M7350/kernel/drivers/clk/msm/clock-cpu-8939.c
2024-09-09 08:57:42 +00:00

891 lines
22 KiB
C

/*
* Copyright (c) 2014-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/pm_qos.h>
#include <linux/regulator/consumer.h>
#include <linux/of.h>
#include <linux/clk/msm-clock-generic.h>
#include <linux/suspend.h>
#include <linux/of_platform.h>
#include <linux/pm_opp.h>
#include <soc/qcom/clock-local2.h>
#include "clock.h"
#include <dt-bindings/clock/msm-cpu-clocks-8939.h>
DEFINE_VDD_REGS_INIT(vdd_cpu_bc, 1);
DEFINE_VDD_REGS_INIT(vdd_cpu_lc, 1);
DEFINE_VDD_REGS_INIT(vdd_cpu_cci, 1);
enum {
A53SS_MUX_BC,
A53SS_MUX_LC,
A53SS_MUX_CCI,
A53SS_MUX_NUM,
};
const char *mux_names[] = { "c1", "c0", "cci"};
struct cpu_clk_8939 {
u32 cpu_reg_mask;
cpumask_t cpumask;
bool hw_low_power_ctrl;
struct pm_qos_request req;
struct clk c;
};
static struct mux_div_clk a53ssmux_bc = {
.ops = &rcg_mux_div_ops,
.safe_freq = 400000000,
.data = {
.max_div = 32,
.min_div = 2,
.is_half_divider = true,
},
.c = {
.dbg_name = "a53ssmux_bc",
.ops = &clk_ops_mux_div_clk,
CLK_INIT(a53ssmux_bc.c),
},
.parents = (struct clk_src[8]) {},
.div_mask = BM(4, 0),
.src_mask = BM(10, 8) >> 8,
.src_shift = 8,
};
static struct mux_div_clk a53ssmux_lc = {
.ops = &rcg_mux_div_ops,
.safe_freq = 200000000,
.data = {
.max_div = 32,
.min_div = 2,
.is_half_divider = true,
},
.c = {
.dbg_name = "a53ssmux_lc",
.ops = &clk_ops_mux_div_clk,
CLK_INIT(a53ssmux_lc.c),
},
.parents = (struct clk_src[8]) {},
.div_mask = BM(4, 0),
.src_mask = BM(10, 8) >> 8,
.src_shift = 8,
};
static struct mux_div_clk a53ssmux_cci = {
.ops = &rcg_mux_div_ops,
.safe_freq = 200000000,
.data = {
.max_div = 32,
.min_div = 2,
.is_half_divider = true,
},
.c = {
.dbg_name = "a53ssmux_cci",
.ops = &clk_ops_mux_div_clk,
CLK_INIT(a53ssmux_cci.c),
},
.parents = (struct clk_src[8]) {},
.div_mask = BM(4, 0),
.src_mask = BM(10, 8) >> 8,
.src_shift = 8,
};
static void do_nothing(void *unused) { }
#define CPU_LATENCY_NO_L2_PC_US (300)
static inline struct cpu_clk_8939 *to_cpu_clk_8939(struct clk *c)
{
return container_of(c, struct cpu_clk_8939, c);
}
static enum handoff cpu_clk_8939_handoff(struct clk *c)
{
c->rate = clk_get_rate(c->parent);
return HANDOFF_DISABLED_CLK;
}
static long cpu_clk_8939_round_rate(struct clk *c, unsigned long rate)
{
return clk_round_rate(c->parent, rate);
}
static int cpu_clk_8939_set_rate(struct clk *c, unsigned long rate)
{
int ret = 0;
struct cpu_clk_8939 *cpuclk = to_cpu_clk_8939(c);
bool hw_low_power_ctrl = cpuclk->hw_low_power_ctrl;
if (hw_low_power_ctrl) {
memset(&cpuclk->req, 0, sizeof(cpuclk->req));
cpumask_copy(&cpuclk->req.cpus_affine,
(const struct cpumask *)&cpuclk->cpumask);
cpuclk->req.type = PM_QOS_REQ_AFFINE_CORES;
pm_qos_add_request(&cpuclk->req, PM_QOS_CPU_DMA_LATENCY,
CPU_LATENCY_NO_L2_PC_US);
smp_call_function_any(&cpuclk->cpumask, do_nothing,
NULL, 1);
}
ret = clk_set_rate(c->parent, rate);
if (hw_low_power_ctrl)
