hba *hba) { u32 tm_doorbell; tm_doorbell = readl(hba->mmio_base + REG_UTP_TASK_REQ_DOOR_BELL); hba->tm_condition = tm_doorbell ^ hba->outstanding_tasks; wake_up_interruptible(&hba->ufshcd_tm_wait_queue); } /** * ufshcd_sl_intr - Interrupt service routine * @hba: per adapter instance * @intr_status: contains interrupts generated by the controller */ static void ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status) { hba->errors = UFSHCD_ERROR_MASK & intr_status; if (hba->errors) ufshcd_err_handler(hba); if (intr_status & UIC_COMMAND_COMPL) schedule_work(&hba->uic_workq); if (intr_status & UTP_TASK_REQ_COMPL) ufshcd_tmc_handler(hba); if (intr_status & UTP_TRANSFER_REQ_COMPL) ufshcd_transfer_req_compl(hba); } /** * ufshcd_intr - Main interrupt service routine * @irq: irq number * @__hba: pointer to adapter instance * * Returns IRQ_HANDLED - If interrupt is valid * IRQ_NONE - If invalid interrupt */ static irqreturn_t ufshcd_intr(int irq, void *__hba) { u32 intr_status; irqreturn_t retval = IRQ_NONE; struct ufs_hba *hba = __hba; spin_lock(hba->host->host_lock); intr_status = readl(hba->mmio_base + REG_INTERRUPT_STATUS); if (intr_status) { ufshcd_sl_intr(hba, intr_status); /* If UFSHCI 1.0 then clear interrupt status register */ if (hba->ufs_version == UFSHCI_VERSION_10) writel(intr_status, (hba->mmio_base + REG_INTERRUPT_STATUS)); retval = IRQ_HANDLED; } spin_unlock(hba->host->host_lock); return retval; } /** * ufshcd_issue_tm_cmd - issues task management commands to controller * @hba: per adapter instance * @lrbp: pointer to local reference block * * Returns SUCCESS/FAILED */ static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, u8 tm_function) { struct utp_task_req_desc *task_req_descp; struct utp_upiu_task_req *task_req_upiup; struct Scsi_Host *host; unsigned long flags; int free_slot = 0; int err; host = hba->host; spin_lock_irqsave(host->host_lock, flags); /* If task management queue is full */ free_slot = ufshcd_get_tm_free_slot(hba); if (free_slot >= hba->nutmrs) { spin_unlock_irqrestore(host->host_lock, flags); dev_err(hba->dev, "Task management queue full\n"); err = FAILED; goto out; } task_req_descp = hba->utmrdl_base_addr; task_req_descp += free_slot; /* Configure task request descriptor */ task_req_descp->header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD); task_req_descp->header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS); /* Configure task request UPIU */ task_req_upiup = (struct utp_upiu_task_req *) task_req_descp->task_req_upiu; task_req_upiup->header.dword_0 = UPIU_HEADER_DWORD(UPIU_TRANSACTION_TASK_REQ, 0, lrbp->lun, lrbp->task_tag); task_req_upiup->header.dword_1 = UPIU_HEADER_DWORD(0, tm_function, 0, 0); task_req_upiup->input_param1 = lrbp->lun; task_req_upiup->input_param1 = cpu_to_be32(task_req_upiup->input_param1); task_req_upiup->input_param2 = lrbp->task_tag; task_req_upiup->input_param2 = cpu_to_be32(task_req_upiup->input_param2); /* send command to the controller */ __set_bit(free_slot, &hba->outstanding_tasks); writel((1 << free_slot), (hba->mmio_base + REG_UTP_TASK_REQ_DOOR_BELL)); spin_unlock_irqrestore(host->host_lock, flags); /* wait until the task management command is completed */ err = wait_event_interruptible_timeout(hba->ufshcd_tm_wait_queue, (test_bit(free_slot, &hba->tm_condition) != 0), 60 * HZ); if (!err) { dev_err(hba->dev, "Task management command timed-out\n"); err = FAILED; goto out; } clear_bit(free_slot, &hba->tm_condition); err = ufshcd_task_req_compl(hba, free_slot); out: return