M7350/kernel/drivers/clk/msm/mdss/mdss-dsi-pll-util.c

655 lines
18 KiB
C
Raw Normal View History

2024-09-09 08:57:42 +00:00
/* Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/iopoll.h>
#include <linux/delay.h>
#include <linux/clk/msm-clock-generic.h>
#include "mdss-pll.h"
#include "mdss-dsi-pll.h"
#define DSI_PHY_PLL_UNIPHY_PLL_REFCLK_CFG (0x0)
#define DSI_PHY_PLL_UNIPHY_PLL_POSTDIV1_CFG (0x0004)
#define DSI_PHY_PLL_UNIPHY_PLL_CHGPUMP_CFG (0x0008)
#define DSI_PHY_PLL_UNIPHY_PLL_VCOLPF_CFG (0x000C)
#define DSI_PHY_PLL_UNIPHY_PLL_VREG_CFG (0x0010)
#define DSI_PHY_PLL_UNIPHY_PLL_PWRGEN_CFG (0x0014)
#define DSI_PHY_PLL_UNIPHY_PLL_POSTDIV2_CFG (0x0024)
#define DSI_PHY_PLL_UNIPHY_PLL_POSTDIV3_CFG (0x0028)
#define DSI_PHY_PLL_UNIPHY_PLL_LPFR_CFG (0x002C)
#define DSI_PHY_PLL_UNIPHY_PLL_LPFC1_CFG (0x0030)
#define DSI_PHY_PLL_UNIPHY_PLL_LPFC2_CFG (0x0034)
#define DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG0 (0x0038)
#define DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG1 (0x003C)
#define DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG2 (0x0040)
#define DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG3 (0x0044)
#define DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG4 (0x0048)
#define DSI_PHY_PLL_UNIPHY_PLL_SSC_CFG0 (0x004C)
#define DSI_PHY_PLL_UNIPHY_PLL_SSC_CFG1 (0x0050)
#define DSI_PHY_PLL_UNIPHY_PLL_SSC_CFG2 (0x0054)
#define DSI_PHY_PLL_UNIPHY_PLL_SSC_CFG3 (0x0058)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG0 (0x006C)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG2 (0x0074)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG3 (0x0078)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG4 (0x007C)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG5 (0x0080)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG6 (0x0084)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG7 (0x0088)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG8 (0x008C)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG9 (0x0090)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG10 (0x0094)
#define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG11 (0x0098)
#define DSI_PHY_PLL_UNIPHY_PLL_EFUSE_CFG (0x009C)
#define DSI_PHY_PLL_UNIPHY_PLL_STATUS (0x00C0)
#define DSI_PLL_POLL_DELAY_US 50
#define DSI_PLL_POLL_TIMEOUT_US 500
int set_byte_mux_sel(struct mux_clk *clk, int sel)
{
struct mdss_pll_resources *dsi_pll_res = clk->priv;
pr_debug("byte mux set to %s mode\n", sel ? "indirect" : "direct");
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_VREG_CFG, (sel << 1));
return 0;
}
int get_byte_mux_sel(struct mux_clk *clk)
{
int mux_mode, rc;
struct mdss_pll_resources *dsi_pll_res = clk->priv;
if (is_gdsc_disabled(dsi_pll_res))
return 0;
rc = mdss_pll_resource_enable(dsi_pll_res, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return rc;
}
mux_mode = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_VREG_CFG) & BIT(1);
pr_debug("byte mux mode = %s", mux_mode ? "indirect" : "direct");
mdss_pll_resource_enable(dsi_pll_res, false);
return !!mux_mode;
}
int dsi_pll_div_prepare(struct clk *c)
{
struct div_clk *div = to_div_clk(c);
/* Restore the divider's value */
return div->ops->set_div(div, div->data.div);
}
int dsi_pll_mux_prepare(struct clk *c)
{
struct mux_clk *mux = to_mux_clk(c);
int i, rc, sel = 0;
struct mdss_pll_resources *dsi_pll_res = mux->priv;
rc = mdss_pll_resource_enable(dsi_pll_res, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return rc;
