M7350/base/services/surfaceflinger/Layer.cpp
2024-09-09 08:52:07 +00:00

1094 lines
33 KiB
C++

/*
* Copyright (C) 2007 The Android Open Source Project
* Copyright (C) 2010, The Linux Foundation. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <cutils/properties.h>
#include <cutils/native_handle.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <utils/StopWatch.h>
#include <ui/GraphicBuffer.h>
#include <ui/PixelFormat.h>
#include <surfaceflinger/Surface.h>
#include "clz.h"
#include "GLExtensions.h"
#include "Layer.h"
#include "SurfaceFlinger.h"
#include "DisplayHardware/DisplayHardware.h"
#if defined(TARGET_USES_OVERLAY)
#include "overlayLib.h"
#endif
#define DEBUG_RESIZE 0
namespace android {
template <typename T> inline T min(T a, T b) {
return a<b ? a : b;
}
// ---------------------------------------------------------------------------
Layer::Layer(SurfaceFlinger* flinger,
DisplayID display, const sp<Client>& client)
: LayerBaseClient(flinger, display, client),
mGLExtensions(GLExtensions::getInstance()),
mNeedsBlending(true),
mNeedsDithering(false),
mSecure(false),
mTextureManager(),
mBufferManager(mTextureManager),
mWidth(0), mHeight(0), mNeedsScaling(false), mFixedSize(false),
mBypassState(false)
{
setDestroyer(this);
}
Layer::~Layer()
{
// FIXME: must be called from the main UI thread
EGLDisplay dpy(mFlinger->graphicPlane(0).getEGLDisplay());
mBufferManager.destroy(dpy);
// we can use getUserClientUnsafe here because we know we're
// single-threaded at that point.
sp<UserClient> ourClient(mUserClientRef.getUserClientUnsafe());
if (ourClient != 0) {
ourClient->detachLayer(this);
}
if(getStereoscopic3DFormat()) {
const DisplayHardware& hw(mFlinger->graphicPlane(0).displayHardware());
hw.videoOverlayStarted(false);
}
}
void Layer::destroy(RefBase const* base) {
mFlinger->destroyLayer(static_cast<LayerBase const*>(base));
}
status_t Layer::setToken(const sp<UserClient>& userClient,
SharedClient* sharedClient, int32_t token)
{
int numbuffers = mBufferManager.getDefaultBufferCount();
#if defined(SF_BYPASS)
if (getLayerInitFlags() & ISurfaceComposer::eFullScreen) {
numbuffers = 3;
mBufferManager.resize(numbuffers);
}
#endif
sp<SharedBufferServer> lcblk = new SharedBufferServer(
sharedClient, token, numbuffers,
getIdentity());
status_t err = mUserClientRef.setToken(userClient, lcblk, token);
LOGE_IF(err != NO_ERROR,
"ClientRef::setToken(%p, %p, %u) failed",
userClient.get(), lcblk.get(), token);
if (err == NO_ERROR) {
// we need to free the buffers associated with this surface
}
return err;
}
int32_t Layer::getToken() const
{
return mUserClientRef.getToken();
}
sp<UserClient> Layer::getClient() const
{
return mUserClientRef.getClient();
}
// called with SurfaceFlinger::mStateLock as soon as the layer is entered
// in the purgatory list
void Layer::onRemoved()
{
ClientRef::Access sharedClient(mUserClientRef);
SharedBufferServer* lcblk(sharedClient.get());
if (lcblk) {
// wake up the condition
lcblk->setStatus(NO_INIT);
}
// If original resolution surface, close current VG channels.
// Notify gralloc of the end of current playback.
if(getUseOriginalSurfaceResolution()) {
const DisplayHardware& hw(graphicPlane(0).displayHardware());
hw.stopOrigResDisplay();
freeBypassBuffers();
}
}
sp<LayerBaseClient::Surface> Layer::createSurface() const
{
return mSurface;
}
status_t Layer::setBuffers( uint32_t w, uint32_t h,
PixelFormat format, uint32_t flags)
{
// this surfaces pixel format
PixelFormatInfo info;
status_t err = getPixelFormatInfo(format, &info);
if (err) return err;
// the display's pixel format
const DisplayHardware& hw(graphicPlane(0).displayHardware());
uint32_t const maxSurfaceDims = min(
hw.getMaxTextureSize(), hw.getMaxViewportDims());
// never allow a surface larger than what our underlying GL implementation
// can handle.