err; } /** * ufshcd_device_reset - reset device and abort all the pending commands * @cmd: SCSI command pointer * * Returns SUCCESS/FAILED */ static int ufshcd_device_reset(struct scsi_cmnd *cmd) { struct Scsi_Host *host; struct ufs_hba *hba; unsigned int tag; u32 pos; int err; host = cmd->device->host; hba = shost_priv(host); tag = cmd->request->tag; err = ufshcd_issue_tm_cmd(hba, &hba->lrb[tag], UFS_LOGICAL_RESET); if (err == FAILED) goto out; for (pos = 0; pos < hba->nutrs; pos++) { if (test_bit(pos, &hba->outstanding_reqs) && (hba->lrb[tag].lun == hba->lrb[pos].lun)) { /* clear the respective UTRLCLR register bit */ ufshcd_utrl_clear(hba, pos); clear_bit(pos, &hba->outstanding_reqs); if (hba->lrb[pos].cmd) { scsi_dma_unmap(hba->lrb[pos].cmd); hba->lrb[pos].cmd->result = DID_ABORT << 16; hba->lrb[pos].cmd->scsi_done(cmd); hba->lrb[pos].cmd = NULL; } } } /* end of for */ out: return err; } /** * ufshcd_host_reset - Main reset function registered with scsi layer * @cmd: SCSI command pointer * * Returns SUCCESS/FAILED */ static int ufshcd_host_reset(struct scsi_cmnd *cmd) { struct ufs_hba *hba; hba = shost_priv(cmd->device->host); if (hba->ufshcd_state == UFSHCD_STATE_RESET) return SUCCESS; return ufshcd_do_reset(hba); } /** * ufshcd_abort - abort a specific command * @cmd: SCSI command pointer * * Returns SUCCESS/FAILED */ static int ufshcd_abort(struct scsi_cmnd *cmd) { struct Scsi_Host *host; struct ufs_hba *hba; unsigned long flags; unsigned int tag; int err; host = cmd->device->host; hba = shost_priv(host); tag = cmd->request->tag; spin_lock_irqsave(host->host_lock, flags); /* check if command is still pending */ if (!(test_bit(tag, &hba->outstanding_reqs))) { err = FAILED; spin_unlock_irqrestore(host->host_lock, flags); goto out; } spin_unlock_irqrestore(host->host_lock, flags); err = ufshcd_issue_tm_cmd(hba, &hba->lrb[tag], UFS_ABORT_TASK); if (err == FAILED) goto out; scsi_dma_unmap(cmd); spin_lock_irqsave(host->host_lock, flags); /* clear the respective UTRLCLR register bit */ ufshcd_utrl_clear(hba, tag); __clear_bit(tag, &hba->outstanding_reqs); hba->lrb[tag].cmd = NULL; spin_unlock_irqrestore(host->host_lock, flags); out: return err; } static struct scsi_host_template ufshcd_driver_template = { .module = THIS_MODULE, .name = UFSHCD, .proc_name = UFSHCD, .queuecommand = ufshcd_queuecommand, .slave_alloc = ufshcd_slave_alloc, .slave_destroy = ufshcd_slave_destroy, .eh_abort_handler = ufshcd_abort, .eh_device_reset_handler = ufshcd_device_reset, .eh_host_reset_handler = ufshcd_host_reset, .this_id = -1, .sg_tablesize = SG_ALL, .cmd_per_lun = UFSHCD_CMD_PER_LUN, .can_queue = UFSHCD_CAN_QUEUE, }; /** * ufshcd_suspend - suspend power management function * @hba: per adapter instance * @state: power state * * Returns -ENOSYS */ int ufshcd_suspend(struct ufs_hba *hba, pm_message_t state) { /* * TODO: * 1. Block SCSI requests from SCSI midlayer * 2. Change the internal driver state to non operational * 3. Set UTRLRSR and UTMRLRSR bits to zero * 4. Wait until outstanding commands are completed * 5. Set HCE to zero to send the UFS host controller to reset state */ return -ENOSYS; } EXPORT_SYMBOL_GPL(ufshcd_suspend); /** * ufshcd_resume - resume power management function * @hba: per adapter instance * * Returns -ENOSYS */ int ufshcd_resume(struct ufs_hba *hba) { /* * TODO: * 1. Set HCE to 1, to start the UFS host controller * initialization process * 2. Set UTRLRSR and UTMRLRSR bits to 1 * 3. Change the internal driver state to operational * 4. Unblock SCSI requests