/* * Copyright (c) 2014-2015, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "clock.h" #include DEFINE_VDD_REGS_INIT(vdd_cpu_bc, 1); DEFINE_VDD_REGS_INIT(vdd_cpu_lc, 1); DEFINE_VDD_REGS_INIT(vdd_cpu_cci, 1); enum { A53SS_MUX_BC, A53SS_MUX_LC, A53SS_MUX_CCI, A53SS_MUX_NUM, }; const char *mux_names[] = { "c1", "c0", "cci"}; struct cpu_clk_8939 { u32 cpu_reg_mask; cpumask_t cpumask; bool hw_low_power_ctrl; struct pm_qos_request req; struct clk c; }; static struct mux_div_clk a53ssmux_bc = { .ops = &rcg_mux_div_ops, .safe_freq = 400000000, .data = { .max_div = 32, .min_div = 2, .is_half_divider = true, }, .c = { .dbg_name = "a53ssmux_bc", .ops = &clk_ops_mux_div_clk, CLK_INIT(a53ssmux_bc.c), }, .parents = (struct clk_src[8]) {}, .div_mask = BM(4, 0), .src_mask = BM(10, 8) >> 8, .src_shift = 8, }; static struct mux_div_clk a53ssmux_lc = { .ops = &rcg_mux_div_ops, .safe_freq = 200000000, .data = { .max_div = 32, .min_div = 2, .is_half_divider = true, }, .c = { .dbg_name = "a53ssmux_lc", .ops = &clk_ops_mux_div_clk, CLK_INIT(a53ssmux_lc.c), }, .parents = (struct clk_src[8]) {}, .div_mask = BM(4, 0), .src_mask = BM(10, 8) >> 8, .src_shift = 8, }; static struct mux_div_clk a53ssmux_cci = { .ops = &rcg_mux_div_ops, .safe_freq = 200000000, .data = { .max_div = 32, .min_div = 2, .is_half_divider = true, }, .c = { .dbg_name = "a53ssmux_cci", .ops = &clk_ops_mux_div_clk, CLK_INIT(a53ssmux_cci.c), }, .parents = (struct clk_src[8]) {}, .div_mask = BM(4, 0), .src_mask = BM(10, 8) >> 8, .src_shift = 8, }; static void do_nothing(void *unused) { } #define CPU_LATENCY_NO_L2_PC_US (300) static inline struct cpu_clk_8939 *to_cpu_clk_8939(struct clk *c) { return container_of(c, struct cpu_clk_8939, c); } static enum handoff cpu_clk_8939_handoff(struct clk *c) { c->rate = clk_get_rate(c->parent); return HANDOFF_DISABLED_CLK; } static long cpu_clk_8939_round_rate(struct clk *c, unsigned long rate) { return clk_round_rate(c->parent, rate); } static int cpu_clk_8939_set_rate(struct clk *c, unsigned long rate) { int ret = 0; struct cpu_clk_8939 *cpuclk = to_cpu_clk_8939(c); bool hw_low_power_ctrl = cpuclk->hw_low_power_ctrl; if (hw_low_power_ctrl) { memset(&cpuclk->req, 0, sizeof(cpuclk->req)); cpumask_copy(&cpuclk->req.cpus_affine, (const struct cpumask *)&cpuclk->cpumask); cpuclk->req.type = PM_QOS_REQ_AFFINE_CORES; pm_qos_add_request(&cpuclk->req, PM_QOS_CPU_DMA_LATENCY, CPU_LATENCY_NO_L2_PC_US); smp_call_function_any(&cpuclk->cpumask, do_nothing, NULL, 1); } ret = clk_set_rate(c->parent, rate); if (hw_low_power_ctrl) pm_qos_remove_request(&cpuclk->req); return ret; } static struct clk_ops clk_ops_cpu = { .set_rate = cpu_clk_8939_set_rate, .round_rate = cpu_clk_8939_round_rate, .handoff = cpu_clk_8939_handoff, }; static struct cpu_clk_8939 a53_bc_clk = { .cpu_reg_mask = 0x3, .c = { .parent = &a53ssmux_bc.c, .ops = &clk_ops_cpu, .vdd_class = &vdd_cpu_bc, .dbg_name = "a53_bc_clk", CLK_INIT(a53_bc_clk.c), }, }; static struct cpu_clk_8939 a53_lc_clk = { .cpu_reg_mask = 0x103, .c = { .parent = &a53ssmux_lc.c, .ops = &clk_ops_cpu, .vdd_class = &vdd_cpu_lc, .dbg_name = "a53_lc_clk", CLK_INIT(a53_lc_clk.c), }, }; static struct cpu_clk_8939 cci_clk = { .c = { .parent = &a53ssmux_cci.c, .ops = &clk_ops_cpu, .vdd_class = &vdd_cpu_cci, .dbg_name = "cci_clk", CLK_INIT(cci_clk.c), }, }; static