if ((uint32_t(w)>maxSurfaceDims) || (uint32_t(h)>maxSurfaceDims)) {
return BAD_VALUE;
}
PixelFormatInfo displayInfo;
getPixelFormatInfo(hw.getFormat(), &displayInfo);
const uint32_t hwFlags = hw.getFlags();
mFormat = format;
mWidth = w;
mHeight = h;
mReqFormat = format;
mReqWidth = w;
mReqHeight = h;
mSecure = (flags & ISurfaceComposer::eSecure) ? true : false;
mNeedsBlending = (info.h_alpha - info.l_alpha) > 0;
// we use the red index
int displayRedSize = displayInfo.getSize(PixelFormatInfo::INDEX_RED);
int layerRedsize = info.getSize(PixelFormatInfo::INDEX_RED);
mNeedsDithering = layerRedsize > displayRedSize;
mSurface = new SurfaceLayer(mFlinger, this);
return NO_ERROR;
}
void Layer::reloadTexture(const Region& dirty)
{
sp<GraphicBuffer> buffer(mBufferManager.getActiveBuffer());
if (buffer == NULL) {
// this situation can happen if we ran out of memory for instance.
// not much we can do. continue to use whatever texture was bound
// to this context.
return;
}
if (mGLExtensions.haveDirectTexture()) {
EGLDisplay dpy(mFlinger->graphicPlane(0).getEGLDisplay());
if (mBufferManager.initEglImage(dpy, buffer) != NO_ERROR) {
// not sure what we can do here...
goto slowpath;
}
} else {
slowpath:
GGLSurface t;
if (buffer->usage & GRALLOC_USAGE_SW_READ_MASK) {
status_t res = buffer->lock(&t, GRALLOC_USAGE_SW_READ_OFTEN);
LOGE_IF(res, "error %d (%s) locking buffer %p",
res, strerror(res), buffer.get());
if (res == NO_ERROR) {
mBufferManager.loadTexture(dirty, t);
buffer->unlock();
}
} else {
// we can't do anything
}
}
}
void Layer::drawForSreenShot() const
{
const bool currentFiltering = mNeedsFiltering;
const_cast<Layer*>(this)->mNeedsFiltering = true;
LayerBase::drawForSreenShot();
const_cast<Layer*>(this)->mNeedsFiltering = currentFiltering;
}
status_t Layer::freeBypassBuffers() const
{
if (!isOverlayUsed())
return NO_ERROR;
ClientRef::Access sharedClient(mUserClientRef);
SharedBufferServer* lcblk(sharedClient.get());
if (lcblk)
lcblk->setInUseBypass(-1);
setOverlayUsed(false);
return NO_ERROR;
}
status_t Layer::setBufferInUse() const
{
Texture tex(mBufferManager.getActiveTexture());
if (tex.image == EGL_NO_IMAGE_KHR)
return INVALID_OPERATION;
GLuint textureName = tex.name;
if (UNLIKELY(textureName == -1LU)) {
return INVALID_OPERATION;
}
ClientRef::Access sharedClient(mUserClientRef);
SharedBufferServer* lcblk(sharedClient.get());
if (lcblk) {
int buf = mBufferManager.getActiveBufferIndex();
if (buf >= 0)
lcblk->setInUseBypass(buf);
}
return NO_ERROR;
}
status_t Layer::drawWithOverlay(const Region& clip,
bool hdmiConnected, bool waitVsync) const
{
#if defined(TARGET_USES_OVERLAY)
Texture tex(mBufferManager.getActiveTexture());
if (tex.image == EGL_NO_IMAGE_KHR)
return INVALID_OPERATION;
GLuint textureName = tex.name;
if (UNLIKELY(textureName == -1LU)) {
return INVALID_OPERATION;
}
const DisplayHardware& hw(graphicPlane(0).displayHardware());
if(getUseOriginalSurfaceResolution()){
sp<GraphicBuffer> buffer(mBufferManager.getActiveBuffer());
buffer_handle_t handle = (buffer->getNativeBuffer())->handle;
hw.postOrigResBuffer(handle, mWidth, mHeight, mFormat, getOrientation());
setOverlayUsed(true);
setBufferInUse();
return NO_ERROR;
}
overlay::Overlay* temp = hw.getOverlayObject();
int s3dFormat = getStereoscopic3DFormat();
if (s3dFormat) {
hw.videoOverlayStarted(true);
}
