M7350/kernel/drivers/char/diag/diagfwd.c
2024-09-09 08:52:07 +00:00

2317 lines
65 KiB
C

/* Copyright (c) 2008-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/ratelimit.h>
#include <linux/workqueue.h>
#include <linux/pm_runtime.h>
#include <linux/diagchar.h>
#include <linux/delay.h>
#include <linux/reboot.h>
#include <linux/of.h>
#include <linux/kmemleak.h>
#ifdef CONFIG_DIAG_OVER_USB
#include <mach/usbdiag.h>
#endif
#include <mach/msm_smd.h>
#include <mach/socinfo.h>
#include <mach/restart.h>
#include "diagmem.h"
#include "diagchar.h"
#include "diagfwd.h"
#include "diagfwd_cntl.h"
#include "diagfwd_hsic.h"
#include "diagchar_hdlc.h"
#ifdef CONFIG_DIAG_SDIO_PIPE
#include "diagfwd_sdio.h"
#endif
#include "diag_dci.h"
#include "diag_masks.h"
#include "diagfwd_bridge.h"
#define MODE_CMD 41
#define RESET_ID 2
int diag_debug_buf_idx;
unsigned char diag_debug_buf[1024];
/* Number of entries in table of buffers */
static unsigned int buf_tbl_size = 10;
struct diag_master_table entry;
int wrap_enabled;
uint16_t wrap_count;
void encode_rsp_and_send(int buf_length)
{
struct diag_send_desc_type send = { NULL, NULL, DIAG_STATE_START, 0 };
struct diag_hdlc_dest_type enc = { NULL, NULL, 0 };
struct diag_smd_info *data = &(driver->smd_data[MODEM_DATA]);
if (buf_length > APPS_BUF_SIZE) {
pr_err("diag: In %s, invalid len %d, permissible len %d\n",
__func__, buf_length, APPS_BUF_SIZE);
return;
}
send.state = DIAG_STATE_START;
send.pkt = driver->apps_rsp_buf;
send.last = (void *)(driver->apps_rsp_buf + buf_length);
send.terminate = 1;
if (!data->in_busy_1) {
enc.dest = data->buf_in_1;
enc.dest_last = (void *)(data->buf_in_1 + APPS_BUF_SIZE - 1);
diag_hdlc_encode(&send, &enc);
data->write_ptr_1->buf = data->buf_in_1;
data->write_ptr_1->length = (int)(enc.dest -
(void *)(data->buf_in_1));
data->in_busy_1 = 1;
diag_device_write(data->buf_in_1, data->peripheral,
data->write_ptr_1);
memset(driver->apps_rsp_buf, '\0', APPS_BUF_SIZE);
}
}
/* Determine if this device uses a device tree */
#ifdef CONFIG_OF
static int has_device_tree(void)
{
struct device_node *node;
node = of_find_node_by_path("/");
if (node) {
of_node_put(node);
return 1;
}
return 0;
}
#else
static int has_device_tree(void)
{
return 0;
}
#endif
int chk_config_get_id(void)
{
/* For all Fusion targets, Modem will always be present */
if (machine_is_msm8x60_fusion() || machine_is_msm8x60_fusn_ffa())
return 0;
if (driver->use_device_tree) {
if (machine_is_msm8974())
return MSM8974_TOOLS_ID;
else
return 0;
} else {
switch (socinfo_get_msm_cpu()) {
case MSM_CPU_8X60:
return APQ8060_TOOLS_ID;
case MSM_CPU_8960:
case MSM_CPU_8960AB:
return AO8960_TOOLS_ID;
case MSM_CPU_8064:
case MSM_CPU_8064AB:
case MSM_CPU_8064AA:
return APQ8064_TOOLS_ID;
case MSM_CPU_8930:
case MSM_CPU_8930AA:
case MSM_CPU_8930AB:
return MSM8930_TOOLS_ID;
case MSM_CPU_8974:
return MSM8974_TOOLS_ID;
case MSM_CPU_8625:
return MSM8625_TOOLS_ID;
default:
return 0;
}
}
}
/*
* This will return TRUE for targets which support apps only mode and hence SSR.
* This applies to 8960 and newer targets.
*/
int chk_apps_only(void)
{
if (driver->use_device_tree)
return 1;
switch (socinfo_get_msm_cpu()) {
case MSM_CPU_8960:
case MSM_CPU_8960AB:
case MSM_CPU_8064:
case MSM_CPU_8064AB:
case MSM_CPU_8064AA:
case MSM_CPU_8930:
case MSM_CPU_8930AA:
case MSM_CPU_8930AB:
case MSM_CPU_8627:
case MSM_CPU_9615:
case MSM_CPU_8974:
return 1;
default:
return 0;
}
}
/*
* This will return TRUE for targets which support apps as master.
* Thus, SW DLOAD and Mode Reset are supported on apps processor.
* This applies to 8960 and newer targets.
*/
int chk_apps_master(void)
{
if (driver->use_device_tree)
return 1;
else if (soc_class_is_msm8960() || soc_class_is_msm8930() ||
soc_class_is_apq8064() || cpu_is_msm9615())
return 1;
else
return 0;
}
int chk_polling_response(void)
{
if (!(driver->polling_reg_flag) && chk_apps_master())
/*
* If the apps processor is master and no other processor
* has registered to respond for polling
*/
return 1;
else if (!(driver->smd_data[MODEM_DATA].ch) &&
!(chk_apps_master()))
/*
* If the apps processor is not the master and the modem
* is not up
*/
return 1;
else
return 0;
}
/*
* This function should be called if you feel that the logging process may
* need to be woken up. For instance, if the logging mode is MEMORY_DEVICE MODE
* and while trying to read data from a SMD data channel there are no buffers
* available to read the data into, then this function should be called to
* determine if the logging process needs to be woken up.
*/
void chk_logging_wakeup(void)
{
int i;
/* Find the index of the logging process */
for (i = 0; i < driver->num_clients; i++)
if (driver->client_map[i].pid ==
driver->logging_process_id)
break;
if (i < driver->num_clients) {
/* At very high logging rates a race condition can
* occur where the buffers containing the data from
* an smd channel are all in use, but the data_ready
* flag is cleared. In this case, the buffers never
* have their data read/logged. Detect and remedy this
* situation.
*/
if ((driver->data_ready[i] & USER_SPACE_DATA_TYPE) == 0) {
driver->data_ready[i] |= USER_SPACE_DATA_TYPE;
pr_debug("diag: Force wakeup of logging process\n");
wake_up_interruptible(&driver->wait_q);
}
}
}
int diag_add_hdlc_encoding(struct diag_smd_info *smd_info, void *buf,
int total_recd, uint8_t *encode_buf,
int *encoded_length)
{
struct diag_send_desc_type send = { NULL, NULL, DIAG_STATE_START, 0 };
struct diag_hdlc_dest_type enc = { NULL, NULL, 0 };
struct data_header {
uint8_t control_char;
uint8_t version;
uint16_t length;
};
struct data_header *header;
int header_size = sizeof(struct data_header);
uint8_t *end_control_char;
uint8_t *payload;
uint8_t *temp_buf;
uint8_t *temp_encode_buf;
int src_pkt_len;
int encoded_pkt_length;
int max_size;
int total_processed = 0;
int bytes_remaining;
int success = 1;
temp_buf = buf;
temp_encode_buf = encode_buf;
bytes_remaining = *encoded_length;
while (total_processed < total_recd) {
header = (struct data_header *)temp_buf;
/* Perform initial error checking */
if (header->control_char != CONTROL_CHAR ||
header->version != 1) {
success = 0;
break;
}
payload = temp_buf + header_size;
end_control_char = payload + header->length;
if (*end_control_char != CONTROL_CHAR) {
success = 0;
break;
}
max_size = 2 * header->length + 3;
if (bytes_remaining < max_size) {
pr_err("diag: In %s, Not enough room to encode remaining data for peripheral: %d, bytes available: %d, max_size: %d\n",
__func__, smd_info->peripheral,
bytes_remaining, max_size);
success = 0;
break;
}
/* Prepare for encoding the data */
send.state = DIAG_STATE_START;
send.pkt = payload;
send.last = (void *)(payload + header->length - 1);
send.terminate = 1;
enc.dest = temp_encode_buf;
enc.dest_last = (void *)(temp_encode_buf + max_size);
enc.crc = 0;
diag_hdlc_encode(&send, &enc);
/* Prepare for next packet */
src_pkt_len = (header_size + header->length + 1);
total_processed += src_pkt_len;
temp_buf += src_pkt_len;
encoded_pkt_length = (uint8_t *)enc.dest - temp_encode_buf;
bytes_remaining -= encoded_pkt_length;
temp_encode_buf = enc.dest;
}
*encoded_length = (int)(temp_encode_buf - encode_buf);
return success;
}
static int check_bufsize_for_encoding(struct diag_smd_info *smd_info, void *buf,
int total_recd)
{
int buf_size = IN_BUF_SIZE;
int max_size = 2 * total_recd + 3;
unsigned char *temp_buf;
if (max_size > IN_BUF_SIZE) {
if (max_size < MAX_IN_BUF_SIZE) {
pr_err("diag: In %s, SMD sending packet of %d bytes that may expand to %d bytes, peripheral: %d\n",
__func__, total_recd, max_size,
smd_info->peripheral);
if (buf == smd_info->buf_in_1_raw) {
temp_buf = krealloc(smd_info->buf_in_1,
max_size, GFP_KERNEL);
if (temp_buf) {
smd_info->buf_in_1 = temp_buf;
buf_size = max_size;
} else {
buf_size = 0;
}
} else {
temp_buf = krealloc(smd_info->buf_in_2,
max_size, GFP_KERNEL);
if (temp_buf) {
smd_info->buf_in_2 = temp_buf;
buf_size = max_size;
} else {
buf_size = 0;
}
}
} else {
pr_err("diag: In %s, SMD sending packet of size %d. HDCL encoding can expand to more than %d bytes, peripheral: %d. Discarding.\n",
__func__, max_size, MAX_IN_BUF_SIZE,
smd_info->peripheral);
buf_size = 0;
}
}
return buf_size;
}
void process_lock_enabling(struct diag_nrt_wake_lock *lock, int real_time)
{
unsigned long read_lock_flags;
spin_lock_irqsave(&lock->read_spinlock, read_lock_flags);
if (real_time)
lock->enabled = 0;
else
lock->enabled = 1;
lock->ref_count = 0;
lock->copy_count = 0;
wake_unlock(&lock->read_lock);
spin_unlock_irqrestore(&lock->read_spinlock, read_lock_flags);
}
void process_lock_on_notify(struct diag_nrt_wake_lock *lock)
{
unsigned long read_lock_flags;
spin_lock_irqsave(&lock->read_spinlock, read_lock_flags);
/*
* Do not work with ref_count here in case
* of spurious interrupt
*/
if (lock->enabled)
wake_lock(&lock->read_lock);
spin_unlock_irqrestore(&lock->read_spinlock, read_lock_flags);
}
void process_lock_on_read(struct diag_nrt_wake_lock *lock, int pkt_len)
{
unsigned long read_lock_flags;
spin_lock_irqsave(&lock->read_spinlock, read_lock_flags);
if (lock->enabled) {
if (pkt_len > 0) {
/*
* We have an data that is read that
* needs to be processed, make sure the
* processor does not go to sleep
*/
lock->ref_count++;
if (!wake_lock_active(&lock->read_lock))
wake_lock(&lock->read_lock);
} else {
/*
* There was no data associated with the
* read from the smd, unlock the wake lock
* if it is not needed.