struct clk_lookup cpu_clocks_8939[] = { CLK_LIST(a53ssmux_lc), CLK_LIST(a53ssmux_bc), CLK_LIST(a53ssmux_cci), CLK_LIST(a53_bc_clk), CLK_LIST(a53_lc_clk), CLK_LIST(cci_clk), }; static struct clk_lookup cpu_clocks_8939_single_cluster[] = { CLK_LIST(a53ssmux_bc), CLK_LIST(a53_bc_clk), }; static struct mux_div_clk *a53ssmux[] = {&a53ssmux_bc, &a53ssmux_lc, &a53ssmux_cci}; static struct cpu_clk_8939 *cpuclk[] = { &a53_bc_clk, &a53_lc_clk, &cci_clk}; static struct clk *logical_cpu_to_clk(int cpu) { struct device_node *cpu_node = of_get_cpu_node(cpu, NULL); u32 reg; /* CPU 0/1/2/3 --> a53_bc_clk and mask = 0x103 * CPU 4/5/6/7 --> a53_lc_clk and mask = 0x3 */ if (cpu_node && !of_property_read_u32(cpu_node, "reg", ®)) { if ((reg | a53_bc_clk.cpu_reg_mask) == a53_bc_clk.cpu_reg_mask) return &a53_lc_clk.c; if ((reg | a53_lc_clk.cpu_reg_mask) == a53_lc_clk.cpu_reg_mask) return &a53_bc_clk.c; } return NULL; } static int of_get_fmax_vdd_class(struct platform_device *pdev, struct clk *c, char *prop_name) { struct device_node *of = pdev->dev.of_node; int prop_len, i; struct clk_vdd_class *vdd = c->vdd_class; u32 *array; if (!of_find_property(of, prop_name, &prop_len)) { dev_err(&pdev->dev, "missing %s\n", prop_name); return -EINVAL; } prop_len /= sizeof(u32); if (prop_len % 2) { dev_err(&pdev->dev, "bad length %d\n", prop_len); return -EINVAL; } prop_len /= 2; vdd->level_votes = devm_kzalloc(&pdev->dev, prop_len * sizeof(*vdd->level_votes), GFP_KERNEL); if (!vdd->level_votes) return -ENOMEM; vdd->vdd_uv = devm_kzalloc(&pdev->dev, prop_len * sizeof(int), GFP_KERNEL); if (!vdd->vdd_uv) return -ENOMEM; c->fmax = devm_kzalloc(&pdev->dev, prop_len * sizeof(unsigned long), GFP_KERNEL); if (!c->fmax) return -ENOMEM; array = devm_kzalloc(&pdev->dev, prop_len * sizeof(u32) * 2, GFP_KERNEL); if (!array) return -ENOMEM; of_property_read_u32_array(of, prop_name, array, prop_len * 2); for (i = 0; i < prop_len; i++) { c->fmax[i] = array[2 * i]; vdd->vdd_uv[i] = array[2 * i + 1]; } devm_kfree(&pdev->dev, array); vdd->num_levels = prop_len; vdd->cur_level = prop_len; vdd->use_max_uV = true; c->num_fmax = prop_len; return 0; } static void get_speed_bin(struct platform_device *pdev, int *bin, int *version) { struct resource *res; void __iomem *base, *base1, *base2; u32 pte_efuse, pte_efuse1, pte_efuse2; *bin = 0; *version = 0; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "efuse"); if (!res) { dev_info(&pdev->dev, "No speed/PVS binning available. Defaulting to 0!\n"); return; } base = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!base) { dev_warn(&pdev->dev, "Unable to read efuse data. Defaulting to 0!\n"); return; } pte_efuse = readl_relaxed(base); devm_iounmap(&pdev->dev, base); *bin = (pte_efuse >> 2) & 0x7; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "efuse1"); if (!res) { dev_info(&pdev->dev, "No PVS version available. Defaulting to 0!\n"); goto out; } base1 = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!base1) { dev_warn(&pdev->dev, "Unable to read efuse1 data. Defaulting to 0!\n"); goto out; } pte_efuse1 = readl_relaxed(base1); devm_iounmap(&pdev->dev, base1); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "efuse2"); if (!res) { dev_info(&pdev->dev, "No PVS version available. Defaulting to 0!