/* Copyright (c) 2008-2013, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_DIAG_OVER_USB #include #endif #include #include #include #include "diagmem.h" #include "diagchar.h" #include "diagfwd.h" #include "diagfwd_cntl.h" #include "diagfwd_hsic.h" #include "diagchar_hdlc.h" #ifdef CONFIG_DIAG_SDIO_PIPE #include "diagfwd_sdio.h" #endif #include "diag_dci.h" #include "diag_masks.h" #include "diagfwd_bridge.h" #define MODE_CMD 41 #define RESET_ID 2 int diag_debug_buf_idx; unsigned char diag_debug_buf[1024]; /* Number of entries in table of buffers */ static unsigned int buf_tbl_size = 10; struct diag_master_table entry; int wrap_enabled; uint16_t wrap_count; void encode_rsp_and_send(int buf_length) { struct diag_send_desc_type send = { NULL, NULL, DIAG_STATE_START, 0 }; struct diag_hdlc_dest_type enc = { NULL, NULL, 0 }; struct diag_smd_info *data = &(driver->smd_data[MODEM_DATA]); if (buf_length > APPS_BUF_SIZE) { pr_err("diag: In %s, invalid len %d, permissible len %d\n", __func__, buf_length, APPS_BUF_SIZE); return; } send.state = DIAG_STATE_START; send.pkt = driver->apps_rsp_buf; send.last = (void *)(driver->apps_rsp_buf + buf_length); send.terminate = 1; if (!data->in_busy_1) { enc.dest = data->buf_in_1; enc.dest_last = (void *)(data->buf_in_1 + APPS_BUF_SIZE - 1); diag_hdlc_encode(&send, &enc); data->write_ptr_1->buf = data->buf_in_1; data->write_ptr_1->length = (int)(enc.dest - (void *)(data->buf_in_1)); data->in_busy_1 = 1; diag_device_write(data->buf_in_1, data->peripheral, data->write_ptr_1); memset(driver->apps_rsp_buf, '\0', APPS_BUF_SIZE); } } /* Determine if this device uses a device tree */ #ifdef CONFIG_OF static int has_device_tree(void) { struct device_node *node; node = of_find_node_by_path("/"); if (node) { of_node_put(node); return 1; } return 0; } #else static int has_device_tree(void) { return 0; } #endif int chk_config_get_id(void) { /* For all Fusion targets, Modem will always be present */ if (machine_is_msm8x60_fusion() || machine_is_msm8x60_fusn_ffa()) return 0; if (driver->use_device_tree) { if (machine_is_msm8974()) return MSM8974_TOOLS_ID; else return 0; } else { switch (socinfo_get_msm_cpu()) { case MSM_CPU_8X60: return APQ8060_TOOLS_ID; case MSM_CPU_8960: case MSM_CPU_8960AB: return AO8960_TOOLS_ID; case MSM_CPU_8064: case MSM_CPU_8064AB: case MSM_CPU_8064AA: return APQ8064_TOOLS_ID; case MSM_CPU_8930: case MSM_CPU_8930AA: case MSM_CPU_8930AB: return MSM8930_TOOLS_ID; case MSM_CPU_8974: return MSM8974_TOOLS_ID; case MSM_CPU_8625: return MSM8625_TOOLS_ID; default: return 0; } } } /* * This will return TRUE for targets which support apps only mode and hence SSR. * This applies to 8960 and newer targets. */ int chk_apps_only(void) { if (driver->use_device_tree) return 1; switch (socinfo_get_msm_cpu()) { case MSM_CPU_8960: case MSM_CPU_8960AB: case MSM_CPU_8064: case MSM_CPU_8064AB: case MSM_CPU_8064AA: case MSM_CPU_8930: case MSM_CPU_8930AA: case MSM_CPU_8930AB: case MSM_CPU_8627: case MSM_CPU_9615: case MSM_CPU_8974: return 1; default: return 0; } } /* * This will return TRUE for targets which support apps as master. * Thus, SW DLOAD and Mode Reset are supported on apps processor. * This applies to 8960 and newer targets. */ int chk_apps_master(void) { if (driver->use_device_tree) return 1; else if (soc_class_is_msm8960() || soc_class_is_msm8930() || soc_class_is_apq8064() || cpu_is_msm9615()) return 1; else return 0; } int chk_polling_response(void) { if (!(driver->polling_reg_flag) && chk_apps_master()) /* * If the apps processor is master and no other processor * has registered to respond for polling */ return 1; else if (!(driver->smd_data[MODEM_DATA].ch) && !(chk_apps_master())) /* * If the apps processor is not the master and the modem * is not up */ return 1; else return 0; } /* * This function should be called if you feel that the logging process may * need to be woken up. For instance, if the logging mode is MEMORY_DEVICE MODE * and while trying to read data from a SMD data channel there are no buffers * available to read the data into, then this function should be called to * determine if the logging process needs to be woken up. */ void chk_logging_wakeup(void) { int i; /* Find the index of the logging process */ for (i = 0; i < driver->num_clients; i++) if (driver->client_map[i].pid == driver->logging_process_id) break; if (i < driver->num_clients) { /* At very high logging rates a race condition can * occur where the buffers containing the data from * an smd channel are all in use, but the data_ready * flag is cleared. In this case, the buffers never * have their data read/logged. Detect and remedy this * situation. */ if ((driver->data_ready[i] & USER_SPACE_DATA_TYPE) == 0) { driver->data_ready[i] |= USER_SPACE_DATA_TYPE; pr_debug("diag: Force wakeup of logging process\n"); wake_up_interruptible(&driver->wait_q); } } } int diag_add_hdlc_encoding(struct diag_smd_info *smd_info, void *buf, int total_recd, uint8_t *encode_buf, int *encoded_length) { struct diag_send_desc_type send = { NULL, NULL, DIAG_STATE_START, 0 }; struct diag_hdlc_dest_type enc = { NULL, NULL, 0 }; struct data_header { uint8_t control_char; uint8_t version; uint16_t length; }; struct data_header *header; int header_size = sizeof(struct data_header); uint8_t *end_control_char; uint8_t *payload; uint8_t *temp_buf; uint8_t *temp_encode_buf; int src_pkt_len; int encoded_pkt_length; int max_size; int total_processed = 0; int bytes_remaining; int success = 1; temp_buf = buf; temp_encode_buf = encode_buf; bytes_remaining = *encoded_length; while (total_processed < total_recd) { header = (struct data_header *)temp_buf; /* Perform initial error checking */ if (header->control_char != CONTROL_CHAR || header->version != 1) { success = 0; break; } payload = temp_buf + header_size; end_control_char = payload + header->length; if (*end_control_char != CONTROL_CHAR) { success = 0; break; } max_size = 2 * header->length + 3; if (bytes_remaining < max_size) { pr_err("diag: In %s, Not enough room to encode remaining data for peripheral: %d, bytes available: %d, max_size: %d\n", __func__, smd_info->peripheral, bytes_remaining, max_size); success = 0; break; } /* Prepare for encoding the data */ send.state = DIAG_STATE_START; send.pkt = payload; send.last = (void *)(payload + header->length - 1); send.terminate = 1; enc.dest = temp_encode_buf; enc.dest_last = (void *)(temp_encode_buf + max_size); enc.crc = 0; diag_hdlc_encode(&send, &enc); /* Prepare for next packet */ src_pkt_len = (header_size + header->length + 1); total_processed += src_pkt_len; temp_buf += src_pkt_len; encoded_pkt_length = (uint8_t *)enc.dest - temp_encode_buf; bytes_remaining -= encoded_pkt_length; temp_encode_buf = enc.dest; } *encoded_length = (int)(temp_encode_buf - encode_buf); return success; } static int check_bufsize_for_encoding(struct diag_smd_info *smd_info, void *buf, int total_recd) { int buf_size = IN_BUF_SIZE; int max_size = 2 * total_recd + 3; unsigned char *temp_buf; if (max_size > IN_BUF_SIZE) { if (max_size < MAX_IN_BUF_SIZE) { pr_err("diag: In %s, SMD sending packet of %d bytes that may expand to %d bytes, peripheral: %d\n", __func__, total_recd, max_size, smd_info->peripheral); if (buf == smd_info->buf_in_1_raw) { temp_buf = krealloc(smd_info->buf_in_1, max_size, GFP_KERNEL); if (temp_buf) { smd_info->buf_in_1 = temp_buf; buf_size = max_size; } else { buf_size = 0; } } else { temp_buf = krealloc(smd_info->buf_in_2, max_size, GFP_KERNEL); if (temp_buf) { smd_info->buf_in_2 = temp_buf; buf_size = max_size; } else { buf_size = 0; } } } else { pr_err("diag: In %s, SMD sending packet of size %d. HDCL encoding can expand to more than %d bytes, peripheral: %d. Discarding.