}
for (i = 0; i < mux->num_parents; i++)
if (mux->parents[i].src == c->parent) {
sel = mux->parents[i].sel;
break;
}
if (i == mux->num_parents) {
pr_err("Failed to select the parent clock\n");
rc = -EINVAL;
goto error;
}
/* Restore the mux source select value */
rc = mux->ops->set_mux_sel(mux, sel);
error:
mdss_pll_resource_enable(dsi_pll_res, false);
return rc;
}
int fixed_4div_set_div(struct div_clk *clk, int div)
{
int rc;
struct mdss_pll_resources *dsi_pll_res = clk->priv;
rc = mdss_pll_resource_enable(dsi_pll_res, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return rc;
}
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_POSTDIV2_CFG, (div - 1));
mdss_pll_resource_enable(dsi_pll_res, false);
return rc;
}
int fixed_4div_get_div(struct div_clk *clk)
{
int div = 0, rc;
struct mdss_pll_resources *dsi_pll_res = clk->priv;
if (is_gdsc_disabled(dsi_pll_res))
return 0;
rc = mdss_pll_resource_enable(dsi_pll_res, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return rc;
}
div = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_POSTDIV2_CFG);
mdss_pll_resource_enable(dsi_pll_res, false);
return div + 1;
}
int digital_set_div(struct div_clk *clk, int div)
{
int rc;
struct mdss_pll_resources *dsi_pll_res = clk->priv;
rc = mdss_pll_resource_enable(dsi_pll_res, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return rc;
}
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_POSTDIV3_CFG, (div - 1));
mdss_pll_resource_enable(dsi_pll_res, false);
return rc;
}
int digital_get_div(struct div_clk *clk)
{
int div = 0, rc;
struct mdss_pll_resources *dsi_pll_res = clk->priv;
if (is_gdsc_disabled(dsi_pll_res))
return 0;
rc = mdss_pll_resource_enable(dsi_pll_res, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return rc;
}
div = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_POSTDIV3_CFG);
mdss_pll_resource_enable(dsi_pll_res, false);
return div + 1;
}
int analog_set_div(struct div_clk *clk, int div)
{
int rc;
struct mdss_pll_resources *dsi_pll_res = clk->priv;
rc = mdss_pll_resource_enable(dsi_pll_res, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return rc;
}
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_POSTDIV1_CFG, div - 1);
mdss_pll_resource_enable(dsi_pll_res, false);
return rc;
}
int analog_get_div(struct div_clk *clk)
{
int div = 0, rc;
struct mdss_pll_resources *dsi_pll_res = clk->priv;
if (is_gdsc_disabled(dsi_pll_res))
return 0;
rc = mdss_pll_resource_enable(clk->priv, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return rc;
}
div = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_POSTDIV1_CFG) + 1;
mdss_pll_resource_enable(dsi_pll_res, false);
return div;
}
int dsi_pll_lock_status(struct mdss_pll_resources *dsi_pll_res)
{
u32 status;
int pll_locked;
/* poll for PLL ready status */
if (readl_poll_timeout_atomic((dsi_pll_res->pll_base +
DSI_PHY_PLL_UNIPHY_PLL_STATUS),
status,
((status & BIT(0)) == 1),
DSI_PLL_POLL_DELAY_US,
DSI_PLL_POLL_TIMEOUT_US)) {
pr_debug("DSI PLL status=%x failed to Lock\n", status);
pll_locked = 0;
} else {
pll_locked = 1;
}
return pll_locked;
}
static int pll_28nm_vco_rate_calc(struct dsi_pll_vco_clk *vco,
struct mdss_dsi_vco_calc *vco_calc, unsigned long vco_clk_rate)
{
s32 rem;
s64 frac_n_mode, ref_doubler_en_b;
s64 ref_clk_to_pll, div_fb, frac_n_value;
int i;
/* Configure the Loop filter resistance */
for (i = 0; i < vco->lpfr_lut_size; i++)
if (vco_clk_rate <= vco->lpfr_lut[i].vco_rate)