\n"); goto out; } base2 = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!base2) { dev_warn(&pdev->dev, "Unable to read efuse2 data. Defaulting to 0!\n"); goto out; } pte_efuse2 = readl_relaxed(base2); devm_iounmap(&pdev->dev, base2); *version = ((pte_efuse1 >> 29 & 0x1) | ((pte_efuse2 >> 18 & 0x3) << 1)); out: dev_info(&pdev->dev, "Speed bin: %d PVS Version: %d\n", *bin, *version); } static int of_get_clk_src(struct platform_device *pdev, struct clk_src *parents, int mux_id) { struct device_node *of = pdev->dev.of_node; int mux_parents, i, j, index; struct clk *c; char clk_name[] = "clk-xxx-x"; mux_parents = of_property_count_strings(of, "clock-names"); if (mux_parents <= 0) { dev_err(&pdev->dev, "missing clock-names\n"); return -EINVAL; } j = 0; for (i = 0; i < 8; i++) { snprintf(clk_name, ARRAY_SIZE(clk_name), "clk-%s-%d", mux_names[mux_id], i); index = of_property_match_string(of, "clock-names", clk_name); if (IS_ERR_VALUE(index)) continue; parents[j].sel = i; parents[j].src = c = devm_clk_get(&pdev->dev, clk_name); if (IS_ERR(c)) { if (c != ERR_PTR(-EPROBE_DEFER)) dev_err(&pdev->dev, "clk_get: %s\n fail", clk_name); return PTR_ERR(c); } j++; } return j; } static int cpu_parse_devicetree(struct platform_device *pdev, int mux_id) { struct resource *res; int rc; char rcg_name[] = "apcs-xxx-rcg-base"; char vdd_name[] = "vdd-xxx"; struct regulator *regulator; snprintf(rcg_name, ARRAY_SIZE(rcg_name), "apcs-%s-rcg-base", mux_names[mux_id]); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, rcg_name); if (!res) { dev_err(&pdev->dev, "missing %s\n", rcg_name); return -EINVAL; } a53ssmux[mux_id]->base = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!a53ssmux[mux_id]->base) { dev_err(&pdev->dev, "ioremap failed for %s\n", rcg_name); return -ENOMEM; } snprintf(vdd_name, ARRAY_SIZE(vdd_name), "vdd-%s", mux_names[mux_id]); regulator = devm_regulator_get(&pdev->dev, vdd_name); if (IS_ERR(regulator)) { if (PTR_ERR(regulator) != -EPROBE_DEFER) dev_err(&pdev->dev, "unable to get regulator\n"); return PTR_ERR(regulator); } cpuclk[mux_id]->c.vdd_class->regulator[0] = regulator; rc = of_get_clk_src(pdev, a53ssmux[mux_id]->parents, mux_id); if (IS_ERR_VALUE(rc)) return rc; a53ssmux[mux_id]->num_parents = rc; return 0; } static long corner_to_voltage(unsigned long corner, struct device *dev) { struct dev_pm_opp *oppl; long uv; rcu_read_lock(); oppl = dev_pm_opp_find_freq_exact(dev, corner, true); rcu_read_unlock(); if (IS_ERR_OR_NULL(oppl)) return -EINVAL; rcu_read_lock(); uv = dev_pm_opp_get_voltage(oppl); rcu_read_unlock(); return uv; } static int add_opp(struct clk *c, struct device *cpudev, struct device *vregdev, unsigned long max_rate) { unsigned long rate = 0; int level; long ret, uv, corner; bool use_voltages = false; struct dev_pm_opp *oppl; int j = 1; rcu_read_lock(); /* Check if the regulator driver has already populated OPP tables */ oppl = dev_pm_opp_find_freq_exact(vregdev, 2, true); rcu_read_unlock(); if (!IS_ERR_OR_NULL(oppl)) use_voltages = true; while (1) { rate = c->fmax[j++]; level = find_vdd_level(c, rate); if (level <= 0) { pr_warn("clock-cpu: no uv for %lu.