M7350/kernel/drivers/usb/gadget/ci13xxx_udc.c

3959 lines
97 KiB
C
Raw Normal View History

2024-09-09 08:52:07 +00:00
/*
* ci13xxx_udc.c - MIPS USB IP core family device controller
*
* Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved.
*
* Author: David Lopo
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/*
* Description: MIPS USB IP core family device controller
* Currently it only supports IP part number CI13412
*
* This driver is composed of several blocks:
* - HW: hardware interface
* - DBG: debug facilities (optional)
* - UTIL: utilities
* - ISR: interrupts handling
* - ENDPT: endpoint operations (Gadget API)
* - GADGET: gadget operations (Gadget API)
* - BUS: bus glue code, bus abstraction layer
*
* Compile Options
* - CONFIG_USB_GADGET_DEBUG_FILES: enable debug facilities
* - STALL_IN: non-empty bulk-in pipes cannot be halted
* if defined mass storage compliance succeeds but with warnings
* => case 4: Hi > Dn
* => case 5: Hi > Di
* => case 8: Hi <> Do
* if undefined usbtest 13 fails
* - TRACE: enable function tracing (depends on DEBUG)
*
* Main Features
* - Chapter 9 & Mass Storage Compliance with Gadget File Storage
* - Chapter 9 Compliance with Gadget Zero (STALL_IN undefined)
* - Normal & LPM support
*
* USBTEST Report
* - OK: 0-12, 13 (STALL_IN defined) & 14
* - Not Supported: 15 & 16 (ISO)
*
* TODO List
* - OTG
* - Isochronous & Interrupt Traffic
* - Handle requests which spawns into several TDs
* - GET_STATUS(device) - always reports 0
* - Gadget API (majority of optional features)
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dmapool.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/ratelimit.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
2024-09-09 08:57:42 +00:00
#include <linux/clk.h>
2024-09-09 08:52:07 +00:00
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/usb/otg.h>
#include <linux/usb/msm_hsusb.h>
2024-09-09 08:57:42 +00:00
#include "ci13xxx_udc.h"
2024-09-09 08:52:07 +00:00
/******************************************************************************
* DEFINE
*****************************************************************************/
#define USB_MAX_TIMEOUT 25 /* 25msec timeout */
#define EP_PRIME_CHECK_DELAY (jiffies + msecs_to_jiffies(1000))
#define MAX_PRIME_CHECK_RETRY 3 /*Wait for 3sec for EP prime failure */
2024-09-09 08:57:42 +00:00
#define EXTRA_ALLOCATION_SIZE 256
2024-09-09 08:52:07 +00:00
/* ctrl register bank access */
static DEFINE_SPINLOCK(udc_lock);
/* control endpoint description */
static const struct usb_endpoint_descriptor
ctrl_endpt_out_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_CONTROL,
.wMaxPacketSize = cpu_to_le16(CTRL_PAYLOAD_MAX),
};
static const struct usb_endpoint_descriptor
ctrl_endpt_in_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_CONTROL,
.wMaxPacketSize = cpu_to_le16(CTRL_PAYLOAD_MAX),
};
/* UDC descriptor */
static struct ci13xxx *_udc;
/* Interrupt statistics */
#define ISR_MASK 0x1F
static struct {
u32 test;
u32 ui;
u32 uei;
u32 pci;
u32 uri;
u32 sli;
u32 none;
struct {
u32 cnt;
u32 buf[ISR_MASK+1];
u32 idx;
} hndl;
} isr_statistics;
/**
* ffs_nr: find first (least significant) bit set
* @x: the word to search
*
* This function returns bit number (instead of position)
*/
static int ffs_nr(u32 x)
{
int n = ffs(x);
return n ? n-1 : 32;
}
/******************************************************************************
* HW block
*****************************************************************************/
/* register bank descriptor */
static struct {
unsigned lpm; /* is LPM? */
void __iomem *abs; /* bus map offset */
void __iomem *cap; /* bus map offset + CAP offset + CAP data */
size_t size; /* bank size */
} hw_bank;
/* MSM specific */
#define ABS_AHBBURST (0x0090UL)
#define ABS_AHBMODE (0x0098UL)
/* UDC register map */
#define ABS_CAPLENGTH (0x100UL)
#define ABS_HCCPARAMS (0x108UL)
#define ABS_DCCPARAMS (0x124UL)
#define ABS_TESTMODE (hw_bank.lpm ? 0x0FCUL : 0x138UL)
/* offset to CAPLENTGH (addr + data) */
#define CAP_USBCMD (0x000UL)
#define CAP_USBSTS (0x004UL)
#define CAP_USBINTR (0x008UL)
#define CAP_DEVICEADDR (0x014UL)
#define CAP_ENDPTLISTADDR (0x018UL)
#define CAP_PORTSC (0x044UL)
#define CAP_DEVLC (0x084UL)
#define CAP_ENDPTPIPEID (0x0BCUL)
#define CAP_USBMODE (hw_bank.lpm ? 0x0C8UL : 0x068UL)
#define CAP_ENDPTSETUPSTAT (hw_bank.lpm ? 0x0D8UL : 0x06CUL)
#define CAP_ENDPTPRIME (hw_bank.lpm ? 0x0DCUL : 0x070UL)
#define CAP_ENDPTFLUSH (hw_bank.lpm ? 0x0E0UL : 0x074UL)
#define CAP_ENDPTSTAT (hw_bank.lpm ? 0x0E4UL : 0x078UL)
#define CAP_ENDPTCOMPLETE (hw_bank.lpm ? 0x0E8UL : 0x07CUL)
#define CAP_ENDPTCTRL (hw_bank.lpm ? 0x0ECUL : 0x080UL)
#define CAP_LAST (hw_bank.lpm ? 0x12CUL : 0x0C0UL)
#define REMOTE_WAKEUP_DELAY msecs_to_jiffies(200)
/* maximum number of enpoints: valid only after hw_device_reset() */
static unsigned hw_ep_max;
static void dbg_usb_op_fail(u8 addr, const char *name,
const struct ci13xxx_ep *mep);
/**
* hw_ep_bit: calculates the bit number
* @num: endpoint number
* @dir: endpoint direction
*
* This function returns bit number
*/
static inline int hw_ep_bit(int num, int dir)
{
return num + (dir ? 16 : 0);
}
static int ep_to_bit(int n)
{
int fill = 16 - hw_ep_max / 2;
if (n >= hw_ep_max / 2)
n += fill;
return n;
}
/**
* hw_aread: reads from register bitfield
* @addr: address relative to bus map
* @mask: bitfield mask
*
* This function returns register bitfield data
*/
static u32 hw_aread(u32 addr, u32 mask)
{
return ioread32(addr + hw_bank.abs) & mask;
}
/**
* hw_awrite: writes to register bitfield
* @addr: address relative to bus map
* @mask: bitfield mask
* @data: new data
*/
static void hw_awrite(u32 addr, u32 mask, u32 data)
{
iowrite32(hw_aread(addr, ~mask) | (data & mask),
addr + hw_bank.abs);
}
/**
* hw_cread: reads from register bitfield
* @addr: address relative to CAP offset plus content
* @mask: bitfield mask
*
* This function returns register bitfield data
*/
static u32 hw_cread(u32 addr, u32 mask)
{
return ioread32(addr + hw_bank.cap) & mask;
}
/**
* hw_cwrite: writes to register bitfield
* @addr: address relative to CAP offset plus content
* @mask: bitfield mask
* @data: new data
*/
static void hw_cwrite(u32 addr, u32 mask, u32 data)
{
iowrite32(hw_cread(addr, ~mask) | (data & mask),
addr + hw_bank.cap);
}
/**
* hw_ctest_and_clear: tests & clears register bitfield
* @addr: address relative to CAP offset plus content
* @mask: bitfield mask
*
* This function returns register bitfield data
*/
static u32 hw_ctest_and_clear(u32 addr, u32 mask)
{
u32 reg = hw_cread(addr, mask);
iowrite32(reg, addr + hw_bank.cap);
return reg;
}
/**
* hw_ctest_and_write: tests & writes register bitfield
* @addr: address relative to CAP offset plus content
* @mask: bitfield mask
* @data: new data
*
* This function returns register bitfield data
*/
static u32 hw_ctest_and_write(u32 addr, u32 mask, u32 data)
{
u32 reg = hw_cread(addr, ~0);
iowrite32((reg & ~mask) | (data & mask), addr + hw_bank.cap);
return (reg & mask) >> ffs_nr(mask);
}
static int hw_device_init(void __iomem *base)
{
u32 reg;
/* bank is a module variable */
hw_bank.abs = base;
hw_bank.cap = hw_bank.abs;
hw_bank.cap += ABS_CAPLENGTH;
hw_bank.cap += ioread8(hw_bank.cap);
reg = hw_aread(ABS_HCCPARAMS, HCCPARAMS_LEN) >> ffs_nr(HCCPARAMS_LEN);
hw_bank.lpm = reg;
hw_bank.size = hw_bank.cap - hw_bank.abs;
hw_bank.size += CAP_LAST;
hw_bank.size /= sizeof(u32);
reg = hw_aread(ABS_DCCPARAMS, DCCPARAMS_DEN) >> ffs_nr(DCCPARAMS_DEN);
hw_ep_max = reg * 2; /* cache hw ENDPT_MAX */
if (hw_ep_max == 0 || hw_ep_max > ENDPT_MAX)
return -ENODEV;
/* setup lock mode ? */
/* ENDPTSETUPSTAT is '0' by default */
/* HCSPARAMS.bf.ppc SHOULD BE zero for device */
return 0;
}
/**
* hw_device_reset: resets chip (execute without interruption)
* @base: register base address
*
* This function returns an error code
*/
static int hw_device_reset(struct ci13xxx *udc)
{
int delay_count = 25; /* 250 usec */
/* should flush & stop before reset */
hw_cwrite(CAP_ENDPTFLUSH, ~0, ~0);
hw_cwrite(CAP_USBCMD, USBCMD_RS, 0);
hw_cwrite(CAP_USBCMD, USBCMD_RST, USBCMD_RST);
while (delay_count-- && hw_cread(CAP_USBCMD, USBCMD_RST))
udelay(10);
if (delay_count < 0)
pr_err("USB controller reset failed\n");
if (udc->udc_driver->notify_event)
udc->udc_driver->notify_event(udc,
CI13XXX_CONTROLLER_RESET_EVENT);
/* USBMODE should be configured step by step */
hw_cwrite(CAP_USBMODE, USBMODE_CM, USBMODE_CM_IDLE);
hw_cwrite(CAP_USBMODE, USBMODE_CM, USBMODE_CM_DEVICE);
hw_cwrite(CAP_USBMODE, USBMODE_SLOM, USBMODE_SLOM); /* HW >= 2.3 */
/*
* ITC (Interrupt Threshold Control) field is to set the maximum
* rate at which the device controller will issue interrupts.