*/
if (lock->ref_count < 1) {
if (wake_lock_active(&lock->read_lock))
wake_unlock(&lock->read_lock);
lock->ref_count = 0;
lock->copy_count = 0;
}
}
}
spin_unlock_irqrestore(&lock->read_spinlock, read_lock_flags);
}
void process_lock_on_copy(struct diag_nrt_wake_lock *lock)
{
unsigned long read_lock_flags;
spin_lock_irqsave(&lock->read_spinlock, read_lock_flags);
if (lock->enabled)
lock->copy_count++;
spin_unlock_irqrestore(&lock->read_spinlock, read_lock_flags);
}
void process_lock_on_copy_complete(struct diag_nrt_wake_lock *lock)
{
unsigned long read_lock_flags;
spin_lock_irqsave(&lock->read_spinlock, read_lock_flags);
if (lock->enabled) {
lock->ref_count -= lock->copy_count;
if (lock->ref_count < 1) {
wake_unlock(&lock->read_lock);
lock->ref_count = 0;
}
lock->copy_count = 0;
}
spin_unlock_irqrestore(&lock->read_spinlock, read_lock_flags);
}
/* Process the data read from the smd data channel */
int diag_process_smd_read_data(struct diag_smd_info *smd_info, void *buf,
int total_recd)
{
struct diag_request *write_ptr_modem = NULL;
int *in_busy_ptr = 0;
int err = 0;
/*
* Do not process data on command channel if the
* channel is not designated to do so
*/
if ((smd_info->type == SMD_CMD_TYPE) &&
!driver->separate_cmdrsp[smd_info->peripheral]) {
/* This print is for debugging */
pr_err("diag, In %s, received data on non-designated command channel: %d\n",
__func__, smd_info->peripheral);
return 0;
}
/* If the data is already hdlc encoded */
if (!smd_info->encode_hdlc) {
if (smd_info->buf_in_1 == buf) {
write_ptr_modem = smd_info->write_ptr_1;
in_busy_ptr = &smd_info->in_busy_1;
} else if (smd_info->buf_in_2 == buf) {
write_ptr_modem = smd_info->write_ptr_2;
in_busy_ptr = &smd_info->in_busy_2;
} else {
pr_err("diag: In %s, no match for in_busy_1, peripheral: %d\n",
__func__, smd_info->peripheral);
}
if (write_ptr_modem) {
write_ptr_modem->length = total_recd;
*in_busy_ptr = 1;
err = diag_device_write(buf, smd_info->peripheral,
write_ptr_modem);
if (err) {
/* Free up the buffer for future use */
*in_busy_ptr = 0;
pr_err_ratelimited("diag: In %s, diag_device_write error: %d\n",
__func__, err);
}
}
} else {
/* The data is raw and needs to be hdlc encoded */
if (smd_info->buf_in_1_raw == buf) {
write_ptr_modem = smd_info->write_ptr_1;
in_busy_ptr = &smd_info->in_busy_1;
} else if (smd_info->buf_in_2_raw == buf) {
write_ptr_modem = smd_info->write_ptr_2;
in_busy_ptr = &smd_info->in_busy_2;
} else {
pr_err("diag: In %s, no match for in_busy_1, peripheral: %d\n",
__func__, smd_info->peripheral);
}
if (write_ptr_modem) {
int success = 0;
int write_length = 0;
unsigned char *write_buf = NULL;
write_length = check_bufsize_for_encoding(smd_info, buf,
total_recd);
if (write_length) {
write_buf = (buf == smd_info->buf_in_1_raw) ?
smd_info->buf_in_1 : smd_info->buf_in_2;
success = diag_add_hdlc_encoding(smd_info, buf,
total_recd, write_buf,
&write_length);
if (success) {
write_ptr_modem->length = write_length;
*in_busy_ptr = 1;
err = diag_device_write(write_buf,
smd_info->peripheral,
write_ptr_modem);
if (err) {
/*
* Free up the buffer for
* future use
*/
*in_busy_ptr = 0;
pr_err_ratelimited("diag: In %s, diag_device_write error: %d\n",
__func__, err);
}
}
}
}
}
return 0;
}
void diag_smd_send_req(struct diag_smd_info *smd_info)
{
void *buf = NULL, *temp_buf = NULL;
int total_recd = 0, r = 0, pkt_len;
int loop_count = 0;
int notify = 0;
if (!smd_info) {
pr_err("diag: In %s, no smd info. Not able to read.\n",
__func__);
return;
}
/* Determine the buffer to read the data into. */
if (smd_info->type == SMD_DATA_TYPE) {
/* If the data is raw and not hdlc encoded */
if (smd_info->encode_hdlc) {
if (!smd_info->in_busy_1)
buf = smd_info->buf_in_1_raw;
else if (!smd_info->in_busy_2)
buf = smd_info->buf_in_2_raw;
} else {
if (!smd_info->in_busy_1)
buf = smd_info->buf_in_1;
else if (!smd_info->in_busy_2)
buf = smd_info->buf_in_2;
}
} else if (smd_info->type == SMD_CMD_TYPE) {
/* If the data is raw and not hdlc encoded */
if (smd_info->encode_hdlc) {
if (!smd_info->in_busy_1)
buf = smd_info->buf_in_1_raw;
} else {
if (!smd_info->in_busy_1)
buf = smd_info->buf_in_1;
}
} else if (!smd_info->in_busy_1) {
buf = smd_info->buf_in_1;
}
if (smd_info->ch && buf) {
temp_buf = buf;
pkt_len = smd_cur_packet_size(smd_info->ch);
while (pkt_len && (pkt_len != total_recd)) {
loop_count++;
r = smd_read_avail(smd_info->ch);
pr_debug("diag: In %s, received pkt %d %d\n",
__func__, r, total_recd);
if (!r) {
/* Nothing to read from SMD */
wait_event(driver->smd_wait_q,
((smd_info->ch == 0) ||
smd_read_avail(smd_info->ch)));
/* If the smd channel is open */
if (smd_info->ch) {
pr_debug("diag: In %s, return from wait_event\n",
__func__);
continue;
} else {
pr_debug("diag: In %s, return from wait_event ch closed\n",
__func__);
return;
}
}
total_recd += r;
if (total_recd > IN_BUF_SIZE) {
if (total_recd < MAX_IN_BUF_SIZE) {
pr_err("diag: In %s, SMD sending in packets up to %d bytes\n",
__func__, total_recd);
buf = krealloc(buf, total_recd,
GFP_KERNEL);
} else {
pr_err("diag: In %s, SMD sending in packets more than %d bytes\n",
__func__, MAX_IN_BUF_SIZE);
return;
}
}
if (pkt_len < r) {
pr_err("diag: In %s, SMD sending incorrect pkt\n",
__func__);
return;
}
if (pkt_len > r) {
pr_debug("diag: In %s, SMD sending partial pkt %d %d %d %d %d %d\n",
__func__, pkt_len, r, total_recd, loop_count,
smd_info->peripheral, smd_info->type);
}
/* keep reading for complete packet */
smd_read(smd_info->ch, temp_buf, r);
temp_buf += r;
}
if (!driver->real_time_mode && smd_info->type == SMD_DATA_TYPE)
process_lock_on_read(&smd_info->nrt_lock, pkt_len);
if (total_recd > 0) {
if (!buf) {
pr_err("diag: Out of diagmem for Modem\n");
} else if (smd_info->process_smd_read_data) {
notify = smd_info->process_smd_read_data(
smd_info, buf, total_recd);
/* Poll SMD channels to check for data */
if (notify)
diag_smd_notify(smd_info,
SMD_EVENT_DATA);
}
}
} else if (smd_info->ch && !buf &&
(driver->logging_mode == MEMORY_DEVICE_MODE)) {
chk_logging_wakeup();
}
}
void diag_read_smd_work_fn(struct work_struct *work)
{
struct diag_smd_info *smd_info = container_of(work,
struct diag_smd_info,
diag_read_smd_work);
diag_smd_send_req(smd_info);
}
#ifdef CONFIG_DIAGFWD_BRIDGE_CODE
static void diag_mem_dev_mode_ready_update(int index, int hsic_updated)
{
if (hsic_updated) {
unsigned long flags;
spin_lock_irqsave(&driver->hsic_ready_spinlock, flags);
driver->data_ready[index] |= USER_SPACE_DATA_TYPE;
spin_unlock_irqrestore(&driver->hsic_ready_spinlock, flags);
} else {
driver->data_ready[index] |= USER_SPACE_DATA_TYPE;
}
}
#else
static void diag_mem_dev_mode_ready_update(int index, int hsic_updated)
{
(void) hsic_updated;
driver->data_ready[index] |= USER_SPACE_DATA_TYPE;
}
#endif
int diag_device_write(void *buf, int data_type, struct diag_request *write_ptr)
{
int i, err = 0, index;
index = 0;
if (driver->logging_mode == MEMORY_DEVICE_MODE) {
int hsic_updated = 0;
if (data_type == APPS_DATA) {
for (i = 0; i < driver->buf_tbl_size; i++)
if (driver->buf_tbl[i].length == 0) {
driver->buf_tbl[i].buf = buf;
driver->buf_tbl[i].length =
driver->used;
#ifdef DIAG_DEBUG
pr_debug("diag: ENQUEUE buf ptr"
" and length is %x , %d\n",
(unsigned int)(driver->buf_
tbl[i].buf), driver->buf_tbl[i].length);
#endif
break;
}
}
#ifdef CONFIG_DIAGFWD_BRIDGE_CODE
else if (data_type == HSIC_DATA || data_type == HSIC_2_DATA) {
unsigned long flags;
int foundIndex = -1;
hsic_updated = 1;
index = data_type - HSIC_DATA;
spin_lock_irqsave(&diag_hsic[index].hsic_spinlock,
flags);
for (i = 0; i < diag_hsic[index].poolsize_hsic_write;
i++) {
if (diag_hsic[index].hsic_buf_tbl[i].length
== 0) {
diag_hsic[index].hsic_buf_tbl[i].buf
= buf;
diag_hsic[index].hsic_buf_tbl[i].length
= diag_bridge[index].write_len;
diag_hsic[index].