\n", rate); return -EINVAL; } uv = corner = c->vdd_class->vdd_uv[level]; /* * If corner to voltage mapping is available, populate the OPP * table with the voltages rather than corners. */ if (use_voltages) { uv = corner_to_voltage(corner, vregdev); if (uv < 0) { pr_warn("clock-cpu: no uv for corner %lu\n", corner); return uv; } ret = dev_pm_opp_add(cpudev, rate, uv); if (ret) { pr_warn("clock-cpu: couldn't add OPP for %lu\n", rate); return ret; } } else { /* * Populate both CPU and regulator devices with the * freq-to-corner OPP table to maintain backward * compatibility. */ ret = dev_pm_opp_add(cpudev, rate, corner); if (ret) { pr_warn("clock-cpu: couldn't add OPP for %lu\n", rate); return ret; } ret = dev_pm_opp_add(vregdev, rate, corner); if (ret) { pr_warn("clock-cpu: couldn't add OPP for %lu\n", rate); return ret; } } if (rate >= max_rate) break; } return 0; } static void print_opp_table(int a53_c0_cpu, int a53_c1_cpu, bool single_cluster) { struct dev_pm_opp *oppfmax, *oppfmin; unsigned long apc0_fmax, apc1_fmax, apc0_fmin, apc1_fmin; if (!single_cluster) { apc0_fmax = a53_lc_clk.c.fmax[a53_lc_clk.c.num_fmax - 1]; apc0_fmin = a53_lc_clk.c.fmax[1]; } apc1_fmax = a53_bc_clk.c.fmax[a53_bc_clk.c.num_fmax - 1]; apc1_fmin = a53_bc_clk.c.fmax[1]; rcu_read_lock(); if (!single_cluster) { oppfmax = dev_pm_opp_find_freq_exact(get_cpu_device(a53_c0_cpu), apc0_fmax, true); oppfmin = dev_pm_opp_find_freq_exact(get_cpu_device(a53_c0_cpu), apc0_fmin, true); /* * One time information during boot. Important to know that this * looks sane since it can eventually make its way to the * scheduler. */ pr_info("clock_cpu: a53_c0: OPP voltage for %lu: %ld\n", apc0_fmin, dev_pm_opp_get_voltage(oppfmin)); pr_info("clock_cpu: a53_c0: OPP voltage for %lu: %ld\n", apc0_fmax, dev_pm_opp_get_voltage(oppfmax)); } oppfmax = dev_pm_opp_find_freq_exact(get_cpu_device(a53_c1_cpu), apc1_fmax, true); oppfmin = dev_pm_opp_find_freq_exact(get_cpu_device(a53_c1_cpu), apc1_fmin, true); pr_info("clock_cpu: a53_c1: OPP voltage for %lu: %lu\n", apc1_fmin, dev_pm_opp_get_voltage(oppfmin)); pr_info("clock_cpu: a53_c1: OPP voltage for %lu: %lu\n", apc1_fmax, dev_pm_opp_get_voltage(oppfmax)); rcu_read_unlock(); } static void populate_opp_table(struct platform_device *pdev, bool single_cluster) { struct platform_device *apc0_dev, *apc1_dev; struct device_node *apc0_node, *apc1_node; unsigned long apc0_fmax, apc1_fmax; int cpu, a53_c0_cpu, a53_c1_cpu; if (!single_cluster) apc0_node = of_parse_phandle(pdev->dev.of_node, "vdd-c0-supply", 0); apc1_node = of_parse_phandle(pdev->dev.of_node, "vdd-c1-supply", 0); if (!apc0_node && !single_cluster) { pr_err("can't find the apc0 dt node.\n"); return; } if (!apc1_node) { pr_err("can't find the apc1 dt node.\n"); return; } if (!single_cluster) apc0_dev = of_find_device_by_node(apc0_node); apc1_dev = of_find_device_by_node(apc1_node); if (!apc1_dev && !single_cluster) { pr_err("can't find the apc0 device node.\n"); return; } if (!apc1_dev) { pr_err("can't find the apc1 device node.\n"); return; } if (!single_cluster) apc0_fmax = a53_lc_clk.c.fmax[a53_lc_clk.c.num_fmax - 1]; apc1_fmax = a53_bc_clk.c.fmax[a53_bc_clk.c.num_fmax - 1]; for_each_possible_cpu(cpu) { pr_debug("the CPU number is : %d\n", cpu); if (cpu/4 == 0) { a53_c1_cpu = cpu; WARN(add_opp(&a53_bc_clk.c, get_cpu_device(cpu), &apc1_dev->dev, apc1_fmax), "Failed to add OPP levels for A53 big cluster\n"); } else if (cpu/4 == 1 && !single_cluster) { a53_c0_cpu = cpu; WARN(add_opp(&a53_lc_clk.c, get_cpu_device(cpu), &apc0_dev->dev, apc0_fmax), "Failed