\n", __func__, max_size, MAX_IN_BUF_SIZE, smd_info->peripheral); buf_size = 0; } } return buf_size; } void process_lock_enabling(struct diag_nrt_wake_lock *lock, int real_time) { unsigned long read_lock_flags; spin_lock_irqsave(&lock->read_spinlock, read_lock_flags); if (real_time) lock->enabled = 0; else lock->enabled = 1; lock->ref_count = 0; lock->copy_count = 0; wake_unlock(&lock->read_lock); spin_unlock_irqrestore(&lock->read_spinlock, read_lock_flags); } void process_lock_on_notify(struct diag_nrt_wake_lock *lock) { unsigned long read_lock_flags; spin_lock_irqsave(&lock->read_spinlock, read_lock_flags); /* * Do not work with ref_count here in case * of spurious interrupt */ if (lock->enabled) wake_lock(&lock->read_lock); spin_unlock_irqrestore(&lock->read_spinlock, read_lock_flags); } void process_lock_on_read(struct diag_nrt_wake_lock *lock, int pkt_len) { unsigned long read_lock_flags; spin_lock_irqsave(&lock->read_spinlock, read_lock_flags); if (lock->enabled) { if (pkt_len > 0) { /* * We have an data that is read that * needs to be processed, make sure the * processor does not go to sleep */ lock->ref_count++; if (!wake_lock_active(&lock->read_lock)) wake_lock(&lock->read_lock); } else { /* * There was no data associated with the * read from the smd, unlock the wake lock * if it is not needed. */ if (lock->ref_count < 1) { if (wake_lock_active(&lock->read_lock)) wake_unlock(&lock->read_lock); lock->ref_count = 0; lock->copy_count = 0; } } } spin_unlock_irqrestore(&lock->read_spinlock, read_lock_flags); } void process_lock_on_copy(struct diag_nrt_wake_lock *lock) { unsigned long read_lock_flags; spin_lock_irqsave(&lock->read_spinlock, read_lock_flags); if (lock->enabled) lock->copy_count++; spin_unlock_irqrestore(&lock->read_spinlock, read_lock_flags); } void process_lock_on_copy_complete(struct diag_nrt_wake_lock *lock) { unsigned long read_lock_flags; spin_lock_irqsave(&lock->read_spinlock, read_lock_flags); if (lock->enabled) { lock->ref_count -= lock->copy_count; if (lock->ref_count < 1) { wake_unlock(&lock->read_lock); lock->ref_count = 0; } lock->copy_count = 0; } spin_unlock_irqrestore(&lock->read_spinlock, read_lock_flags); } /* Process the data read from the smd data channel */ int diag_process_smd_read_data(struct diag_smd_info *smd_info, void *buf, int total_recd) { struct diag_request *write_ptr_modem = NULL; int *in_busy_ptr = 0; int err = 0; /* * Do not process data on command channel if the * channel is not designated to do so */ if ((smd_info->type == SMD_CMD_TYPE) && !driver->separate_cmdrsp[smd_info->peripheral]) { /* This print is for debugging */ pr_err("diag, In %s, received data on non-designated command channel: %d\n", __func__, smd_info->peripheral); return 0; } /* If the data is already hdlc encoded */ if (!smd_info->encode_hdlc) { if (smd_info->buf_in_1 == buf) { write_ptr_modem = smd_info->write_ptr_1; in_busy_ptr = &smd_info->in_busy_1; } else if (smd_info->buf_in_2 == buf) { write_ptr_modem = smd_info->write_ptr_2; in_busy_ptr = &smd_info->in_busy_2; } else { pr_err("diag: In %s, no match for in_busy_1, peripheral: %d\n", __func__, smd_info->peripheral); } if (write_ptr_modem) { write_ptr_modem->length = total_recd; *in_busy_ptr = 1; err = diag_device_write(buf, smd_info->peripheral, write_ptr_modem); if (err) { /* Free up the buffer for future use */ *in_busy_ptr = 0; pr_err_ratelimited("diag: In %s, diag_device_write error: %d\n", __func__, err); } } } else { /* The data is raw and needs to be hdlc encoded */ if (smd_info->buf_in_1_raw == buf) { write_ptr_modem = smd_info->write_ptr_1; in_busy_ptr = &smd_info->in_busy_1; } else if (smd_info->buf_in_2_raw == buf) { write_ptr_modem = smd_info->write_ptr_2; in_busy_ptr = &smd_info->in_busy_2; } else { pr_err("diag: In %s, no match for in_busy_1, peripheral: %d\n", __func__, smd_info->peripheral); } if (write_ptr_modem) { int success = 0; int write_length = 0; unsigned char *write_buf = NULL; write_length = check_bufsize_for_encoding(smd_info, buf, total_recd); if (write_length) { write_buf = (buf == smd_info->buf_in_1_raw) ? smd_info->buf_in_1 : smd_info->buf_in_2; success = diag_add_hdlc_encoding(smd_info, buf, total_recd, write_buf, &write_length); if (success) { write_ptr_modem->length = write_length; *in_busy_ptr = 1; err = diag_device_write(write_buf, smd_info->peripheral, write_ptr_modem); if (err) { /* * Free up the buffer for * future use */ *in_busy_ptr = 0; pr_err_ratelimited("diag: In %s, diag_device_write error: %d\n", __func__, err); } } } } } return 0; } void diag_smd_send_req(struct diag_smd_info *smd_info) { void *buf = NULL, *temp_buf = NULL; int total_recd = 0, r = 0, pkt_len; int loop_count = 0; int notify = 0; if (!smd_info) { pr_err("diag: In %s, no smd info. Not able to read.\n", __func__); return; } /* Determine the buffer to read the data into. */ if (smd_info->type == SMD_DATA_TYPE) { /* If the data is raw and not hdlc encoded */ if (smd_info->encode_hdlc) { if (!smd_info->in_busy_1) buf = smd_info->buf_in_1_raw; else if (!smd_info->in_busy_2) buf = smd_info->buf_in_2_raw; } else { if (!smd_info->in_busy_1) buf = smd_info->buf_in_1; else if (!smd_info->in_busy_2) buf = smd_info->buf_in_2; } } else if (smd_info->type == SMD_CMD_TYPE) { /* If the data is raw and not hdlc encoded */ if (smd_info->encode_hdlc) { if (!smd_info->in_busy_1) buf = smd_info->buf_in_1_raw; } else { if (!smd_info->in_busy_1) buf = smd_info->buf_in_1; } } else if (!smd_info->in_busy_1) { buf = smd_info->buf_in_1; } if (smd_info->ch && buf) { temp_buf = buf; pkt_len = smd_cur_packet_size(smd_info->ch); while (pkt_len && (pkt_len != total_recd)) { loop_count++; r = smd_read_avail(smd_info->ch); pr_debug("diag: In %s, received pkt %d %d\n", __func__, r, total_recd); if (!r) { /* Nothing to read from SMD */ wait_event(driver->smd_wait_q, ((smd_info->ch == 0) || smd_read_avail(smd_info->ch))); /* If the smd channel is open */ if (smd_info->ch) { pr_debug("diag: In %s, return from wait_event\n", __func__); continue; } else { pr_debug("diag: In %s, return from wait_event ch closed\n", __func__); return; } } total_recd += r; if (total_recd > IN_BUF_SIZE) { if (total_recd < MAX_IN_BUF_SIZE) { pr_err("diag: In %s, SMD sending in packets up to %d bytes\n", __func__, total_recd); buf = krealloc(buf, total_recd, GFP_KERNEL); } else { pr_err("diag: In %s, SMD sending in packets more than %d bytes\n", __func__, MAX_IN_BUF_SIZE); return; } } if (pkt_len < r) { pr_err("diag: In %s, SMD sending incorrect pkt\n", __func__); return; } if (pkt_len > r) { pr_debug("diag: In %s, SMD sending partial pkt %d %d %d %d %d %d\n", __func__, pkt_len, r, total_recd, loop_count, smd_info->peripheral, smd_info->type); } /* keep reading for complete packet */ smd_read(smd_info->ch, temp_buf, r); temp_buf += r; } if (!driver->real_time_mode && smd_info->type == SMD_DATA_TYPE) process_lock_on_read(&smd_info->nrt_lock, pkt_len); if (total_recd > 0) { if (!buf) { pr_err("diag: Out of diagmem for Modem\n"); } else if (smd_info->process_smd_read_data) { notify = smd_info->process_smd_read_data( smd_info, buf, total_recd); /* Poll SMD channels to check for data */ if (notify) diag_smd_notify(smd_info, SMD_EVENT_DATA); } } } else if (smd_info->ch && !buf && (driver->logging_mode == MEMORY_DEVICE_MODE)) { chk_logging_wakeup(); } } void diag_read_smd_work_fn(struct work_struct *work) { struct diag_smd_info *smd_info = container_of(work, struct diag_smd_info, diag_read_smd_work); diag_smd_send_req(smd_info); } #ifdef CONFIG_DIAGFWD_BRIDGE_CODE static void diag_mem_dev_mode_ready_update(int index, int hsic_updated) { if (hsic_updated) { unsigned long flags; spin_lock_irqsave(&driver->hsic_ready_spinlock, flags); driver->data_ready[index] |= USER_SPACE_DATA_TYPE; spin_unlock_irqrestore(&driver->hsic_ready_spinlock, flags); } else { driver->data_ready[index] |= USER_SPACE_DATA_TYPE; } } #else static void diag_mem_dev_mode_ready_update(int index, int hsic_updated) { (void) hsic_updated; driver->data_ready[index] |= USER_SPACE_DATA_TYPE; } #endif int diag_device_write(void *buf, int data_type, struct diag_request *write_ptr) { int i, err = 0, index; index = 0; if (driver->logging_mode == MEMORY_DEVICE_MODE) { int hsic_updated = 0; if (data_type == APPS_DATA) { for (i = 0; i < driver->buf_tbl_size; i++) if (driver->buf_tbl[i].length == 0) { driver->buf_tbl[i].buf = buf; driver->buf_tbl[i].length = driver->used; #ifdef DIAG_DEBUG pr_debug("diag: ENQUEUE buf ptr" " and length is %x , %d\n", (unsigned int)(driver->buf_ tbl[i].buf), driver->buf_tbl[i].length); #endif break; } } #ifdef CONFIG_DIAGFWD_BRIDGE_CODE else if (data_type == HSIC_DATA || data_type == HSIC_2_DATA) { unsigned long flags; int foundIndex = -1; hsic_updated = 1; index = data_type - HSIC_DATA; spin_lock_irqsave(&diag_hsic[index].hsic_spinlock, flags); for (i = 0; i < diag_hsic[index].poolsize_hsic_write; i++) { if (diag_hsic[index].hsic_buf_tbl[i].length == 0) { diag_hsic[index].hsic_buf_tbl[i].buf = buf; diag_hsic[index].hsic_buf_tbl[i].length = diag_bridge[index].write_len; diag_hsic[index]. num_hsic_buf_tbl_entries++; foundIndex = i; break; } } spin_unlock_irqrestore(&diag_hsic[index].hsic_spinlock, flags); if (foundIndex == -1) err = -1; else pr_debug("diag: ENQUEUE HSIC buf ptr and length is %x , %d, ch %d\n", (unsigned int)buf, diag_bridge[index].write_len, index); } #endif for (i = 0; i < driver->num_clients; i++) if (driver->client_map[i].pid == driver->logging_process_id) break; if (i < driver->num_clients) { diag_mem_dev_mode_ready_update(i, hsic_updated); pr_debug("diag: wake up logging process\n"); wake_up_interruptible(&driver->wait_q); } else return -EINVAL; } else if (driver->logging_mode == NO_LOGGING_MODE) { if ((data_type >= MODEM_DATA) && (data_type <= WCNSS_DATA)) { driver->smd_data[data_type].in_busy_1 = 0; driver->smd_data[data_type].in_busy_2 = 0; queue_work(driver->diag_wq, &(driver->smd_data[data_type]. diag_read_smd_work)); if (data_type == MODEM_DATA && driver->separate_cmdrsp[data_type]) { driver->smd_cmd[data_type].in_busy_1 = 0; driver->smd_cmd[data_type].in_busy_2 = 0; queue_work(driver->diag_wq, &(driver->smd_cmd[data_type]. diag_read_smd_work)); } } #ifdef CONFIG_DIAG_SDIO_PIPE else if (data_type == SDIO_DATA) { driver->in_busy_sdio = 0; queue_work(driver->diag_sdio_wq, &(driver->diag_read_sdio_work)); } #endif #ifdef CONFIG_DIAGFWD_BRIDGE_CODE else if (data_type == HSIC_DATA || data_type == HSIC_2_DATA) { index = data_type - HSIC_DATA; if (diag_hsic[index].hsic_ch) queue_work(diag_bridge[index].wq, &(diag_hsic[index]. diag_read_hsic_work)); } #endif err = -1; } #ifdef CONFIG_DIAG_OVER_USB else if (driver->logging_mode == USB_MODE) { if (data_type == APPS_DATA) { driver->write_ptr_svc = (struct diag_request *) (diagmem_alloc(driver, sizeof(struct diag_request), POOL_TYPE_WRITE_STRUCT)); if (driver->write_ptr_svc) { driver->write_ptr_svc->length = driver->used; driver->write_ptr_svc->buf = buf; err = usb_diag_write(driver->legacy_ch, driver->write_ptr_svc); } else err = -1; } else if ((data_type >= MODEM_DATA) && (data_type <= WCNSS_DATA)) { write_ptr->buf = buf; #ifdef DIAG_DEBUG printk(KERN_INFO "writing data to USB," "pkt length %d\n", write_ptr->length); print_hex_dump(KERN_DEBUG, "Written Packet Data to" " USB: ", 16, 1, DUMP_PREFIX_ADDRESS, buf, write_ptr->length, 1); #endif /* DIAG DEBUG */ err = usb_diag_write(driver->legacy_ch, write_ptr); } #ifdef CONFIG_DIAG_SDIO_PIPE else if (data_type == SDIO_DATA) { if (machine_is_msm8x60_fusion() || machine_is_msm8x60_fusn_ffa()) { write_ptr->buf = buf; err = usb_diag_write(driver->mdm_ch, write_ptr); } else pr_err("diag: Incorrect sdio data " "while USB write\n"); } #endif #ifdef CONFIG_DIAGFWD_BRIDGE_CODE else if (data_type == HSIC_DATA || data_type == HSIC_2_DATA) { index = data_type - HSIC_DATA; if (diag_hsic[index].hsic_device_enabled) { struct diag_request *write_ptr_mdm; write_ptr_mdm = (struct diag_request *) diagmem_alloc(driver, sizeof(struct diag_request), index + POOL_TYPE_HSIC_WRITE); if (write_ptr_mdm) { write_ptr_mdm->buf = buf; write_ptr_mdm->length = diag_bridge[index].write_len; write_ptr_mdm->context = (void *)index; err = usb_diag_write( diag_bridge[index].ch, write_ptr_mdm); /* Return to the pool immediately */ if (err) { diagmem_free(driver, write_ptr_mdm, index + POOL_TYPE_HSIC_WRITE); pr_err_ratelimited("diag: HSIC write failure, err: %d, ch %d\n", err, index); } } else { pr_err("diag: allocate write fail\n"); err = -1; } } else { pr_err("diag: Incorrect HSIC data " "while USB write\n"); err = -1; } } else if (data_type == SMUX_DATA) { write_ptr->buf = buf; write_ptr->context = (void *)SMUX; pr_debug("diag: writing SMUX data\n"); err = usb_diag_write(diag_bridge[SMUX].ch, write_ptr); } #endif APPEND_DEBUG('d'); } #endif /* DIAG OVER USB */ return err; } static void diag_update_pkt_buffer(unsigned char *buf) { unsigned char *ptr = driver->pkt_buf; unsigned char *temp = buf; mutex_lock(&driver->diagchar_mutex); if (CHK_OVERFLOW(ptr, ptr, ptr + PKT_SIZE, driver->pkt_length)) { memcpy(ptr, temp , driver->pkt_length); driver->in_busy_pktdata = 1; } else printk(KERN_CRIT " Not enough buffer space for PKT_RESP\n"); mutex_unlock(&driver->diagchar_mutex); } void diag_update_userspace_clients(unsigned int type) { int i; mutex_lock(&driver->diagchar_mutex); for (i = 0; i < driver->num_clients; i++) if (driver->client_map[i].pid != 0) driver->data_ready[i] |= type; wake_up_interruptible(&driver->wait_q); mutex_unlock(&driver->diagchar_mutex); } void diag_update_sleeping_process(int process_id, int data_type) { int i; mutex_lock(&driver->diagchar_mutex); for (i = 0; i < driver->num_clients; i++) if (driver->client_map[i].pid == process_id) { driver->data_ready[i] |= data_type; break; } wake_up_interruptible(&driver->wait_q); mutex_unlock(&driver->diagchar_mutex); } static int diag_check_mode_reset(unsigned char *buf) { int is_mode_reset = 0; if (chk_apps_master() && (int)(*(char *)buf) == MODE_CMD) if ((int)(*(char *)(buf+1)) == RESET_ID) is_mode_reset = 1; return is_mode_reset; } void diag_send_data(struct diag_master_table entry, unsigned char *buf, int len, int type) { driver->pkt_length = len; /* If the process_id corresponds to an apps process */ if (entry.process_id != NON_APPS_PROC) { /* If the message is to be sent to the apps process */ if (type != MODEM_DATA) { diag_update_pkt_buffer(buf); diag_update_sleeping_process(entry.process_id, PKT_TYPE); } } else { if (len > 0) { if (entry.client_id < NUM_SMD_DATA_CHANNELS) { struct diag_smd_info *smd_info; int index = entry.client_id; /* * Mode reset should work even if * modem is down */ if ((index == MODEM_DATA) && diag_check_mode_reset(buf)) { return; } smd_info = (driver->separate_cmdrsp[index] && index < NUM_SMD_CMD_CHANNELS) ? &driver->smd_cmd[index] : &driver->smd_data[index]; if (smd_info->ch) { mutex_lock(&smd_info->smd_ch_mutex); smd_write(smd_info->ch, buf, len); mutex_unlock(&smd_info->smd_ch_mutex); } else { pr_err("diag: In %s, smd channel %d not open, peripheral: %d, type: %d\n", __func__, index, smd_info->peripheral, smd_info->type); } } else { pr_alert("diag: In %s, incorrect channel: %d", __func__, entry.client_id); } } } } int diag_process_apps_pkt(unsigned char *buf, int len) { uint16_t subsys_cmd_code; int subsys_id, ssid_first, ssid_last, ssid_range; int packet_type = 1, i, cmd_code; unsigned char *temp = buf; int data_type; int mask_ret; #if defined(CONFIG_DIAG_OVER_USB) unsigned char *ptr; #endif /* Check if the command is a supported mask command */ mask_ret = diag_process_apps_masks(buf, len); if (mask_ret <= 0) return mask_ret; /* Check for registered clients and forward packet to apropriate proc */ cmd_code = (int)(*(char *)buf); temp++; subsys_id = (int)(*(char *)temp); temp++; subsys_cmd_code = *(uint16_t *)temp; temp += 2; data_type = APPS_DATA; /* Dont send any command other than mode reset */ if (chk_apps_master() && cmd_code == MODE_CMD) { if (subsys_id != RESET_ID) data_type = MODEM_DATA; } pr_debug("diag: %d %d %d", cmd_code, subsys_id, subsys_cmd_code); for (i = 0; i < diag_max_reg; i++) { entry = driver->table[i]; if (entry.process_id != NO_PROCESS) { if (entry.cmd_code == cmd_code && entry.subsys_id == subsys_id && entry.cmd_code_lo <= subsys_cmd_code && entry.cmd_code_hi >= subsys_cmd_code) { diag_send_data(entry, buf, len, data_type); packet_type = 0; } else if (entry.cmd_code == 255 && cmd_code == 75) { if (entry.subsys_id == subsys_id && entry.cmd_code_lo <= subsys_cmd_code && entry.cmd_code_hi >= subsys_cmd_code) { diag_send_data(entry, buf, len, data_type); packet_type = 0; } } else if (entry.cmd_code == 255 && entry.subsys_id == 255) { if (entry.cmd_code_lo <= cmd_code && entry. cmd_code_hi >= cmd_code) { diag_send_data(entry, buf, len, data_type); packet_type = 0; } } } } #if defined(CONFIG_DIAG_OVER_USB) /* Check for the command/respond msg for the maximum packet length */ if ((*buf == 0x4b) && (*(buf+1) == 0x12) && (*(uint16_t *)(buf+2) == 0x0055)) { for (i = 0; i < 4; i++) *(driver->apps_rsp_buf+i) = *(buf+i); *(uint32_t *)(driver->apps_rsp_buf+4) = PKT_SIZE; encode_rsp_and_send(7); return 0; } /* Check for Apps Only & get event mask request */ else if (!(driver->smd_data[MODEM_DATA].ch) && chk_apps_only() && *buf == 0x81) { driver->apps_rsp_buf[0] = 0x81; driver->apps_rsp_buf[1] = 0x0; *(uint16_t *)(driver->apps_rsp_buf + 2) = 0x0; *(uint16_t *)(driver->apps_rsp_buf + 4) = EVENT_LAST_ID + 1; for (i = 0; i < EVENT_LAST_ID/8 + 1; i++) *(unsigned char *)(driver->apps_rsp_buf + 6 + i) = 0x0; encode_rsp_and_send(6 + EVENT_LAST_ID/8); return 0; } /* Get log ID range & Check for Apps Only */ else if (!(driver->smd_data[MODEM_DATA].ch) && chk_apps_only() && (*buf == 0x73) && *(int *)(buf+4) == 1) { driver->apps_rsp_buf[0] = 0x73; *(int *)(driver->apps_rsp_buf + 4) = 0x1; /* operation ID */ *(int *)(driver->apps_rsp_buf + 8) = 0x0; /* success code */ *(int *)(driver->apps_rsp_buf + 12) = LOG_GET_ITEM_NUM(LOG_0); *(int *)(driver->apps_rsp_buf + 16) = LOG_GET_ITEM_NUM(LOG_1); *(int *)(driver->apps_rsp_buf + 20) = LOG_GET_ITEM_NUM(LOG_2); *(int *)(driver->apps_rsp_buf + 24) = LOG_GET_ITEM_NUM(LOG_3); *(int *)(driver->apps_rsp_buf + 28) = LOG_GET_ITEM_NUM(LOG_4); *(int *)(driver->apps_rsp_buf + 32) = LOG_GET_ITEM_NUM(LOG_5); *(int *)(driver->apps_rsp_buf + 36) = LOG_GET_ITEM_NUM(LOG_6); *(int *)(driver->apps_rsp_buf + 40) = LOG_GET_ITEM_NUM(LOG_7); *(int *)(driver->apps_rsp_buf + 44) = LOG_GET_ITEM_NUM(LOG_8); *(int *)(driver->apps_rsp_buf + 48) = LOG_GET_ITEM_NUM(LOG_9); *(int *)(driver->apps_rsp_buf + 52) = LOG_GET_ITEM_NUM(LOG_10); *(int *)(driver->apps_rsp_buf + 56) = LOG_GET_ITEM_NUM(LOG_11); *(int *)(driver->apps_rsp_buf + 60) = LOG_GET_ITEM_NUM(LOG_12); *(int *)(driver->apps_rsp_buf + 64) = LOG_GET_ITEM_NUM(LOG_13); *(int *)(driver->apps_rsp_buf + 68) = LOG_GET_ITEM_NUM(LOG_14); *(int *)(driver->apps_rsp_buf + 72) = LOG_GET_ITEM_NUM(LOG_15); encode_rsp_and_send(75); return 0; } /* Respond to Get SSID Range request message */ else if (!(driver->smd_data[MODEM_DATA].ch) && chk_apps_only() && (*buf == 0x7d) && (*(buf+1) == 0x1)) { driver->apps_rsp_buf[0] = 0x7d; driver->apps_rsp_buf[1] = 0x1; driver->apps_rsp_buf[2] = 0x1; driver->apps_rsp_buf[3] = 0x0; /* -1 to un-account for OEM SSID range */ *(int *)(driver->apps_rsp_buf + 4) = MSG_MASK_TBL_CNT - 1; *(uint16_t *)(driver->apps_rsp_buf + 8) = MSG_SSID_0; *(uint16_t *)(driver->apps_rsp_buf + 10) = MSG_SSID_0_LAST; *(uint16_t *)(driver->apps_rsp_buf + 12) = MSG_SSID_1; *(uint16_t *)(driver->apps_rsp_buf + 14) = MSG_SSID_1_LAST; *(uint16_t *)(driver->apps_rsp_buf + 16) = MSG_SSID_2; *(uint16_t *)(driver->apps_rsp_buf + 18) = MSG_SSID_2_LAST; *(uint16_t *)(driver->apps_rsp_buf + 20) = MSG_SSID_3; *(uint16_t *)(driver->apps_rsp_buf + 22) = MSG_SSID_3_LAST; *(uint16_t *)(driver->apps_rsp_buf + 24) = MSG_SSID_4; *(uint16_t *)(driver->apps_rsp_buf + 26) = MSG_SSID_4_LAST; *(uint16_t *)(driver->apps_rsp_buf + 28) = MSG_SSID_5; *(uint16_t *)(driver->apps_rsp_buf + 30) = MSG_SSID_5_LAST; *(uint16_t *)(driver->apps_rsp_buf + 32) = MSG_SSID_6; *(uint16_t *)(driver->apps_rsp_buf + 34) = MSG_SSID_6_LAST; *(uint16_t *)(driver->apps_rsp_buf + 36) = MSG_SSID_7; *(uint16_t *)(driver->apps_rsp_buf + 38) = MSG_SSID_7_LAST; *(uint16_t *)(driver->apps_rsp_buf + 40) = MSG_SSID_8; *(uint16_t *)(driver->apps_rsp_buf + 42) = MSG_SSID_8_LAST; *(uint16_t *)(driver->apps_rsp_buf + 44) = MSG_SSID_9; *(uint16_t *)(driver->apps_rsp_buf + 46) = MSG_SSID_9_LAST; *(uint16_t *)(driver->apps_rsp_buf + 48) = MSG_SSID_10; *(uint16_t *)(driver->apps_rsp_buf + 50) = MSG_SSID_10_LAST; *(uint16_t *)(driver->apps_rsp_buf + 52) = MSG_SSID_11; *(uint16_t *)(driver->apps_rsp_buf + 54) = MSG_SSID_11_LAST; *(uint16_t *)(driver->apps_rsp_buf + 56) = MSG_SSID_12; *(uint16_t *)(driver->apps_rsp_buf + 58) = MSG_SSID_12_LAST; *(uint16_t *)(driver->apps_rsp_buf + 60) = MSG_SSID_13; *(uint16_t *)(driver->apps_rsp_buf + 62) = MSG_SSID_13_LAST; *(uint16_t *)(driver->apps_rsp_buf + 64) = MSG_SSID_14; *(uint16_t *)(driver->apps_rsp_buf + 66) = MSG_SSID_14_LAST; *(uint16_t *)(driver->apps_rsp_buf + 68) = MSG_SSID_15; *(uint16_t *)(driver->apps_rsp_buf + 70) = MSG_SSID_15_LAST; *(uint16_t *)(driver->apps_rsp_buf + 72) = MSG_SSID_16; *(uint16_t *)(driver->apps_rsp_buf + 74) = MSG_SSID_16_LAST; *(uint16_t *)(driver->apps_rsp_buf + 76) = MSG_SSID_17; *(uint16_t *)(driver->apps_rsp_buf + 78) = MSG_SSID_17_LAST; *(uint16_t *)(driver->apps_rsp_buf + 80) = MSG_SSID_18; *(uint16_t *)(driver->apps_rsp_buf + 82) = MSG_SSID_18_LAST; *(uint16_t *)(driver->apps_rsp_buf + 84) = MSG_SSID_19; *(uint16_t *)(driver->apps_rsp_buf + 86) = MSG_SSID_19_LAST; *(uint16_t *)(driver->apps_rsp_buf + 88) = MSG_SSID_20; *(uint16_t *)(driver->apps_rsp_buf + 90) = MSG_SSID_20_LAST; *(uint16_t *)(driver->apps_rsp_buf + 92) = MSG_SSID_21; *(uint16_t *)(driver->apps_rsp_buf + 94) = MSG_SSID_21_LAST; *(uint16_t *)(driver->apps_rsp_buf + 96) = MSG_SSID_22; *(uint16_t *)(driver->apps_rsp_buf + 98) = MSG_SSID_22_LAST; encode_rsp_and_send(99); return 0; } /* Check for Apps Only Respond to Get Subsys Build mask */ else if (!