num_hsic_buf_tbl_entries++;
foundIndex = i;
break;
}
}
spin_unlock_irqrestore(&diag_hsic[index].hsic_spinlock,
flags);
if (foundIndex == -1)
err = -1;
else
pr_debug("diag: ENQUEUE HSIC buf ptr and length is %x , %d, ch %d\n",
(unsigned int)buf,
diag_bridge[index].write_len, index);
}
#endif
for (i = 0; i < driver->num_clients; i++)
if (driver->client_map[i].pid ==
driver->logging_process_id)
break;
if (i < driver->num_clients) {
diag_mem_dev_mode_ready_update(i, hsic_updated);
pr_debug("diag: wake up logging process\n");
wake_up_interruptible(&driver->wait_q);
} else
return -EINVAL;
} else if (driver->logging_mode == NO_LOGGING_MODE) {
if ((data_type >= MODEM_DATA) && (data_type <= WCNSS_DATA)) {
driver->smd_data[data_type].in_busy_1 = 0;
driver->smd_data[data_type].in_busy_2 = 0;
queue_work(driver->diag_wq,
&(driver->smd_data[data_type].
diag_read_smd_work));
if (data_type == MODEM_DATA &&
driver->separate_cmdrsp[data_type]) {
driver->smd_cmd[data_type].in_busy_1 = 0;
driver->smd_cmd[data_type].in_busy_2 = 0;
queue_work(driver->diag_wq,
&(driver->smd_cmd[data_type].
diag_read_smd_work));
}
}
#ifdef CONFIG_DIAG_SDIO_PIPE
else if (data_type == SDIO_DATA) {
driver->in_busy_sdio = 0;
queue_work(driver->diag_sdio_wq,
&(driver->diag_read_sdio_work));
}
#endif
#ifdef CONFIG_DIAGFWD_BRIDGE_CODE
else if (data_type == HSIC_DATA || data_type == HSIC_2_DATA) {
index = data_type - HSIC_DATA;
if (diag_hsic[index].hsic_ch)
queue_work(diag_bridge[index].wq,
&(diag_hsic[index].
diag_read_hsic_work));
}
#endif
err = -1;
}
#ifdef CONFIG_DIAG_OVER_USB
else if (driver->logging_mode == USB_MODE) {
if (data_type == APPS_DATA) {
driver->write_ptr_svc = (struct diag_request *)
(diagmem_alloc(driver, sizeof(struct diag_request),
POOL_TYPE_WRITE_STRUCT));
if (driver->write_ptr_svc) {
driver->write_ptr_svc->length = driver->used;
driver->write_ptr_svc->buf = buf;
err = usb_diag_write(driver->legacy_ch,
driver->write_ptr_svc);
} else
err = -1;
} else if ((data_type >= MODEM_DATA) &&
(data_type <= WCNSS_DATA)) {
write_ptr->buf = buf;
#ifdef DIAG_DEBUG
printk(KERN_INFO "writing data to USB,"
"pkt length %d\n", write_ptr->length);
print_hex_dump(KERN_DEBUG, "Written Packet Data to"
" USB: ", 16, 1, DUMP_PREFIX_ADDRESS,
buf, write_ptr->length, 1);
#endif /* DIAG DEBUG */
err = usb_diag_write(driver->legacy_ch, write_ptr);
}
#ifdef CONFIG_DIAG_SDIO_PIPE
else if (data_type == SDIO_DATA) {
if (machine_is_msm8x60_fusion() ||
machine_is_msm8x60_fusn_ffa()) {
write_ptr->buf = buf;
err = usb_diag_write(driver->mdm_ch, write_ptr);
} else
pr_err("diag: Incorrect sdio data "
"while USB write\n");
}
#endif
#ifdef CONFIG_DIAGFWD_BRIDGE_CODE
else if (data_type == HSIC_DATA || data_type == HSIC_2_DATA) {
index = data_type - HSIC_DATA;
if (diag_hsic[index].hsic_device_enabled) {
struct diag_request *write_ptr_mdm;
write_ptr_mdm = (struct diag_request *)
diagmem_alloc(driver,
sizeof(struct diag_request),
index +
POOL_TYPE_HSIC_WRITE);
if (write_ptr_mdm) {
write_ptr_mdm->buf = buf;
write_ptr_mdm->length =
diag_bridge[index].write_len;
write_ptr_mdm->context = (void *)index;
err = usb_diag_write(
diag_bridge[index].ch, write_ptr_mdm);
/* Return to the pool immediately */
if (err) {
diagmem_free(driver,
write_ptr_mdm,
index +
POOL_TYPE_HSIC_WRITE);
pr_err_ratelimited("diag: HSIC write failure, err: %d, ch %d\n",
err, index);
}
} else {
pr_err("diag: allocate write fail\n");
err = -1;
}
} else {
pr_err("diag: Incorrect HSIC data "
"while USB write\n");
err = -1;
}
} else if (data_type == SMUX_DATA) {
write_ptr->buf = buf;
write_ptr->context = (void *)SMUX;
pr_debug("diag: writing SMUX data\n");
err = usb_diag_write(diag_bridge[SMUX].ch,
write_ptr);
}
#endif
APPEND_DEBUG('d');
}
#endif /* DIAG OVER USB */
return err;
}
static void diag_update_pkt_buffer(unsigned char *buf)
{
unsigned char *ptr = driver->pkt_buf;
unsigned char *temp = buf;
mutex_lock(&driver->diagchar_mutex);
if (CHK_OVERFLOW(ptr, ptr, ptr + PKT_SIZE, driver->pkt_length)) {
memcpy(ptr, temp , driver->pkt_length);
driver->in_busy_pktdata = 1;
} else
printk(KERN_CRIT " Not enough buffer space for PKT_RESP\n");
mutex_unlock(&driver->diagchar_mutex);
}
void diag_update_userspace_clients(unsigned int type)
{
int i;
mutex_lock(&driver->diagchar_mutex);
for (i = 0; i < driver->num_clients; i++)
if (driver->client_map[i].pid != 0)
driver->data_ready[i] |= type;
wake_up_interruptible(&driver->wait_q);
mutex_unlock(&driver->diagchar_mutex);
}
void diag_update_sleeping_process(int process_id, int data_type)
{
int i;
mutex_lock(&driver->diagchar_mutex);
for (i = 0; i < driver->num_clients; i++)
if (driver->client_map[i].pid == process_id) {
driver->data_ready[i] |= data_type;
break;
}
wake_up_interruptible(&driver->wait_q);
mutex_unlock(&driver->diagchar_mutex);
}
static int diag_check_mode_reset(unsigned char *buf)
{
int is_mode_reset = 0;
if (chk_apps_master() && (int)(*(char *)buf) == MODE_CMD)
if ((int)(*(char *)(buf+1)) == RESET_ID)
is_mode_reset = 1;
return is_mode_reset;
}
void diag_send_data(struct diag_master_table entry, unsigned char *buf,
int len, int type)
{
driver->pkt_length = len;
/* If the process_id corresponds to an apps process */
if (entry.process_id != NON_APPS_PROC) {
/* If the message is to be sent to the apps process */
if (type != MODEM_DATA) {
diag_update_pkt_buffer(buf);
diag_update_sleeping_process(entry.process_id,
PKT_TYPE);
}
} else {
if (len > 0) {
if (entry.client_id < NUM_SMD_DATA_CHANNELS) {
struct diag_smd_info *smd_info;
int index = entry.client_id;
/*
* Mode reset should work even if
* modem is down
*/
if ((index == MODEM_DATA) &&
diag_check_mode_reset(buf)) {
return;
}
smd_info = (driver->separate_cmdrsp[index] &&
index < NUM_SMD_CMD_CHANNELS) ?