* The maximum interrupt interval measured in micro frames.
* Valid values are 0, 1, 2, 4, 8, 16, 32, 64. The default value is
* 8 micro frames. If CPU can handle interrupts at faster rate, ITC
* can be set to lesser value to gain performance.
*/
if (udc->udc_driver->nz_itc)
hw_cwrite(CAP_USBCMD, USBCMD_ITC_MASK,
USBCMD_ITC(udc->udc_driver->nz_itc));
else if (udc->udc_driver->flags & CI13XXX_ZERO_ITC)
hw_cwrite(CAP_USBCMD, USBCMD_ITC_MASK, USBCMD_ITC(0));
if (hw_cread(CAP_USBMODE, USBMODE_CM) != USBMODE_CM_DEVICE) {
pr_err("cannot enter in device mode");
pr_err("lpm = %i", hw_bank.lpm);
return -ENODEV;
}
return 0;
}
/**
* hw_device_state: enables/disables interrupts & starts/stops device (execute
* without interruption)
* @dma: 0 => disable, !0 => enable and set dma engine
*
* This function returns an error code
*/
static int hw_device_state(u32 dma)
{
struct ci13xxx *udc = _udc;
if (dma) {
2024-09-09 08:57:42 +00:00
if (!(udc->udc_driver->flags & CI13XXX_DISABLE_STREAMING)) {
2024-09-09 08:52:07 +00:00
hw_cwrite(CAP_USBMODE, USBMODE_SDIS, 0);
2024-09-09 08:57:42 +00:00
pr_debug("%s(): streaming mode is enabled. USBMODE:%x\n",
__func__, hw_cread(CAP_USBMODE, ~0));
} else {
2024-09-09 08:52:07 +00:00
hw_cwrite(CAP_USBMODE, USBMODE_SDIS, USBMODE_SDIS);
2024-09-09 08:57:42 +00:00
pr_debug("%s(): streaming mode is disabled. USBMODE:%x\n",
__func__, hw_cread(CAP_USBMODE, ~0));
}
2024-09-09 08:52:07 +00:00
hw_cwrite(CAP_ENDPTLISTADDR, ~0, dma);
2024-09-09 08:57:42 +00:00
/* Set BIT(31) to enable AHB2AHB Bypass functionality */
if (udc->udc_driver->flags & CI13XXX_ENABLE_AHB2AHB_BYPASS) {
hw_awrite(ABS_AHBMODE, AHB2AHB_BYPASS, AHB2AHB_BYPASS);
pr_debug("%s(): ByPass Mode is enabled. AHBMODE:%x\n",
__func__, hw_aread(ABS_AHBMODE, ~0));
}
2024-09-09 08:52:07 +00:00
/* interrupt, error, port change, reset, sleep/suspend */
hw_cwrite(CAP_USBINTR, ~0,
USBi_UI|USBi_UEI|USBi_PCI|USBi_URI|USBi_SLI);
hw_cwrite(CAP_USBCMD, USBCMD_RS, USBCMD_RS);
} else {
hw_cwrite(CAP_USBCMD, USBCMD_RS, 0);
hw_cwrite(CAP_USBINTR, ~0, 0);
2024-09-09 08:57:42 +00:00
/* Clear BIT(31) to disable AHB2AHB Bypass functionality */
if (udc->udc_driver->flags & CI13XXX_ENABLE_AHB2AHB_BYPASS) {
hw_awrite(ABS_AHBMODE, AHB2AHB_BYPASS, 0);
pr_debug("%s(): ByPass Mode is disabled. AHBMODE:%x\n",
__func__, hw_aread(ABS_AHBMODE, ~0));
}
2024-09-09 08:52:07 +00:00
}
return 0;
}
static void debug_ept_flush_info(int ep_num, int dir)
{
struct ci13xxx *udc = _udc;
struct ci13xxx_ep *mep;
if (dir)
mep = &udc->ci13xxx_ep[ep_num + hw_ep_max/2];
else
mep = &udc->ci13xxx_ep[ep_num];
pr_err_ratelimited("USB Registers\n");
pr_err_ratelimited("USBCMD:%x\n", hw_cread(CAP_USBCMD, ~0));
pr_err_ratelimited("USBSTS:%x\n", hw_cread(CAP_USBSTS, ~0));
pr_err_ratelimited("ENDPTLISTADDR:%x\n",
hw_cread(CAP_ENDPTLISTADDR, ~0));
pr_err_ratelimited("PORTSC:%x\n", hw_cread(CAP_PORTSC, ~0));
pr_err_ratelimited("USBMODE:%x\n", hw_cread(CAP_USBMODE, ~0));
pr_err_ratelimited("ENDPTSTAT:%x\n", hw_cread(CAP_ENDPTSTAT, ~0));
dbg_usb_op_fail(0xFF, "FLUSHF", mep);
}
/**
* hw_ep_flush: flush endpoint fifo (execute without interruption)
* @num: endpoint number
* @dir: endpoint direction
*
* This function returns an error code
*/
static int hw_ep_flush(int num, int dir)
{
ktime_t start, diff;
int n = hw_ep_bit(num, dir);
struct ci13xxx_ep *mEp = &_udc->ci13xxx_ep[n];
/* Flush ep0 even when queue is empty */
if (_udc->skip_flush || (num && list_empty(&mEp->qh.queue)))
return 0;
start = ktime_get();
do {
/* flush any pending transfer */
hw_cwrite(CAP_ENDPTFLUSH, BIT(n), BIT(n));
while (hw_cread(CAP_ENDPTFLUSH, BIT(n))) {
cpu_relax();
diff = ktime_sub(ktime_get(), start);
if (ktime_to_ms(diff) > USB_MAX_TIMEOUT) {
printk_ratelimited(KERN_ERR
"%s: Failed to flush ep#%d %s\n",
__func__, num,
dir ? "IN" : "OUT");
debug_ept_flush_info(num, dir);
_udc->skip_flush = true;
2024-09-09 08:57:42 +00:00
/* Notify to trigger h/w reset recovery later */
if (_udc->udc_driver->notify_event)
_udc->udc_driver->notify_event(_udc,
CI13XXX_CONTROLLER_ERROR_EVENT);
2024-09-09 08:52:07 +00:00
return 0;
}
}
} while (hw_cread(CAP_ENDPTSTAT, BIT(n)));
return 0;
}
/**
* hw_ep_disable: disables endpoint (execute without interruption)
* @num: endpoint number
* @dir: endpoint direction
*
* This function returns an error code
*/
static int hw_ep_disable(int num, int dir)
{
hw_cwrite(CAP_ENDPTCTRL + num * sizeof(u32),
dir ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0);
return 0;
}
/**
* hw_ep_enable: enables endpoint (execute without interruption)
* @num: endpoint number
* @dir: endpoint direction
* @type: endpoint type
*
* This function returns an error code
*/
static int hw_ep_enable(int num, int dir, int type)
{
u32 mask, data;
if (dir) {
mask = ENDPTCTRL_TXT; /* type */
data = type << ffs_nr(mask);
mask |= ENDPTCTRL_TXS; /* unstall */
mask |= ENDPTCTRL_TXR; /* reset data toggle */
data |= ENDPTCTRL_TXR;
mask |= ENDPTCTRL_TXE; /* enable */
data |= ENDPTCTRL_TXE;
} else {
mask = ENDPTCTRL_RXT; /* type */
data = type << ffs_nr(mask);
mask |= ENDPTCTRL_RXS; /* unstall */
mask |= ENDPTCTRL_RXR; /* reset data toggle */
data |= ENDPTCTRL_RXR;
mask |= ENDPTCTRL_RXE; /* enable */
data |= ENDPTCTRL_RXE;
}
hw_cwrite(CAP_ENDPTCTRL + num * sizeof(u32), mask, data);
/* make sure endpoint is enabled before returning */
mb();
return 0;
}
/**
* hw_ep_get_halt: return endpoint halt status
* @num: endpoint number
* @dir: endpoint direction
*
* This function returns 1 if endpoint halted
*/
static int hw_ep_get_halt(int num, int dir)
{
u32 mask = dir ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
return hw_cread(CAP_ENDPTCTRL + num * sizeof(u32), mask) ? 1 : 0;
}
/**
* hw_test_and_clear_setup_status: test & clear setup status (execute without
* interruption)
* @n: endpoint number
*
* This function returns setup status
*/
static int hw_test_and_clear_setup_status(int n)
{
n = ep_to_bit(n);
return hw_ctest_and_clear(CAP_ENDPTSETUPSTAT, BIT(n));
}
/**
* hw_ep_prime: primes endpoint (execute without interruption)
* @num: endpoint number
* @dir: endpoint direction
* @is_ctrl: true if control endpoint
*
* This function returns an error code
*/
static int hw_ep_prime(int num, int dir, int is_ctrl)
{
int n = hw_ep_bit(num, dir);
if (is_ctrl && dir == RX && hw_cread(CAP_ENDPTSETUPSTAT, BIT(num)))
return -EAGAIN;
hw_cwrite(CAP_ENDPTPRIME, BIT(n), BIT(n));
if (is_ctrl && dir == RX && hw_cread(CAP_ENDPTSETUPSTAT, BIT(num)))
return -EAGAIN;
/* status shoult be tested according with manual but it doesn't work */
return 0;
}
/**
* hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute
* without interruption)
* @num: endpoint number
* @dir: endpoint direction
* @value: true => stall, false => unstall
*
* This function returns an error code
*/
static int hw_ep_set_halt(int num, int dir, int value)
{
u32 addr, mask_xs, mask_xr;
if (value != 0 && value != 1)
return -EINVAL;
do {
if (hw_cread(CAP_ENDPTSETUPSTAT, BIT(num)))
return 0;
addr = CAP_ENDPTCTRL + num * sizeof(u32);
mask_xs = dir ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
mask_xr = dir ? ENDPTCTRL_TXR : ENDPTCTRL_RXR;
/* data toggle - reserved for EP0 but it's in ESS */
hw_cwrite(addr, mask_xs|mask_xr, value ? mask_xs : mask_xr);
} while (value != hw_ep_get_halt(num, dir));
return 0;
}
/**
* hw_intr_clear: disables interrupt & clears interrupt status (execute without
* interruption)
* @n: interrupt bit
*
* This function returns an error code
*/
static int hw_intr_clear(int n)
{
if (n >= REG_BITS)
return -EINVAL;
hw_cwrite(CAP_USBINTR, BIT(n), 0);
hw_cwrite(CAP_USBSTS, BIT(n), BIT(n));
return 0;
}
/**
* hw_intr_force: enables interrupt & forces interrupt status (execute without
* interruption)
* @n: interrupt bit
*
* This function returns an error code
*/
static int hw_intr_force(int n)
{
if (n >= REG_BITS)
return -EINVAL;
hw_awrite(ABS_TESTMODE, TESTMODE_FORCE, TESTMODE_FORCE);