(driver->smd_data[MODEM_DATA].ch) && chk_apps_only() && (*buf == 0x7d) && (*(buf+1) == 0x2)) { ssid_first = *(uint16_t *)(buf + 2); ssid_last = *(uint16_t *)(buf + 4); ssid_range = 4 * (ssid_last - ssid_first + 1); /* frame response */ driver->apps_rsp_buf[0] = 0x7d; driver->apps_rsp_buf[1] = 0x2; *(uint16_t *)(driver->apps_rsp_buf + 2) = ssid_first; *(uint16_t *)(driver->apps_rsp_buf + 4) = ssid_last; driver->apps_rsp_buf[6] = 0x1; driver->apps_rsp_buf[7] = 0x0; ptr = driver->apps_rsp_buf + 8; /* bld time masks */ switch (ssid_first) { case MSG_SSID_0: if (ssid_range > sizeof(msg_bld_masks_0)) { pr_warning("diag: truncating ssid range for ssid 0"); ssid_range = sizeof(msg_bld_masks_0); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_0[i/4]; break; case MSG_SSID_1: if (ssid_range > sizeof(msg_bld_masks_1)) { pr_warning("diag: truncating ssid range for ssid 1"); ssid_range = sizeof(msg_bld_masks_1); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_1[i/4]; break; case MSG_SSID_2: if (ssid_range > sizeof(msg_bld_masks_2)) { pr_warning("diag: truncating ssid range for ssid 2"); ssid_range = sizeof(msg_bld_masks_2); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_2[i/4]; break; case MSG_SSID_3: if (ssid_range > sizeof(msg_bld_masks_3)) { pr_warning("diag: truncating ssid range for ssid 3"); ssid_range = sizeof(msg_bld_masks_3); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_3[i/4]; break; case MSG_SSID_4: if (ssid_range > sizeof(msg_bld_masks_4)) { pr_warning("diag: truncating ssid range for ssid 4"); ssid_range = sizeof(msg_bld_masks_4); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_4[i/4]; break; case MSG_SSID_5: if (ssid_range > sizeof(msg_bld_masks_5)) { pr_warning("diag: truncating ssid range for ssid 5"); ssid_range = sizeof(msg_bld_masks_5); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_5[i/4]; break; case MSG_SSID_6: if (ssid_range > sizeof(msg_bld_masks_6)) { pr_warning("diag: truncating ssid range for ssid 6"); ssid_range = sizeof(msg_bld_masks_6); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_6[i/4]; break; case MSG_SSID_7: if (ssid_range > sizeof(msg_bld_masks_7)) { pr_warning("diag: truncating ssid range for ssid 7"); ssid_range = sizeof(msg_bld_masks_7); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_7[i/4]; break; case MSG_SSID_8: if (ssid_range > sizeof(msg_bld_masks_8)) { pr_warning("diag: truncating ssid range for ssid 8"); ssid_range = sizeof(msg_bld_masks_8); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_8[i/4]; break; case MSG_SSID_9: if (ssid_range > sizeof(msg_bld_masks_9)) { pr_warning("diag: truncating ssid range for ssid 9"); ssid_range = sizeof(msg_bld_masks_9); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_9[i/4]; break; case MSG_SSID_10: if (ssid_range > sizeof(msg_bld_masks_10)) { pr_warning("diag: truncating ssid range for ssid 10"); ssid_range = sizeof(msg_bld_masks_10); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_10[i/4]; break; case MSG_SSID_11: if (ssid_range > sizeof(msg_bld_masks_11)) { pr_warning("diag: truncating ssid range for ssid 11"); ssid_range = sizeof(msg_bld_masks_11); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_11[i/4]; break; case MSG_SSID_12: if (ssid_range > sizeof(msg_bld_masks_12)) { pr_warning("diag: truncating ssid range for ssid 12"); ssid_range = sizeof(msg_bld_masks_12); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_12[i/4]; break; case MSG_SSID_13: if (ssid_range > sizeof(msg_bld_masks_13)) { pr_warning("diag: truncating ssid range for ssid 13"); ssid_range = sizeof(msg_bld_masks_13); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_13[i/4]; break; case MSG_SSID_14: if (ssid_range > sizeof(msg_bld_masks_14)) { pr_warning("diag: truncating ssid range for ssid 14"); ssid_range = sizeof(msg_bld_masks_14); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_14[i/4]; break; case MSG_SSID_15: if (ssid_range > sizeof(msg_bld_masks_15)) { pr_warning("diag: truncating ssid range for ssid 15"); ssid_range = sizeof(msg_bld_masks_15); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_15[i/4]; break; case MSG_SSID_16: if (ssid_range > sizeof(msg_bld_masks_16)) { pr_warning("diag: truncating ssid range for ssid 16"); ssid_range = sizeof(msg_bld_masks_16); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_16[i/4]; break; case MSG_SSID_17: if (ssid_range > sizeof(msg_bld_masks_17)) { pr_warning("diag: truncating ssid range for ssid 17"); ssid_range = sizeof(msg_bld_masks_17); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_17[i/4]; break; case MSG_SSID_18: if (ssid_range > sizeof(msg_bld_masks_18)) { pr_warning("diag: truncating ssid range for ssid 18"); ssid_range = sizeof(msg_bld_masks_18); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_18[i/4]; break; case MSG_SSID_19: if (ssid_range > sizeof(msg_bld_masks_19)) { pr_warning("diag: truncating ssid range for ssid 19"); ssid_range = sizeof(msg_bld_masks_19); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_19[i/4]; break; case MSG_SSID_20: if (ssid_range > sizeof(msg_bld_masks_20)) { pr_warning("diag: truncating ssid range for ssid 20"); ssid_range = sizeof(msg_bld_masks_20); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_20[i/4]; break; case MSG_SSID_21: if (ssid_range > sizeof(msg_bld_masks_21)) { pr_warning("diag: truncating ssid range for ssid 21"); ssid_range = sizeof(msg_bld_masks_21); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_21[i/4]; break; case MSG_SSID_22: if (ssid_range > sizeof(msg_bld_masks_22)) { pr_warning("diag: truncating ssid range for ssid 22"); ssid_range = sizeof(msg_bld_masks_22); } for (i = 0; i < ssid_range; i += 4) *(int *)(ptr + i) = msg_bld_masks_22[i/4]; break; } encode_rsp_and_send(8 + ssid_range - 1); return 0; } /* Check for download command */ else if ((cpu_is_msm8x60() || chk_apps_master()) && (*buf == 0x3A)) { /* send response back */ driver->apps_rsp_buf[0] = *buf; encode_rsp_and_send(0); msleep(5000); /* call download API */ msm_set_restart_mode(RESTART_DLOAD); printk(KERN_CRIT "diag: download mode set, Rebooting SoC..\n"); kernel_restart(NULL); /* Not required, represents that command isnt sent to modem */ return 0; } /* Check for polling for Apps only DIAG */ else if ((*buf == 0x4b) && (*(buf+1) == 0x32) && (*(buf+2) == 0x03)) { /* If no one has registered for polling */ if (chk_polling_response()) { /* Respond to polling for Apps only DIAG */ for (i = 0; i < 3; i++) driver->apps_rsp_buf[i] = *(buf+i); for (i = 0; i < 13; i++) driver->apps_rsp_buf[i+3] = 0; encode_rsp_and_send(15); return 0; } } /* Return the Delayed Response Wrap Status */ else if ((*buf == 0x4b) && (*(buf+1) == 0x32) && (*(buf+2) == 0x04) && (*(buf+3) == 0x0)) { memcpy(driver->apps_rsp_buf, buf, 4); driver->apps_rsp_buf[4] = wrap_enabled; encode_rsp_and_send(4); return 0; } /* Wrap the Delayed Rsp ID */ else if ((*buf == 0x4b) && (*(buf+1) == 0x32) && (*(buf+2) == 0x05) && (*(buf+3) == 0x0)) { wrap_enabled = true; memcpy(driver->apps_rsp_buf, buf, 4); driver->apps_rsp_buf[4] = wrap_count; encode_rsp_and_send(5); return 0; } /* Check for ID for NO MODEM present */ else if (chk_polling_response()) { /* respond to 0x0 command */ if (*buf == 0x00) { for (i = 0; i < 55; i++) driver->apps_rsp_buf[i] = 0; encode_rsp_and_send(54); return 0; } /* respond to 0x7c command */ else if (*buf == 0x7c) { driver->apps_rsp_buf[0] = 0x7c; for (i = 1; i < 8; i++) driver->apps_rsp_buf[i] = 0; /* Tools ID for APQ 8060 */ *(int *)(driver->apps_rsp_buf + 8) = chk_config_get_id(); *(unsigned char *)(driver->apps_rsp_buf + 12) = '\0'; *(unsigned char *)(driver->apps_rsp_buf + 13) = '\0'; encode_rsp_and_send(13); return 0; } } #endif