pm_qos_remove_request(&cpuclk->req);
return ret;
}
static struct clk_ops clk_ops_cpu = {
.set_rate = cpu_clk_8939_set_rate,
.round_rate = cpu_clk_8939_round_rate,
.handoff = cpu_clk_8939_handoff,
};
static struct cpu_clk_8939 a53_bc_clk = {
.cpu_reg_mask = 0x3,
.c = {
.parent = &a53ssmux_bc.c,
.ops = &clk_ops_cpu,
.vdd_class = &vdd_cpu_bc,
.dbg_name = "a53_bc_clk",
CLK_INIT(a53_bc_clk.c),
},
};
static struct cpu_clk_8939 a53_lc_clk = {
.cpu_reg_mask = 0x103,
.c = {
.parent = &a53ssmux_lc.c,
.ops = &clk_ops_cpu,
.vdd_class = &vdd_cpu_lc,
.dbg_name = "a53_lc_clk",
CLK_INIT(a53_lc_clk.c),
},
};
static struct cpu_clk_8939 cci_clk = {
.c = {
.parent = &a53ssmux_cci.c,
.ops = &clk_ops_cpu,
.vdd_class = &vdd_cpu_cci,
.dbg_name = "cci_clk",
CLK_INIT(cci_clk.c),
},
};
static struct clk_lookup cpu_clocks_8939[] = {
CLK_LIST(a53ssmux_lc),
CLK_LIST(a53ssmux_bc),
CLK_LIST(a53ssmux_cci),
CLK_LIST(a53_bc_clk),
CLK_LIST(a53_lc_clk),
CLK_LIST(cci_clk),
};
static struct clk_lookup cpu_clocks_8939_single_cluster[] = {
CLK_LIST(a53ssmux_bc),
CLK_LIST(a53_bc_clk),
};
static struct mux_div_clk *a53ssmux[] = {&a53ssmux_bc,
&a53ssmux_lc, &a53ssmux_cci};
static struct cpu_clk_8939 *cpuclk[] = { &a53_bc_clk, &a53_lc_clk, &cci_clk};
static struct clk *logical_cpu_to_clk(int cpu)
{
struct device_node *cpu_node = of_get_cpu_node(cpu, NULL);
u32 reg;
/* CPU 0/1/2/3 --> a53_bc_clk and mask = 0x103
* CPU 4/5/6/7 --> a53_lc_clk and mask = 0x3
*/
if (cpu_node && !of_property_read_u32(cpu_node, "reg", &reg)) {
if ((reg | a53_bc_clk.cpu_reg_mask) == a53_bc_clk.cpu_reg_mask)
return &a53_lc_clk.c;
if ((reg | a53_lc_clk.cpu_reg_mask) == a53_lc_clk.cpu_reg_mask)
return &a53_bc_clk.c;
}
return NULL;
}
static int of_get_fmax_vdd_class(struct platform_device *pdev, struct clk *c,
char *prop_name)
{
struct device_node *of = pdev->dev.of_node;
int prop_len, i;
struct clk_vdd_class *vdd = c->vdd_class;
u32 *array;
if (!of_find_property(of, prop_name, &prop_len)) {
dev_err(&pdev->dev, "missing %s\n", prop_name);
return -EINVAL;
}
prop_len /= sizeof(u32);
if (prop_len % 2) {
dev_err(&pdev->dev, "bad length %d\n", prop_len);
return -EINVAL;
}
prop_len /= 2;
vdd->level_votes = devm_kzalloc(&pdev->dev,
prop_len * sizeof(*vdd->level_votes),
GFP_KERNEL);
if (!vdd->level_votes)
return -ENOMEM;
vdd->vdd_uv = devm_kzalloc(&pdev->dev, prop_len * sizeof(int),
GFP_KERNEL);
if (!vdd->vdd_uv)
return -ENOMEM;
c->fmax = devm_kzalloc(&pdev->dev, prop_len * sizeof(unsigned long),
GFP_KERNEL);
if (!c->fmax)
return -ENOMEM;
array = devm_kzalloc(&pdev->dev,
prop_len * sizeof(u32) * 2, GFP_KERNEL);
if (!array)
return -ENOMEM;
of_property_read_u32_array(of, prop_name, array, prop_len * 2);
for (i = 0; i < prop_len; i++) {
c->fmax[i] = array[2 * i];
vdd->vdd_uv[i] = array[2 * i + 1];
}
devm_kfree(&pdev->dev, array);
vdd->num_levels = prop_len;
vdd->cur_level = prop_len;
vdd->use_max_uV = true;
c->num_fmax = prop_len;
return 0;
}
static void get_speed_bin(struct platform_device *pdev, int *bin,