&driver->smd_cmd[index] :
&driver->smd_data[index];
if (smd_info->ch) {
mutex_lock(&smd_info->smd_ch_mutex);
smd_write(smd_info->ch, buf, len);
mutex_unlock(&smd_info->smd_ch_mutex);
} else {
pr_err("diag: In %s, smd channel %d not open, peripheral: %d, type: %d\n",
__func__, index,
smd_info->peripheral,
smd_info->type);
}
} else {
pr_alert("diag: In %s, incorrect channel: %d",
__func__, entry.client_id);
}
}
}
}
int diag_process_apps_pkt(unsigned char *buf, int len)
{
uint16_t subsys_cmd_code;
int subsys_id, ssid_first, ssid_last, ssid_range;
int packet_type = 1, i, cmd_code;
unsigned char *temp = buf;
int data_type;
int mask_ret;
#if defined(CONFIG_DIAG_OVER_USB)
unsigned char *ptr;
#endif
/* Check if the command is a supported mask command */
mask_ret = diag_process_apps_masks(buf, len);
if (mask_ret <= 0)
return mask_ret;
/* Check for registered clients and forward packet to apropriate proc */
cmd_code = (int)(*(char *)buf);
temp++;
subsys_id = (int)(*(char *)temp);
temp++;
subsys_cmd_code = *(uint16_t *)temp;
temp += 2;
data_type = APPS_DATA;
/* Dont send any command other than mode reset */
if (chk_apps_master() && cmd_code == MODE_CMD) {
if (subsys_id != RESET_ID)
data_type = MODEM_DATA;
}
pr_debug("diag: %d %d %d", cmd_code, subsys_id, subsys_cmd_code);
for (i = 0; i < diag_max_reg; i++) {
entry = driver->table[i];
if (entry.process_id != NO_PROCESS) {
if (entry.cmd_code == cmd_code && entry.subsys_id ==
subsys_id && entry.cmd_code_lo <=
subsys_cmd_code &&
entry.cmd_code_hi >= subsys_cmd_code) {
diag_send_data(entry, buf, len, data_type);
packet_type = 0;
} else if (entry.cmd_code == 255
&& cmd_code == 75) {
if (entry.subsys_id ==
subsys_id &&
entry.cmd_code_lo <=
subsys_cmd_code &&
entry.cmd_code_hi >=
subsys_cmd_code) {
diag_send_data(entry, buf, len,
data_type);
packet_type = 0;
}
} else if (entry.cmd_code == 255 &&
entry.subsys_id == 255) {
if (entry.cmd_code_lo <=
cmd_code &&
entry.
cmd_code_hi >= cmd_code) {
diag_send_data(entry, buf, len,
data_type);
packet_type = 0;
}
}
}
}
#if defined(CONFIG_DIAG_OVER_USB)
/* Check for the command/respond msg for the maximum packet length */
if ((*buf == 0x4b) && (*(buf+1) == 0x12) &&
(*(uint16_t *)(buf+2) == 0x0055)) {
for (i = 0; i < 4; i++)
*(driver->apps_rsp_buf+i) = *(buf+i);
*(uint32_t *)(driver->apps_rsp_buf+4) = PKT_SIZE;
encode_rsp_and_send(7);
return 0;
}
/* Check for Apps Only & get event mask request */
else if (!(driver->smd_data[MODEM_DATA].ch) && chk_apps_only() &&
*buf == 0x81) {
driver->apps_rsp_buf[0] = 0x81;
driver->apps_rsp_buf[1] = 0x0;
*(uint16_t *)(driver->apps_rsp_buf + 2) = 0x0;
*(uint16_t *)(driver->apps_rsp_buf + 4) = EVENT_LAST_ID + 1;
for (i = 0; i < EVENT_LAST_ID/8 + 1; i++)
*(unsigned char *)(driver->apps_rsp_buf + 6 + i) = 0x0;
encode_rsp_and_send(6 + EVENT_LAST_ID/8);
return 0;
}
/* Get log ID range & Check for Apps Only */
else if (!(driver->smd_data[MODEM_DATA].ch) && chk_apps_only()
&& (*buf == 0x73) && *(int *)(buf+4) == 1) {
driver->apps_rsp_buf[0] = 0x73;
*(int *)(driver->apps_rsp_buf + 4) = 0x1; /* operation ID */
*(int *)(driver->apps_rsp_buf + 8) = 0x0; /* success code */
*(int *)(driver->apps_rsp_buf + 12) = LOG_GET_ITEM_NUM(LOG_0);
*(int *)(driver->apps_rsp_buf + 16) = LOG_GET_ITEM_NUM(LOG_1);
*(int *)(driver->apps_rsp_buf + 20) = LOG_GET_ITEM_NUM(LOG_2);
*(int *)(driver->apps_rsp_buf + 24) = LOG_GET_ITEM_NUM(LOG_3);
*(int *)(driver->apps_rsp_buf + 28) = LOG_GET_ITEM_NUM(LOG_4);
*(int *)(driver->apps_rsp_buf + 32) = LOG_GET_ITEM_NUM(LOG_5);
*(int *)(driver->apps_rsp_buf + 36) = LOG_GET_ITEM_NUM(LOG_6);
*(int *)(driver->apps_rsp_buf + 40) = LOG_GET_ITEM_NUM(LOG_7);
*(int *)(driver->apps_rsp_buf + 44) = LOG_GET_ITEM_NUM(LOG_8);
*(int *)(driver->apps_rsp_buf + 48) = LOG_GET_ITEM_NUM(LOG_9);
*(int *)(driver->apps_rsp_buf + 52) = LOG_GET_ITEM_NUM(LOG_10);
*(int *)(driver->apps_rsp_buf + 56) = LOG_GET_ITEM_NUM(LOG_11);
*(int *)(driver->apps_rsp_buf + 60) = LOG_GET_ITEM_NUM(LOG_12);
*(int *)(driver->apps_rsp_buf + 64) = LOG_GET_ITEM_NUM(LOG_13);
*(int *)(driver->apps_rsp_buf + 68) = LOG_GET_ITEM_NUM(LOG_14);
*(int *)(driver->apps_rsp_buf + 72) = LOG_GET_ITEM_NUM(LOG_15);
encode_rsp_and_send(75);
return 0;
}
/* Respond to Get SSID Range request message */
else if (!(driver->smd_data[MODEM_DATA].ch) && chk_apps_only()
&& (*buf == 0x7d) && (*(buf+1) == 0x1)) {
driver->apps_rsp_buf[0] = 0x7d;
driver->apps_rsp_buf[1] = 0x1;
driver->apps_rsp_buf[2] = 0x1;
driver->apps_rsp_buf[3] = 0x0;
/* -1 to un-account for OEM SSID range */
*(int *)(driver->apps_rsp_buf + 4) = MSG_MASK_TBL_CNT - 1;
*(uint16_t *)(driver->apps_rsp_buf + 8) = MSG_SSID_0;
*(uint16_t *)(driver->apps_rsp_buf + 10) = MSG_SSID_0_LAST;
*(uint16_t *)(driver->apps_rsp_buf + 12) = MSG_SSID_1;
*(uint16_t *)(driver->apps_rsp_buf + 14) = MSG_SSID_1_LAST;
*(uint16_t *)(driver->apps_rsp_buf + 16) = MSG_SSID_2;
*(uint16_t *)(driver->apps_rsp_buf + 18) = MSG_SSID_2_LAST;
*(uint16_t *)(driver->apps_rsp_buf + 20) = MSG_SSID_3;
*(uint16_t *)(driver->apps_rsp_buf + 22) = MSG_SSID_3_LAST;
*(uint16_t *)(driver->apps_rsp_buf + 24) = MSG_SSID_4;
*(uint16_t *)(driver->apps_rsp_buf + 26) = MSG_SSID_4_LAST;
*(uint16_t *)(driver->apps_rsp_buf + 28) = MSG_SSID_5;
*(uint16_t *)(driver->apps_rsp_buf + 30) = MSG_SSID_5_LAST;
*(uint16_t *)(driver->apps_rsp_buf + 32) = MSG_SSID_6;
*(uint16_t *)(driver->apps_rsp_buf + 34) = MSG_SSID_6_LAST;
*(uint16_t *)(driver->apps_rsp_buf + 36) = MSG_SSID_7;
*(uint16_t *)(driver->apps_rsp_buf + 38) = MSG_SSID_7_LAST;
*(uint16_t *)(driver->apps_rsp_buf + 40) = MSG_SSID_8;
*(uint16_t *)(driver->apps_rsp_buf + 42) = MSG_SSID_8_LAST;
*(uint16_t *)(driver->apps_rsp_buf + 44) = MSG_SSID_9;
*(uint16_t *)(driver->apps_rsp_buf + 46) = MSG_SSID_9_LAST;
*(uint16_t *)(driver->apps_rsp_buf + 48) = MSG_SSID_10;
*(uint16_t *)(driver->apps_rsp_buf + 50) = MSG_SSID_10_LAST;
*(uint16_t *)(driver->apps_rsp_buf + 52) = MSG_SSID_11;
*(uint16_t *)(driver->apps_rsp_buf + 54) = MSG_SSID_11_LAST;
*(uint16_t *)(driver->apps_rsp_buf + 56) = MSG_SSID_12;
*(uint16_t *)(driver->apps_rsp_buf + 58) = MSG_SSID_12_LAST;
*(uint16_t *)(driver->apps_rsp_buf + 60) = MSG_SSID_13;
*(uint16_t *)(driver->apps_rsp_buf + 62) = MSG_SSID_13_LAST;
*(uint16_t *)(driver->apps_rsp_buf + 64) = MSG_SSID_14;
*(uint16_t *)(driver->apps_rsp_buf + 66) = MSG_SSID_14_LAST;
*(uint16_t *)(driver->apps_rsp_buf + 68) = MSG_SSID_15;
*(uint16_t *)(driver->apps_rsp_buf + 70) = MSG_SSID_15_LAST;
*(uint16_t *)(driver->apps_rsp_buf + 72) = MSG_SSID_16;
*(uint16_t *)(driver->apps_rsp_buf + 74) = MSG_SSID_16_LAST;
*(uint16_t *)(driver->apps_rsp_buf + 76) = MSG_SSID_17;
*(uint16_t *)(driver->apps_rsp_buf + 78) = MSG_SSID_17_LAST;
*(uint16_t *)(driver->apps_rsp_buf + 80) = MSG_SSID_18;
*(uint16_t *)(driver->apps_rsp_buf + 82) = MSG_SSID_18_LAST;
*(uint16_t *)(driver->apps_rsp_buf + 84) = MSG_SSID_19;
*(uint16_t *)(driver->apps_rsp_buf + 86) = MSG_SSID_19_LAST;
*(uint16_t *)(driver->apps_rsp_buf + 88) = MSG_SSID_20;
*(uint16_t *)(driver->apps_rsp_buf + 90) = MSG_SSID_20_LAST;
*(uint16_t *)(driver->apps_rsp_buf + 92) = MSG_SSID_21;
*(uint16_t *)(driver->apps_rsp_buf + 94) = MSG_SSID_21_LAST;
*(uint16_t *)(driver->apps_rsp_buf + 96) = MSG_SSID_22;
*(uint16_t *)(driver->apps_rsp_buf + 98) = MSG_SSID_22_LAST;
encode_rsp_and_send(99);
return 0;
}
/* Check for Apps Only Respond to Get Subsys Build mask */
else if (!(driver->smd_data[MODEM_DATA].ch) && chk_apps_only()
&& (*buf == 0x7d) && (*(buf+1) == 0x2)) {
ssid_first = *(uint16_t *)(buf + 2);
ssid_last = *(uint16_t *)(buf + 4);
ssid_range = 4 * (ssid_last - ssid_first + 1);
/* frame response */
driver->apps_rsp_buf[0] = 0x7d;
driver->apps_rsp_buf[1] = 0x2;
*(uint16_t *)(driver->apps_rsp_buf + 2) = ssid_first;
*(uint16_t *)(driver->apps_rsp_buf + 4) = ssid_last;
driver->apps_rsp_buf[6] = 0x1;
driver->apps_rsp_buf[7] = 0x0;
ptr = driver->apps_rsp_buf + 8;
/* bld time masks */
switch (ssid_first) {
case MSG_SSID_0:
if (ssid_range > sizeof(msg_bld_masks_0)) {
pr_warning("diag: truncating ssid range for ssid 0");
ssid_range = sizeof(msg_bld_masks_0);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_0[i/4];
break;
case MSG_SSID_1:
if (ssid_range > sizeof(msg_bld_masks_1)) {
pr_warning("diag: truncating ssid range for ssid 1");
ssid_range = sizeof(msg_bld_masks_1);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_1[i/4];
break;
case MSG_SSID_2:
if (ssid_range > sizeof(msg_bld_masks_2)) {
pr_warning("diag: truncating ssid range for ssid 2");
ssid_range = sizeof(msg_bld_masks_2);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_2[i/4];
break;
case MSG_SSID_3:
if (ssid_range > sizeof(msg_bld_masks_3)) {
pr_warning("diag: truncating ssid range for ssid 3");
ssid_range = sizeof(msg_bld_masks_3);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_3[i/4];
break;
case MSG_SSID_4:
if (ssid_range > sizeof(msg_bld_masks_4)) {
pr_warning("diag: truncating ssid range for ssid 4");
ssid_range = sizeof(msg_bld_masks_4);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_4[i/4];
break;
case MSG_SSID_5:
if (ssid_range > sizeof(msg_bld_masks_5)) {
pr_warning("diag: truncating ssid range for ssid 5");
ssid_range = sizeof(msg_bld_masks_5);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_5[i/4];
break;
case MSG_SSID_6:
if (ssid_range > sizeof(msg_bld_masks_6)) {
pr_warning("diag: truncating ssid range for ssid 6");
ssid_range = sizeof(msg_bld_masks_6);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_6[i/4];
break;
case MSG_SSID_7:
if (ssid_range > sizeof(msg_bld_masks_7)) {
pr_warning("diag: truncating ssid range for ssid 7");
ssid_range = sizeof(msg_bld_masks_7);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_7[i/4];
break;
case MSG_SSID_8:
if (ssid_range > sizeof(msg_bld_masks_8)) {
pr_warning("diag: truncating ssid range for ssid 8");
ssid_range = sizeof(msg_bld_masks_8);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_8[i/4];
break;
case MSG_SSID_9:
if (ssid_range > sizeof(msg_bld_masks_9)) {
pr_warning("diag: truncating ssid range for ssid 9");
ssid_range = sizeof(msg_bld_masks_9);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_9[i/4];
break;
case MSG_SSID_10:
if (ssid_range > sizeof(msg_bld_masks_10)) {
pr_warning("diag: truncating ssid range for ssid 10");
ssid_range = sizeof(msg_bld_masks_10);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_10[i/4];
break;
case MSG_SSID_11:
if (ssid_range > sizeof(msg_bld_masks_11)) {
pr_warning("diag: truncating ssid range for ssid 11");
ssid_range = sizeof(msg_bld_masks_11);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_11[i/4];
break;
case MSG_SSID_12:
if (ssid_range > sizeof(msg_bld_masks_12)) {
pr_warning("diag: truncating ssid range for ssid 12");
ssid_range = sizeof(msg_bld_masks_12);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_12[i/4];
break;
case MSG_SSID_13:
if (ssid_range > sizeof(msg_bld_masks_13)) {
pr_warning("diag: truncating ssid range for ssid 13");
ssid_range = sizeof(msg_bld_masks_13);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_13[i/4];
break;
case MSG_SSID_14:
if (ssid_range > sizeof(msg_bld_masks_14)) {
pr_warning("diag: truncating ssid range for ssid 14");
ssid_range = sizeof(msg_bld_masks_14);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_14[i/4];
break;
case MSG_SSID_15:
if (ssid_range > sizeof(msg_bld_masks_15)) {
pr_warning("diag: truncating ssid range for ssid 15");
ssid_range = sizeof(msg_bld_masks_15);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_15[i/4];
break;
case MSG_SSID_16:
if (ssid_range > sizeof(msg_bld_masks_16)) {
pr_warning("diag: truncating ssid range for ssid 16");
ssid_range = sizeof(msg_bld_masks_16);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_16[i/4];
break;
case MSG_SSID_17:
if (ssid_range > sizeof(msg_bld_masks_17)) {
pr_warning("diag: truncating ssid range for ssid 17");
ssid_range = sizeof(msg_bld_masks_17);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_17[i/4];
break;
case MSG_SSID_18:
if (ssid_range > sizeof(msg_bld_masks_18)) {
pr_warning("diag: truncating ssid range for ssid 18");
ssid_range = sizeof(msg_bld_masks_18);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_18[i/4];
break;
case MSG_SSID_19:
if (ssid_range > sizeof(msg_bld_masks_19)) {
pr_warning("diag: truncating ssid range for ssid 19");
ssid_range = sizeof(msg_bld_masks_19);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_19[i/4];
break;
case MSG_SSID_20:
if (ssid_range > sizeof(msg_bld_masks_20)) {
pr_warning("diag: truncating ssid range for ssid 20");
ssid_range = sizeof(msg_bld_masks_20);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_20[i/4];
break;
case MSG_SSID_21:
if (ssid_range > sizeof(msg_bld_masks_21)) {
pr_warning("diag: truncating ssid range for ssid 21");
ssid_range = sizeof(msg_bld_masks_21);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_21[i/4];
break;
case MSG_SSID_22:
if (ssid_range > sizeof(msg_bld_masks_22)) {
pr_warning("diag: truncating ssid range for ssid 22");
ssid_range = sizeof(msg_bld_masks_22);
}
for (i = 0; i < ssid_range; i += 4)
*(int *)(ptr + i) = msg_bld_masks_22[i/4];
break;
}
encode_rsp_and_send(8 + ssid_range - 1);
return 0;
}
/* Check for download command */
else if ((cpu_is_msm8x60() || chk_apps_master()) && (*buf == 0x3A)) {
/* send response back */
driver->apps_rsp_buf[0] = *buf;
encode_rsp_and_send(0);
msleep(5000);
/* call download API */
msm_set_restart_mode(RESTART_DLOAD);
printk(KERN_CRIT "diag: download mode set, Rebooting SoC..\n");
kernel_restart(NULL);
/* Not required, represents that command isnt sent to modem */
return 0;
}
/* Check for polling for Apps only DIAG */
else if ((*buf == 0x4b) && (*(buf+1) == 0x32) &&
(*(buf+2) == 0x03)) {
/* If no one has registered for polling */
if (chk_polling_response()) {
/* Respond to polling for Apps only DIAG */
for (i = 0; i < 3; i++)
driver->apps_rsp_buf[i] = *(buf+i);
for (i = 0; i < 13; i++)
driver->apps_rsp_buf[i+3] = 0;
encode_rsp_and_send(15);
return 0;
}
}
/* Return the Delayed Response Wrap Status */
else if ((*buf == 0x4b) && (*(buf+1) == 0x32) &&
(*(buf+2) == 0x04) && (*(buf+3) == 0x0)) {
memcpy(driver->apps_rsp_buf, buf, 4);
driver->apps_rsp_buf[4] = wrap_enabled;
encode_rsp_and_send(4);
return 0;
}
/* Wrap the Delayed Rsp ID */
else if ((*buf == 0x4b) && (*(buf+1) == 0x32) &&
(*(buf+2) == 0x05) && (*(buf+3) == 0x0)) {
wrap_enabled = true;
memcpy(driver->apps_rsp_buf, buf, 4);
driver->apps_rsp_buf[4] = wrap_count;
encode_rsp_and_send(5);
return 0;
}
/* Check for ID for NO MODEM present */
else if (chk_polling_response()) {
/* respond to 0x0 command */
if (*buf == 0x00) {
for (i = 0; i < 55; i++)
driver->apps_rsp_buf[i] = 0;
encode_rsp_and_send(54);
return 0;
}
/* respond to 0x7c command */
else if (*buf == 0x7c) {
driver->apps_rsp_buf[0] = 0x7c;
for (i = 1; i < 8; i++)
driver->apps_rsp_buf[i] = 0;
/* Tools ID for APQ 8060 */
*(int *)(driver->apps_rsp_buf + 8) =
chk_config_get_id();
*(unsigned char *)(driver->apps_rsp_buf + 12) = '\0';
*(unsigned char *)(driver->apps_rsp_buf + 13) = '\0';
encode_rsp_and_send(13);
return 0;
}
}
#endif
return packet_type;
}
#ifdef CONFIG_DIAG_OVER_USB
void diag_send_error_rsp(int index)
{
int i;
/* -1 to accomodate the first byte 0x13 */
if (index > APPS_BUF_SIZE-1) {
pr_err("diag: cannot send err rsp, huge length: %d\n", index);
return;
}
driver->apps_rsp_buf[0] = 0x13; /* error code 13 */
for (i = 0; i < index; i++)
driver->apps_rsp_buf[i+1] = *(driver->hdlc_buf+i);
encode_rsp_and_send(index - 3);
}
#else
static inline void diag_send_error_rsp(int index) {}
#endif
void diag_process_hdlc(void *data, unsigned len)
{
struct diag_hdlc_decode_type hdlc;
int ret, type = 0;
mutex_lock(&driver->diag_hdlc_mutex);
pr_debug("diag: HDLC decode fn, len of data %d\n", len);
hdlc.dest_ptr = driver->hdlc_buf;
hdlc.dest_size = USB_MAX_OUT_BUF;
hdlc.src_ptr = data;
hdlc.src_size = len;
hdlc.src_idx = 0;
hdlc.dest_idx = 0;
hdlc.escaping = 0;
ret = diag_hdlc_decode(&hdlc);
/*
* If the message is 3 bytes or less in length then the message is
* too short. A message will need 4 bytes minimum, since there are
* 2 bytes for the CRC and 1 byte for the ending 0x7e for the hdlc
* encoding
*/
if (hdlc.dest_idx < 4) {
pr_err_ratelimited("diag: In %s, message is too short, len: %d, dest len: %d\n",
__func__, len, hdlc.dest_idx);
mutex_unlock(&driver->diag_hdlc_mutex);
return;
}
if (ret) {
type = diag_process_apps_pkt(driver->hdlc_buf,
hdlc.dest_idx - 3);
if (type < 0) {
mutex_unlock(&driver->diag_hdlc_mutex);
return;
}
} else if (driver->debug_flag) {
printk(KERN_ERR "Packet dropped due to bad HDLC coding/CRC"
" errors or partial packet received, packet"
" length = %d\n", len);
print_hex_dump(KERN_DEBUG, "Dropped Packet Data: ", 16, 1,
DUMP_PREFIX_ADDRESS, data, len, 1);
driver->debug_flag = 0;
}
/* send error responses from APPS for Central Routing */
if (type == 1 && chk_apps_only()) {
diag_send_error_rsp(hdlc.dest_idx);
type = 0;
}
/* implies this packet is NOT meant for apps */
if (!(driver->smd_data[MODEM_DATA].ch) && type == 1) {
if (chk_apps_only()) {
diag_send_error_rsp(hdlc.dest_idx);
} else { /* APQ 8060, Let Q6 respond */
if (driver->smd_data[LPASS_DATA].ch) {
mutex_lock(&driver->smd_data[LPASS_DATA].