hw_cwrite(CAP_USBINTR, BIT(n), BIT(n));
hw_cwrite(CAP_USBSTS, BIT(n), BIT(n));
hw_awrite(ABS_TESTMODE, TESTMODE_FORCE, 0);
return 0;
}
/**
* hw_is_port_high_speed: test if port is high speed
*
* This function returns true if high speed port
*/
static int hw_port_is_high_speed(void)
{
return hw_bank.lpm ? hw_cread(CAP_DEVLC, DEVLC_PSPD) :
hw_cread(CAP_PORTSC, PORTSC_HSP);
}
/**
* hw_port_test_get: reads port test mode value
*
* This function returns port test mode value
*/
static u8 hw_port_test_get(void)
{
return hw_cread(CAP_PORTSC, PORTSC_PTC) >> ffs_nr(PORTSC_PTC);
}
/**
* hw_port_test_set: writes port test mode (execute without interruption)
* @mode: new value
*
* This function returns an error code
*/
static int hw_port_test_set(u8 mode)
{
const u8 TEST_MODE_MAX = 7;
if (mode > TEST_MODE_MAX)
return -EINVAL;
hw_cwrite(CAP_PORTSC, PORTSC_PTC, mode << ffs_nr(PORTSC_PTC));
return 0;
}
/**
* hw_read_intr_enable: returns interrupt enable register
*
* This function returns register data
*/
static u32 hw_read_intr_enable(void)
{
return hw_cread(CAP_USBINTR, ~0);
}
/**
* hw_read_intr_status: returns interrupt status register
*
* This function returns register data
*/
static u32 hw_read_intr_status(void)
{
return hw_cread(CAP_USBSTS, ~0);
}
/**
* hw_register_read: reads all device registers (execute without interruption)
* @buf: destination buffer
* @size: buffer size
*
* This function returns number of registers read
*/
static size_t hw_register_read(u32 *buf, size_t size)
{
unsigned i;
if (size > hw_bank.size)
size = hw_bank.size;
for (i = 0; i < size; i++)
buf[i] = hw_aread(i * sizeof(u32), ~0);
return size;
}
/**
* hw_register_write: writes to register
* @addr: register address
* @data: register value
*
* This function returns an error code
*/
static int hw_register_write(u16 addr, u32 data)
{
/* align */
addr /= sizeof(u32);
if (addr >= hw_bank.size)
return -EINVAL;
/* align */
addr *= sizeof(u32);
hw_awrite(addr, ~0, data);
return 0;
}
/**
* hw_test_and_clear_complete: test & clear complete status (execute without
* interruption)
* @n: endpoint number
*
* This function returns complete status
*/
static int hw_test_and_clear_complete(int n)
{
n = ep_to_bit(n);
return hw_ctest_and_clear(CAP_ENDPTCOMPLETE, BIT(n));
}
/**
* hw_test_and_clear_intr_active: test & clear active interrupts (execute
* without interruption)
*
* This function returns active interrutps
*/
static u32 hw_test_and_clear_intr_active(void)
{
u32 reg = hw_read_intr_status() & hw_read_intr_enable();
hw_cwrite(CAP_USBSTS, ~0, reg);
return reg;
}
/**
* hw_test_and_clear_setup_guard: test & clear setup guard (execute without
* interruption)
*
* This function returns guard value
*/
static int hw_test_and_clear_setup_guard(void)
{
return hw_ctest_and_write(CAP_USBCMD, USBCMD_SUTW, 0);
}
/**
* hw_test_and_set_setup_guard: test & set setup guard (execute without
* interruption)
*
* This function returns guard value
*/
static int hw_test_and_set_setup_guard(void)
{
return hw_ctest_and_write(CAP_USBCMD, USBCMD_SUTW, USBCMD_SUTW);
}
/**
* hw_usb_set_address: configures USB address (execute without interruption)
* @value: new USB address
*
* This function returns an error code
*/
static int hw_usb_set_address(u8 value)
{
/* advance */
hw_cwrite(CAP_DEVICEADDR, DEVICEADDR_USBADR | DEVICEADDR_USBADRA,
value << ffs_nr(DEVICEADDR_USBADR) | DEVICEADDR_USBADRA);
return 0;
}
/**
* hw_usb_reset: restart device after a bus reset (execute without
* interruption)
*
* This function returns an error code
*/
static int hw_usb_reset(void)
{
int delay_count = 10; /* 100 usec delay */
hw_usb_set_address(0);
/* ESS flushes only at end?!? */
hw_cwrite(CAP_ENDPTFLUSH, ~0, ~0); /* flush all EPs */
/* clear complete status */
hw_cwrite(CAP_ENDPTCOMPLETE, 0, 0); /* writes its content */
/* wait until all bits cleared */
while (delay_count-- && hw_cread(CAP_ENDPTPRIME, ~0))
udelay(10);
if (delay_count < 0)
pr_err("ENDPTPRIME is not cleared during bus reset\n");
/* reset all endpoints ? */
/* reset internal status and wait for further instructions
no need to verify the port reset status (ESS does it) */
return 0;
}
/******************************************************************************
* DBG block
*****************************************************************************/
/**
* show_device: prints information about device capabilities and status
*
* Check "device.h" for details
*/
static ssize_t show_device(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev);
struct usb_gadget *gadget = &udc->gadget;
int n = 0;
dbg_trace("[%s] %p\n", __func__, buf);
if (attr == NULL || buf == NULL) {
dev_err(dev, "[%s] EINVAL\n", __func__);
return 0;
}
n += scnprintf(buf + n, PAGE_SIZE - n, "speed = %d\n",
gadget->speed);
n += scnprintf(buf + n, PAGE_SIZE - n, "max_speed = %d\n",
gadget->max_speed);
/* TODO: Scheduled for removal in 3.8. */
n += scnprintf(buf + n, PAGE_SIZE - n, "is_dualspeed = %d\n",
gadget_is_dualspeed(gadget));
n += scnprintf(buf + n, PAGE_SIZE - n, "is_otg = %d\n",
gadget->is_otg);
n += scnprintf(buf + n, PAGE_SIZE - n, "is_a_peripheral = %d\n",
gadget->is_a_peripheral);
n += scnprintf(buf + n, PAGE_SIZE - n, "b_hnp_enable = %d\n",
gadget->b_hnp_enable);
n += scnprintf(buf + n, PAGE_SIZE - n, "a_hnp_support = %d\n",
gadget->a_hnp_support);
n += scnprintf(buf + n, PAGE_SIZE - n, "a_alt_hnp_support = %d\n",
gadget->a_alt_hnp_support);
n += scnprintf(buf + n, PAGE_SIZE - n, "name = %s\n",
(gadget->name ? gadget->name : ""));
return n;
}
static DEVICE_ATTR(device, S_IRUSR, show_device, NULL);
/**
* show_driver: prints information about attached gadget (if any)
*
* Check "device.h" for details
*/
static ssize_t show_driver(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev);
struct usb_gadget_driver *driver = udc->driver;
int n = 0;
dbg_trace("[%s] %p\n", __func__, buf);
if (attr == NULL || buf == NULL) {
dev_err(dev, "[%s] EINVAL\n", __func__);
return 0;
}
if (driver == NULL)
return scnprintf(buf, PAGE_SIZE,
"There is no gadget attached!\n");
n += scnprintf(buf + n, PAGE_SIZE - n, "function = %s\n",
(driver->function ? driver->function : ""));
n += scnprintf(buf + n, PAGE_SIZE - n, "max speed = %d\n",
driver->max_speed);
return n;
}
static DEVICE_ATTR(driver, S_IRUSR, show_driver, NULL);
/* Maximum event message length */
#define DBG_DATA_MSG 64UL
/* Maximum event messages */
#define DBG_DATA_MAX 128UL
/* Event buffer descriptor */
static struct {
char (buf[DBG_DATA_MAX])[DBG_DATA_MSG]; /* buffer */
unsigned idx; /* index */
unsigned tty; /* print to console? */
rwlock_t lck; /* lock */
} dbg_data = {
.idx = 0,
.tty = 0,
.lck = __RW_LOCK_UNLOCKED(lck)
};
/**
* dbg_dec: decrements debug event index
* @idx: buffer index
*/
static void dbg_dec(unsigned *idx)
{
*idx = (*idx - 1) & (DBG_DATA_MAX-1);
}
/**
* dbg_inc: increments debug event index
* @idx: buffer index
*/
static void dbg_inc(unsigned *idx)
{
*idx = (*idx + 1) & (DBG_DATA_MAX-1);
}
static unsigned int ep_addr_txdbg_mask;
module_param(ep_addr_txdbg_mask, uint, S_IRUGO | S_IWUSR);
static unsigned int ep_addr_rxdbg_mask;
module_param(ep_addr_rxdbg_mask, uint, S_IRUGO | S_IWUSR);
static int allow_dbg_print(u8 addr)
{
int dir, num;
/* allow bus wide events */
if (addr == 0xff)
return 1;
dir = addr & USB_ENDPOINT_DIR_MASK ? TX : RX;
num = addr & ~USB_ENDPOINT_DIR_MASK;
num = 1 << num;
if ((dir == TX) && (num & ep_addr_txdbg_mask))
return 1;
if ((dir == RX) && (num & ep_addr_rxdbg_mask))
return 1;
return 0;
}
2024-09-09 08:57:42 +00:00
#define TIME_BUF_LEN 20
/*get_timestamp - returns time of day in us */
static char *get_timestamp(char *tbuf)
{
unsigned long long t;
unsigned long nanosec_rem;
t = cpu_clock(smp_processor_id());
nanosec_rem = do_div(t, 1000000000)/1000;
scnprintf(tbuf, TIME_BUF_LEN, "[%5lu.%06lu] ", (unsigned long)t,
nanosec_rem);
return tbuf;