break;
if (i == vco->lpfr_lut_size) {
pr_err("unable to get loop filter resistance. vco=%ld\n",
vco_clk_rate);
return -EINVAL;
}
vco_calc->lpfr_lut_res = vco->lpfr_lut[i].r;
div_s64_rem(vco_clk_rate, vco->ref_clk_rate, &rem);
if (rem) {
vco_calc->refclk_cfg = 0x1;
frac_n_mode = 1;
ref_doubler_en_b = 0;
} else {
vco_calc->refclk_cfg = 0x0;
frac_n_mode = 0;
ref_doubler_en_b = 1;
}
pr_debug("refclk_cfg = %lld\n", vco_calc->refclk_cfg);
ref_clk_to_pll = ((vco->ref_clk_rate * 2 * (vco_calc->refclk_cfg))
+ (ref_doubler_en_b * vco->ref_clk_rate));
div_fb = div_s64_rem(vco_clk_rate, ref_clk_to_pll, &rem);
frac_n_value = div_s64(((s64)rem * (1 << 16)), ref_clk_to_pll);
vco_calc->gen_vco_clk = vco_clk_rate;
pr_debug("ref_clk_to_pll = %lld\n", ref_clk_to_pll);
pr_debug("div_fb = %lld\n", div_fb);
pr_debug("frac_n_value = %lld\n", frac_n_value);
pr_debug("Generated VCO Clock: %lld\n", vco_calc->gen_vco_clk);
rem = 0;
if (frac_n_mode) {
vco_calc->sdm_cfg0 = 0;
vco_calc->sdm_cfg1 = (div_fb & 0x3f) - 1;
vco_calc->sdm_cfg3 = div_s64_rem(frac_n_value, 256, &rem);
vco_calc->sdm_cfg2 = rem;
} else {
vco_calc->sdm_cfg0 = (0x1 << 5);
vco_calc->sdm_cfg0 |= (div_fb & 0x3f) - 1;
vco_calc->sdm_cfg1 = 0;
vco_calc->sdm_cfg2 = 0;
vco_calc->sdm_cfg3 = 0;
}
pr_debug("sdm_cfg0=%lld\n", vco_calc->sdm_cfg0);
pr_debug("sdm_cfg1=%lld\n", vco_calc->sdm_cfg1);
pr_debug("sdm_cfg2=%lld\n", vco_calc->sdm_cfg2);
pr_debug("sdm_cfg3=%lld\n", vco_calc->sdm_cfg3);
vco_calc->cal_cfg11 = div_s64_rem(vco_calc->gen_vco_clk,
256 * 1000000, &rem);
vco_calc->cal_cfg10 = rem / 1000000;
pr_debug("cal_cfg10=%lld, cal_cfg11=%lld\n",
vco_calc->cal_cfg10, vco_calc->cal_cfg11);
return 0;
}
static void pll_28nm_ssc_param_calc(struct dsi_pll_vco_clk *vco,
struct mdss_dsi_vco_calc *vco_calc)
{
struct mdss_pll_resources *dsi_pll_res = vco->priv;
s64 ppm_freq, incr, spread_freq, div_rf, frac_n_value;
s32 rem;
if (!dsi_pll_res->ssc_en) {
pr_debug("DSI PLL SSC not enabled\n");
return;
}
vco_calc->ssc.kdiv = DIV_ROUND_CLOSEST(vco->ref_clk_rate,
1000000) - 1;
vco_calc->ssc.triang_steps = DIV_ROUND_CLOSEST(vco->ref_clk_rate,
dsi_pll_res->ssc_freq * (vco_calc->ssc.kdiv + 1));
ppm_freq = div_s64(vco_calc->gen_vco_clk * dsi_pll_res->ssc_ppm,
1000000);
incr = div64_s64(ppm_freq * 65536, vco->ref_clk_rate * 2 *
vco_calc->ssc.triang_steps);
vco_calc->ssc.triang_inc_7_0 = incr & 0xff;
vco_calc->ssc.triang_inc_9_8 = (incr >> 8) & 0x3;
if (!dsi_pll_res->ssc_center)
spread_freq = vco_calc->gen_vco_clk - ppm_freq;
else
spread_freq = vco_calc->gen_vco_clk - (ppm_freq / 2);
div_rf = div_s64(spread_freq, 2 * vco->ref_clk_rate);
vco_calc->ssc.dc_offset = (div_rf - 1);
div_s64_rem(spread_freq, 2 * vco->ref_clk_rate, &rem);
frac_n_value = div_s64((s64)rem * 65536, 2 * vco->ref_clk_rate);
vco_calc->ssc.freq_seed_7_0 = frac_n_value & 0xff;
vco_calc->ssc.freq_seed_15_8 = (frac_n_value >> 8) & 0xff;
}
static void pll_28nm_vco_config(void __iomem *pll_base,
struct mdss_dsi_vco_calc *vco_calc,
u32 vco_delay_us, bool ssc_en)
{
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_LPFR_CFG,
vco_calc->lpfr_lut_res);
/* Loop filter capacitance values : c1 and c2 */
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_LPFC1_CFG, 0x70);
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_LPFC2_CFG, 0x15);
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_CHGPUMP_CFG, 0x02);
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG3, 0x2b);