int *version)
{
struct resource *res;
void __iomem *base, *base1, *base2;
u32 pte_efuse, pte_efuse1, pte_efuse2;
*bin = 0;
*version = 0;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "efuse");
if (!res) {
dev_info(&pdev->dev,
"No speed/PVS binning available. Defaulting to 0!\n");
return;
}
base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
if (!base) {
dev_warn(&pdev->dev,
"Unable to read efuse data. Defaulting to 0!\n");
return;
}
pte_efuse = readl_relaxed(base);
devm_iounmap(&pdev->dev, base);
*bin = (pte_efuse >> 2) & 0x7;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "efuse1");
if (!res) {
dev_info(&pdev->dev,
"No PVS version available. Defaulting to 0!\n");
goto out;
}
base1 = devm_ioremap(&pdev->dev, res->start, resource_size(res));
if (!base1) {
dev_warn(&pdev->dev,
"Unable to read efuse1 data. Defaulting to 0!\n");
goto out;
}
pte_efuse1 = readl_relaxed(base1);
devm_iounmap(&pdev->dev, base1);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "efuse2");
if (!res) {
dev_info(&pdev->dev,
"No PVS version available. Defaulting to 0!\n");
goto out;
}
base2 = devm_ioremap(&pdev->dev, res->start, resource_size(res));
if (!base2) {
dev_warn(&pdev->dev,
"Unable to read efuse2 data. Defaulting to 0!\n");
goto out;
}
pte_efuse2 = readl_relaxed(base2);
devm_iounmap(&pdev->dev, base2);
*version = ((pte_efuse1 >> 29 & 0x1) | ((pte_efuse2 >> 18 & 0x3) << 1));
out:
dev_info(&pdev->dev, "Speed bin: %d PVS Version: %d\n", *bin,
*version);
}
static int of_get_clk_src(struct platform_device *pdev,
struct clk_src *parents, int mux_id)
{
struct device_node *of = pdev->dev.of_node;
int mux_parents, i, j, index;
struct clk *c;
char clk_name[] = "clk-xxx-x";
mux_parents = of_property_count_strings(of, "clock-names");
if (mux_parents <= 0) {
dev_err(&pdev->dev, "missing clock-names\n");
return -EINVAL;
}
j = 0;
for (i = 0; i < 8; i++) {
snprintf(clk_name, ARRAY_SIZE(clk_name), "clk-%s-%d",
mux_names[mux_id], i);
index = of_property_match_string(of, "clock-names", clk_name);
if (IS_ERR_VALUE(index))
continue;
parents[j].sel = i;
parents[j].src = c = devm_clk_get(&pdev->dev, clk_name);
if (IS_ERR(c)) {
if (c != ERR_PTR(-EPROBE_DEFER))
dev_err(&pdev->dev, "clk_get: %s\n fail",
clk_name);
return PTR_ERR(c);
}
j++;
}
return j;
}
static int cpu_parse_devicetree(struct platform_device *pdev, int mux_id)
{
struct resource *res;
int rc;
char rcg_name[] = "apcs-xxx-rcg-base";
char vdd_name[] = "vdd-xxx";
struct regulator *regulator;
snprintf(rcg_name, ARRAY_SIZE(rcg_name), "apcs-%s-rcg-base",
mux_names[mux_id]);
res = platform_get_resource_byname(pdev,
IORESOURCE_MEM, rcg_name);
if (!res) {
dev_err(&pdev->dev, "missing %s\n", rcg_name);
return -EINVAL;
}
a53ssmux[mux_id]->base = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!a53ssmux[mux_id]->base) {
dev_err(&pdev->dev, "ioremap failed for %s\n", rcg_name);
return -ENOMEM;
}