}
2024-09-09 08:52:07 +00:00
/**
* dbg_print: prints the common part of the event
* @addr: endpoint address
* @name: event name
* @status: status
* @extra: extra information
*/
static void dbg_print(u8 addr, const char *name, int status, const char *extra)
{
unsigned long flags;
2024-09-09 08:57:42 +00:00
char tbuf[TIME_BUF_LEN];
2024-09-09 08:52:07 +00:00
if (!allow_dbg_print(addr))
return;
write_lock_irqsave(&dbg_data.lck, flags);
scnprintf(dbg_data.buf[dbg_data.idx], DBG_DATA_MSG,
2024-09-09 08:57:42 +00:00
"%s\t? %02X %-7.7s %4i ?\t%s\n",
get_timestamp(tbuf), addr, name, status, extra);
2024-09-09 08:52:07 +00:00
dbg_inc(&dbg_data.idx);
write_unlock_irqrestore(&dbg_data.lck, flags);
if (dbg_data.tty != 0)
2024-09-09 08:57:42 +00:00
pr_notice("%s\t? %02X %-7.7s %4i ?\t%s\n",
get_timestamp(tbuf), addr, name, status, extra);
2024-09-09 08:52:07 +00:00
}
/**
* dbg_done: prints a DONE event
* @addr: endpoint address
* @td: transfer descriptor
* @status: status
*/
static void dbg_done(u8 addr, const u32 token, int status)
{
char msg[DBG_DATA_MSG];
scnprintf(msg, sizeof(msg), "%d %02X",
(int)(token & TD_TOTAL_BYTES) >> ffs_nr(TD_TOTAL_BYTES),
(int)(token & TD_STATUS) >> ffs_nr(TD_STATUS));
dbg_print(addr, "DONE", status, msg);
}
/**
* dbg_event: prints a generic event
* @addr: endpoint address
* @name: event name
* @status: status
*/
static void dbg_event(u8 addr, const char *name, int status)
{
if (name != NULL)
dbg_print(addr, name, status, "");
}
/*
* dbg_queue: prints a QUEUE event
* @addr: endpoint address
* @req: USB request
* @status: status
*/
static void dbg_queue(u8 addr, const struct usb_request *req, int status)
{
char msg[DBG_DATA_MSG];
if (req != NULL) {
scnprintf(msg, sizeof(msg),
"%d %d", !req->no_interrupt, req->length);
dbg_print(addr, "QUEUE", status, msg);
}
}
/**
* dbg_setup: prints a SETUP event
* @addr: endpoint address
* @req: setup request
*/
static void dbg_setup(u8 addr, const struct usb_ctrlrequest *req)
{
char msg[DBG_DATA_MSG];
if (req != NULL) {
scnprintf(msg, sizeof(msg),
"%02X %02X %04X %04X %d", req->bRequestType,
req->bRequest, le16_to_cpu(req->wValue),
le16_to_cpu(req->wIndex), le16_to_cpu(req->wLength));
dbg_print(addr, "SETUP", 0, msg);
}
}
/**
* dbg_usb_op_fail: prints USB Operation FAIL event
* @addr: endpoint address
* @mEp: endpoint structure
*/
static void dbg_usb_op_fail(u8 addr, const char *name,
const struct ci13xxx_ep *mep)
{
char msg[DBG_DATA_MSG];
struct ci13xxx_req *req;
struct list_head *ptr = NULL;
if (mep != NULL) {
scnprintf(msg, sizeof(msg),
"%s Fail EP%d%s QH:%08X",
name, mep->num,
mep->dir ? "IN" : "OUT", mep->qh.ptr->cap);
dbg_print(addr, name, 0, msg);
scnprintf(msg, sizeof(msg),
"cap:%08X %08X %08X\n",
mep->qh.ptr->curr, mep->qh.ptr->td.next,
mep->qh.ptr->td.token);
dbg_print(addr, "QHEAD", 0, msg);
list_for_each(ptr, &mep->qh.queue) {
req = list_entry(ptr, struct ci13xxx_req, queue);
scnprintf(msg, sizeof(msg),
2024-09-09 08:57:42 +00:00
"%pa:%08X:%08X\n",
&req->dma, req->ptr->next,
2024-09-09 08:52:07 +00:00
req->ptr->token);
dbg_print(addr, "REQ", 0, msg);
scnprintf(msg, sizeof(msg), "%08X:%d\n",
req->ptr->page[0],
req->req.status);
dbg_print(addr, "REQPAGE", 0, msg);
}
}
}
/**
* show_events: displays the event buffer
*
* Check "device.h" for details
*/
static ssize_t show_events(struct device *dev, struct device_attribute *attr,
char *buf)
{
unsigned long flags;
unsigned i, j, n = 0;
dbg_trace("[%s] %p\n", __func__, buf);
if (attr == NULL || buf == NULL) {
dev_err(dev, "[%s] EINVAL\n", __func__);
return 0;
}
read_lock_irqsave(&dbg_data.lck, flags);
i = dbg_data.idx;
for (dbg_dec(&i); i != dbg_data.idx; dbg_dec(&i)) {
n += strlen(dbg_data.buf[i]);
if (n >= PAGE_SIZE) {
n -= strlen(dbg_data.buf[i]);
break;
}
}
for (j = 0, dbg_inc(&i); j < n; dbg_inc(&i))
j += scnprintf(buf + j, PAGE_SIZE - j,
"%s", dbg_data.buf[i]);
read_unlock_irqrestore(&dbg_data.lck, flags);
return n;
}
/**
* store_events: configure if events are going to be also printed to console
*
* Check "device.h" for details
*/
static ssize_t store_events(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned tty;
dbg_trace("[%s] %p, %d\n", __func__, buf, count);
if (attr == NULL || buf == NULL) {
dev_err(dev, "[%s] EINVAL\n", __func__);
goto done;
}
if (sscanf(buf, "%u", &tty) != 1 || tty > 1) {
dev_err(dev, "<1|0>: enable|disable console log\n");
goto done;
}
dbg_data.tty = tty;
dev_info(dev, "tty = %u", dbg_data.tty);
done:
return count;
}
static DEVICE_ATTR(events, S_IRUSR | S_IWUSR, show_events, store_events);
/**
* show_inters: interrupt status, enable status and historic
*
* Check "device.h" for details
*/
static ssize_t show_inters(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev);
unsigned long flags;
u32 intr;
unsigned i, j, n = 0;
dbg_trace("[%s] %p\n", __func__, buf);
if (attr == NULL || buf == NULL) {
dev_err(dev, "[%s] EINVAL\n", __func__);
return 0;
}
spin_lock_irqsave(udc->lock, flags);
n += scnprintf(buf + n, PAGE_SIZE - n,
"status = %08x\n", hw_read_intr_status());
n += scnprintf(buf + n, PAGE_SIZE - n,
"enable = %08x\n", hw_read_intr_enable());
n += scnprintf(buf + n, PAGE_SIZE - n, "*test = %d\n",
isr_statistics.test);
n += scnprintf(buf + n, PAGE_SIZE - n, "? ui = %d\n",
isr_statistics.ui);
n += scnprintf(buf + n, PAGE_SIZE - n, "? uei = %d\n",
isr_statistics.uei);
n += scnprintf(buf + n, PAGE_SIZE - n, "? pci = %d\n",
isr_statistics.pci);
n += scnprintf(buf + n, PAGE_SIZE - n, "? uri = %d\n",
isr_statistics.uri);
n += scnprintf(buf + n, PAGE_SIZE - n, "? sli = %d\n",
isr_statistics.sli);
n += scnprintf(buf + n, PAGE_SIZE - n, "*none = %d\n",
isr_statistics.none);
n += scnprintf(buf + n, PAGE_SIZE - n, "*hndl = %d\n",
isr_statistics.hndl.cnt);
for (i = isr_statistics.hndl.idx, j = 0; j <= ISR_MASK; j++, i++) {
i &= ISR_MASK;
intr = isr_statistics.hndl.buf[i];
if (USBi_UI & intr)
n += scnprintf(buf + n, PAGE_SIZE - n, "ui ");
intr &= ~USBi_UI;
if (USBi_UEI & intr)
n += scnprintf(buf + n, PAGE_SIZE - n, "uei ");
intr &= ~USBi_UEI;
if (USBi_PCI & intr)
n += scnprintf(buf + n, PAGE_SIZE - n, "pci ");
intr &= ~USBi_PCI;
if (USBi_URI & intr)
n += scnprintf(buf + n, PAGE_SIZE - n, "uri ");
intr &= ~USBi_URI;
if (USBi_SLI & intr)
n += scnprintf(buf + n, PAGE_SIZE - n, "sli ");
intr &= ~USBi_SLI;
if (intr)
n += scnprintf(buf + n, PAGE_SIZE - n, "??? ");
if (isr_statistics.hndl.buf[i])
n += scnprintf(buf + n, PAGE_SIZE - n, "\n");
}
spin_unlock_irqrestore(udc->lock, flags);
return n;
}
/**
* store_inters: enable & force or disable an individual interrutps
* (to be used for test purposes only)
*
* Check "device.h" for details
*/
static ssize_t store_inters(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev);
unsigned long flags;
unsigned en, bit;
dbg_trace("[%s] %p, %d\n", __func__, buf, count);
if (attr == NULL || buf == NULL) {
dev_err(dev, "[%s] EINVAL\n", __func__);
goto done;
}
if (sscanf(buf, "%u %u", &en, &bit) != 2 || en > 1) {
dev_err(dev, "<1|0> <bit>: enable|disable interrupt");
goto done;
}
spin_lock_irqsave(udc->lock, flags);
if (en) {
if (hw_intr_force(bit))
dev_err(dev, "invalid bit number\n");
else
isr_statistics.test++;
} else {
if (hw_intr_clear(bit))
dev_err(dev, "invalid bit number\n");
}
spin_unlock_irqrestore(udc->lock, flags);
done:
return count;
}
static DEVICE_ATTR(inters, S_IRUSR | S_IWUSR, show_inters, store_inters);
/**
* show_port_test: reads port test mode
*
* Check "device.h" for details
*/
static ssize_t show_port_test(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev);
unsigned long flags;
unsigned mode;
dbg_trace("[%s] %p\n", __func__, buf);
if (attr == NULL || buf == NULL) {
dev_err(dev, "[%s] EINVAL\n", __func__);
return 0;
}
spin_lock_irqsave(udc->lock, flags);
mode = hw_port_test_get();
spin_unlock_irqrestore(udc->lock, flags);
return scnprintf(buf, PAGE_SIZE, "mode = %u\n", mode);
}
/**