if (!temp->setSource(mWidth, mHeight, mFormat|s3dFormat,
getOrientation(), hdmiConnected,
waitVsync, mBufferManager.getNumBuffers()))
return INVALID_OPERATION;
if(!temp->setParameter(OVERLAY_TRANSFORM, getOrientation()))
return INVALID_OPERATION;
if ((s3dFormat) && !temp->setCrop(0, 0, mWidth, mHeight))
return INVALID_OPERATION;
const Rect bounds(mTransformedBounds);
int x = bounds.left;
int y = bounds.top;
int w = bounds.width();
int h = bounds.height();
int ovpos_x, ovpos_y;
uint32_t ovpos_w, ovpos_h;
bool ret;
if (ret = temp->getPosition(ovpos_x, ovpos_y, ovpos_w, ovpos_h)) {
if ((ovpos_x != x) || (ovpos_y != y) || (ovpos_w != w) || (ovpos_h != h)) {
ret = temp->setPosition(x, y, w, h);
}
} else
ret = temp->setPosition(x, y, w, h);
if (!ret)
return INVALID_OPERATION;
sp<GraphicBuffer> buffer(mBufferManager.getActiveBuffer());
buffer_handle_t handle = (buffer->getNativeBuffer())->handle;
ret = temp->queueBuffer(handle);
if (!ret)
return INVALID_OPERATION;
if (!waitVsync)
clearWithOpenGL(clip);
setOverlayUsed(true);
return NO_ERROR;
#endif
return INVALID_OPERATION;
}
void Layer::onDraw(const Region& clip) const
{
Texture tex(mBufferManager.getActiveTexture());
if (tex.name == -1LU) {
// the texture has not been created yet, this Layer has
// in fact never been drawn into. This happens frequently with
// SurfaceView because the WindowManager can't know when the client
// has drawn the first time.
// If there is nothing under us, we paint the screen in black, otherwise
// we just skip this update.
// figure out if there is something below us
Region under;
const SurfaceFlinger::LayerVector& drawingLayers(mFlinger->mDrawingState.layersSortedByZ);
const size_t count = drawingLayers.size();
for (size_t i=0 ; i<count ; ++i) {
const sp<LayerBase>& layer(drawingLayers[i]);
if (layer.get() == static_cast<LayerBase const*>(this))
break;
under.orSelf(layer->visibleRegionScreen);
}
// if not everything below us is covered, we plug the holes!
Region holes(clip.subtract(under));
if (!holes.isEmpty()) {
clearWithOpenGL(holes, 0, 0, 0, 1);
}
return;
}
if (mFlags & DisplayHardware::SLOW_CONFIG)
drawWithOpenGL(clip, tex);
else
drawWithOpenGLOptimized(clip, tex);
const DisplayHardware& hw(mFlinger->graphicPlane(0).displayHardware());
if(hw.getDumpframe()){
const_cast<DumpFrame&>(mDumpFrame).dump(this, clip);
}
}
bool Layer::needsFiltering() const
{
if (!(mFlags & DisplayHardware::SLOW_CONFIG)) {
// if our buffer is not the same size than ourselves,
// we need filtering.
Mutex::Autolock _l(mLock);
if (mNeedsScaling)
return true;
}
return LayerBase::needsFiltering();
}
status_t Layer::setBufferCount(int bufferCount)
{
ClientRef::Access sharedClient(mUserClientRef);
SharedBufferServer* lcblk(sharedClient.get());
if (!lcblk) {
// oops, the client is already gone
return DEAD_OBJECT;
}
// NOTE: lcblk->resize() is protected by an internal lock
status_t err = lcblk->resize(bufferCount);
if (err == NO_ERROR)
mBufferManager.resize(bufferCount);
return err;
}
sp<GraphicBuffer> Layer::requestBuffer(int index,
uint32_t reqWidth, uint32_t reqHeight, uint32_t reqFormat,
uint32_t usage)
{
sp<GraphicBuffer> buffer;
if (int32_t(reqWidth | reqHeight | reqFormat) < 0)
return buffer;
if ((!reqWidth && reqHeight) || (reqWidth && !reqHeight))
return buffer;
// this ensures our client doesn't go away while we're accessing
// the shared area.