smd_ch_mutex);
smd_write(driver->smd_data[LPASS_DATA].ch,
driver->hdlc_buf,
hdlc.dest_idx - 3);
mutex_unlock(&driver->smd_data[LPASS_DATA].
smd_ch_mutex);
}
}
type = 0;
}
#ifdef DIAG_DEBUG
pr_debug("diag: hdlc.dest_idx = %d", hdlc.dest_idx);
for (i = 0; i < hdlc.dest_idx; i++)
printk(KERN_DEBUG "\t%x", *(((unsigned char *)
driver->hdlc_buf)+i));
#endif /* DIAG DEBUG */
/* ignore 2 bytes for CRC, one for 7E and send */
if ((driver->smd_data[MODEM_DATA].ch) && (ret) && (type) &&
(hdlc.dest_idx > 3)) {
APPEND_DEBUG('g');
mutex_lock(&driver->smd_data[MODEM_DATA].smd_ch_mutex);
smd_write(driver->smd_data[MODEM_DATA].ch,
driver->hdlc_buf, hdlc.dest_idx - 3);
mutex_unlock(&driver->smd_data[MODEM_DATA].smd_ch_mutex);
APPEND_DEBUG('h');
#ifdef DIAG_DEBUG
printk(KERN_INFO "writing data to SMD, pkt length %d\n", len);
print_hex_dump(KERN_DEBUG, "Written Packet Data to SMD: ", 16,
1, DUMP_PREFIX_ADDRESS, data, len, 1);
#endif /* DIAG DEBUG */
}
mutex_unlock(&driver->diag_hdlc_mutex);
}
void diag_reset_smd_data(int queue)
{
int i;
for (i = 0; i < NUM_SMD_DATA_CHANNELS; i++) {
driver->smd_data[i].in_busy_1 = 0;
driver->smd_data[i].in_busy_2 = 0;
if (queue)
/* Poll SMD data channels to check for data */
queue_work(driver->diag_wq,
&(driver->smd_data[i].diag_read_smd_work));
}
if (driver->supports_separate_cmdrsp) {
for (i = 0; i < NUM_SMD_CMD_CHANNELS; i++) {
driver->smd_cmd[i].in_busy_1 = 0;
driver->smd_cmd[i].in_busy_2 = 0;
if (queue)
/* Poll SMD data channels to check for data */
queue_work(driver->diag_wq,
&(driver->smd_cmd[i].
diag_read_smd_work));
}
}
}
#ifdef CONFIG_DIAG_OVER_USB
/* 2+1 for modem ; 2 for LPASS ; 1 for WCNSS */
#define N_LEGACY_WRITE (driver->poolsize + 6)
/* Additionally support number of command data and dci channels */
#define N_LEGACY_WRITE_CMD ((N_LEGACY_WRITE) + 4)
#define N_LEGACY_READ 1
static void diag_usb_connect_work_fn(struct work_struct *w)
{
diagfwd_connect();
}
static void diag_usb_disconnect_work_fn(struct work_struct *w)
{
diagfwd_disconnect();
}
int diagfwd_connect(void)
{
int err;
int i;
printk(KERN_DEBUG "diag: USB connected\n");
err = usb_diag_alloc_req(driver->legacy_ch,
(driver->supports_separate_cmdrsp ?
N_LEGACY_WRITE_CMD : N_LEGACY_WRITE),
N_LEGACY_READ);
if (err)
printk(KERN_ERR "diag: unable to alloc USB req on legacy ch");
driver->usb_connected = 1;
diag_reset_smd_data(RESET_AND_QUEUE);
for (i = 0; i < NUM_SMD_DATA_CHANNELS; i++) {
/* Poll SMD CNTL channels to check for data */
diag_smd_notify(&(driver->smd_cntl[i]), SMD_EVENT_DATA);
}
/* Poll USB channel to check for data*/
queue_work(driver->diag_wq, &(driver->diag_read_work));
#ifdef CONFIG_DIAG_SDIO_PIPE
if (machine_is_msm8x60_fusion() || machine_is_msm8x60_fusn_ffa()) {
if (driver->mdm_ch && !IS_ERR(driver->mdm_ch))
diagfwd_connect_sdio();
else
printk(KERN_INFO "diag: No USB MDM ch");
}
#endif
return 0;
}
int diagfwd_disconnect(void)
{
int i;
printk(KERN_DEBUG "diag: USB disconnected\n");
driver->usb_connected = 0;
driver->debug_flag = 1;
usb_diag_free_req(driver->legacy_ch);
if (driver->logging_mode == USB_MODE) {
for (i = 0; i < NUM_SMD_DATA_CHANNELS; i++) {
driver->smd_data[i].in_busy_1 = 1;
driver->smd_data[i].in_busy_2 = 1;
}
if (driver->supports_separate_cmdrsp) {
for (i = 0; i < NUM_SMD_CMD_CHANNELS; i++) {
driver->smd_cmd[i].in_busy_1 = 1;
driver->smd_cmd[i].in_busy_2 = 1;
}
}
}
#ifdef CONFIG_DIAG_SDIO_PIPE
if (machine_is_msm8x60_fusion() || machine_is_msm8x60_fusn_ffa())
if (driver->mdm_ch && !IS_ERR(driver->mdm_ch))
diagfwd_disconnect_sdio();
#endif
/* TBD - notify and flow control SMD */
return 0;
}
static int diagfwd_check_buf_match(int num_channels,
struct diag_smd_info *data, unsigned char *buf)
{
int i;
int found_it = 0;
for (i = 0; i < num_channels; i++) {
if (buf == (void *)data[i].buf_in_1) {
data[i].in_busy_1 = 0;
queue_work(driver->diag_wq,
&(data[i].diag_read_smd_work));
found_it = 1;
break;
} else if (buf == (void *)data[i].buf_in_2) {
data[i].in_busy_2 = 0;
queue_work(driver->diag_wq,
&(data[i].diag_read_smd_work));
found_it = 1;
break;
}
}
return found_it;
}
int diagfwd_write_complete(struct diag_request *diag_write_ptr)
{
unsigned char *buf = diag_write_ptr->buf;
int found_it = 0;
/* Determine if the write complete is for data from modem/apps/q6 */
found_it = diagfwd_check_buf_match(NUM_SMD_DATA_CHANNELS,
driver->smd_data, buf);
if (!found_it && driver->supports_separate_cmdrsp)
found_it = diagfwd_check_buf_match(NUM_SMD_CMD_CHANNELS,
driver->smd_cmd, buf);
#ifdef CONFIG_DIAG_SDIO_PIPE
if (!found_it) {
if (buf == (void *)driver->buf_in_sdio) {
if (machine_is_msm8x60_fusion() ||
machine_is_msm8x60_fusn_ffa())
diagfwd_write_complete_sdio();
else
pr_err("diag: Incorrect buffer pointer while WRITE");
found_it = 1;
}
}
#endif
if (!found_it) {
diagmem_free(driver, (unsigned char *)buf,
POOL_TYPE_HDLC);
diagmem_free(driver, (unsigned char *)diag_write_ptr,
POOL_TYPE_WRITE_STRUCT);
}
return 0;
}
int diagfwd_read_complete(struct diag_request *diag_read_ptr)
{
int status = diag_read_ptr->status;
unsigned char *buf = diag_read_ptr->buf;
/* Determine if the read complete is for data on legacy/mdm ch */
if (buf == (void *)driver->usb_buf_out) {
driver->read_len_legacy = diag_read_ptr->actual;
APPEND_DEBUG('s');
#ifdef DIAG_DEBUG
printk(KERN_INFO "read data from USB, pkt length %d",
diag_read_ptr->actual);
print_hex_dump(KERN_DEBUG, "Read Packet Data from USB: ", 16, 1,
DUMP_PREFIX_ADDRESS, diag_read_ptr->buf,
diag_read_ptr->actual, 1);
#endif /* DIAG DEBUG */
if (driver->logging_mode == USB_MODE) {
if (status != -ECONNRESET && status != -ESHUTDOWN)
queue_work(driver->diag_wq,
&(driver->diag_proc_hdlc_work));
else
queue_work(driver->diag_wq,
&(driver->diag_read_work));
}
}
#ifdef CONFIG_DIAG_SDIO_PIPE
else if (buf == (void *)driver->usb_buf_mdm_out) {
if (machine_is_msm8x60_fusion() ||
machine_is_msm8x60_fusn_ffa()) {
driver->read_len_mdm = diag_read_ptr->actual;
diagfwd_read_complete_sdio();
} else
pr_err("diag: Incorrect buffer pointer while READ");
}
#endif
else
printk(KERN_ERR "diag: Unknown buffer ptr from USB");
return 0;
}
void diag_read_work_fn(struct work_struct *work)
{
APPEND_DEBUG('d');
driver->usb_read_ptr->buf = driver->usb_buf_out;
driver->usb_read_ptr->length = USB_MAX_OUT_BUF;
usb_diag_read(driver->legacy_ch, driver->usb_read_ptr);
APPEND_DEBUG('e');
}
void diag_process_hdlc_fn(struct work_struct *work)
{
APPEND_DEBUG('D');
diag_process_hdlc(driver->usb_buf_out, driver->read_len_legacy);
diag_read_work_fn(work);
APPEND_DEBUG('E');
}
void diag_usb_legacy_notifier(void *priv, unsigned event,
struct diag_request *d_req)
{
switch (event) {
case USB_DIAG_CONNECT:
queue_work(driver->diag_wq,
&driver->diag_usb_connect_work);
break;
case USB_DIAG_DISCONNECT:
queue_work(driver->diag_wq,
&driver->diag_usb_disconnect_work);
break;
case USB_DIAG_READ_DONE:
diagfwd_read_complete(d_req);
break;