* store_port_test: writes port test mode
*
* Check "device.h" for details
*/
static ssize_t store_port_test(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev);
unsigned long flags;
unsigned mode;
dbg_trace("[%s] %p, %d\n", __func__, buf, count);
if (attr == NULL || buf == NULL) {
dev_err(dev, "[%s] EINVAL\n", __func__);
goto done;
}
if (sscanf(buf, "%u", &mode) != 1) {
dev_err(dev, "<mode>: set port test mode");
goto done;
}
spin_lock_irqsave(udc->lock, flags);
if (hw_port_test_set(mode))
dev_err(dev, "invalid mode\n");
spin_unlock_irqrestore(udc->lock, flags);
done:
return count;
}
static DEVICE_ATTR(port_test, S_IRUSR | S_IWUSR,
show_port_test, store_port_test);
/**
* show_qheads: DMA contents of all queue heads
*
* Check "device.h" for details
*/
static ssize_t show_qheads(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev);
unsigned long flags;
unsigned i, j, n = 0;
dbg_trace("[%s] %p\n", __func__, buf);
if (attr == NULL || buf == NULL) {
dev_err(dev, "[%s] EINVAL\n", __func__);
return 0;
}
spin_lock_irqsave(udc->lock, flags);
for (i = 0; i < hw_ep_max/2; i++) {
struct ci13xxx_ep *mEpRx = &udc->ci13xxx_ep[i];
struct ci13xxx_ep *mEpTx = &udc->ci13xxx_ep[i + hw_ep_max/2];
n += scnprintf(buf + n, PAGE_SIZE - n,
"EP=%02i: RX=%08X TX=%08X\n",
i, (u32)mEpRx->qh.dma, (u32)mEpTx->qh.dma);
for (j = 0; j < (sizeof(struct ci13xxx_qh)/sizeof(u32)); j++) {
n += scnprintf(buf + n, PAGE_SIZE - n,
" %04X: %08X %08X\n", j,
*((u32 *)mEpRx->qh.ptr + j),
*((u32 *)mEpTx->qh.ptr + j));
}
}
spin_unlock_irqrestore(udc->lock, flags);
return n;
}
static DEVICE_ATTR(qheads, S_IRUSR, show_qheads, NULL);
/**
* show_registers: dumps all registers
*
* Check "device.h" for details
*/
#define DUMP_ENTRIES 512
static ssize_t show_registers(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev);
unsigned long flags;
u32 *dump;
unsigned i, k, n = 0;
dbg_trace("[%s] %p\n", __func__, buf);
if (attr == NULL || buf == NULL) {
dev_err(dev, "[%s] EINVAL\n", __func__);
return 0;
}
dump = kmalloc(sizeof(u32) * DUMP_ENTRIES, GFP_KERNEL);
if (!dump) {
dev_err(dev, "%s: out of memory\n", __func__);
return 0;
}
spin_lock_irqsave(udc->lock, flags);
k = hw_register_read(dump, DUMP_ENTRIES);
spin_unlock_irqrestore(udc->lock, flags);
for (i = 0; i < k; i++) {
n += scnprintf(buf + n, PAGE_SIZE - n,
"reg[0x%04X] = 0x%08X\n",
i * (unsigned)sizeof(u32), dump[i]);
}
kfree(dump);
return n;
}
/**
* store_registers: writes value to register address
*
* Check "device.h" for details
*/
static ssize_t store_registers(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev);
unsigned long addr, data, flags;
dbg_trace("[%s] %p, %d\n", __func__, buf, count);
if (attr == NULL || buf == NULL) {
dev_err(dev, "[%s] EINVAL\n", __func__);
goto done;
}
if (sscanf(buf, "%li %li", &addr, &data) != 2) {
dev_err(dev, "<addr> <data>: write data to register address");
goto done;
}
spin_lock_irqsave(udc->lock, flags);
if (hw_register_write(addr, data))
dev_err(dev, "invalid address range\n");
spin_unlock_irqrestore(udc->lock, flags);
done:
return count;
}
static DEVICE_ATTR(registers, S_IRUSR | S_IWUSR,
show_registers, store_registers);
/**
* show_requests: DMA contents of all requests currently queued (all endpts)
*
* Check "device.h" for details
*/
static ssize_t show_requests(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev);
unsigned long flags;
struct list_head *ptr = NULL;
struct ci13xxx_req *req = NULL;
unsigned i, j, n = 0, qSize = sizeof(struct ci13xxx_td)/sizeof(u32);
dbg_trace("[%s] %p\n", __func__, buf);
if (attr == NULL || buf == NULL) {
dev_err(dev, "[%s] EINVAL\n", __func__);
return 0;
}
spin_lock_irqsave(udc->lock, flags);
for (i = 0; i < hw_ep_max; i++)
list_for_each(ptr, &udc->ci13xxx_ep[i].qh.queue)
{
req = list_entry(ptr, struct ci13xxx_req, queue);
n += scnprintf(buf + n, PAGE_SIZE - n,
"EP=%02i: TD=%08X %s\n",
i % hw_ep_max/2, (u32)req->dma,
((i < hw_ep_max/2) ? "RX" : "TX"));
for (j = 0; j < qSize; j++)
n += scnprintf(buf + n, PAGE_SIZE - n,
" %04X: %08X\n", j,
*((u32 *)req->ptr + j));
}
spin_unlock_irqrestore(udc->lock, flags);
return n;
}
static DEVICE_ATTR(requests, S_IRUSR, show_requests, NULL);
/* EP# and Direction */
static ssize_t prime_ept(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev);
struct ci13xxx_ep *mEp;
unsigned int ep_num, dir;
int n;
struct ci13xxx_req *mReq = NULL;
if (sscanf(buf, "%u %u", &ep_num, &dir) != 2) {
dev_err(dev, "<ep_num> <dir>: prime the ep");
goto done;
}
if (dir)
mEp = &udc->ci13xxx_ep[ep_num + hw_ep_max/2];
else
mEp = &udc->ci13xxx_ep[ep_num];
n = hw_ep_bit(mEp->num, mEp->dir);
mReq = list_entry(mEp->qh.queue.next, struct ci13xxx_req, queue);
mEp->qh.ptr->td.next = mReq->dma;
mEp->qh.ptr->td.token &= ~TD_STATUS;
wmb();
hw_cwrite(CAP_ENDPTPRIME, BIT(n), BIT(n));
while (hw_cread(CAP_ENDPTPRIME, BIT(n)))
cpu_relax();
pr_info("%s: prime:%08x stat:%08x ep#%d dir:%s\n", __func__,
hw_cread(CAP_ENDPTPRIME, ~0),
hw_cread(CAP_ENDPTSTAT, ~0),
mEp->num, mEp->dir ? "IN" : "OUT");
done:
return count;
}
static DEVICE_ATTR(prime, S_IWUSR, NULL, prime_ept);
/* EP# and Direction */
static ssize_t print_dtds(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev);
struct ci13xxx_ep *mEp;
unsigned int ep_num, dir;
int n;
struct list_head *ptr = NULL;
struct ci13xxx_req *req = NULL;
if (sscanf(buf, "%u %u", &ep_num, &dir) != 2) {
dev_err(dev, "<ep_num> <dir>: to print dtds");
goto done;
}
if (dir)
mEp = &udc->ci13xxx_ep[ep_num + hw_ep_max/2];
else
mEp = &udc->ci13xxx_ep[ep_num];
n = hw_ep_bit(mEp->num, mEp->dir);
2024-09-09 08:57:42 +00:00
pr_info("%s: prime:%08x stat:%08x ep#%d dir:%s dTD_update_fail_count: %lu mEp->dTD_update_fail_count: %lu mEp->dTD_active_re_q_count: %lu mEp->prime_fail_count: %lu\n",
__func__,
2024-09-09 08:52:07 +00:00
hw_cread(CAP_ENDPTPRIME, ~0),
hw_cread(CAP_ENDPTSTAT, ~0),
mEp->num, mEp->dir ? "IN" : "OUT",
udc->dTD_update_fail_count,
mEp->dTD_update_fail_count,
2024-09-09 08:57:42 +00:00
mEp->dTD_active_re_q_count,
2024-09-09 08:52:07 +00:00
mEp->prime_fail_count);
pr_info("QH: cap:%08x cur:%08x next:%08x token:%08x\n",
mEp->qh.ptr->cap, mEp->qh.ptr->curr,
mEp->qh.ptr->td.next, mEp->qh.ptr->td.token);
list_for_each(ptr, &mEp->qh.queue) {
req = list_entry(ptr, struct ci13xxx_req, queue);
2024-09-09 08:57:42 +00:00
pr_info("\treq:%pa next:%08x token:%08x page0:%08x status:%d\n",
&req->dma, req->ptr->next, req->ptr->token,
2024-09-09 08:52:07 +00:00
req->ptr->page[0], req->req.status);
}
done:
return count;
}
static DEVICE_ATTR(dtds, S_IWUSR, NULL, print_dtds);
static int ci13xxx_wakeup(struct usb_gadget *_gadget)
{
struct ci13xxx *udc = container_of(_gadget, struct ci13xxx, gadget);
unsigned long flags;
int ret = 0;
trace();
spin_lock_irqsave(udc->lock, flags);
if (!udc->gadget.remote_wakeup) {
ret = -EOPNOTSUPP;
dbg_trace("remote wakeup feature is not enabled\n");
goto out;
}
spin_unlock_irqrestore(udc->lock, flags);
2024-09-09 08:57:42 +00:00
pm_runtime_get_sync(&_gadget->dev);
2024-09-09 08:52:07 +00:00
udc->udc_driver->notify_event(udc,
CI13XXX_CONTROLLER_REMOTE_WAKEUP_EVENT);
if (udc->transceiver)
usb_phy_set_suspend(udc->transceiver, 0);
spin_lock_irqsave(udc->lock, flags);
2024-09-09 08:57:42 +00:00
if (!hw_cread(CAP_PORTSC, PORTSC_SUSP)) {
ret = -EINVAL;
dbg_trace("port is not suspended\n");
pm_runtime_put(&_gadget->dev);
goto out;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
hw_cwrite(CAP_PORTSC, PORTSC_FPR, PORTSC_FPR);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
pm_runtime_mark_last_busy(&_gadget->dev);
pm_runtime_put_autosuspend(&_gadget->dev);
2024-09-09 08:52:07 +00:00
out:
spin_unlock_irqrestore(udc->lock, flags);
return ret;
}
static void usb_do_remote_wakeup(struct work_struct *w)
{
struct ci13xxx *udc = _udc;
unsigned long flags;
bool do_wake;
/*
* This work can not be canceled from interrupt handler. Check
* if wakeup conditions are still met.
