/* Copyright (c) 2012-2015, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include "mdss-pll.h" #include "mdss-dsi-pll.h" #define DSI_PHY_PLL_UNIPHY_PLL_REFCLK_CFG (0x0) #define DSI_PHY_PLL_UNIPHY_PLL_POSTDIV1_CFG (0x0004) #define DSI_PHY_PLL_UNIPHY_PLL_CHGPUMP_CFG (0x0008) #define DSI_PHY_PLL_UNIPHY_PLL_VCOLPF_CFG (0x000C) #define DSI_PHY_PLL_UNIPHY_PLL_VREG_CFG (0x0010) #define DSI_PHY_PLL_UNIPHY_PLL_PWRGEN_CFG (0x0014) #define DSI_PHY_PLL_UNIPHY_PLL_POSTDIV2_CFG (0x0024) #define DSI_PHY_PLL_UNIPHY_PLL_POSTDIV3_CFG (0x0028) #define DSI_PHY_PLL_UNIPHY_PLL_LPFR_CFG (0x002C) #define DSI_PHY_PLL_UNIPHY_PLL_LPFC1_CFG (0x0030) #define DSI_PHY_PLL_UNIPHY_PLL_LPFC2_CFG (0x0034) #define DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG0 (0x0038) #define DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG1 (0x003C) #define DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG2 (0x0040) #define DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG3 (0x0044) #define DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG4 (0x0048) #define DSI_PHY_PLL_UNIPHY_PLL_SSC_CFG0 (0x004C) #define DSI_PHY_PLL_UNIPHY_PLL_SSC_CFG1 (0x0050) #define DSI_PHY_PLL_UNIPHY_PLL_SSC_CFG2 (0x0054) #define DSI_PHY_PLL_UNIPHY_PLL_SSC_CFG3 (0x0058) #define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG0 (0x006C) #define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG2 (0x0074) #define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG3 (0x0078) #define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG4 (0x007C) #define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG5 (0x0080) #define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG6 (0x0084) #define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG7 (0x0088) #define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG8 (0x008C) #define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG9 (0x0090) #define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG10 (0x0094) #define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG11 (0x0098) #define DSI_PHY_PLL_UNIPHY_PLL_EFUSE_CFG (0x009C) #define DSI_PHY_PLL_UNIPHY_PLL_STATUS (0x00C0) #define DSI_PLL_POLL_DELAY_US 50 #define DSI_PLL_POLL_TIMEOUT_US 500 int set_byte_mux_sel(struct mux_clk *clk, int sel) { struct mdss_pll_resources *dsi_pll_res = clk->priv; pr_debug("byte mux set to %s mode\n", sel ? "indirect" : "direct"); MDSS_PLL_REG_W(dsi_pll_res->pll_base, DSI_PHY_PLL_UNIPHY_PLL_VREG_CFG, (sel << 1)); return 0; } int get_byte_mux_sel(struct mux_clk *clk) { int mux_mode, rc; struct mdss_pll_resources *dsi_pll_res = clk->priv; if (is_gdsc_disabled(dsi_pll_res)) return 0; rc = mdss_pll_resource_enable(dsi_pll_res, true); if (rc) { pr_err("Failed to enable mdss dsi pll resources\n"); return rc; } mux_mode = MDSS_PLL_REG_R(dsi_pll_res->pll_base, DSI_PHY_PLL_UNIPHY_PLL_VREG_CFG) & BIT(1); pr_debug("byte mux mode = %s", mux_mode ? "indirect" : "direct"); mdss_pll_resource_enable(dsi_pll_res, false); return !!mux_mode; } int dsi_pll_div_prepare(struct clk *c) { struct div_clk *div = to_div_clk(c); /* Restore the divider's value */ return div->ops->set_div(div, div->data.div); } int dsi_pll_mux_prepare(struct clk *c) { struct mux_clk *mux = to_mux_clk(c); int i, rc, sel = 0; struct mdss_pll_resources *dsi_pll_res = mux->priv; rc = mdss_pll_resource_enable(dsi_pll_res, true); if (rc) { pr_err("Failed to enable mdss dsi pll resources\n"); return rc; } for (i = 0; i < mux->num_parents; i++) if (mux->parents[i].src == c->parent) { sel = mux->parents[i].sel; break; } if (i == mux->num_parents) { pr_err("Failed to select the parent clock\n"); rc = -EINVAL; goto error; } /* Restore the mux source select value */ rc = mux->ops->set_mux_sel(mux, sel); error: mdss_pll_resource_enable(dsi_pll_res, false); return rc; } int fixed_4div_set_div(struct div_clk *clk, int div) { int rc; struct mdss_pll_resources *dsi_pll_res = clk->priv; rc = mdss_pll_resource_enable(dsi_pll_res, true); if (rc) { pr_err("Failed to enable mdss dsi pll resources\n"); return rc; } MDSS_PLL_REG_W(dsi_pll_res->pll_base, DSI_PHY_PLL_UNIPHY_PLL_POSTDIV2_CFG, (div - 1)); mdss_pll_resource_enable(dsi_pll_res, false); return rc; } int fixed_4div_get_div(struct div_clk *clk) { int div = 0, rc; struct mdss_pll_resources *dsi_pll_res = clk->priv; if (is_gdsc_disabled(dsi_pll_res)) return 0; rc = mdss_pll_resource_enable(dsi_pll_res, true); if (rc) { pr_err("Failed to enable mdss dsi pll resources\n"); return rc; } div = MDSS_PLL_REG_R(dsi_pll_res->pll_base, DSI_PHY_PLL_UNIPHY_PLL_POSTDIV2_CFG); mdss_pll_resource_enable(dsi_pll_res, false); return div + 1; } int digital_set_div(struct div_clk *clk, int div) { int rc; struct mdss_pll_resources *dsi_pll_res = clk->priv; rc = mdss_pll_resource_enable(dsi_pll_res, true); if (rc) { pr_err("Failed to enable mdss dsi pll resources\n"); return rc; } MDSS_PLL_REG_W(dsi_pll_res->pll_base, DSI_PHY_PLL_UNIPHY_PLL_POSTDIV3_CFG, (div - 1)); mdss_pll_resource_enable(dsi_pll_res, false); return rc; } int digital_get_div(struct div_clk *clk) { int div = 0, rc; struct mdss_pll_resources *dsi_pll_res = clk->priv; if (is_gdsc_disabled(dsi_pll_res)) return 0; rc = mdss_pll_resource_enable(dsi_pll_res, true); if (rc) { pr_err("Failed to enable mdss dsi pll resources\n"); return rc; } div = MDSS_PLL_REG_R(dsi_pll_res->pll_base, DSI_PHY_PLL_UNIPHY_PLL_POSTDIV3_CFG); mdss_pll_resource_enable(dsi_pll_res, false); return div + 1; } int analog_set_div(struct div_clk *clk, int div) { int rc; struct mdss_pll_resources *dsi_pll_res = clk->priv; rc = mdss_pll_resource_enable(dsi_pll_res, true); if (rc) { pr_err("Failed to enable mdss dsi pll resources\n"); return rc; } MDSS_PLL_REG_W(dsi_pll_res->pll_base, DSI_PHY_PLL_UNIPHY_PLL_POSTDIV1_CFG, div - 1); mdss_pll_resource_enable(dsi_pll_res, false); return rc; } int analog_get_div(struct div_clk *clk) { int div = 0, rc; struct mdss_pll_resources *dsi_pll_res = clk->priv; if (is_gdsc_disabled(dsi_pll_res)) return 0; rc = mdss_pll_resource_enable(clk->priv, true); if (rc) { pr_err("Failed to enable mdss dsi pll resources\n"); return rc; } div = MDSS_PLL_REG_R(dsi_pll_res->pll_base, DSI_PHY_PLL_UNIPHY_PLL_POSTDIV1_CFG) + 1; mdss_pll_resource_enable(dsi_pll_res, false); return div; } int dsi_pll_lock_status(struct mdss_pll_resources *dsi_pll_res) { u32 status; int pll_locked; /* poll for PLL ready status */ if (readl_poll_timeout_atomic((dsi_pll_res->pll_base + DSI_PHY_PLL_UNIPHY_PLL_STATUS), status, ((status & BIT(0)) == 1), DSI_PLL_POLL_DELAY_US, DSI_PLL_POLL_TIMEOUT_US)) { pr_debug("DSI PLL status=%x failed to Lock\n", status); pll_locked = 0; } else { pll_locked = 1; } return pll_locked; } static int pll_28nm_vco_rate_calc(struct dsi_pll_vco_clk *vco, struct mdss_dsi_vco_calc *vco_calc, unsigned long vco_clk_rate) { s32 rem; s64 frac_n_mode, ref_doubler_en_b; s64 ref_clk_to_pll, div_fb, frac_n_value; int i; /* Configure the Loop filter resistance */ for (i = 0; i < vco->lpfr_lut_size; i++) if (vco_clk_rate <= vco->lpfr_lut[i].vco_rate) break; if (i == vco->lpfr_lut_size) { pr_err("unable to get loop filter resistance. vco=%ld\n", vco_clk_rate); return -EINVAL; } vco_calc->lpfr_lut_res = vco->lpfr_lut[i].r; div_s64_rem(vco_clk_rate, vco->ref_clk_rate, &rem); if (rem) { vco_calc->refclk_cfg = 0x1; frac_n_mode = 1; ref_doubler_en_b = 0; } else { vco_calc->refclk_cfg = 0x0; frac_n_mode = 0; ref_doubler_en_b = 1; } pr_debug("refclk_cfg = %lld\n", vco_calc->refclk_cfg); ref_clk_to_pll = ((vco->ref_clk_rate * 2 * (vco_calc->refclk_cfg)) + (ref_doubler_en_b * vco->ref_clk_rate)); div_fb = div_s64_rem(vco_clk_rate, ref_clk_to_pll, &rem); frac_n_value = div_s64(((s64)rem * (1 << 16)), ref_clk_to_pll); vco_calc->gen_vco_clk = vco_clk_rate; pr_debug("ref_clk_to_pll = %lld\n", ref_clk_to_pll); pr_debug("div_fb = %lld\n", div_fb); pr_debug("frac_n_value = %lld\n", frac_n_value); pr_debug("Generated VCO Clock: %lld\n", vco_calc->gen_vco_clk); rem = 0; if (frac_n_mode) { vco_calc->sdm_cfg0 = 0; vco_calc->sdm_cfg1 = (div_fb & 0x3f) - 1; vco_calc->sdm_cfg3 = div_s64_rem(frac_n_value, 256, &rem); vco_calc->sdm_cfg2 = rem; } else { vco_calc->sdm_cfg0 = (0x1 << 5); vco_calc->sdm_cfg0 |= (div_fb & 0x3f) - 1; vco_calc->sdm_cfg1 = 0; vco_calc->sdm_cfg2 = 0; vco_calc->sdm_cfg3 = 0; } pr_debug("sdm_cfg0=%lld\n", vco_calc->sdm_cfg0); pr_debug("sdm_cfg1=%lld\n", vco_calc->sdm_cfg1); pr_debug("sdm_cfg2=%lld\n", vco_calc->sdm_cfg2); pr_debug("sdm_cfg3=%lld\n", vco_calc->sdm_cfg3); vco_calc->cal_cfg11 = div_s64_rem(vco_calc->gen_vco_clk, 256 * 1000000, &rem); vco_calc->cal_cfg10 = rem / 1000000; pr_debug("cal_cfg10=%lld, cal_cfg11=%lld\n", vco_calc->cal_cfg10, vco_calc->cal_cfg11); return 0; } static void pll_28nm_ssc_param_calc(struct dsi_pll_vco_clk *vco, struct mdss_dsi_vco_calc *vco_calc) { struct mdss_pll_resources *dsi_pll_res = vco->priv; s64 ppm_freq, incr, spread_freq, div_rf, frac_n_value; s32 rem; if (!dsi_pll_res->ssc_en) { pr_debug("DSI PLL SSC not enabled\n"); return; } vco_calc->ssc.kdiv = DIV_ROUND_CLOSEST(vco->ref_clk_rate, 1000000) - 1; vco_calc->ssc.triang_steps = DIV_ROUND_CLOSEST(vco->ref_clk_rate, dsi_pll_res->ssc_freq * (vco_calc->ssc.kdiv + 1)); ppm_freq = div_s64(vco_calc->gen_vco_clk * dsi_pll_res->ssc_ppm, 1000000); incr = div64_s64(ppm_freq * 65536, vco->ref_clk_rate * 2 * vco_calc->ssc.triang_steps); vco_calc->ssc.triang_inc_7_0 = incr & 0xff; vco_calc->ssc.triang_inc_9_8 = (incr >> 8) & 0x3; if (!dsi_pll_res->ssc_center) spread_freq = vco_calc->gen_vco_clk - ppm_freq; else spread_freq = vco_calc->gen_vco_clk - (ppm_freq / 2); div_rf = div_s64(spread_freq, 2 * vco->ref_clk_rate); vco_calc->ssc.dc_offset = (div_rf - 1); div_s64_rem(spread_freq, 2 * vco->ref_clk_rate, &rem); frac_n_value = div_s64((s64)rem * 65536, 2 * vco->ref_clk_rate); vco_calc->ssc.freq_seed_7_0 = frac_n_value & 0xff; vco_calc->ssc.freq_seed_15_8 = (frac_n_value >> 8) & 0xff; } static void pll_28nm_vco_config(void __iomem *pll_base, struct mdss_dsi_vco_calc *vco_calc, u32 vco_delay_us, bool ssc_en) { MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_LPFR_CFG, vco_calc->lpfr_lut_res); /* Loop filter capacitance values : c1 and c2 */ MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_LPFC1_CFG, 0x70); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_LPFC2_CFG, 0x15); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_CHGPUMP_CFG, 0x02); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG3, 0x2b); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG4, 0x66); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_LKDET_CFG2, 