ClientRef::Access sharedClient(mUserClientRef);
SharedBufferServer* lcblk(sharedClient.get());
if (!lcblk) {
// oops, the client is already gone
return buffer;
}
/*
* This is called from the client's Surface::dequeue(). This can happen
* at any time, especially while we're in the middle of using the
* buffer 'index' as our front buffer.
*/
uint32_t w, h, f, bypass;
{ // scope for the lock
Mutex::Autolock _l(mLock);
bypass = mBypassState;
// zero means default
mFixedSize = reqWidth && reqHeight;
if (!reqFormat) reqFormat = mFormat;
if (!reqWidth) reqWidth = mWidth;
if (!reqHeight) reqHeight = mHeight;
w = reqWidth;
h = reqHeight;
f = reqFormat;
if ((reqWidth != mReqWidth) || (reqHeight != mReqHeight) ||
(reqFormat != mReqFormat)) {
mReqWidth = reqWidth;
mReqHeight = reqHeight;
mReqFormat = reqFormat;
mNeedsScaling = mWidth != mReqWidth || mHeight != mReqHeight;
lcblk->reallocateAllExcept(index);
}
}
// here we have to reallocate a new buffer because the buffer could be
// used as the front buffer, or by a client in our process
// (eg: status bar), and we can't release the handle under its feet.
uint32_t effectiveUsage = getEffectiveUsage(usage);
// We need to ensure PMEM memory is allocated for:
// a. Bypass buffers
// b. Original Resolution surfaces
// c. S3D surfaces
if (getStereoscopic3DFormat() || getUseOriginalSurfaceResolution() ||
bypass) {
effectiveUsage |= GRALLOC_USAGE_PRIVATE_1;
}
status_t err = NO_MEMORY;
if (err != NO_ERROR) {
buffer = new GraphicBuffer(w, h, f, effectiveUsage);
err = buffer->initCheck();
}
if (err || buffer->handle == 0) {
GraphicBuffer::dumpAllocationsToSystemLog();
LOGE_IF(err || buffer->handle == 0,
"Layer::requestBuffer(this=%p), index=%d, w=%d, h=%d failed (%s)",
this, index, w, h, strerror(-err));
} else {
LOGD_IF(DEBUG_RESIZE,
"Layer::requestBuffer(this=%p), index=%d, w=%d, h=%d, handle=%p",
this, index, w, h, buffer->handle);
}
if (err == NO_ERROR && buffer->handle != 0) {
Mutex::Autolock _l(mLock);
mBufferManager.attachBuffer(index, buffer);
}
return buffer;
}
uint32_t Layer::getEffectiveUsage(uint32_t usage) const
{
/*
* buffers used for software rendering, but h/w composition
* are allocated with SW_READ_OFTEN | SW_WRITE_OFTEN | HW_TEXTURE
*
* buffers used for h/w rendering and h/w composition
* are allocated with HW_RENDER | HW_TEXTURE
*
* buffers used with h/w rendering and either NPOT or no egl_image_ext
* are allocated with SW_READ_RARELY | HW_RENDER
*
*/
if (mSecure) {
// secure buffer, don't store it into the GPU
usage = GraphicBuffer::USAGE_SW_READ_OFTEN |
GraphicBuffer::USAGE_SW_WRITE_OFTEN;
} else {
// it's allowed to modify the usage flags here, but generally
// the requested flags should be honored.