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG4, 0x66);
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_LKDET_CFG2, 0x0d);
if (!ssc_en) {
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG1,
(u32)(vco_calc->sdm_cfg1 & 0xff));
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG2,
(u32)(vco_calc->sdm_cfg2 & 0xff));
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG3,
(u32)(vco_calc->sdm_cfg3 & 0xff));
} else {
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG1,
(u32)vco_calc->ssc.dc_offset);
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG2,
(u32)vco_calc->ssc.freq_seed_7_0);
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG3,
(u32)vco_calc->ssc.freq_seed_15_8);
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SSC_CFG0,
(u32)vco_calc->ssc.kdiv);
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SSC_CFG1,
(u32)vco_calc->ssc.triang_inc_7_0);
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SSC_CFG2,
(u32)vco_calc->ssc.triang_inc_9_8);
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SSC_CFG3,
(u32)vco_calc->ssc.triang_steps);
}
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG4, 0x00);
/* Add hardware recommended delay for correct PLL configuration */
if (vco_delay_us)
udelay(vco_delay_us);
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_REFCLK_CFG,
(u32)vco_calc->refclk_cfg);
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_PWRGEN_CFG, 0x00);
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_VCOLPF_CFG, 0x71);
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG0,
(u32)vco_calc->sdm_cfg0);
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG0, 0x12);
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG6, 0x30);
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG7, 0x00);
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG8, 0x60);
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG9, 0x00);
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG10,
(u32)(vco_calc->cal_cfg10 & 0xff));
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG11,
(u32)(vco_calc->cal_cfg11 & 0xff));
MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_EFUSE_CFG, 0x20);
}
int vco_set_rate(struct dsi_pll_vco_clk *vco, unsigned long rate)
{
struct mdss_dsi_vco_calc vco_calc;
struct mdss_pll_resources *dsi_pll_res = vco->priv;
int rc = 0;
rc = pll_28nm_vco_rate_calc(vco, &vco_calc, rate);
if (rc) {
pr_err("vco rate calculation failed\n");
return rc;
}
pll_28nm_ssc_param_calc(vco, &vco_calc);
pll_28nm_vco_config(dsi_pll_res->pll_base, &vco_calc,
dsi_pll_res->vco_delay, dsi_pll_res->ssc_en);
return 0;
}
unsigned long vco_get_rate(struct clk *c)
{
u32 sdm0, doubler, sdm_byp_div;
u64 vco_rate;
u32 sdm_dc_off, sdm_freq_seed, sdm2, sdm3;
struct dsi_pll_vco_clk *vco = to_vco_clk(c);
u64 ref_clk = vco->ref_clk_rate;
int rc;
struct mdss_pll_resources *dsi_pll_res = vco->priv;
if (is_gdsc_disabled(dsi_pll_res))
return 0;
rc = mdss_pll_resource_enable(dsi_pll_res, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return rc;
}
/* Check to see if the ref clk doubler is enabled */
doubler = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_REFCLK_CFG) & BIT(0);
ref_clk += (doubler * vco->ref_clk_rate);
/* see if it is integer mode or sdm mode */
sdm0 = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG0);
if (sdm0 & BIT(6)) {
/* integer mode */
sdm_byp_div = (MDSS_PLL_REG_R(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG0) & 0x3f) + 1;