*/
spin_lock_irqsave(udc->lock, flags);
do_wake = udc->suspended && udc->gadget.remote_wakeup;
spin_unlock_irqrestore(udc->lock, flags);
if (do_wake)
ci13xxx_wakeup(&udc->gadget);
}
static ssize_t usb_remote_wakeup(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev);
ci13xxx_wakeup(&udc->gadget);
return count;
}
static DEVICE_ATTR(wakeup, S_IWUSR, 0, usb_remote_wakeup);
/**
* dbg_create_files: initializes the attribute interface
* @dev: device
*
* This function returns an error code
*/
__maybe_unused static int dbg_create_files(struct device *dev)
{
int retval = 0;
if (dev == NULL)
return -EINVAL;
retval = device_create_file(dev, &dev_attr_device);
if (retval)
goto done;
retval = device_create_file(dev, &dev_attr_driver);
if (retval)
goto rm_device;
retval = device_create_file(dev, &dev_attr_events);
if (retval)
goto rm_driver;
retval = device_create_file(dev, &dev_attr_inters);
if (retval)
goto rm_events;
retval = device_create_file(dev, &dev_attr_port_test);
if (retval)
goto rm_inters;
retval = device_create_file(dev, &dev_attr_qheads);
if (retval)
goto rm_port_test;
retval = device_create_file(dev, &dev_attr_registers);
if (retval)
goto rm_qheads;
retval = device_create_file(dev, &dev_attr_requests);
if (retval)
goto rm_registers;
retval = device_create_file(dev, &dev_attr_wakeup);
if (retval)
goto rm_remote_wakeup;
retval = device_create_file(dev, &dev_attr_prime);
if (retval)
goto rm_prime;
retval = device_create_file(dev, &dev_attr_dtds);
if (retval)
goto rm_dtds;
return 0;
rm_dtds:
device_remove_file(dev, &dev_attr_dtds);
rm_prime:
device_remove_file(dev, &dev_attr_prime);
rm_remote_wakeup:
device_remove_file(dev, &dev_attr_wakeup);
rm_registers:
device_remove_file(dev, &dev_attr_registers);
rm_qheads:
device_remove_file(dev, &dev_attr_qheads);
rm_port_test:
device_remove_file(dev, &dev_attr_port_test);
rm_inters:
device_remove_file(dev, &dev_attr_inters);
rm_events:
device_remove_file(dev, &dev_attr_events);
rm_driver:
device_remove_file(dev, &dev_attr_driver);
rm_device:
device_remove_file(dev, &dev_attr_device);
done:
return retval;
}
/**
* dbg_remove_files: destroys the attribute interface
* @dev: device
*
* This function returns an error code
*/
__maybe_unused static int dbg_remove_files(struct device *dev)
{
if (dev == NULL)
return -EINVAL;
device_remove_file(dev, &dev_attr_requests);
device_remove_file(dev, &dev_attr_registers);
device_remove_file(dev, &dev_attr_qheads);
device_remove_file(dev, &dev_attr_port_test);
device_remove_file(dev, &dev_attr_inters);
device_remove_file(dev, &dev_attr_events);
device_remove_file(dev, &dev_attr_driver);
device_remove_file(dev, &dev_attr_device);
device_remove_file(dev, &dev_attr_wakeup);
return 0;
}
/******************************************************************************
* UTIL block
*****************************************************************************/
/**
* _usb_addr: calculates endpoint address from direction & number
* @ep: endpoint
*/
static inline u8 _usb_addr(struct ci13xxx_ep *ep)
{
return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num;
}
static void ep_prime_timer_func(unsigned long data)
{
struct ci13xxx_ep *mep = (struct ci13xxx_ep *)data;
struct ci13xxx_req *req;
struct list_head *ptr = NULL;
int n = hw_ep_bit(mep->num, mep->dir);
unsigned long flags;
spin_lock_irqsave(mep->lock, flags);
if (_udc && (!_udc->vbus_active || _udc->suspended)) {
pr_debug("ep%d%s prime timer when vbus_active=%d,suspend=%d\n",
mep->num, mep->dir ? "IN" : "OUT",
_udc->vbus_active, _udc->suspended);
goto out;
}
if (!hw_cread(CAP_ENDPTPRIME, BIT(n)))
goto out;
if (list_empty(&mep->qh.queue))
goto out;
req = list_entry(mep->qh.queue.next, struct ci13xxx_req, queue);
mb();
if (!(TD_STATUS_ACTIVE & req->ptr->token))
goto out;
mep->prime_timer_count++;
if (mep->prime_timer_count == MAX_PRIME_CHECK_RETRY) {
mep->prime_timer_count = 0;
pr_info("ep%d dir:%s QH:cap:%08x cur:%08x next:%08x tkn:%08x\n",
mep->num, mep->dir ? "IN" : "OUT",
mep->qh.ptr->cap, mep->qh.ptr->curr,
mep->qh.ptr->td.next, mep->qh.ptr->td.token);
list_for_each(ptr, &mep->qh.queue) {
req = list_entry(ptr, struct ci13xxx_req, queue);
2024-09-09 08:57:42 +00:00
pr_info("\treq:%pa:%08xtkn:%08xpage0:%08xsts:%d\n",
&req->dma, req->ptr->next,
2024-09-09 08:52:07 +00:00
req->ptr->token, req->ptr->page[0],
req->req.status);
}
dbg_usb_op_fail(0xFF, "PRIMEF", mep);
mep->prime_fail_count++;
} else {
mod_timer(&mep->prime_timer, EP_PRIME_CHECK_DELAY);
}
spin_unlock_irqrestore(mep->lock, flags);
return;
out:
mep->prime_timer_count = 0;
spin_unlock_irqrestore(mep->lock, flags);
}
/**
* _hardware_queue: configures a request at hardware level
* @gadget: gadget
* @mEp: endpoint
*
* This function returns an error code
*/
static int _hardware_enqueue(struct ci13xxx_ep *mEp, struct ci13xxx_req *mReq)
{
unsigned i;
int ret = 0;
unsigned length = mReq->req.length;
struct ci13xxx *udc = _udc;
trace("%p, %p", mEp, mReq);
/* don't queue twice */
if (mReq->req.status == -EALREADY)
return -EALREADY;
mReq->req.status = -EALREADY;
2024-09-09 08:57:42 +00:00
if (length && mReq->req.dma == DMA_ERROR_CODE) {
2024-09-09 08:52:07 +00:00
mReq->req.dma = \
dma_map_single(mEp->device, mReq->req.buf,
length, mEp->dir ? DMA_TO_DEVICE :
DMA_FROM_DEVICE);
if (mReq->req.dma == 0)
return -ENOMEM;
mReq->map = 1;
}
if (mReq->req.zero && length && (length % mEp->ep.maxpacket == 0)) {
mReq->zptr = dma_pool_alloc(mEp->td_pool, GFP_ATOMIC,
&mReq->zdma);
if (mReq->zptr == NULL) {
if (mReq->map) {
dma_unmap_single(mEp->device, mReq->req.dma,
length, mEp->dir ? DMA_TO_DEVICE :
DMA_FROM_DEVICE);
2024-09-09 08:57:42 +00:00
mReq->req.dma = DMA_ERROR_CODE;
2024-09-09 08:52:07 +00:00
mReq->map = 0;
}
return -ENOMEM;
}
memset(mReq->zptr, 0, sizeof(*mReq->zptr));
mReq->zptr->next = TD_TERMINATE;
mReq->zptr->token = TD_STATUS_ACTIVE;
if (!mReq->req.no_interrupt)
mReq->zptr->token |= TD_IOC;
}
/*
* TD configuration
* TODO - handle requests which spawns into several TDs
*/
memset(mReq->ptr, 0, sizeof(*mReq->ptr));
mReq->ptr->token = length << ffs_nr(TD_TOTAL_BYTES);
mReq->ptr->token &= TD_TOTAL_BYTES;
mReq->ptr->token |= TD_STATUS_ACTIVE;
if (mReq->zptr) {
mReq->ptr->next = mReq->zdma;
} else {
mReq->ptr->next = TD_TERMINATE;
if (!mReq->req.no_interrupt)
mReq->ptr->token |= TD_IOC;
}
/* MSM Specific: updating the request as required for
2024-09-09 08:57:42 +00:00
* SPS mode. Enable MSM DMA engine according
2024-09-09 08:52:07 +00:00
* to the UDC private data in the request.