// request EGLImage for all buffers
usage |= GraphicBuffer::USAGE_HW_TEXTURE;
}
return usage;
}
bool Layer::setBypass(bool enable)
{
#if defined(SF_BYPASS)
const DisplayHardware& hw(mFlinger->graphicPlane(0).displayHardware());
if (!hw.isOverlayUIEnabled() || getStereoscopic3DFormat() ||
getUseOriginalSurfaceResolution())
return false;
Mutex::Autolock _l(mLock);
if (mNeedsScaling || mNeedsFiltering) {
return false;
}
if (mBufferManager.getNumBuffers()
<= mBufferManager.getDefaultBufferCount())
return false;
if (mBypassState != enable) {
mBypassState = enable;
ClientRef::Access sharedClient(mUserClientRef);
SharedBufferServer* lcblk(sharedClient.get());
if (lcblk && enable) {
// all buffers need reallocation
lcblk->reallocateAll();
}
}
return true;
#endif
return false;
}
void Layer::updateBuffersOrientation()
{
sp<GraphicBuffer> buffer(getBypassBuffer());
if (buffer != NULL && mOrientation != buffer->transform) {
ClientRef::Access sharedClient(mUserClientRef);
SharedBufferServer* lcblk(sharedClient.get());
if (lcblk) { // all buffers need reallocation
lcblk->reallocateAll();
}
}
}
uint32_t Layer::doTransaction(uint32_t flags)
{
const Layer::State& front(drawingState());
const Layer::State& temp(currentState());
const bool sizeChanged = (front.requested_w != temp.requested_w) ||
(front.requested_h != temp.requested_h);
if (sizeChanged) {
// the size changed, we need to ask our client to request a new buffer
LOGD_IF(DEBUG_RESIZE,
"resize (layer=%p), requested (%dx%d), drawing (%d,%d)",
this,
int(temp.requested_w), int(temp.requested_h),
int(front.requested_w), int(front.requested_h));
if (!isFixedSize()) {
// we're being resized and there is a freeze display request,
// acquire a freeze lock, so that the screen stays put
// until we've redrawn at the new size; this is to avoid
// glitches upon orientation changes.
if (mFlinger->hasFreezeRequest()) {
// if the surface is hidden, don't try to acquire the
// freeze lock, since hidden surfaces may never redraw
if (!(front.flags & ISurfaceComposer::eLayerHidden)) {
mFreezeLock = mFlinger->getFreezeLock();
}
}
// this will make sure LayerBase::doTransaction doesn't update
// the drawing state's size
Layer::State& editDraw(mDrawingState);
editDraw.requested_w = temp.requested_w;
editDraw.requested_h = temp.requested_h;
// record the new size, form this point on, when the client request
// a buffer, it'll get the new size.
setBufferSize(temp.requested_w, temp.requested_h);
ClientRef::Access sharedClient(mUserClientRef);
SharedBufferServer* lcblk(sharedClient.get());
if (lcblk) {
// all buffers need reallocation
lcblk->reallocateAll();
}
} else {
// record the new size
setBufferSize(temp.requested_w, temp.requested_h);
}
}
if (temp.sequence != front.sequence) {
if (temp.flags & ISurfaceComposer::eLayerHidden || temp.alpha == 0) {
// this surface is now hidden, so it shouldn't hold a freeze lock
// (it may never redraw, which is fine if it is hidden)
mFreezeLock.clear();
}
}
return LayerBase::doTransaction(flags);
}
void Layer::setBufferSize(uint32_t w, uint32_t h) {
Mutex::Autolock _l(mLock);
mWidth = w;
mHeight = h;
mNeedsScaling = mWidth != mReqWidth || mHeight != mReqHeight;
}
bool Layer::isFixedSize() const {
Mutex::Autolock _l(mLock);
return mFixedSize;
}
// ----------------------------------------------------------------------------
// pageflip handling...