vco_rate = ref_clk * sdm_byp_div;
} else {
/* sdm mode */
sdm_dc_off = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG1) & 0xFF;
pr_debug("sdm_dc_off = %d\n", sdm_dc_off);
sdm2 = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG2) & 0xFF;
sdm3 = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG3) & 0xFF;
sdm_freq_seed = (sdm3 << 8) | sdm2;
pr_debug("sdm_freq_seed = %d\n", sdm_freq_seed);
vco_rate = (ref_clk * (sdm_dc_off + 1)) +
mult_frac(ref_clk, sdm_freq_seed, BIT(16));
pr_debug("vco rate = %lld", vco_rate);
}
pr_debug("returning vco rate = %lu\n", (unsigned long)vco_rate);
mdss_pll_resource_enable(dsi_pll_res, false);
return (unsigned long)vco_rate;
}
static int dsi_pll_enable(struct clk *c)
{
int i, rc;
struct dsi_pll_vco_clk *vco = to_vco_clk(c);
struct mdss_pll_resources *dsi_pll_res = vco->priv;
rc = mdss_pll_resource_enable(dsi_pll_res, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return rc;
}
/* Try all enable sequences until one succeeds */
for (i = 0; i < vco->pll_en_seq_cnt; i++) {
rc = vco->pll_enable_seqs[i](dsi_pll_res);
pr_debug("DSI PLL %s after sequence #%d\n",
rc ? "unlocked" : "locked", i + 1);
if (!rc)
break;
}
if (rc) {
mdss_pll_resource_enable(dsi_pll_res, false);
pr_err("DSI PLL failed to lock\n");
}
dsi_pll_res->pll_on = true;
return rc;
}
static void dsi_pll_disable(struct clk *c)
{
struct dsi_pll_vco_clk *vco = to_vco_clk(c);
struct mdss_pll_resources *dsi_pll_res = vco->priv;
if (!dsi_pll_res->pll_on &&
mdss_pll_resource_enable(dsi_pll_res, true)) {
pr_err("Failed to enable mdss dsi pll resources\n");
return;
}
dsi_pll_res->handoff_resources = false;
MDSS_PLL_REG_W(dsi_pll_res->pll_base,
DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x00);
mdss_pll_resource_enable(dsi_pll_res, false);
dsi_pll_res->pll_on = false;
pr_debug("DSI PLL Disabled\n");
}
long vco_round_rate(struct clk *c, unsigned long rate)
{
unsigned long rrate = rate;
struct dsi_pll_vco_clk *vco = to_vco_clk(c);
if (rate < vco->min_rate)
rrate = vco->min_rate;
if (rate > vco->max_rate)
rrate = vco->max_rate;
return rrate;
}
enum handoff vco_handoff(struct clk *c)
{
int rc;
enum handoff ret = HANDOFF_DISABLED_CLK;
struct dsi_pll_vco_clk *vco = to_vco_clk(c);
struct mdss_pll_resources *dsi_pll_res = vco->priv;
if (is_gdsc_disabled(dsi_pll_res))
return HANDOFF_DISABLED_CLK;
rc = mdss_pll_resource_enable(dsi_pll_res, true);
if (rc) {
pr_err("Failed to enable mdss dsi pll resources\n");
return ret;
}
if (dsi_pll_lock_status(dsi_pll_res)) {
dsi_pll_res->handoff_resources = true;
dsi_pll_res->pll_on = true;
c->rate = vco_get_rate(c);
ret = HANDOFF_ENABLED_CLK;
} else {
mdss_pll_resource_enable(dsi_pll_res, false);
}
return ret;
}
int vco_prepare(struct clk *c)
{
int rc = 0;
struct dsi_pll_vco_clk *vco = to_vco_clk(c);
struct mdss_pll_resources *dsi_pll_res = vco->priv;
if (!dsi_pll_res) {
pr_err("Dsi pll resources are not available\n");
return -EINVAL;
}
if ((dsi_pll_res->vco_cached_rate != 0)
&& (dsi_pll_res->vco_cached_rate == c->rate)) {
rc = c->ops->set_rate(c, dsi_pll_res->vco_cached_rate);
if (rc) {
pr_err("vco_set_rate failed. rc=%d\n", rc);
goto error;
}
}
rc = dsi_pll_enable(c);
error:
return rc;
}
void vco_unprepare(struct clk *c)
{
struct dsi_pll_vco_clk *vco = to_vco_clk(c);
struct mdss_pll_resources *dsi_pll_res = vco->priv;
if (!dsi_pll_res) {
pr_err("Dsi pll resources are not available\n");
return;
}
dsi_pll_res->vco_cached_rate = c->rate;
dsi_pll_disable(c);
}