snprintf(vdd_name, ARRAY_SIZE(vdd_name), "vdd-%s", mux_names[mux_id]);
regulator = devm_regulator_get(&pdev->dev, vdd_name);
if (IS_ERR(regulator)) {
if (PTR_ERR(regulator) != -EPROBE_DEFER)
dev_err(&pdev->dev, "unable to get regulator\n");
return PTR_ERR(regulator);
}
cpuclk[mux_id]->c.vdd_class->regulator[0] = regulator;
rc = of_get_clk_src(pdev, a53ssmux[mux_id]->parents, mux_id);
if (IS_ERR_VALUE(rc))
return rc;
a53ssmux[mux_id]->num_parents = rc;
return 0;
}
static long corner_to_voltage(unsigned long corner, struct device *dev)
{
struct dev_pm_opp *oppl;
long uv;
rcu_read_lock();
oppl = dev_pm_opp_find_freq_exact(dev, corner, true);
rcu_read_unlock();
if (IS_ERR_OR_NULL(oppl))
return -EINVAL;
rcu_read_lock();
uv = dev_pm_opp_get_voltage(oppl);
rcu_read_unlock();
return uv;
}
static int add_opp(struct clk *c, struct device *cpudev, struct device *vregdev,
unsigned long max_rate)
{
unsigned long rate = 0;
int level;
long ret, uv, corner;
bool use_voltages = false;
struct dev_pm_opp *oppl;
int j = 1;
rcu_read_lock();
/* Check if the regulator driver has already populated OPP tables */
oppl = dev_pm_opp_find_freq_exact(vregdev, 2, true);
rcu_read_unlock();
if (!IS_ERR_OR_NULL(oppl))
use_voltages = true;
while (1) {
rate = c->fmax[j++];
level = find_vdd_level(c, rate);
if (level <= 0) {
pr_warn("clock-cpu: no uv for %lu.\n", rate);
return -EINVAL;
}
uv = corner = c->vdd_class->vdd_uv[level];
/*
* If corner to voltage mapping is available, populate the OPP
* table with the voltages rather than corners.
*/
if (use_voltages) {
uv = corner_to_voltage(corner, vregdev);
if (uv < 0) {
pr_warn("clock-cpu: no uv for corner %lu\n",
corner);
return uv;
}
ret = dev_pm_opp_add(cpudev, rate, uv);
if (ret) {
pr_warn("clock-cpu: couldn't add OPP for %lu\n",
rate);
return ret;
}
} else {
/*
* Populate both CPU and regulator devices with the
* freq-to-corner OPP table to maintain backward
* compatibility.
*/
ret = dev_pm_opp_add(cpudev, rate, corner);
if (ret) {
pr_warn("clock-cpu: couldn't add OPP for %lu\n",
rate);
return ret;
}
ret = dev_pm_opp_add(vregdev, rate, corner);
if (ret) {
pr_warn("clock-cpu: couldn't add OPP for %lu\n",
rate);
return ret;
}
}
if (rate >= max_rate)
break;
}
return 0;
}
static void print_opp_table(int a53_c0_cpu, int a53_c1_cpu, bool single_cluster)
{
struct dev_pm_opp *oppfmax, *oppfmin;
unsigned long apc0_fmax, apc1_fmax, apc0_fmin, apc1_fmin;
if (!single_cluster) {
apc0_fmax = a53_lc_clk.c.fmax[a53_lc_clk.c.num_fmax - 1];
apc0_fmin = a53_lc_clk.c.fmax[1];
}
apc1_fmax = a53_bc_clk.c.fmax[a53_bc_clk.c.num_fmax - 1];
apc1_fmin = a53_bc_clk.c.fmax[1];
rcu_read_lock();
if (!single_cluster) {
oppfmax = dev_pm_opp_find_freq_exact(get_cpu_device(a53_c0_cpu),
apc0_fmax, true);
oppfmin = dev_pm_opp_find_freq_exact(get_cpu_device(a53_c0_cpu),
apc0_fmin, true);
/*
* One time information during boot. Important to know that this
* looks sane since it can eventually make its way to the
* scheduler.