// ----------------------------------------------------------------------------
void Layer::lockPageFlip(bool& recomputeVisibleRegions)
{
ClientRef::Access sharedClient(mUserClientRef);
SharedBufferServer* lcblk(sharedClient.get());
if (!lcblk) {
// client died
recomputeVisibleRegions = true;
return;
}
ssize_t buf = lcblk->retireAndLock();
mNothingToUpdate = false;
if (buf == NOT_ENOUGH_DATA) {
// NOTE: This is not an error, it simply means there is nothing to
// retire. The buffer is locked because we will use it
// for composition later in the loop
mNothingToUpdate = true;
return;
}
if (buf < NO_ERROR) {
LOGE("retireAndLock() buffer index (%d) out of range", int(buf));
mPostedDirtyRegion.clear();
return;
}
// we retired a buffer, which becomes the new front buffer
if (mBufferManager.setActiveBufferIndex(buf) < NO_ERROR) {
LOGE("retireAndLock() buffer index (%d) out of range", int(buf));
mPostedDirtyRegion.clear();
return;
}
sp<GraphicBuffer> newFrontBuffer(getBuffer(buf));
if (newFrontBuffer != NULL) {
// get the dirty region
// compute the posted region
const Region dirty(lcblk->getDirtyRegion(buf));
mPostedDirtyRegion = dirty.intersect( newFrontBuffer->getBounds() );
// update the layer size and release freeze-lock
const Layer::State& front(drawingState());
if (newFrontBuffer->getWidth() == front.requested_w &&
newFrontBuffer->getHeight() == front.requested_h)
{
if ((front.w != front.requested_w) ||
(front.h != front.requested_h))
{
// Here we pretend the transaction happened by updating the
// current and drawing states. Drawing state is only accessed
// in this thread, no need to have it locked
Layer::State& editDraw(mDrawingState);
editDraw.w = editDraw.requested_w;
editDraw.h = editDraw.requested_h;
// We also need to update the current state so that we don't
// end-up doing too much work during the next transaction.
// NOTE: We actually don't need hold the transaction lock here
// because State::w and State::h are only accessed from
// this thread
Layer::State& editTemp(currentState());
editTemp.w = editDraw.w;
editTemp.h = editDraw.h;
// recompute visible region
recomputeVisibleRegions = true;
}
// we now have the correct size, unfreeze the screen
mFreezeLock.clear();
}
// get the crop region
setBufferCrop( lcblk->getCrop(buf) );
// get the transformation
setBufferTransform( lcblk->getTransform(buf) );
} else {
// this should not happen unless we ran out of memory while
// allocating the buffer. we're hoping that things will get back
// to normal the next time the app tries to draw into this buffer.
// meanwhile, pretend the screen didn't update.
mPostedDirtyRegion.clear();
}
if (lcblk->getQueuedCount()) {
// signal an event if we have more buffers waiting
mFlinger->signalEvent();
}
/* a buffer was posted, so we need to call reloadTexture(), which
* will update our internal data structures (eg: EGLImageKHR or
* texture names). we need to do this even if mPostedDirtyRegion is
* empty -- it's orthogonal to the fact that a new buffer was posted,
* for instance, a degenerate case could be that the user did an empty
* update but repainted the buffer with appropriate content (after a
* resize for instance).
*/
reloadTexture( mPostedDirtyRegion );
}
void Layer::unlockPageFlip(
const Transform& planeTransform, Region& outDirtyRegion)
{
Region dirtyRegion(mPostedDirtyRegion);
if (!dirtyRegion.isEmpty()) {
mPostedDirtyRegion.clear();
// The dirty region is given in the layer's coordinate space
// transform the dirty region by the surface's transformation
// and the global transformation.
const Layer::State& s(drawingState());
const Transform tr(planeTransform * s.transform);
dirtyRegion = tr.transform(dirtyRegion);
// At this point, the dirty region is in screen space.
// Make sure it's constrained by the visible region (which
// is in screen space as well).