to add OPP levels for A53 little cluster\n"); } } /* One time print during bootup */ pr_info("clock-cpu-8939: OPP tables populated (cpu %d and %d)", a53_c0_cpu, a53_c1_cpu); print_opp_table(a53_c0_cpu, a53_c1_cpu, single_cluster); } static void config_pll(int mux_id) { unsigned long rate, aux_rate; struct clk *aux_clk, *main_pll; aux_clk = a53ssmux[mux_id]->parents[0].src; main_pll = a53ssmux[mux_id]->parents[1].src; aux_rate = clk_get_rate(aux_clk); rate = clk_get_rate(&a53ssmux[mux_id]->c); clk_set_rate(&a53ssmux[mux_id]->c, aux_rate); clk_set_rate(main_pll, clk_round_rate(main_pll, 1)); clk_set_rate(&a53ssmux[mux_id]->c, rate); return; } static int clock_8939_pm_event(struct notifier_block *this, unsigned long event, void *ptr) { switch (event) { case PM_POST_HIBERNATION: case PM_POST_SUSPEND: clk_unprepare(&a53_lc_clk.c); clk_unprepare(&a53_bc_clk.c); clk_unprepare(&cci_clk.c); break; case PM_HIBERNATION_PREPARE: case PM_SUSPEND_PREPARE: clk_prepare(&a53_lc_clk.c); clk_prepare(&a53_bc_clk.c); clk_prepare(&cci_clk.c); break; default: break; } return NOTIFY_DONE; } static int clock_8939_pm_event_single_cluster(struct notifier_block *this, unsigned long event, void *ptr) { switch (event) { case PM_POST_HIBERNATION: case PM_POST_SUSPEND: clk_unprepare(&a53_bc_clk.c); break; case PM_HIBERNATION_PREPARE: case PM_SUSPEND_PREPARE: clk_prepare(&a53_bc_clk.c); break; default: break; } return NOTIFY_DONE; } static struct notifier_block clock_8939_pm_notifier = { .notifier_call = clock_8939_pm_event, }; static struct notifier_block clock_8939_pm_notifier_single_cluster = { .notifier_call = clock_8939_pm_event_single_cluster, }; static int clock_a53_probe(struct platform_device *pdev) { int speed_bin, version, rc, cpu, mux_id, rate; char prop_name[] = "qcom,speedX-bin-vX-XXX"; int mux_num; bool single_cluster; single_cluster = of_property_read_bool(pdev->dev.of_node, "qcom,num-cluster"); get_speed_bin(pdev, &speed_bin, &version); mux_num = single_cluster ? A53SS_MUX_LC:A53SS_MUX_NUM; for (mux_id = 0; mux_id < mux_num; mux_id++) { rc = cpu_parse_devicetree(pdev, mux_id); if (rc) return rc; snprintf(prop_name, ARRAY_SIZE(prop_name), "qcom,speed%d-bin-v%d-%s", speed_bin, version, mux_names[mux_id]); rc = of_get_fmax_vdd_class(pdev, &cpuclk[mux_id]->c, prop_name); if (rc) { /* Fall back to most conservative PVS table */ dev_err(&pdev->dev, "Unable to load voltage plan %s!\n", prop_name); snprintf(prop_name, ARRAY_SIZE(prop_name), "qcom,speed0-bin-v0-%s", mux_names[mux_id]); rc = of_get_fmax_vdd_class(pdev, &cpuclk[mux_id]->c, prop_name); if (rc) { dev_err(&pdev->dev, "Unable to load safe voltage plan\n"); return rc; } dev_info(&pdev->dev, "Safe voltage plan loaded.\n"); } } if (single_cluster) rc = of_msm_clock_register(pdev->dev.of_node, cpu_clocks_8939_single_cluster, ARRAY_SIZE(cpu_clocks_8939_single_cluster)); else rc = of_msm_clock_register(pdev->dev.of_node, cpu_clocks_8939, ARRAY_SIZE(cpu_clocks_8939)); if (rc) { dev_err(&pdev->dev, "msm_clock_register failed\n"); return rc; } if (!single_cluster) { rate = clk_get_rate(&cci_clk.c); clk_set_rate(&cci_clk.c, rate); } for (mux_id = 0; mux_id < A53SS_MUX_CCI; mux_id++) { /* Force a PLL reconfiguration */ config_pll(mux_id); } /* * We don't want the CPU clocks to be turned