*/
if (CI13XX_REQ_VENDOR_ID(mReq->req.udc_priv) == MSM_VENDOR_ID) {
if (mReq->req.udc_priv & MSM_SPS_MODE) {
mReq->ptr->token = TD_STATUS_ACTIVE;
if (mReq->req.udc_priv & MSM_IS_FINITE_TRANSFER)
mReq->ptr->next = TD_TERMINATE;
else
mReq->ptr->next = MSM_ETD_TYPE | mReq->dma;
if (!mReq->req.no_interrupt)
mReq->ptr->token |= MSM_ETD_IOC;
}
mReq->req.dma = 0;
}
mReq->ptr->page[0] = mReq->req.dma;
for (i = 1; i < 5; i++)
mReq->ptr->page[i] = (mReq->req.dma + i * CI13XXX_PAGE_SIZE) &
~TD_RESERVED_MASK;
wmb();
/* Remote Wakeup */
if (udc->suspended) {
if (!udc->gadget.remote_wakeup) {
mReq->req.status = -EAGAIN;
2024-09-09 08:57:42 +00:00
dev_dbg(mEp->device, "%s: queue failed (suspend).",
__func__);
dev_dbg(mEp->device, "%s: Remote wakeup is not supported. ept #%d\n",
__func__, mEp->num);
2024-09-09 08:52:07 +00:00
return -EAGAIN;
}
usb_phy_set_suspend(udc->transceiver, 0);
schedule_delayed_work(&udc->rw_work, REMOTE_WAKEUP_DELAY);
}
if (!list_empty(&mEp->qh.queue)) {
struct ci13xxx_req *mReqPrev;
int n = hw_ep_bit(mEp->num, mEp->dir);
int tmp_stat;
ktime_t start, diff;
mReqPrev = list_entry(mEp->qh.queue.prev,
struct ci13xxx_req, queue);
if (mReqPrev->zptr)
mReqPrev->zptr->next = mReq->dma & TD_ADDR_MASK;
else
mReqPrev->ptr->next = mReq->dma & TD_ADDR_MASK;
wmb();
if (hw_cread(CAP_ENDPTPRIME, BIT(n)))
goto done;
start = ktime_get();
do {
hw_cwrite(CAP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW);
tmp_stat = hw_cread(CAP_ENDPTSTAT, BIT(n));
diff = ktime_sub(ktime_get(), start);
/* poll for max. 100ms */
if (ktime_to_ms(diff) > USB_MAX_TIMEOUT) {
if (hw_cread(CAP_USBCMD, USBCMD_ATDTW))
break;
printk_ratelimited(KERN_ERR
"%s:queue failed ep#%d %s\n",
__func__, mEp->num, mEp->dir ? "IN" : "OUT");
return -EAGAIN;
}
} while (!hw_cread(CAP_USBCMD, USBCMD_ATDTW));
hw_cwrite(CAP_USBCMD, USBCMD_ATDTW, 0);
if (tmp_stat)
goto done;
}
2024-09-09 08:57:42 +00:00
/* Hardware may leave few TDs unprocessed, check and reprime with 1st */
2024-09-09 08:52:07 +00:00
if (!list_empty(&mEp->qh.queue)) {
2024-09-09 08:57:42 +00:00
struct ci13xxx_req *mReq_active, *mReq_next;
u32 i = 0;
/* Nothing to be done if hardware already finished this TD */
if ((TD_STATUS_ACTIVE & mReq->ptr->token) == 0)
goto done;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
/* Iterate forward to find first TD with ACTIVE bit set */
mReq_active = mReq;
list_for_each_entry(mReq_next, &mEp->qh.queue, queue) {
i++;
mEp->dTD_active_re_q_count++;
if (TD_STATUS_ACTIVE & mReq_next->ptr->token) {
mReq_active = mReq_next;
dbg_event(_usb_addr(mEp), "ReQUE",
mReq_next->ptr->token);
pr_debug("!!ReQ(%u-%u-%x)-%u!!\n", mEp->num,
mEp->dir, mReq_next->ptr->token, i);
break;
}
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
/* QH configuration */
mEp->qh.ptr->td.next = mReq_active->dma;
mEp->qh.ptr->td.token &= ~TD_STATUS;
goto prime;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
/* QH configuration */
2024-09-09 08:52:07 +00:00
mEp->qh.ptr->td.next = mReq->dma; /* TERMINATE = 0 */
if (CI13XX_REQ_VENDOR_ID(mReq->req.udc_priv) == MSM_VENDOR_ID) {
if (mReq->req.udc_priv & MSM_SPS_MODE) {
mEp->qh.ptr->td.next |= MSM_ETD_TYPE;
i = hw_cread(CAP_ENDPTPIPEID +
mEp->num * sizeof(u32), ~0);
/* Read current value of this EPs pipe id */
i = (mEp->dir == TX) ?
((i >> MSM_TX_PIPE_ID_OFS) & MSM_PIPE_ID_MASK) :
(i & MSM_PIPE_ID_MASK);
/* If requested pipe id is different from current,
then write it */
if (i != (mReq->req.udc_priv & MSM_PIPE_ID_MASK)) {
if (mEp->dir == TX)
hw_cwrite(
CAP_ENDPTPIPEID +
mEp->num * sizeof(u32),
MSM_PIPE_ID_MASK <<
MSM_TX_PIPE_ID_OFS,
(mReq->req.udc_priv &
MSM_PIPE_ID_MASK)
<< MSM_TX_PIPE_ID_OFS);
else
hw_cwrite(
CAP_ENDPTPIPEID +
mEp->num * sizeof(u32),
MSM_PIPE_ID_MASK,
mReq->req.udc_priv &
MSM_PIPE_ID_MASK);
}
}
}
mEp->qh.ptr->td.token &= ~TD_STATUS; /* clear status */
mEp->qh.ptr->cap |= QH_ZLT;
prime:
wmb(); /* synchronize before ep prime */
ret = hw_ep_prime(mEp->num, mEp->dir,
mEp->type == USB_ENDPOINT_XFER_CONTROL);
if (!ret)
mod_timer(&mEp->prime_timer, EP_PRIME_CHECK_DELAY);
done:
return ret;
}
/**
* _hardware_dequeue: handles a request at hardware level
* @gadget: gadget
* @mEp: endpoint
*
* This function returns an error code
*/
static int _hardware_dequeue(struct ci13xxx_ep *mEp, struct ci13xxx_req *mReq)
{
trace("%p, %p", mEp, mReq);
if (mReq->req.status != -EALREADY)
return -EINVAL;
/* clean speculative fetches on req->ptr->token */
mb();
if ((TD_STATUS_ACTIVE & mReq->ptr->token) != 0)
return -EBUSY;
if (CI13XX_REQ_VENDOR_ID(mReq->req.udc_priv) == MSM_VENDOR_ID)
if ((mReq->req.udc_priv & MSM_SPS_MODE) &&
(mReq->req.udc_priv & MSM_IS_FINITE_TRANSFER))
return -EBUSY;
if (mReq->zptr) {
if ((TD_STATUS_ACTIVE & mReq->zptr->token) != 0)
return -EBUSY;
/* The controller may access this dTD one more time.
* Defer freeing this to next zero length dTD completion.
* It is safe to assume that controller will no longer
* access the previous dTD after next dTD completion.
*/
if (mEp->last_zptr)
dma_pool_free(mEp->td_pool, mEp->last_zptr,
mEp->last_zdma);
mEp->last_zptr = mReq->zptr;
mEp->last_zdma = mReq->zdma;
mReq->zptr = NULL;
}
mReq->req.status = 0;
if (mReq->map) {
dma_unmap_single(mEp->device, mReq->req.dma, mReq->req.length,
mEp->dir ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
2024-09-09 08:57:42 +00:00
mReq->req.dma = DMA_ERROR_CODE;
2024-09-09 08:52:07 +00:00
mReq->map = 0;
}
mReq->req.status = mReq->ptr->token & TD_STATUS;
if ((TD_STATUS_HALTED & mReq->req.status) != 0)
mReq->req.status = -1;
else if ((TD_STATUS_DT_ERR & mReq->req.status) != 0)
mReq->req.status = -1;
else if ((TD_STATUS_TR_ERR & mReq->req.status) != 0)
mReq->req.status = -1;
mReq->req.actual = mReq->ptr->token & TD_TOTAL_BYTES;
mReq->req.actual >>= ffs_nr(TD_TOTAL_BYTES);
mReq->req.actual = mReq->req.length - mReq->req.actual;
mReq->req.actual = mReq->req.status ? 0 : mReq->req.actual;
return mReq->req.actual;
}
/**
* purge_rw_queue: Purge requests pending at the remote-wakeup
* queue and send them to the HW.
*
* Go over all of the endpoints and push any pending requests to
* the HW queue.
*/
static void purge_rw_queue(struct ci13xxx *udc)
{
int i;
struct ci13xxx_ep *mEp = NULL;
struct ci13xxx_req *mReq = NULL;
/*
* Go over all of the endpoints and push any pending requests to
* the HW queue.
*/
for (i = 0; i < hw_ep_max; i++) {
mEp = &udc->ci13xxx_ep[i];
while (!list_empty(&udc->ci13xxx_ep[i].rw_queue)) {
int retval;
/* pop oldest request */
mReq = list_entry(udc->ci13xxx_ep[i].rw_queue.next,
struct ci13xxx_req, queue);
list_del_init(&mReq->queue);
retval = _hardware_enqueue(mEp, mReq);
if (retval != 0) {
dbg_event(_usb_addr(mEp), "QUEUE", retval);
mReq->req.status = retval;
if (mReq->req.complete != NULL) {
if (mEp->type ==
USB_ENDPOINT_XFER_CONTROL)
mReq->req.complete(
&(_udc->ep0in.ep),
&mReq->req);
else
mReq->req.complete(
&mEp->ep,
&mReq->req);
}
retval = 0;
}
if (!retval)
list_add_tail(&mReq->queue, &mEp->qh.queue);
else if (mEp->multi_req)
mEp->multi_req = false;
}
}
udc->rw_pending = false;
}
/**
* restore_original_req: Restore original req's attributes
* @mReq: Request
*
* This function restores original req's attributes. Call
* this function before completing the large req (>16K).