dirtyRegion.andSelf(visibleRegionScreen);
outDirtyRegion.orSelf(dirtyRegion);
}
if (visibleRegionScreen.isEmpty()) {
// an invisible layer should not hold a freeze-lock
// (because it may never be updated and therefore never release it)
mFreezeLock.clear();
}
}
void Layer::dump(String8& result, char* buffer, size_t SIZE) const
{
LayerBaseClient::dump(result, buffer, SIZE);
ClientRef::Access sharedClient(mUserClientRef);
SharedBufferServer* lcblk(sharedClient.get());
uint32_t totalTime = 0;
if (lcblk) {
SharedBufferStack::Statistics stats = lcblk->getStats();
totalTime= stats.totalTime;
result.append( lcblk->dump(" ") );
}
sp<const GraphicBuffer> buf0(getBuffer(0));
sp<const GraphicBuffer> buf1(getBuffer(1));
uint32_t w0=0, h0=0, s0=0;
uint32_t w1=0, h1=0, s1=0;
if (buf0 != 0) {
w0 = buf0->getWidth();
h0 = buf0->getHeight();
s0 = buf0->getStride();
}
if (buf1 != 0) {
w1 = buf1->getWidth();
h1 = buf1->getHeight();
s1 = buf1->getStride();
}
snprintf(buffer, SIZE,
" "
"format=%2d, [%3ux%3u:%3u] [%3ux%3u:%3u],"
" freezeLock=%p, bypass=%d, dq-q-time=%u us\n",
mFormat, w0, h0, s0, w1, h1, s1,
getFreezeLock().get(), mBypassState, totalTime);
result.append(buffer);
}
// ---------------------------------------------------------------------------
Layer::ClientRef::ClientRef()
: mControlBlock(0), mToken(-1) {
}
Layer::ClientRef::~ClientRef() {
}
int32_t Layer::ClientRef::getToken() const {
Mutex::Autolock _l(mLock);
return mToken;
}
sp<UserClient> Layer::ClientRef::getClient() const {
Mutex::Autolock _l(mLock);
return mUserClient.promote();
}
status_t Layer::ClientRef::setToken(const sp<UserClient>& uc,
const sp<SharedBufferServer>& sharedClient, int32_t token) {
Mutex::Autolock _l(mLock);
{ // scope for strong mUserClient reference
sp<UserClient> userClient(mUserClient.promote());
if (mUserClient != 0 && mControlBlock != 0) {
mControlBlock->setStatus(NO_INIT);
}
}
mUserClient = uc;
mToken = token;
mControlBlock = sharedClient;
return NO_ERROR;
}
sp<UserClient> Layer::ClientRef::getUserClientUnsafe() const {
return mUserClient.promote();
}
// this class gives us access to SharedBufferServer safely
// it makes sure the UserClient (and its associated shared memory)
// won't go away while we're accessing it.
Layer::ClientRef::Access::Access(const ClientRef& ref)
: mControlBlock(0)
{
Mutex::Autolock _l(ref.mLock);
mUserClientStrongRef = ref.mUserClient.promote();
if (mUserClientStrongRef != 0)
mControlBlock = ref.mControlBlock;
}
Layer::ClientRef::Access::~Access()
{
}
// ---------------------------------------------------------------------------
Layer::BufferManager::BufferManager(TextureManager& tm)
: mNumBuffers(NUM_BUFFERS), mTextureManager(tm),
mActiveBuffer(-1), mFailover(false)
{
}
Layer::BufferManager::~BufferManager()
{
}
status_t Layer::BufferManager::resize(size_t size)
{
Mutex::Autolock _l(mLock);
mNumBuffers = size;
return NO_ERROR;
}
// only for debugging
sp<GraphicBuffer> Layer::BufferManager::getBuffer(size_t index) const {
return mBufferData[index].buffer;
}
status_t Layer::BufferManager::setActiveBufferIndex(size_t index) {
mActiveBuffer = index;
return NO_ERROR;
}
size_t Layer::BufferManager::getActiveBufferIndex() const {
return mActiveBuffer;
}
Texture Layer::BufferManager::getActiveTexture() const {
Texture res;
if (mFailover || mActiveBuffer<0) {
res = mFailoverTexture;
} else {
static_cast<Image&>(res) = mBufferData[mActiveBuffer].texture;
}
return res;
}
sp<GraphicBuffer> Layer::BufferManager::getActiveBuffer() const {
sp<GraphicBuffer> result;
const ssize_t activeBuffer = mActiveBuffer;
if (activeBuffer >= 0) {
BufferData const * const buffers = mBufferData;
Mutex::Autolock _l(mLock);
result = buffers[activeBuffer].buffer;
}
return result;
}
sp<GraphicBuffer> Layer::BufferManager::detachBuffer(size_t index)
{
BufferData* const buffers = mBufferData;
sp<GraphicBuffer> buffer;
Mutex::Autolock _l(mLock);
buffer = buffers[index].buffer;
buffers[index].buffer = 0;
return buffer;
}
status_t Layer::BufferManager::attachBuffer(size_t index,
const sp<GraphicBuffer>& buffer)
{
BufferData* const buffers = mBufferData;
Mutex::Autolock _l(mLock);
buffers[index].buffer = buffer;
buffers[index].texture.dirty = true;
return NO_ERROR;
}
status_t Layer::BufferManager::destroy(EGLDisplay dpy)
{
BufferData* const buffers = mBufferData;
size_t num;
{ // scope for the lock
Mutex::Autolock _l(mLock);
num = mNumBuffers;
for (size_t i=0 ; i<num ; i++) {
buffers[i].buffer = 0;
}
}
for (size_t i=0 ; i<num ; i++) {
destroyTexture(&buffers[i].texture, dpy);
}
destroyTexture(&mFailoverTexture, dpy);
return NO_ERROR;
}
status_t Layer::BufferManager::initEglImage(EGLDisplay dpy,
const sp<GraphicBuffer>& buffer)
{
status_t err = NO_INIT;
ssize_t index = mActiveBuffer;
if (index >= 0) {
if (!mFailover) {
{
// Without that lock, there is a chance of race condition
// where while composing a specific index, requestBuf
// with the same index can be executed and touch the same data
// that is being used in initEglImage.