0x0d); if (!ssc_en) { MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG1, (u32)(vco_calc->sdm_cfg1 & 0xff)); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG2, (u32)(vco_calc->sdm_cfg2 & 0xff)); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG3, (u32)(vco_calc->sdm_cfg3 & 0xff)); } else { MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG1, (u32)vco_calc->ssc.dc_offset); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG2, (u32)vco_calc->ssc.freq_seed_7_0); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG3, (u32)vco_calc->ssc.freq_seed_15_8); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SSC_CFG0, (u32)vco_calc->ssc.kdiv); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SSC_CFG1, (u32)vco_calc->ssc.triang_inc_7_0); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SSC_CFG2, (u32)vco_calc->ssc.triang_inc_9_8); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SSC_CFG3, (u32)vco_calc->ssc.triang_steps); } MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG4, 0x00); /* Add hardware recommended delay for correct PLL configuration */ if (vco_delay_us) udelay(vco_delay_us); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_REFCLK_CFG, (u32)vco_calc->refclk_cfg); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_PWRGEN_CFG, 0x00); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_VCOLPF_CFG, 0x71); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG0, (u32)vco_calc->sdm_cfg0); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG0, 0x12); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG6, 0x30); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG7, 0x00); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG8, 0x60); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG9, 0x00); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG10, (u32)(vco_calc->cal_cfg10 & 0xff)); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG11, (u32)(vco_calc->cal_cfg11 & 0xff)); MDSS_PLL_REG_W(pll_base, DSI_PHY_PLL_UNIPHY_PLL_EFUSE_CFG, 0x20); } int vco_set_rate(struct dsi_pll_vco_clk *vco, unsigned long rate) { struct mdss_dsi_vco_calc vco_calc; struct mdss_pll_resources *dsi_pll_res = vco->priv; int rc = 0; rc = pll_28nm_vco_rate_calc(vco, &vco_calc, rate); if (rc) { pr_err("vco rate calculation failed\n"); return rc; } pll_28nm_ssc_param_calc(vco, &vco_calc); pll_28nm_vco_config(dsi_pll_res->pll_base, &vco_calc, dsi_pll_res->vco_delay, dsi_pll_res->ssc_en); return 0; } unsigned long vco_get_rate(struct clk *c) { u32 sdm0, doubler, sdm_byp_div; u64 vco_rate; u32 sdm_dc_off, sdm_freq_seed, sdm2, sdm3; struct dsi_pll_vco_clk *vco = to_vco_clk(c); u64 ref_clk = vco->ref_clk_rate; int rc; struct mdss_pll_resources *dsi_pll_res = vco->priv; if (is_gdsc_disabled(dsi_pll_res)) return 0; rc = mdss_pll_resource_enable(dsi_pll_res, true); if (rc) { pr_err("Failed to enable mdss dsi pll resources\n"); return rc; } /* Check to see if the ref clk doubler is enabled */ doubler = MDSS_PLL_REG_R(dsi_pll_res->pll_base, DSI_PHY_PLL_UNIPHY_PLL_REFCLK_CFG) & BIT(0); ref_clk += (doubler * vco->ref_clk_rate); /* see if it is integer mode or sdm mode */ sdm0 = MDSS_PLL_REG_R(dsi_pll_res->pll_base, DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG0); if (sdm0 & BIT(6)) { /* integer mode */ sdm_byp_div = (MDSS_PLL_REG_R(dsi_pll_res->pll_base, DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG0) & 0x3f) + 1; vco_rate = ref_clk * sdm_byp_div; } else { /* sdm mode */ sdm_dc_off = MDSS_PLL_REG_R(dsi_pll_res->pll_base, DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG1) & 0xFF; pr_debug("sdm_dc_off = %d\n", sdm_dc_off); sdm2 = MDSS_PLL_REG_R(dsi_pll_res->pll_base, DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG2) & 0xFF; sdm3 = MDSS_PLL_REG_R(dsi_pll_res->pll_base, DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG3) & 0xFF; sdm_freq_seed = (sdm3 << 8) | sdm2; pr_debug("sdm_freq_seed = %d\n", sdm_freq_seed); vco_rate = (ref_clk * (sdm_dc_off + 1)) + mult_frac(ref_clk, sdm_freq_seed, BIT(16)); pr_debug("vco rate = %lld", vco_rate); } pr_debug("returning vco rate = %lu\n", (unsigned long)vco_rate); mdss_pll_resource_enable(dsi_pll_res, false); return (unsigned long)vco_rate; } static int dsi_pll_enable(struct clk *c) { int i, rc; struct dsi_pll_vco_clk *vco = to_vco_clk(c); struct mdss_pll_resources *dsi_pll_res = vco->priv; rc = mdss_pll_resource_enable(dsi_pll_res, true); if (rc) { pr_err("Failed to enable mdss dsi pll resources\n"); return rc; } /* Try all enable sequences until one succeeds */ for (i = 0; i < vco->pll_en_seq_cnt; i++) { rc = vco->pll_enable_seqs[i](dsi_pll_res); pr_debug("DSI PLL %s after sequence #%d\n", rc ? "unlocked" : "locked", i + 1); if (!rc) break; } if (rc) { mdss_pll_resource_enable(dsi_pll_res, false); pr_err("DSI PLL failed to lock\n"); } dsi_pll_res->pll_on = true; return rc; } static void dsi_pll_disable(struct clk *c) { struct dsi_pll_vco_clk *vco = to_vco_clk(c); struct mdss_pll_resources *dsi_pll_res = vco->priv; if (!dsi_pll_res->pll_on && mdss_pll_resource_enable(dsi_pll_res, true)) { pr_err("Failed to enable mdss dsi pll resources\n"); return; } dsi_pll_res->handoff_resources = false; MDSS_PLL_REG_W(dsi_pll_res->pll_base, DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x00); mdss_pll_resource_enable(dsi_pll_res, false); dsi_pll_res->pll_on = false; pr_debug("DSI PLL Disabled\n"); } long vco_round_rate(struct clk *c, unsigned long rate) { unsigned long rrate = rate; struct dsi_pll_vco_clk *vco = to_vco_clk(c); if (rate < vco->min_rate) rrate = vco->min_rate; if (rate > vco->max_rate) rrate = vco->max_rate; return rrate; } enum handoff vco_handoff(struct clk *c) { int rc; enum handoff ret = HANDOFF_DISABLED_CLK; struct dsi_pll_vco_clk *vco = to_vco_clk(c); struct mdss_pll_resources *dsi_pll_res = vco->priv; if (is_gdsc_disabled(dsi_pll_res)) return HANDOFF_DISABLED_CLK; rc = mdss_pll_resource_enable(dsi_pll_res, true); if (rc) { pr_err("Failed to enable mdss dsi pll resources\n"); return ret; } if (dsi_pll_lock_status(dsi_pll_res)) { dsi_pll_res->handoff_resources = true; dsi_pll_res->pll_on = true; c->rate = vco_get_rate(c); ret = HANDOFF_ENABLED_CLK; } else { mdss_pll_resource_enable(dsi_pll_res, false); } return ret; } int vco_prepare(struct clk *c) { int rc = 0; struct dsi_pll_vco_clk *vco = to_vco_clk(c); struct mdss_pll_resources *dsi_pll_res = vco->priv; if (!dsi_pll_res) { pr_err("Dsi pll resources are not available\n"); return -EINVAL; } if ((dsi_pll_res->vco_cached_rate != 0) && (dsi_pll_res->vco_cached_rate == c->rate)) { rc = c->ops->set_rate(c, dsi_pll_res->vco_cached_rate); if (rc) { pr_err("vco_set_rate failed. rc=%d\n", rc); goto error; } } rc = dsi_pll_enable(c); error: return rc; } void vco_unprepare(struct clk *c) { struct dsi_pll_vco_clk *vco = to_vco_clk(c); struct mdss_pll_resources *dsi_pll_res = vco->priv; if (!dsi_pll_res) { pr_err("Dsi pll resources are not available\n"); return; } dsi_pll_res->vco_cached_rate = c->rate; dsi_pll_disable(c); }