case USB_DIAG_WRITE_DONE:
diagfwd_write_complete(d_req);
break;
default:
printk(KERN_ERR "Unknown event from USB diag\n");
break;
}
}
#endif /* DIAG OVER USB */
void diag_smd_notify(void *ctxt, unsigned event)
{
struct diag_smd_info *smd_info = (struct diag_smd_info *)ctxt;
if (!smd_info)
return;
if (event == SMD_EVENT_CLOSE) {
smd_info->ch = 0;
wake_up(&driver->smd_wait_q);
if (smd_info->type == SMD_DATA_TYPE) {
smd_info->notify_context = event;
queue_work(driver->diag_cntl_wq,
&(smd_info->diag_notify_update_smd_work));
} else if (smd_info->type == SMD_DCI_TYPE) {
/* Notify the clients of the close */
diag_dci_notify_client(smd_info->peripheral_mask,
DIAG_STATUS_CLOSED);
}
return;
} else if (event == SMD_EVENT_OPEN) {
if (smd_info->ch_save)
smd_info->ch = smd_info->ch_save;
if (smd_info->type == SMD_CNTL_TYPE) {
smd_info->notify_context = event;
queue_work(driver->diag_cntl_wq,
&(smd_info->diag_notify_update_smd_work));
} else if (smd_info->type == SMD_DCI_TYPE) {
smd_info->notify_context = event;
queue_work(driver->diag_dci_wq,
&(smd_info->diag_notify_update_smd_work));
/* Notify the clients of the open */
diag_dci_notify_client(smd_info->peripheral_mask,
DIAG_STATUS_OPEN);
}
} else if (event == SMD_EVENT_DATA && !driver->real_time_mode &&
smd_info->type == SMD_DATA_TYPE) {
process_lock_on_notify(&smd_info->nrt_lock);
}
wake_up(&driver->smd_wait_q);
if (smd_info->type == SMD_DCI_TYPE ||
smd_info->type == SMD_DCI_CMD_TYPE)
queue_work(driver->diag_dci_wq,
&(smd_info->diag_read_smd_work));
else
queue_work(driver->diag_wq, &(smd_info->diag_read_smd_work));
}
static int diag_smd_probe(struct platform_device *pdev)
{
int r = 0;
int index = -1;
const char *channel_name = NULL;
if (pdev->id == SMD_APPS_MODEM) {
index = MODEM_DATA;
channel_name = "DIAG";
}
#if defined(CONFIG_MSM_N_WAY_SMD)
else if (pdev->id == SMD_APPS_QDSP) {
index = LPASS_DATA;
channel_name = "DIAG";
}
#endif
else if (pdev->id == SMD_APPS_WCNSS) {
index = WCNSS_DATA;
channel_name = "APPS_RIVA_DATA";
}
if (index != -1) {
r = smd_named_open_on_edge(channel_name,
pdev->id,
&driver->smd_data[index].ch,
&driver->smd_data[index],
diag_smd_notify);
driver->smd_data[index].ch_save = driver->smd_data[index].ch;
}
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pr_debug("diag: In %s, open SMD port, Id = %d, r = %d\n",
__func__, pdev->id, r);
return 0;
}
static int diag_smd_cmd_probe(struct platform_device *pdev)
{
int r = 0;
int index = -1;
const char *channel_name = NULL;
if (!driver->supports_separate_cmdrsp)
return 0;
if (pdev->id == SMD_APPS_MODEM) {
index = MODEM_DATA;
channel_name = "DIAG_CMD";
}
if (index != -1) {
r = smd_named_open_on_edge(channel_name,
pdev->id,
&driver->smd_cmd[index].ch,
&driver->smd_cmd[index],
diag_smd_notify);
driver->smd_cmd[index].ch_save =
driver->smd_cmd[index].ch;
}
pr_debug("diag: In %s, open SMD CMD port, Id = %d, r = %d\n",
__func__, pdev->id, r);
return 0;
}
static int diag_smd_runtime_suspend(struct device *dev)
{
dev_dbg(dev, "pm_runtime: suspending...\n");
return 0;
}
static int diag_smd_runtime_resume(struct device *dev)
{
dev_dbg(dev, "pm_runtime: resuming...\n");
return 0;
}
static const struct dev_pm_ops diag_smd_dev_pm_ops = {
.runtime_suspend = diag_smd_runtime_suspend,
.runtime_resume = diag_smd_runtime_resume,
};
static struct platform_driver msm_smd_ch1_driver = {
.probe = diag_smd_probe,
.driver = {
.name = "DIAG",
.owner = THIS_MODULE,
.pm = &diag_smd_dev_pm_ops,
},
};
static struct platform_driver diag_smd_lite_driver = {
.probe = diag_smd_probe,
.driver = {
.name = "APPS_RIVA_DATA",
.owner = THIS_MODULE,
.pm = &diag_smd_dev_pm_ops,
},
};
static struct platform_driver
smd_lite_data_cmd_drivers[NUM_SMD_CMD_CHANNELS] = {
{
/* Modem data */
.probe = diag_smd_cmd_probe,
.driver = {
.name = "DIAG_CMD",
.owner = THIS_MODULE,
.pm = &diag_smd_dev_pm_ops,
},
}
};
int device_supports_separate_cmdrsp(void)
{
return driver->use_device_tree;
}
void diag_smd_destructor(struct diag_smd_info *smd_info)
{
if (smd_info->type == SMD_DATA_TYPE)
wake_lock_destroy(&smd_info->nrt_lock.read_lock);
if (smd_info->ch)
smd_close(smd_info->ch);
smd_info->ch = 0;
smd_info->ch_save = 0;
kfree(smd_info->buf_in_1);
kfree(smd_info->buf_in_2);
kfree(smd_info->write_ptr_1);
kfree(smd_info->write_ptr_2);
kfree(smd_info->buf_in_1_raw);
kfree(smd_info->buf_in_2_raw);
}
int diag_smd_constructor(struct diag_smd_info *smd_info, int peripheral,
int type)
{
smd_info->peripheral = peripheral;
smd_info->type = type;
smd_info->encode_hdlc = 0;
mutex_init(&smd_info->smd_ch_mutex);
switch (peripheral) {
case MODEM_DATA:
smd_info->peripheral_mask = DIAG_CON_MPSS;
break;
case LPASS_DATA:
smd_info->peripheral_mask = DIAG_CON_LPASS;
break;
case WCNSS_DATA:
smd_info->peripheral_mask = DIAG_CON_WCNSS;
break;
default:
pr_err("diag: In %s, unknown peripheral, peripheral: %d\n",
__func__, peripheral);
goto err;
}
smd_info->ch = 0;
smd_info->ch_save = 0;
if (smd_info->buf_in_1 == NULL) {
smd_info->buf_in_1 = kzalloc(IN_BUF_SIZE, GFP_KERNEL);
if (smd_info->buf_in_1 == NULL)
goto err;
kmemleak_not_leak(smd_info->buf_in_1);
}
if (smd_info->write_ptr_1 == NULL) {
smd_info->write_ptr_1 = kzalloc(sizeof(struct diag_request),
GFP_KERNEL);
if (smd_info->write_ptr_1 == NULL)
goto err;
kmemleak_not_leak(smd_info->write_ptr_1);
}
/* The smd data type needs two buffers */
if (smd_info->type == SMD_DATA_TYPE) {
if (smd_info->buf_in_2 == NULL) {
smd_info->buf_in_2 = kzalloc(IN_BUF_SIZE, GFP_KERNEL);
if (smd_info->buf_in_2 == NULL)
goto err;
kmemleak_not_leak(smd_info->buf_in_2);
}
if (smd_info->write_ptr_2 == NULL) {
smd_info->write_ptr_2 =
kzalloc(sizeof(struct diag_request),
GFP_KERNEL);
if (smd_info->write_ptr_2 == NULL)
goto err;
kmemleak_not_leak(smd_info->write_ptr_2);
}
if (driver->supports_apps_hdlc_encoding) {
/* In support of hdlc encoding */
if (smd_info->buf_in_1_raw == NULL) {
smd_info->buf_in_1_raw = kzalloc(IN_BUF_SIZE,
GFP_KERNEL);
if (smd_info->buf_in_1_raw == NULL)
goto err;
kmemleak_not_leak(smd_info->buf_in_1_raw);
}
if (smd_info->buf_in_2_raw == NULL) {
smd_info->buf_in_2_raw = kzalloc(IN_BUF_SIZE,
GFP_KERNEL);
if (smd_info->buf_in_2_raw == NULL)
goto err;
kmemleak_not_leak(smd_info->buf_in_2_raw);
}
}
}
if (smd_info->type == SMD_CMD_TYPE &&
driver->supports_apps_hdlc_encoding) {
/* In support of hdlc encoding */
if (smd_info->buf_in_1_raw == NULL) {
smd_info->buf_in_1_raw = kzalloc(IN_BUF_SIZE,
GFP_KERNEL);
if (smd_info->buf_in_1_raw == NULL)
goto err;
kmemleak_not_leak(smd_info->buf_in_1_raw);
}
}
INIT_WORK(&(smd_info->diag_read_smd_work), diag_read_smd_work_fn);
/*
* The update function assigned to the diag_notify_update_smd_work
* work_struct is meant to be used for updating that is not to
* be done in the context of the smd notify function. The
* notify_context variable can be used for passing additional
* information to the update function.