// (e.g. dirty flag in texture)
Mutex::Autolock _l(mLock);
Image& texture(mBufferData[index].texture);
err = mTextureManager.initEglImage(&texture, dpy, buffer);
}
// if EGLImage fails, we switch to regular texture mode, and we
// free all resources associated with using EGLImages.
if (err == NO_ERROR) {
mFailover = false;
destroyTexture(&mFailoverTexture, dpy);
} else {
mFailover = true;
const size_t num = mNumBuffers;
for (size_t i=0 ; i<num ; i++) {
destroyTexture(&mBufferData[i].texture, dpy);
}
}
} else {
// we failed once, don't try again
err = BAD_VALUE;
}
}
return err;
}
status_t Layer::BufferManager::loadTexture(
const Region& dirty, const GGLSurface& t)
{
return mTextureManager.loadTexture(&mFailoverTexture, dirty, t);
}
status_t Layer::BufferManager::destroyTexture(Image* tex, EGLDisplay dpy)
{
if (tex->name != -1U) {
glDeleteTextures(1, &tex->name);
tex->name = -1U;
}
if (tex->image != EGL_NO_IMAGE_KHR) {
eglDestroyImageKHR(dpy, tex->image);
tex->image = EGL_NO_IMAGE_KHR;
}
return NO_ERROR;
}
// ---------------------------------------------------------------------------
Layer::SurfaceLayer::SurfaceLayer(const sp<SurfaceFlinger>& flinger,
const sp<Layer>& owner)
: Surface(flinger, owner->getIdentity(), owner)
{
}
Layer::SurfaceLayer::~SurfaceLayer()
{
}
sp<GraphicBuffer> Layer::SurfaceLayer::requestBuffer(int index,
uint32_t w, uint32_t h, uint32_t format, uint32_t usage)
{
sp<GraphicBuffer> buffer;
sp<Layer> owner(getOwner());
if (owner != 0) {
/*
* requestBuffer() cannot be called from the main thread
* as it could cause a dead-lock, since it may have to wait
* on conditions updated my the main thread.
*/
buffer = owner->requestBuffer(index, w, h, format, usage);
}
return buffer;
}
status_t Layer::SurfaceLayer::setBufferCount(int bufferCount)
{
status_t err = DEAD_OBJECT;
sp<Layer> owner(getOwner());
if (owner != 0) {
/*
* setBufferCount() cannot be called from the main thread
* as it could cause a dead-lock, since it may have to wait
* on conditions updated my the main thread.
*/
err = owner->setBufferCount(bufferCount);
}
return err;
}
status_t Layer::SurfaceLayer::setStereoscopic3DFormat(int format)
{
sp<Layer> owner(getOwner());
if (owner != 0) {
owner->setStereoscopic3DFormat(format);
}
return 0;
}
status_t Layer::SurfaceLayer::useOriginalSurfaceResolution(bool flag)
{
sp<Layer> owner(getOwner());
if (LIKELY(owner != 0)) {
owner->useOriginalSurfaceResolution(flag);
const DisplayHardware& hw(owner->graphicPlane(0).displayHardware());
hw.startOrigResDisplay();
}
return 0;
}
// ---------------------------------------------------------------------------
}; // namespace android