*/
pr_info("clock_cpu: a53_c0: OPP voltage for %lu: %ld\n",
apc0_fmin, dev_pm_opp_get_voltage(oppfmin));
pr_info("clock_cpu: a53_c0: OPP voltage for %lu: %ld\n",
apc0_fmax, dev_pm_opp_get_voltage(oppfmax));
}
oppfmax = dev_pm_opp_find_freq_exact(get_cpu_device(a53_c1_cpu),
apc1_fmax, true);
oppfmin = dev_pm_opp_find_freq_exact(get_cpu_device(a53_c1_cpu),
apc1_fmin, true);
pr_info("clock_cpu: a53_c1: OPP voltage for %lu: %lu\n", apc1_fmin,
dev_pm_opp_get_voltage(oppfmin));
pr_info("clock_cpu: a53_c1: OPP voltage for %lu: %lu\n", apc1_fmax,
dev_pm_opp_get_voltage(oppfmax));
rcu_read_unlock();
}
static void populate_opp_table(struct platform_device *pdev,
bool single_cluster)
{
struct platform_device *apc0_dev, *apc1_dev;
struct device_node *apc0_node, *apc1_node;
unsigned long apc0_fmax, apc1_fmax;
int cpu, a53_c0_cpu, a53_c1_cpu;
if (!single_cluster)
apc0_node = of_parse_phandle(pdev->dev.of_node,
"vdd-c0-supply", 0);
apc1_node = of_parse_phandle(pdev->dev.of_node, "vdd-c1-supply", 0);
if (!apc0_node && !single_cluster) {
pr_err("can't find the apc0 dt node.\n");
return;
}
if (!apc1_node) {
pr_err("can't find the apc1 dt node.\n");
return;
}
if (!single_cluster)
apc0_dev = of_find_device_by_node(apc0_node);
apc1_dev = of_find_device_by_node(apc1_node);
if (!apc1_dev && !single_cluster) {
pr_err("can't find the apc0 device node.\n");
return;
}
if (!apc1_dev) {
pr_err("can't find the apc1 device node.\n");
return;
}
if (!single_cluster)
apc0_fmax = a53_lc_clk.c.fmax[a53_lc_clk.c.num_fmax - 1];
apc1_fmax = a53_bc_clk.c.fmax[a53_bc_clk.c.num_fmax - 1];
for_each_possible_cpu(cpu) {
pr_debug("the CPU number is : %d\n", cpu);
if (cpu/4 == 0) {
a53_c1_cpu = cpu;
WARN(add_opp(&a53_bc_clk.c, get_cpu_device(cpu),
&apc1_dev->dev, apc1_fmax),
"Failed to add OPP levels for A53 big cluster\n");
} else if (cpu/4 == 1 && !single_cluster) {
a53_c0_cpu = cpu;
WARN(add_opp(&a53_lc_clk.c, get_cpu_device(cpu),
&apc0_dev->dev, apc0_fmax),
"Failed to add OPP levels for A53 little cluster\n");
}
}
/* One time print during bootup */
pr_info("clock-cpu-8939: OPP tables populated (cpu %d and %d)",
a53_c0_cpu, a53_c1_cpu);
print_opp_table(a53_c0_cpu, a53_c1_cpu, single_cluster);
}
static void config_pll(int mux_id)
{
unsigned long rate, aux_rate;
struct clk *aux_clk, *main_pll;
aux_clk = a53ssmux[mux_id]->parents[0].src;
main_pll = a53ssmux[mux_id]->parents[1].src;
aux_rate = clk_get_rate(aux_clk);
rate = clk_get_rate(&a53ssmux[mux_id]->c);
clk_set_rate(&a53ssmux[mux_id]->c, aux_rate);
clk_set_rate(main_pll, clk_round_rate(main_pll, 1));
clk_set_rate(&a53ssmux[mux_id]->c, rate);
return;
}
static int clock_8939_pm_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
switch (event) {
case PM_POST_HIBERNATION:
case PM_POST_SUSPEND:
clk_unprepare(&a53_lc_clk.c);
clk_unprepare(&a53_bc_clk.c);
clk_unprepare(&cci_clk.c);
break;
case PM_HIBERNATION_PREPARE:
case PM_SUSPEND_PREPARE:
clk_prepare(&a53_lc_clk.c);
clk_prepare(&a53_bc_clk.c);
clk_prepare(&cci_clk.c);
break;
default:
break;
}
return NOTIFY_DONE;
}
static int clock_8939_pm_event_single_cluster(struct notifier_block *this,
unsigned long event, void *ptr)
{
switch (event) {
case PM_POST_HIBERNATION:
case PM_POST_SUSPEND:
clk_unprepare(&a53_bc_clk.c);
break;
case PM_HIBERNATION_PREPARE:
case PM_SUSPEND_PREPARE:
clk_prepare(&a53_bc_clk.c);
break;
default:
break;
}
return NOTIFY_DONE;
}
static struct notifier_block clock_8939_pm_notifier = {
.notifier_call = clock_8939_pm_event,
};
static struct notifier_block clock_8939_pm_notifier_single_cluster = {
.notifier_call = clock_8939_pm_event_single_cluster,
};
static int clock_a53_probe(struct platform_device *pdev)
{
int speed_bin, version, rc, cpu, mux_id, rate;
char prop_name[] = "qcom,speedX-bin-vX-XXX";
int mux_num;
bool single_cluster;
single_cluster = of_property_read_bool(pdev->dev.of_node,
"qcom,num-cluster");
get_speed_bin(pdev, &speed_bin, &version);
mux_num = single_cluster ? A53SS_MUX_LC:A53SS_MUX_NUM;
for (mux_id = 0; mux_id < mux_num; mux_id++) {
rc = cpu_parse_devicetree(pdev, mux_id);
if (rc)
return rc;
snprintf(prop_name, ARRAY_SIZE(prop_name),
"qcom,speed%d-bin-v%d-%s",
speed_bin, version, mux_names[mux_id]);
rc = of_get_fmax_vdd_class(pdev, &cpuclk[mux_id]->c,
prop_name);
if (rc) {
/* Fall back to most conservative PVS table */
dev_err(&pdev->dev, "Unable to load voltage plan %s!\n",
prop_name);
snprintf(prop_name, ARRAY_SIZE(prop_name),
"qcom,speed0-bin-v0-%s", mux_names[mux_id]);
rc = of_get_fmax_vdd_class(pdev, &cpuclk[mux_id]->c,
prop_name);
if (rc) {
dev_err(&pdev->dev,
"Unable to load safe voltage plan\n");
return rc;
}
dev_info(&pdev->dev, "Safe voltage plan loaded.\n");
}
}
if (single_cluster)
rc = of_msm_clock_register(pdev->dev.of_node,
cpu_clocks_8939_single_cluster,
ARRAY_SIZE(cpu_clocks_8939_single_cluster));
else
rc = of_msm_clock_register(pdev->dev.of_node,
cpu_clocks_8939, ARRAY_SIZE(cpu_clocks_8939));
if (rc) {
dev_err(&pdev->dev, "msm_clock_register failed\n");
return rc;
}
if (!single_cluster) {
rate = clk_get_rate(&cci_clk.c);
clk_set_rate(&cci_clk.c, rate);
}
for (mux_id = 0; mux_id < A53SS_MUX_CCI; mux_id++) {
/* Force a PLL reconfiguration */
config_pll(mux_id);
}
/*
* We don't want the CPU clocks to be turned off at late init
* if CPUFREQ or HOTPLUG configs are disabled. So, bump up the
* refcount of these clocks. Any cpufreq/hotplug manager can assume
* that the clocks have already been prepared and enabled by the time
* they take over.