from SCSI midlayer */ return -ENOSYS; } EXPORT_SYMBOL_GPL(ufshcd_resume); /** * ufshcd_hba_free - free allocated memory for * host memory space data structures * @hba: per adapter instance */ static void ufshcd_hba_free(struct ufs_hba *hba) { iounmap(hba->mmio_base); ufshcd_free_hba_memory(hba); } /** * ufshcd_remove - de-allocate SCSI host and host memory space * data structure memory * @hba - per adapter instance */ void ufshcd_remove(struct ufs_hba *hba) { /* disable interrupts */ ufshcd_int_config(hba, UFSHCD_INT_DISABLE); ufshcd_hba_stop(hba); ufshcd_hba_free(hba); scsi_remove_host(hba->host); scsi_host_put(hba->host); } EXPORT_SYMBOL_GPL(ufshcd_remove); /** * ufshcd_init - Driver initialization routine * @dev: pointer to device handle * @hba_handle: driver private handle * @mmio_base: base register address * @irq: Interrupt line of device * Returns 0 on success, non-zero value on failure */ int ufshcd_init(struct device *dev, struct ufs_hba **hba_handle, void __iomem *mmio_base, unsigned int irq) { struct Scsi_Host *host; struct ufs_hba *hba; int err; if (!dev) { dev_err(dev, "Invalid memory reference for dev is NULL\n"); err = -ENODEV; goto out_error; } if (!mmio_base) { dev_err(dev, "Invalid memory reference for mmio_base is NULL\n"); err = -ENODEV; goto out_error; } host = scsi_host_alloc(&ufshcd_driver_template, sizeof(struct ufs_hba)); if (!host) { dev_err(dev, "scsi_host_alloc failed\n"); err = -ENOMEM; goto out_error; } hba = shost_priv(host); hba->host = host; hba->dev = dev; hba->mmio_base = mmio_base; hba->irq = irq; /* Read capabilities registers */ ufshcd_hba_capabilities(hba); /* Get UFS version supported by the controller */ hba->ufs_version = ufshcd_get_ufs_version(hba); /* Allocate memory for host memory space */ err = ufshcd_memory_alloc(hba); if (err) { dev_err(hba->dev, "Memory allocation failed\n"); goto out_disable; } /* Configure LRB */ ufshcd_host_memory_configure(hba); host->can_queue = hba->nutrs; host->cmd_per_lun = hba->nutrs; host->max_id = UFSHCD_MAX_ID; host->max_lun = UFSHCD_MAX_LUNS; host->max_channel = UFSHCD_MAX_CHANNEL; host->unique_id = host->host_no; host->max_cmd_len = MAX_CDB_SIZE; /* Initailize wait queue for task management */ init_waitqueue_head(&hba->ufshcd_tm_wait_queue); /* Initialize work queues */ INIT_WORK(&hba->uic_workq, ufshcd_uic_cc_handler); INIT_WORK(&hba->feh_workq, ufshcd_fatal_err_handler); /* Initialize mutex for query requests */ mutex_init(&hba->query.lock_ufs_query); /* IRQ registration */ err = request_irq(irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba); if (err) { dev_err(hba->dev, "request irq failed\n"); goto out_lrb_free; } /* Enable SCSI tag mapping */ err = scsi_init_shared_tag_map(host, host->can_queue); if (err) { dev_err(hba->dev, "init shared queue failed\n"); goto out_free_irq; } err = scsi_add_host(host, hba->dev); if (err) { dev_err(hba->dev, "scsi_add_host failed\n"); goto out_free_irq; } /* Initialization routine */ err = ufshcd_initialize_hba(hba); if (err) { dev_err(hba->dev, "Initialization failed\n"); goto out_remove_scsi_host; } *hba_handle = hba; return 0; out_remove_scsi_host: scsi_remove_host(hba->host); out_free_irq: free_irq(irq, hba); out_lrb_free: ufshcd_free_hba_memory(hba); out_disable: scsi_host_put(host); out_error: return err; } EXPORT_SYMBOL_GPL(ufshcd_init); MODULE_AUTHOR("Santosh Yaragnavi "); MODULE_AUTHOR("Vinayak Holikatti "); MODULE_DESCRIPTION("Generic UFS host controller driver Core"); MODULE_LICENSE("GPL"); MODULE_VERSION(UFSHCD_DRIVER_VERSION);