return packet_type; } #ifdef CONFIG_DIAG_OVER_USB void diag_send_error_rsp(int index) { int i; /* -1 to accomodate the first byte 0x13 */ if (index > APPS_BUF_SIZE-1) { pr_err("diag: cannot send err rsp, huge length: %d\n", index); return; } driver->apps_rsp_buf[0] = 0x13; /* error code 13 */ for (i = 0; i < index; i++) driver->apps_rsp_buf[i+1] = *(driver->hdlc_buf+i); encode_rsp_and_send(index - 3); } #else static inline void diag_send_error_rsp(int index) {} #endif void diag_process_hdlc(void *data, unsigned len) { struct diag_hdlc_decode_type hdlc; int ret, type = 0; mutex_lock(&driver->diag_hdlc_mutex); pr_debug("diag: HDLC decode fn, len of data %d\n", len); hdlc.dest_ptr = driver->hdlc_buf; hdlc.dest_size = USB_MAX_OUT_BUF; hdlc.src_ptr = data; hdlc.src_size = len; hdlc.src_idx = 0; hdlc.dest_idx = 0; hdlc.escaping = 0; ret = diag_hdlc_decode(&hdlc); /* * If the message is 3 bytes or less in length then the message is * too short. A message will need 4 bytes minimum, since there are * 2 bytes for the CRC and 1 byte for the ending 0x7e for the hdlc * encoding */ if (hdlc.dest_idx < 4) { pr_err_ratelimited("diag: In %s, message is too short, len: %d, dest len: %d\n", __func__, len, hdlc.dest_idx); mutex_unlock(&driver->diag_hdlc_mutex); return; } if (ret) { type = diag_process_apps_pkt(driver->hdlc_buf, hdlc.dest_idx - 3); if (type < 0) { mutex_unlock(&driver->diag_hdlc_mutex); return; } } else if (driver->debug_flag) { printk(KERN_ERR "Packet dropped due to bad HDLC coding/CRC" " errors or partial packet received, packet" " length = %d\n", len); print_hex_dump(KERN_DEBUG, "Dropped Packet Data: ", 16, 1, DUMP_PREFIX_ADDRESS, data, len, 1); driver->debug_flag = 0; } /* send error responses from APPS for Central Routing */ if (type == 1 && chk_apps_only()) { diag_send_error_rsp(hdlc.dest_idx); type = 0; } /* implies this packet is NOT meant for apps */ if (!(driver->smd_data[MODEM_DATA].ch) && type == 1) { if (chk_apps_only()) { diag_send_error_rsp(hdlc.dest_idx); } else { /* APQ 8060, Let Q6 respond */ if (driver->smd_data[LPASS_DATA].ch) { mutex_lock(&driver->smd_data[LPASS_DATA]. smd_ch_mutex); smd_write(driver->smd_data[LPASS_DATA].ch, driver->hdlc_buf, hdlc.dest_idx - 3); mutex_unlock(&driver->smd_data[LPASS_DATA]. smd_ch_mutex); } } type = 0; } #ifdef DIAG_DEBUG pr_debug("diag: hdlc.dest_idx = %d", hdlc.dest_idx); for (i = 0; i < hdlc.dest_idx; i++) printk(KERN_DEBUG "\t%x", *(((unsigned char *) driver->hdlc_buf)+i)); #endif /* DIAG DEBUG */ /* ignore 2 bytes for CRC, one for 7E and send */ if ((driver->smd_data[MODEM_DATA].ch) && (ret) && (type) && (hdlc.dest_idx > 3)) { APPEND_DEBUG('g'); mutex_lock(&driver->smd_data[MODEM_DATA].smd_ch_mutex); smd_write(driver->smd_data[MODEM_DATA].ch, driver->hdlc_buf, hdlc.dest_idx - 3); mutex_unlock(&driver->smd_data[MODEM_DATA].smd_ch_mutex); APPEND_DEBUG('h'); #ifdef DIAG_DEBUG printk(KERN_INFO "writing data to SMD, pkt length %d\n", len); print_hex_dump(KERN_DEBUG, "Written Packet Data to SMD: ", 16, 1, DUMP_PREFIX_ADDRESS, data, len, 1); #endif /* DIAG DEBUG */ } mutex_unlock(&driver->diag_hdlc_mutex); } void diag_reset_smd_data(int queue) { int i; for (i = 0; i < NUM_SMD_DATA_CHANNELS; i++) { driver->smd_data[i].in_busy_1 = 0; driver->smd_data[i].in_busy_2 = 0; if (queue) /* Poll SMD data channels to check for data */ queue_work(driver->diag_wq, &(driver->smd_data[i].diag_read_smd_work)); } if (driver->supports_separate_cmdrsp) { for (i = 0; i < NUM_SMD_CMD_CHANNELS; i++) { driver->smd_cmd[i].in_busy_1 = 0; driver->smd_cmd[i].in_busy_2 = 0; if (queue) /* Poll SMD data channels to check for data */ queue_work(driver->diag_wq, &(driver->smd_cmd[i]. diag_read_smd_work)); } } } #ifdef CONFIG_DIAG_OVER_USB /* 2+1 for modem ; 2 for LPASS ; 1 for WCNSS */ #define N_LEGACY_WRITE (driver->poolsize + 6) /* Additionally support number of command data and dci channels */ #define N_LEGACY_WRITE_CMD ((N_LEGACY_WRITE) + 4) #define N_LEGACY_READ 1 static void diag_usb_connect_work_fn(struct work_struct *w) { diagfwd_connect(); } static void diag_usb_disconnect_work_fn(struct work_struct *w) { diagfwd_disconnect(); } int diagfwd_connect(void) { int err; int i; printk(KERN_DEBUG "diag: USB connected\n"); err = usb_diag_alloc_req(driver->legacy_ch, (driver->supports_separate_cmdrsp ? N_LEGACY_WRITE_CMD : N_LEGACY_WRITE), N_LEGACY_READ); if (err) printk(KERN_ERR "diag: unable to alloc USB req on legacy ch"); driver->usb_connected = 1; diag_reset_smd_data(RESET_AND_QUEUE); for (i = 0; i < NUM_SMD_DATA_CHANNELS; i++) { /* Poll SMD CNTL channels to check for data */ diag_smd_notify(&(driver->smd_cntl[i]), SMD_EVENT_DATA); } /* Poll USB channel to check for data*/ queue_work(driver->diag_wq, &(driver->diag_read_work)); #ifdef CONFIG_DIAG_SDIO_PIPE if (machine_is_msm8x60_fusion() || machine_is_msm8x60_fusn_ffa()) { if (driver->mdm_ch && !IS_ERR(driver->mdm_ch)) diagfwd_connect_sdio(); else printk(KERN_INFO "diag: No USB MDM ch"); } #endif return 0; } int diagfwd_disconnect(void) { int i; printk(KERN_DEBUG "diag: USB disconnected\n"); driver->usb_connected = 0; driver->debug_flag = 1; usb_diag_free_req(driver->legacy_ch); if (driver->logging_mode == USB_MODE) { for (i = 0; i < NUM_SMD_DATA_CHANNELS; i++) { driver->smd_data[i].in_busy_1 = 1; driver->smd_data[i].in_busy_2 = 1; } if (driver->supports_separate_cmdrsp) { for (i = 0; i < NUM_SMD_CMD_CHANNELS; i++) { driver->smd_cmd[i].in_busy_1 = 1; driver->smd_cmd[i].in_busy_2 = 1; } } } #ifdef CONFIG_DIAG_SDIO_PIPE if (machine_is_msm8x60_fusion() || machine_is_msm8x60_fusn_ffa()) if (driver->mdm_ch && !IS_ERR(driver->mdm_ch)) diagfwd_disconnect_sdio(); #endif /* TBD - notify and flow control SMD */ return 0; } static int diagfwd_check_buf_match(int num_channels, struct diag_smd_info *data, unsigned char *buf) { int i; int found_it = 0; for (i = 0; i < num_channels; i++) { if (buf == (void *)data[i].buf_in_1) { data[i].in_busy_1 = 0; queue_work(driver->diag_wq, &(data[i].diag_read_smd_work)); found_it = 1; break; } else if (buf == (void *)data[i].buf_in_2) { data[i].in_busy_2 = 0; queue_work(driver->diag_wq, &(data[i].diag_read_smd_work)); found_it = 1; break; } } return found_it; } int diagfwd_write_complete(struct diag_request *diag_write_ptr) { unsigned char *buf = diag_write_ptr->buf; int found_it = 0; /* Determine if the write complete is for data from modem/apps/q6 */ found_it = diagfwd_check_buf_match(NUM_SMD_DATA_CHANNELS, driver->smd_data, buf); if (!found_it && driver->supports_separate_cmdrsp) found_it = diagfwd_check_buf_match(NUM_SMD_CMD_CHANNELS, driver->smd_cmd, buf); #ifdef CONFIG_DIAG_SDIO_PIPE if (!found_it) { if (buf == (void *)driver->buf_in_sdio) { if (machine_is_msm8x60_fusion() || machine_is_msm8x60_fusn_ffa()) diagfwd_write_complete_sdio(); else pr_err("diag: Incorrect buffer pointer while WRITE"); found_it = 1; } } #endif if (!found_it) { diagmem_free(driver, (unsigned char *)buf, POOL_TYPE_HDLC); diagmem_free(driver, (unsigned char *)diag_write_ptr, POOL_TYPE_WRITE_STRUCT); } return 0; } int diagfwd_read_complete(struct diag_request *diag_read_ptr) { int status = diag_read_ptr->status; unsigned char *buf = diag_read_ptr->buf; /* Determine if the read complete is for data on legacy/mdm ch */ if (buf == (void *)driver->usb_buf_out) { driver->read_len_legacy = diag_read_ptr->actual; APPEND_DEBUG('s'); #ifdef DIAG_DEBUG printk(KERN_INFO "read data from USB, pkt length %d", diag_read_ptr->actual); print_hex_dump(KERN_DEBUG, "Read Packet Data from USB: ", 16, 1, DUMP_PREFIX_ADDRESS, diag_read_ptr->buf, diag_read_ptr->actual, 1); #endif /* DIAG DEBUG */ if (driver->logging_mode == USB_MODE) { if (status != -ECONNRESET && status != -ESHUTDOWN) queue_work(driver->diag_wq, &(driver->diag_proc_hdlc_work)); else queue_work(driver->diag_wq, &(driver->diag_read_work)); } } #ifdef CONFIG_DIAG_SDIO_PIPE else if (buf == (void *)driver->usb_buf_mdm_out) { if (machine_is_msm8x60_fusion() || machine_is_msm8x60_fusn_ffa()) { driver->read_len_mdm = diag_read_ptr->actual; diagfwd_read_complete_sdio(); } else pr_err("diag: Incorrect buffer pointer while READ"); } #endif else printk(KERN_ERR "diag: Unknown buffer ptr from USB"); return 0; } void diag_read_work_fn(struct work_struct *work) { APPEND_DEBUG('d'); driver->usb_read_ptr->buf = driver->usb_buf_out; driver->usb_read_ptr->length = USB_MAX_OUT_BUF; usb_diag_read(driver->legacy_ch, driver->usb_read_ptr); APPEND_DEBUG('e'); } void diag_process_hdlc_fn(struct work_struct *work) { APPEND_DEBUG('D'); diag_process_hdlc(driver->usb_buf_out, driver->read_len_legacy); diag_read_work_fn(work); APPEND_DEBUG('E'); } void diag_usb_legacy_notifier(void *priv, unsigned event, struct diag_request *d_req) { switch (event) { case USB_DIAG_CONNECT: queue_work(driver->diag_wq, &driver->diag_usb_connect_work); break; case USB_DIAG_DISCONNECT: queue_work(driver->diag_wq, &driver->diag_usb_disconnect_work); break; case USB_DIAG_READ_DONE: diagfwd_read_complete(d_req); break; case USB_DIAG_WRITE_DONE: diagfwd_write_complete(d_req); break; default: printk(KERN_ERR "Unknown event from USB diag\n"); break; } } #endif /* DIAG OVER USB */ void diag_smd_notify(void *ctxt, unsigned event) { struct diag_smd_info *smd_info = (struct diag_smd_info *)ctxt; if (!smd_info) return; if (event == SMD_EVENT_CLOSE) { smd_info->ch = 0; wake_up(&driver->smd_wait_q); if (smd_info->type == SMD_DATA_TYPE) { smd_info->notify_context = event; queue_work(driver->diag_cntl_wq, &(smd_info->diag_notify_update_smd_work)); } else if (smd_info->type == SMD_DCI_TYPE) { /* Notify the clients of the close */ diag_dci_notify_client(smd_info->peripheral_mask, DIAG_STATUS_CLOSED); } return; } else if (event == SMD_EVENT_OPEN) { if (smd_info->ch_save) smd_info->ch = smd_info->ch_save; if (smd_info->type == SMD_CNTL_TYPE) { smd_info->notify_context = event; queue_work(driver->diag_cntl_wq, &(smd_info->diag_notify_update_smd_work)); } else if (smd_info->type == SMD_DCI_TYPE) { smd_info->notify_context = event; queue_work(driver->diag_dci_wq, &(smd_info->diag_notify_update_smd_work)); /* Notify the clients of the open */ diag_dci_notify_client(smd_info->peripheral_mask, DIAG_STATUS_OPEN); } } else if (event == SMD_EVENT_DATA && !driver->real_time_mode && smd_info->type == SMD_DATA_TYPE) { process_lock_on_notify(&smd_info->nrt_lock); } wake_up(&driver->smd_wait_q); if (smd_info->type == SMD_DCI_TYPE || smd_info->type == SMD_DCI_CMD_TYPE) queue_work(driver->diag_dci_wq, &(smd_info->diag_read_smd_work)); else queue_work(driver->diag_wq, &(smd_info->diag_read_smd_work)); } static int diag_smd_probe(struct platform_device *pdev) { int r = 0; int index = -1; const char *channel_name = NULL; if (pdev->id == SMD_APPS_MODEM) { index = MODEM_DATA; channel_name = "DIAG"; } #if defined(CONFIG_MSM_N_WAY_SMD) else if (pdev->id == SMD_APPS_QDSP) { index = LPASS_DATA; channel_name = "DIAG"; } #endif else if (pdev->id == SMD_APPS_WCNSS) { index = WCNSS_DATA; channel_name = "APPS_RIVA_DATA"; } if (index != -1) { r = smd_named_open_on_edge(channel_name, pdev->id, &driver->smd_data[index].ch, &driver->smd_data[index], diag_smd_notify); driver->smd_data[index].ch_save = driver->smd_data[index].ch; } pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); pr_debug("diag: In %s, open SMD port, Id = %d, r = %d\n", __func__, pdev->id, r); return 0; } static int diag_smd_cmd_probe(struct platform_device *pdev) { int r = 0; int index = -1; const char *channel_name = NULL; if (!driver->supports_separate_cmdrsp) return 0; if (pdev->id == SMD_APPS_MODEM) { index = MODEM_DATA; channel_name = "DIAG_CMD"; } if (index != -1) { r = smd_named_open_on_edge(channel_name, pdev->id, &driver->smd_cmd[index].ch, &driver->smd_cmd[index], diag_smd_notify); driver->smd_cmd[index].ch_save = driver->smd_cmd[index].ch; } pr_debug("diag: In %s, open SMD CMD port, Id = %d, r = %d\n", __func__, pdev->id, r); return 0; } static int diag_smd_runtime_suspend(struct device *dev) { dev_dbg(dev, "pm_runtime: suspending...\n"); return 0; } static int diag_smd_runtime_resume(struct device *dev) { dev_dbg(dev, "pm_runtime: resuming...\n"); return 0; } static const struct dev_pm_ops diag_smd_dev_pm_ops = { .runtime_suspend = diag_smd_runtime_suspend, .runtime_resume = diag_smd_runtime_resume, }; static struct platform_driver msm_smd_ch1_driver = { .probe = diag_smd_probe, .driver = { .name = "DIAG", .owner = THIS_MODULE, .pm = &diag_smd_dev_pm_ops, }, }; static struct platform_driver diag_smd_lite_driver = { .probe = diag_smd_probe, .driver = { .name = "APPS_RIVA_DATA", .owner = THIS_MODULE, .pm = &diag_smd_dev_pm_ops, }, }; static struct platform_driver smd_lite_data_cmd_drivers[NUM_SMD_CMD_CHANNELS] = { { /* Modem data */ .probe = diag_smd_cmd_probe, .driver = { .name = "DIAG_CMD", .owner = THIS_MODULE, .pm = &diag_smd_dev_pm_ops, }, } }; int device_supports_separate_cmdrsp(void) { return driver->use_device_tree; } void diag_smd_destructor(struct diag_smd_info *smd_info) { if (smd_info->type == SMD_DATA_TYPE) wake_lock_destroy(&smd_info->nrt_lock.read_lock); if (smd_info->ch) smd_close(smd_info->ch); smd_info->ch = 0; smd_info->ch_save = 0; kfree(smd_info->buf_in_1); kfree(smd_info->buf_in_2); kfree(smd_info->write_ptr_1); kfree(smd_info->write_ptr_2); kfree(smd_info->buf_in_1_raw); kfree(smd_info->buf_in_2_raw); } int diag_smd_constructor(struct diag_smd_info *smd_info, int peripheral, int type) { smd_info->peripheral = peripheral; smd_info->type = type; smd_info->encode_hdlc = 0; mutex_init(&smd_info->smd_ch_mutex); switch (peripheral) { case MODEM_DATA: smd_info->peripheral_mask = DIAG_CON_MPSS; break; case LPASS_DATA: smd_info->peripheral_mask = DIAG_CON_LPASS; break; case WCNSS_DATA: smd_info->peripheral_mask = DIAG_CON_WCNSS; break; default: pr_err("diag: In %s, unknown peripheral, peripheral: %d\n", __func__, peripheral); goto err; } smd_info->ch = 0; smd_info->ch_save = 0; if (smd_info->buf_in_1 == NULL) { smd_info->buf_in_1 = kzalloc(IN_BUF_SIZE, GFP_KERNEL); if (smd_info->buf_in_1 == NULL) goto err; kmemleak_not_leak(smd_info->buf_in_1); } if (smd_info->write_ptr_1 == NULL) { smd_info->write_ptr_1 = kzalloc(sizeof(struct diag_request), GFP_KERNEL); if (smd_info->write_ptr_1 == NULL) goto err; kmemleak_not_leak(smd_info->write_ptr_1); } /* The smd data type needs two buffers */ if (smd_info->type == SMD_DATA_TYPE) { if (smd_info->buf_in_2 == NULL) { smd_info->buf_in_2 = kzalloc(IN_BUF_SIZE, GFP_KERNEL); if (smd_info->buf_in_2 == NULL) goto err; kmemleak_not_leak(smd_info->buf_in_2); } if (smd_info->write_ptr_2 == NULL) { smd_info->write_ptr_2 = kzalloc(sizeof(struct diag_request), GFP_KERNEL); if (smd_info->write_ptr_2 == NULL) goto err; kmemleak_not_leak(smd_info->write_ptr_2); } if (driver->supports_apps_hdlc_encoding) { /* In support of hdlc encoding */ if (smd_info->buf_in_1_raw == NULL) { smd_info->buf_in_1_raw = kzalloc(IN_BUF_SIZE, GFP_KERNEL); if (smd_info->buf_in_1_raw == NULL) goto err; kmemleak_not_leak(smd_info->buf_in_1_raw); } if (smd_info->buf_in_2_raw == NULL) { smd_info->buf_in_2_raw = kzalloc(IN_BUF_SIZE, GFP_KERNEL); if (smd_info->buf_in_2_raw == NULL) goto err; kmemleak_not_leak(smd_info->buf_in_2_raw); } } } if (smd_info->type == SMD_CMD_TYPE && driver->supports_apps_hdlc_encoding) { /* In support of hdlc encoding */ if (smd_info->buf_in_1_raw == NULL) { smd_info->buf_in_1_raw = kzalloc(IN_BUF_SIZE, GFP_KERNEL); if (smd_info->buf_in_1_raw == NULL) goto err; kmemleak_not_leak(smd_info->buf_in_1_raw); } } INIT_WORK(&(smd_info->diag_read_smd_work), diag_read_smd_work_fn); /* * The update function assigned to the diag_notify_update_smd_work * work_struct is meant to be used for updating that is not to * be done in the context of the smd notify function. The * notify_context variable can be used for passing additional * information to the update function. */ smd_info->notify_context = 0; switch (type) { case SMD_DATA_TYPE: case SMD_CMD_TYPE: INIT_WORK(&(smd_info->diag_notify_update_smd_work), diag_clean_reg_fn); break; case SMD_CNTL_TYPE: INIT_WORK(&(smd_info->diag_notify_update_smd_work), diag_mask_update_fn); break; case SMD_DCI_TYPE: case SMD_DCI_CMD_TYPE: INIT_WORK(&(smd_info->diag_notify_update_smd_work), diag_update_smd_dci_work_fn); break; default: pr_err("diag: In %s, unknown type, type: %d\n", __func__, type); goto err; } /* * Set function ptr for function to call to process the data that * was just read from the smd channel */ switch (type) { case SMD_DATA_TYPE: case SMD_CMD_TYPE: smd_info->process_smd_read_data = diag_process_smd_read_data; break; case SMD_CNTL_TYPE: smd_info->process_smd_read_data = diag_process_smd_cntl_read_data; break; case SMD_DCI_TYPE: case SMD_DCI_CMD_TYPE: smd_info->process_smd_read_data = diag_process_smd_dci_read_data; break; default: pr_err("diag: In %s, unknown type, type: %d\n", __func__, type); goto err; } smd_info->nrt_lock.enabled = 0; smd_info->nrt_lock.ref_count = 0; smd_info->nrt_lock.copy_count = 0; if (type == SMD_DATA_TYPE) { spin_lock_init(&smd_info->nrt_lock.read_spinlock); switch (peripheral) { case MODEM_DATA: wake_lock_init(&smd_info->nrt_lock.read_lock, WAKE_LOCK_SUSPEND, "diag_nrt_modem_read"); break; case LPASS_DATA: wake_lock_init(&smd_info->nrt_lock.read_lock, WAKE_LOCK_SUSPEND, "diag_nrt_lpass_read"); break; case WCNSS_DATA: wake_lock_init(&smd_info->nrt_lock.read_lock, WAKE_LOCK_SUSPEND, "diag_nrt_wcnss_read"); break; default: break; } } return 1; err: kfree(smd_info->buf_in_1); kfree(smd_info->buf_in_2); kfree(smd_info->write_ptr_1); kfree(smd_info->write_ptr_2); kfree(smd_info->buf_in_1_raw); kfree(smd_info->buf_in_2_raw); return 0; } void diagfwd_init(void) { int success; int i; wrap_enabled = 0; wrap_count = 0; diag_debug_buf_idx = 0; driver->read_len_legacy = 0; driver->use_device_tree = has_device_tree(); driver->real_time_mode = 1; /* * The number of entries in table of buffers * should not be any smaller than hdlc poolsize. */ driver->buf_tbl_size = (buf_tbl_size < driver->poolsize_hdlc) ? driver->poolsize_hdlc : buf_tbl_size; driver->supports_separate_cmdrsp = device_supports_separate_cmdrsp(); driver->supports_apps_hdlc_encoding = 1; mutex_init(&driver->diag_hdlc_mutex); mutex_init(&driver->diag_cntl_mutex); for (i = 0; i < NUM_SMD_CONTROL_CHANNELS; i++) driver->separate_cmdrsp[i] = 0; for (i = 0; i < NUM_SMD_DATA_CHANNELS; i++) { success = diag_smd_constructor(&driver->smd_data[i], i, SMD_DATA_TYPE); if (!success) goto err; } if (driver->supports_separate_cmdrsp) { for (i = 0; i < NUM_SMD_CMD_CHANNELS; i++) { success = diag_smd_constructor(&driver->smd_cmd[i], i, SMD_CMD_TYPE); if (!success) goto err; } } if (driver->usb_buf_out == NULL && (driver->usb_buf_out = kzalloc(USB_MAX_OUT_BUF, GFP_KERNEL)) == NULL) goto err; kmemleak_not_leak(driver->usb_buf_out); if (driver->hdlc_buf == NULL && (driver->hdlc_buf = kzalloc(HDLC_MAX, GFP_KERNEL)) == NULL) goto err; kmemleak_not_leak(driver->hdlc_buf); if (driver->client_map == NULL && (driver->client_map = kzalloc ((driver->num_clients) * sizeof(struct diag_client_map), GFP_KERNEL)) == NULL) goto err; kmemleak_not_leak(driver->client_map); if (driver->buf_tbl == NULL) driver->buf_tbl = kzalloc(driver->buf_tbl_size * sizeof(struct diag_write_device), GFP_KERNEL); if (driver->buf_tbl == NULL) goto err; kmemleak_not_leak(driver->buf_tbl); if (driver->data_ready == NULL && (driver->data_ready = kzalloc(driver->num_clients * sizeof(int) , GFP_KERNEL)) == NULL) goto err; kmemleak_not_leak(driver->data_ready); if (driver->table == NULL && (driver->table = kzalloc(diag_max_reg* sizeof(struct diag_master_table), GFP_KERNEL)) == NULL) goto err; kmemleak_not_leak(driver->table); if (driver->usb_read_ptr == NULL) { driver->usb_read_ptr = kzalloc( sizeof(struct diag_request), GFP_KERNEL); if (driver->usb_read_ptr == NULL) goto err; kmemleak_not_leak(driver->usb_read_ptr); } if (driver->pkt_buf == NULL && (driver->pkt_buf = kzalloc(PKT_SIZE, GFP_KERNEL)) == NULL) goto err; kmemleak_not_leak(driver->pkt_buf); if (driver->apps_rsp_buf == NULL) { driver->apps_rsp_buf = kzalloc(APPS_BUF_SIZE, GFP_KERNEL); if (driver->apps_rsp_buf == NULL) goto err; kmemleak_not_leak(driver->apps_rsp_buf); } driver->diag_wq = create_singlethread_workqueue("diag_wq"); #ifdef CONFIG_DIAG_OVER_USB INIT_WORK(&(driver->diag_usb_connect_work), diag_usb_connect_work_fn); INIT_WORK(&(driver->diag_usb_disconnect_work), diag_usb_disconnect_work_fn); INIT_WORK(&(driver->diag_proc_hdlc_work), diag_process_hdlc_fn); INIT_WORK(&(driver->diag_read_work), diag_read_work_fn); driver->legacy_ch = usb_diag_open(DIAG_LEGACY, driver, diag_usb_legacy_notifier); if (IS_ERR(driver->legacy_ch)) { printk(KERN_ERR "Unable to open USB diag legacy channel\n"); goto err; } #endif platform_driver_register(&msm_smd_ch1_driver); platform_driver_register(&diag_smd_lite_driver); if (driver->supports_separate_cmdrsp) { for (i = 0; i < NUM_SMD_CMD_CHANNELS; i++) platform_driver_register(&smd_lite_data_cmd_drivers[i]); } return; err: pr_err("diag: Could not initialize diag buffers"); for (i = 0; i < NUM_SMD_DATA_CHANNELS; i++) diag_smd_destructor(&driver->smd_data[i]); for (i = 0; i < NUM_SMD_CMD_CHANNELS; i++) diag_smd_destructor(&driver->smd_cmd[i]); kfree(driver->buf_msg_mask_update); kfree(driver->buf_log_mask_update); kfree(driver->buf_event_mask_update); kfree(driver->usb_buf_out); kfree(driver->hdlc_buf); kfree(driver->client_map); kfree(driver->buf_tbl); kfree(driver->data_ready); kfree(driver->table); kfree(driver->pkt_buf); kfree(driver->usb_read_ptr); kfree(driver->apps_rsp_buf); if (driver->diag_wq) destroy_workqueue(driver->diag_wq); } void diagfwd_exit(void) { int i; for (i = 0; i < NUM_SMD_DATA_CHANNELS; i++) diag_smd_destructor(&driver->smd_data[i]); #ifdef CONFIG_DIAG_OVER_USB if (driver->usb_connected) usb_diag_free_req(driver->legacy_ch); usb_diag_close(driver->legacy_ch); #endif platform_driver_unregister(&msm_smd_ch1_driver); platform_driver_unregister(&diag_smd_lite_driver); if (driver->supports_separate_cmdrsp) { for (i = 0; i < NUM_SMD_CMD_CHANNELS; i++) { diag_smd_destructor(&driver->smd_cmd[i]); platform_driver_unregister( &smd_lite_data_cmd_drivers[i]); } } kfree(driver->buf_msg_mask_update); kfree(driver->buf_log_mask_update); kfree(driver->buf_event_mask_update); kfree(driver->usb_buf_out); kfree(driver->hdlc_buf); kfree(driver->client_map); kfree(driver->buf_tbl); kfree(driver->data_ready); kfree(driver->table); kfree(driver->pkt_buf); kfree(driver->usb_read_ptr); kfree(driver->apps_rsp_buf); destroy_workqueue(driver->diag_wq); }