off at late init * if CPUFREQ or HOTPLUG configs are disabled. So, bump up the * refcount of these clocks. Any cpufreq/hotplug manager can assume * that the clocks have already been prepared and enabled by the time * they take over. */ get_online_cpus(); for_each_online_cpu(cpu) { WARN(clk_prepare_enable(&cpuclk[cpu/4]->c), "Unable to turn on CPU clock"); clk_prepare_enable(&cci_clk.c); } put_online_cpus(); for_each_possible_cpu(cpu) { if (logical_cpu_to_clk(cpu) == &a53_bc_clk.c) cpumask_set_cpu(cpu, &a53_bc_clk.cpumask); if (logical_cpu_to_clk(cpu) == &a53_lc_clk.c) cpumask_set_cpu(cpu, &a53_lc_clk.cpumask); } a53_lc_clk.hw_low_power_ctrl = true; a53_bc_clk.hw_low_power_ctrl = true; if (single_cluster) register_pm_notifier(&clock_8939_pm_notifier_single_cluster); else register_pm_notifier(&clock_8939_pm_notifier); populate_opp_table(pdev, single_cluster); return 0; } static struct of_device_id clock_a53_match_table[] = { {.compatible = "qcom,cpu-clock-8939"}, {.compatible = "qcom,cpu-clock-gold"}, {} }; static struct platform_driver clock_a53_driver = { .probe = clock_a53_probe, .driver = { .name = "cpu-clock-8939", .of_match_table = clock_a53_match_table, .owner = THIS_MODULE, }, }; static int __init clock_a53_init(void) { return platform_driver_register(&clock_a53_driver); } arch_initcall(clock_a53_init); #define APCS_C0_PLL 0xb116000 #define C0_PLL_MODE 0x0 #define C0_PLL_L_VAL 0x4 #define C0_PLL_M_VAL 0x8 #define C0_PLL_N_VAL 0xC #define C0_PLL_USER_CTL 0x10 #define C0_PLL_CONFIG_CTL 0x14 #define APCS_ALIAS0_CMD_RCGR 0xb111050 #define APCS_ALIAS0_CFG_OFF 0x4 #define APCS_ALIAS0_CORE_CBCR_OFF 0x8 #define SRC_SEL 0x4 #define SRC_DIV 0x3 static void __init configure_enable_sr2_pll(void __iomem *base) { /* Disable Mode */ writel_relaxed(0x0, base + C0_PLL_MODE); /* Configure L/M/N values */ writel_relaxed(0x34, base + C0_PLL_L_VAL); writel_relaxed(0x0, base + C0_PLL_M_VAL); writel_relaxed(0x1, base + C0_PLL_N_VAL); /* Configure USER_CTL and CONFIG_CTL value */ writel_relaxed(0x0100000f, base + C0_PLL_USER_CTL); writel_relaxed(0x4c015765, base + C0_PLL_CONFIG_CTL); /* Enable PLL now */ writel_relaxed(0x2, base + C0_PLL_MODE); udelay(2); writel_relaxed(0x6, base + C0_PLL_MODE); udelay(50); writel_relaxed(0x7, base + C0_PLL_MODE); mb(); } static int __init cpu_clock_a53_init_little(void) { void __iomem *base; int regval = 0, count; struct device_node *ofnode = of_find_compatible_node(NULL, NULL, "qcom,cpu-clock-8939"); if (!ofnode) return 0; base = ioremap_nocache(APCS_C0_PLL, SZ_32); configure_enable_sr2_pll(base); iounmap(base); base = ioremap_nocache(APCS_ALIAS0_CMD_RCGR, SZ_8); regval = readl_relaxed(base); /* Source GPLL0 and 1/2 the rate of GPLL0 */ regval = (SRC_SEL << 8) | SRC_DIV; /* 0x403 */ writel_relaxed(regval, base + APCS_ALIAS0_CFG_OFF); mb(); /* update bit */ regval = readl_relaxed(base); regval |= BIT(0); writel_relaxed(regval, base); /* Wait for update to take effect */ for (count = 500; count > 0; count--) { if (!(readl_relaxed(base)) & BIT(0)) break; udelay(1); } /* Enable the branch */ regval = readl_relaxed(base + APCS_ALIAS0_CORE_CBCR_OFF); regval |= BIT(0); writel_relaxed(regval, base + APCS_ALIAS0_CORE_CBCR_OFF); mb(); iounmap(base); pr_info("A53 Power clocks configured\n"); return 0; } early_initcall(cpu_clock_a53_init_little);