*/
smd_info->notify_context = 0;
switch (type) {
case SMD_DATA_TYPE:
case SMD_CMD_TYPE:
INIT_WORK(&(smd_info->diag_notify_update_smd_work),
diag_clean_reg_fn);
break;
case SMD_CNTL_TYPE:
INIT_WORK(&(smd_info->diag_notify_update_smd_work),
diag_mask_update_fn);
break;
case SMD_DCI_TYPE:
case SMD_DCI_CMD_TYPE:
INIT_WORK(&(smd_info->diag_notify_update_smd_work),
diag_update_smd_dci_work_fn);
break;
default:
pr_err("diag: In %s, unknown type, type: %d\n", __func__, type);
goto err;
}
/*
* Set function ptr for function to call to process the data that
* was just read from the smd channel
*/
switch (type) {
case SMD_DATA_TYPE:
case SMD_CMD_TYPE:
smd_info->process_smd_read_data = diag_process_smd_read_data;
break;
case SMD_CNTL_TYPE:
smd_info->process_smd_read_data =
diag_process_smd_cntl_read_data;
break;
case SMD_DCI_TYPE:
case SMD_DCI_CMD_TYPE:
smd_info->process_smd_read_data =
diag_process_smd_dci_read_data;
break;
default:
pr_err("diag: In %s, unknown type, type: %d\n", __func__, type);
goto err;
}
smd_info->nrt_lock.enabled = 0;
smd_info->nrt_lock.ref_count = 0;
smd_info->nrt_lock.copy_count = 0;
if (type == SMD_DATA_TYPE) {
spin_lock_init(&smd_info->nrt_lock.read_spinlock);
switch (peripheral) {
case MODEM_DATA:
wake_lock_init(&smd_info->nrt_lock.read_lock,
WAKE_LOCK_SUSPEND, "diag_nrt_modem_read");
break;
case LPASS_DATA:
wake_lock_init(&smd_info->nrt_lock.read_lock,
WAKE_LOCK_SUSPEND, "diag_nrt_lpass_read");
break;
case WCNSS_DATA:
wake_lock_init(&smd_info->nrt_lock.read_lock,
WAKE_LOCK_SUSPEND, "diag_nrt_wcnss_read");
break;
default:
break;
}
}
return 1;
err:
kfree(smd_info->buf_in_1);
kfree(smd_info->buf_in_2);
kfree(smd_info->write_ptr_1);
kfree(smd_info->write_ptr_2);
kfree(smd_info->buf_in_1_raw);
kfree(smd_info->buf_in_2_raw);
return 0;
}
void diagfwd_init(void)
{
int success;
int i;
wrap_enabled = 0;
wrap_count = 0;
diag_debug_buf_idx = 0;
driver->read_len_legacy = 0;
driver->use_device_tree = has_device_tree();
driver->real_time_mode = 1;
/*
* The number of entries in table of buffers
* should not be any smaller than hdlc poolsize.
*/
driver->buf_tbl_size = (buf_tbl_size < driver->poolsize_hdlc) ?
driver->poolsize_hdlc : buf_tbl_size;
driver->supports_separate_cmdrsp = device_supports_separate_cmdrsp();
driver->supports_apps_hdlc_encoding = 1;
mutex_init(&driver->diag_hdlc_mutex);
mutex_init(&driver->diag_cntl_mutex);
for (i = 0; i < NUM_SMD_CONTROL_CHANNELS; i++)
driver->separate_cmdrsp[i] = 0;
for (i = 0; i < NUM_SMD_DATA_CHANNELS; i++) {
success = diag_smd_constructor(&driver->smd_data[i], i,
SMD_DATA_TYPE);
if (!success)
goto err;
}
if (driver->supports_separate_cmdrsp) {
for (i = 0; i < NUM_SMD_CMD_CHANNELS; i++) {
success = diag_smd_constructor(&driver->smd_cmd[i], i,
SMD_CMD_TYPE);
if (!success)
goto err;
}
}
if (driver->usb_buf_out == NULL &&
(driver->usb_buf_out = kzalloc(USB_MAX_OUT_BUF,
GFP_KERNEL)) == NULL)
goto err;
kmemleak_not_leak(driver->usb_buf_out);
if (driver->hdlc_buf == NULL
&& (driver->hdlc_buf = kzalloc(HDLC_MAX, GFP_KERNEL)) == NULL)
goto err;
kmemleak_not_leak(driver->hdlc_buf);
if (driver->client_map == NULL &&
(driver->client_map = kzalloc
((driver->num_clients) * sizeof(struct diag_client_map),
GFP_KERNEL)) == NULL)
goto err;
kmemleak_not_leak(driver->client_map);
if (driver->buf_tbl == NULL)
driver->buf_tbl = kzalloc(driver->buf_tbl_size *
sizeof(struct diag_write_device), GFP_KERNEL);
if (driver->buf_tbl == NULL)
goto err;
kmemleak_not_leak(driver->buf_tbl);
if (driver->data_ready == NULL &&
(driver->data_ready = kzalloc(driver->num_clients * sizeof(int)
, GFP_KERNEL)) == NULL)
goto err;
kmemleak_not_leak(driver->data_ready);
if (driver->table == NULL &&
(driver->table = kzalloc(diag_max_reg*
sizeof(struct diag_master_table),
GFP_KERNEL)) == NULL)
goto err;
kmemleak_not_leak(driver->table);
if (driver->usb_read_ptr == NULL) {
driver->usb_read_ptr = kzalloc(
sizeof(struct diag_request), GFP_KERNEL);
if (driver->usb_read_ptr == NULL)
goto err;
kmemleak_not_leak(driver->usb_read_ptr);
}
if (driver->pkt_buf == NULL &&
(driver->pkt_buf = kzalloc(PKT_SIZE,
GFP_KERNEL)) == NULL)
goto err;
kmemleak_not_leak(driver->pkt_buf);
if (driver->apps_rsp_buf == NULL) {
driver->apps_rsp_buf = kzalloc(APPS_BUF_SIZE, GFP_KERNEL);
if (driver->apps_rsp_buf == NULL)
goto err;
kmemleak_not_leak(driver->apps_rsp_buf);
}
driver->diag_wq = create_singlethread_workqueue("diag_wq");
#ifdef CONFIG_DIAG_OVER_USB
INIT_WORK(&(driver->diag_usb_connect_work),
diag_usb_connect_work_fn);
INIT_WORK(&(driver->diag_usb_disconnect_work),
diag_usb_disconnect_work_fn);
INIT_WORK(&(driver->diag_proc_hdlc_work), diag_process_hdlc_fn);
INIT_WORK(&(driver->diag_read_work), diag_read_work_fn);
driver->legacy_ch = usb_diag_open(DIAG_LEGACY, driver,
diag_usb_legacy_notifier);
if (IS_ERR(driver->legacy_ch)) {
printk(KERN_ERR "Unable to open USB diag legacy channel\n");
goto err;
}
#endif
platform_driver_register(&msm_smd_ch1_driver);
platform_driver_register(&diag_smd_lite_driver);
if (driver->supports_separate_cmdrsp) {
for (i = 0; i < NUM_SMD_CMD_CHANNELS; i++)
platform_driver_register(&smd_lite_data_cmd_drivers[i]);
}
return;
err:
pr_err("diag: Could not initialize diag buffers");
for (i = 0; i < NUM_SMD_DATA_CHANNELS; i++)
diag_smd_destructor(&driver->smd_data[i]);
for (i = 0; i < NUM_SMD_CMD_CHANNELS; i++)
diag_smd_destructor(&driver->smd_cmd[i]);
kfree(driver->buf_msg_mask_update);
kfree(driver->buf_log_mask_update);
kfree(driver->buf_event_mask_update);
kfree(driver->usb_buf_out);
kfree(driver->hdlc_buf);
kfree(driver->client_map);
kfree(driver->buf_tbl);
kfree(driver->data_ready);
kfree(driver->table);
kfree(driver->pkt_buf);
kfree(driver->usb_read_ptr);
kfree(driver->apps_rsp_buf);
if (driver->diag_wq)
destroy_workqueue(driver->diag_wq);
}
void diagfwd_exit(void)
{
int i;
for (i = 0; i < NUM_SMD_DATA_CHANNELS; i++)
diag_smd_destructor(&driver->smd_data[i]);
#ifdef CONFIG_DIAG_OVER_USB
if (driver->usb_connected)
usb_diag_free_req(driver->legacy_ch);
usb_diag_close(driver->legacy_ch);
#endif
platform_driver_unregister(&msm_smd_ch1_driver);
platform_driver_unregister(&diag_smd_lite_driver);
if (driver->supports_separate_cmdrsp) {
for (i = 0; i < NUM_SMD_CMD_CHANNELS; i++) {
diag_smd_destructor(&driver->smd_cmd[i]);
platform_driver_unregister(
&smd_lite_data_cmd_drivers[i]);
}
}
kfree(driver->buf_msg_mask_update);
kfree(driver->buf_log_mask_update);
kfree(driver->buf_event_mask_update);
kfree(driver->usb_buf_out);
kfree(driver->hdlc_buf);
kfree(driver->client_map);
kfree(driver->buf_tbl);
kfree(driver->data_ready);
kfree(driver->table);
kfree(driver->pkt_buf);
kfree(driver->usb_read_ptr);
kfree(driver->apps_rsp_buf);
destroy_workqueue(driver->diag_wq);
}