*/
get_online_cpus();
for_each_online_cpu(cpu) {
WARN(clk_prepare_enable(&cpuclk[cpu/4]->c),
"Unable to turn on CPU clock");
clk_prepare_enable(&cci_clk.c);
}
put_online_cpus();
for_each_possible_cpu(cpu) {
if (logical_cpu_to_clk(cpu) == &a53_bc_clk.c)
cpumask_set_cpu(cpu, &a53_bc_clk.cpumask);
if (logical_cpu_to_clk(cpu) == &a53_lc_clk.c)
cpumask_set_cpu(cpu, &a53_lc_clk.cpumask);
}
a53_lc_clk.hw_low_power_ctrl = true;
a53_bc_clk.hw_low_power_ctrl = true;
if (single_cluster)
register_pm_notifier(&clock_8939_pm_notifier_single_cluster);
else
register_pm_notifier(&clock_8939_pm_notifier);
populate_opp_table(pdev, single_cluster);
return 0;
}
static struct of_device_id clock_a53_match_table[] = {
{.compatible = "qcom,cpu-clock-8939"},
{.compatible = "qcom,cpu-clock-gold"},
{}
};
static struct platform_driver clock_a53_driver = {
.probe = clock_a53_probe,
.driver = {
.name = "cpu-clock-8939",
.of_match_table = clock_a53_match_table,
.owner = THIS_MODULE,
},
};
static int __init clock_a53_init(void)
{
return platform_driver_register(&clock_a53_driver);
}
arch_initcall(clock_a53_init);
#define APCS_C0_PLL 0xb116000
#define C0_PLL_MODE 0x0
#define C0_PLL_L_VAL 0x4
#define C0_PLL_M_VAL 0x8
#define C0_PLL_N_VAL 0xC
#define C0_PLL_USER_CTL 0x10
#define C0_PLL_CONFIG_CTL 0x14
#define APCS_ALIAS0_CMD_RCGR 0xb111050
#define APCS_ALIAS0_CFG_OFF 0x4
#define APCS_ALIAS0_CORE_CBCR_OFF 0x8
#define SRC_SEL 0x4
#define SRC_DIV 0x3
static void __init configure_enable_sr2_pll(void __iomem *base)
{
/* Disable Mode */
writel_relaxed(0x0, base + C0_PLL_MODE);
/* Configure L/M/N values */
writel_relaxed(0x34, base + C0_PLL_L_VAL);
writel_relaxed(0x0, base + C0_PLL_M_VAL);
writel_relaxed(0x1, base + C0_PLL_N_VAL);
/* Configure USER_CTL and CONFIG_CTL value */
writel_relaxed(0x0100000f, base + C0_PLL_USER_CTL);
writel_relaxed(0x4c015765, base + C0_PLL_CONFIG_CTL);
/* Enable PLL now */
writel_relaxed(0x2, base + C0_PLL_MODE);
udelay(2);
writel_relaxed(0x6, base + C0_PLL_MODE);
udelay(50);
writel_relaxed(0x7, base + C0_PLL_MODE);
mb();
}
static int __init cpu_clock_a53_init_little(void)
{
void __iomem *base;
int regval = 0, count;
struct device_node *ofnode = of_find_compatible_node(NULL, NULL,
"qcom,cpu-clock-8939");
if (!ofnode)
return 0;
base = ioremap_nocache(APCS_C0_PLL, SZ_32);
configure_enable_sr2_pll(base);
iounmap(base);
base = ioremap_nocache(APCS_ALIAS0_CMD_RCGR, SZ_8);
regval = readl_relaxed(base);
/* Source GPLL0 and 1/2 the rate of GPLL0 */
regval = (SRC_SEL << 8) | SRC_DIV; /* 0x403 */
writel_relaxed(regval, base + APCS_ALIAS0_CFG_OFF);
mb();
/* update bit */
regval = readl_relaxed(base);
regval |= BIT(0);
writel_relaxed(regval, base);
/* Wait for update to take effect */
for (count = 500; count > 0; count--) {
if (!(readl_relaxed(base)) & BIT(0))
break;
udelay(1);
}
/* Enable the branch */
regval = readl_relaxed(base + APCS_ALIAS0_CORE_CBCR_OFF);
regval |= BIT(0);
writel_relaxed(regval, base + APCS_ALIAS0_CORE_CBCR_OFF);
mb();
iounmap(base);
pr_info("A53 Power clocks configured\n");
return 0;
}
early_initcall(cpu_clock_a53_init_little);