*/
static void restore_original_req(struct ci13xxx_req *mReq)
{
mReq->req.buf = mReq->multi.buf;
mReq->req.length = mReq->multi.len;
if (!mReq->req.status)
mReq->req.actual = mReq->multi.actual;
mReq->multi.len = 0;
mReq->multi.actual = 0;
mReq->multi.buf = NULL;
}
/**
* release_ep_request: Free and endpoint request and release
* resources
* @mReq: request
* @mEp: endpoint
*
*/
static void release_ep_request(struct ci13xxx_ep *mEp,
struct ci13xxx_req *mReq)
{
struct ci13xxx_ep *mEpTemp = mEp;
unsigned val;
/* MSM Specific: Clear end point specific register */
if (CI13XX_REQ_VENDOR_ID(mReq->req.udc_priv) == MSM_VENDOR_ID) {
if (mReq->req.udc_priv & MSM_SPS_MODE) {
val = hw_cread(CAP_ENDPTPIPEID +
mEp->num * sizeof(u32),
~0);
if (val != MSM_EP_PIPE_ID_RESET_VAL)
hw_cwrite(
CAP_ENDPTPIPEID +
mEp->num * sizeof(u32),
~0, MSM_EP_PIPE_ID_RESET_VAL);
}
}
mReq->req.status = -ESHUTDOWN;
if (mReq->map) {
dma_unmap_single(mEp->device, mReq->req.dma,
mReq->req.length,
mEp->dir ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
2024-09-09 08:57:42 +00:00
mReq->req.dma = DMA_ERROR_CODE;
2024-09-09 08:52:07 +00:00
mReq->map = 0;
}
if (mEp->multi_req) {
restore_original_req(mReq);
mEp->multi_req = false;
}
if (mReq->req.complete != NULL) {
spin_unlock(mEp->lock);
if ((mEp->type == USB_ENDPOINT_XFER_CONTROL) &&
mReq->req.length)
mEpTemp = &_udc->ep0in;
mReq->req.complete(&mEpTemp->ep, &mReq->req);
if (mEp->type == USB_ENDPOINT_XFER_CONTROL)
mReq->req.complete = NULL;
spin_lock(mEp->lock);
}
}
/**
* _ep_nuke: dequeues all endpoint requests
* @mEp: endpoint
*
* This function returns an error code
* Caller must hold lock
*/
static int _ep_nuke(struct ci13xxx_ep *mEp)
__releases(mEp->lock)
__acquires(mEp->lock)
{
trace("%p", mEp);
if (mEp == NULL)
return -EINVAL;
del_timer(&mEp->prime_timer);
mEp->prime_timer_count = 0;
hw_ep_flush(mEp->num, mEp->dir);
while (!list_empty(&mEp->qh.queue)) {
/* pop oldest request */
struct ci13xxx_req *mReq =
list_entry(mEp->qh.queue.next,
struct ci13xxx_req, queue);
list_del_init(&mReq->queue);
release_ep_request(mEp, mReq);
}
/* Clear the requests pending at the remote-wakeup queue */
while (!list_empty(&mEp->rw_queue)) {
/* pop oldest request */
2024-09-09 08:57:42 +00:00
struct ci13xxx_req *mReq =
2024-09-09 08:52:07 +00:00
list_entry(mEp->rw_queue.next,
struct ci13xxx_req, queue);
list_del_init(&mReq->queue);
release_ep_request(mEp, mReq);
}
return 0;
}
/**
* _gadget_stop_activity: stops all USB activity, flushes & disables all endpts
* @gadget: gadget
*
* This function returns an error code
*/
static int _gadget_stop_activity(struct usb_gadget *gadget)
{
struct ci13xxx *udc = container_of(gadget, struct ci13xxx, gadget);
unsigned long flags;
trace("%p", gadget);
if (gadget == NULL)
return -EINVAL;
spin_lock_irqsave(udc->lock, flags);
udc->gadget.speed = USB_SPEED_UNKNOWN;
udc->gadget.remote_wakeup = 0;
udc->suspended = 0;
udc->configured = 0;
spin_unlock_irqrestore(udc->lock, flags);
2024-09-09 08:57:42 +00:00
gadget->xfer_isr_count = 0;
2024-09-09 08:52:07 +00:00
udc->driver->disconnect(gadget);
spin_lock_irqsave(udc->lock, flags);
_ep_nuke(&udc->ep0out);
_ep_nuke(&udc->ep0in);
spin_unlock_irqrestore(udc->lock, flags);
if (udc->ep0in.last_zptr) {
dma_pool_free(udc->ep0in.td_pool, udc->ep0in.last_zptr,
udc->ep0in.last_zdma);
udc->ep0in.last_zptr = NULL;
}
return 0;
}
/******************************************************************************
* ISR block
*****************************************************************************/
/**
* isr_reset_handler: USB reset interrupt handler
* @udc: UDC device
*
* This function resets USB engine after a bus reset occurred
*/
static void isr_reset_handler(struct ci13xxx *udc)
__releases(udc->lock)
__acquires(udc->lock)
{
int retval;
trace("%p", udc);
if (udc == NULL) {
err("EINVAL");
return;
}
dbg_event(0xFF, "BUS RST", 0);
spin_unlock(udc->lock);
if (udc->suspended) {
if (udc->udc_driver->notify_event)
udc->udc_driver->notify_event(udc,
CI13XXX_CONTROLLER_RESUME_EVENT);
if (udc->transceiver)
usb_phy_set_suspend(udc->transceiver, 0);
udc->driver->resume(&udc->gadget);
udc->suspended = 0;
}
/*stop charging upon reset */
if (udc->transceiver)
usb_phy_set_power(udc->transceiver, 100);
retval = _gadget_stop_activity(&udc->gadget);
if (retval)
goto done;
2024-09-09 08:57:42 +00:00
if (udc->rw_pending)
purge_rw_queue(udc);
2024-09-09 08:52:07 +00:00
_udc->skip_flush = false;
retval = hw_usb_reset();
if (retval)
goto done;
spin_lock(udc->lock);
done:
if (retval)
err("error: %i", retval);
}
/**
* isr_resume_handler: USB PCI interrupt handler
* @udc: UDC device
*
*/
static void isr_resume_handler(struct ci13xxx *udc)
{
udc->gadget.speed = hw_port_is_high_speed() ?
USB_SPEED_HIGH : USB_SPEED_FULL;
if (udc->suspended) {
spin_unlock(udc->lock);
if (udc->udc_driver->notify_event)
udc->udc_driver->notify_event(udc,
CI13XXX_CONTROLLER_RESUME_EVENT);
if (udc->transceiver)
usb_phy_set_suspend(udc->transceiver, 0);
udc->driver->resume(&udc->gadget);
spin_lock(udc->lock);
if (udc->rw_pending)
purge_rw_queue(udc);
udc->suspended = 0;
}
}
/**
* isr_resume_handler: USB SLI interrupt handler
* @udc: UDC device
*
*/
static void isr_suspend_handler(struct ci13xxx *udc)
{
if (udc->gadget.speed != USB_SPEED_UNKNOWN &&
udc->vbus_active) {
if (udc->suspended == 0) {
spin_unlock(udc->lock);
udc->driver->suspend(&udc->gadget);
if (udc->udc_driver->notify_event)
udc->udc_driver->notify_event(udc,
CI13XXX_CONTROLLER_SUSPEND_EVENT);
if (udc->transceiver)
usb_phy_set_suspend(udc->transceiver, 1);
spin_lock(udc->lock);
udc->suspended = 1;
}
}
}
/**
* isr_get_status_complete: get_status request complete function
* @ep: endpoint
* @req: request handled
*
* Caller must release lock
*/
static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req)
{
trace("%p, %p", ep, req);
if (ep == NULL || req == NULL) {
err("EINVAL");
return;
}
if (req->status)
err("GET_STATUS failed");
}
/**
* isr_get_status_response: get_status request response
* @udc: udc struct
* @setup: setup request packet
*
* This function returns an error code
*/
static int isr_get_status_response(struct ci13xxx *udc,
struct usb_ctrlrequest *setup)
__releases(mEp->lock)
__acquires(mEp->lock)
{
struct ci13xxx_ep *mEp = &udc->ep0in;
struct usb_request *req = udc->status;
int dir, num, retval;
trace("%p, %p", mEp, setup);
if (mEp == NULL || setup == NULL)
return -EINVAL;
req->complete = isr_get_status_complete;
req->length = 2;
req->buf = udc->status_buf;
if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
2024-09-09 08:57:42 +00:00
/* Assume that device is bus powered for now. */
*((u16 *)req->buf) = _udc->gadget.remote_wakeup << 1;
2024-09-09 08:52:07 +00:00
retval = 0;
} else if ((setup->bRequestType & USB_RECIP_MASK) \
== USB_RECIP_ENDPOINT) {
dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ?
TX : RX;
num = le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK;
*((u16 *)req->buf) = hw_ep_get_halt(num, dir);
}
/* else do nothing; reserved for future use */
spin_unlock(mEp->lock);
retval = usb_ep_queue(&mEp->ep, req, GFP_ATOMIC);
spin_lock(mEp->lock);
return retval;
}
/**
* isr_setup_status_complete: setup_status request complete function
* @ep: endpoint
* @req: request handled
*
* Caller must release lock. Put the port in test mode if test mode
* feature is selected.
*/
static void
isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req)
{
struct ci13xxx *udc = req->context;
unsigned long flags;
trace("%p, %p", ep, req);
spin_lock_irqsave(udc->lock, flags);
if (udc->test_mode)
hw_port_test_set(udc->test_mode);
spin_unlock_irqrestore(udc->lock, flags);
}
/**
* isr_setup_status_phase: queues the status phase of a setup transation
* @udc: udc struct
*
* This function returns an error code
*/
static int isr_setup_status_phase(struct ci13xxx *udc)
__releases(mEp->lock)
__acquires(mEp->lock)
{
int retval;
struct ci13xxx_ep *mEp;
trace("%p", udc);
mEp = (udc->ep0_dir == TX) ? &udc->ep0out : &udc->ep0in;
udc->status->context = udc;
udc->status->complete = isr_setup_status_complete;
udc->status->length = 0;
spin_unlock(mEp->lock);
retval = usb_ep_queue(&mEp->ep, udc->status, GFP_ATOMIC);
spin_lock(mEp->lock);
return retval;
}
/**
* isr_tr_complete_low: transaction complete low level handler
* @mEp: endpoint
*
* This function returns an error code
* Caller must hold lock
*/
static int isr_tr_complete_low(struct ci13xxx_ep *mEp)
__releases(mEp->lock)
__acquires(mEp->lock)
{
struct ci13xxx_req *mReq, *mReqTemp;
struct ci13xxx_ep *mEpTemp = mEp;
int uninitialized_var(retval);
int req_dequeue = 1;
struct ci13xxx *udc = _udc;
trace("%p", mEp);
if (list_empty(&mEp->qh.queue))
return 0;
del_timer(&mEp->prime_timer);
mEp->prime_timer_count = 0;
list_for_each_entry_safe(mReq, mReqTemp, &mEp->qh.queue,
queue) {
dequeue:
retval = _hardware_dequeue(mEp, mReq);
if (retval < 0) {
/*
* FIXME: don't know exact delay
* required for HW to update dTD status
* bits. This is a temporary workaround till
* HW designers come back on this.
*/
if (retval == -EBUSY && req_dequeue &&
(mEp->dir == 0 || mEp->num == 0)) {
req_dequeue = 0;
udc->dTD_update_fail_count++;
mEp->dTD_update_fail_count++;
udelay(10);
goto dequeue;
}
break;
}
req_dequeue = 0;
if (mEp->multi_req) { /* Large request in progress */
unsigned remain_len;
mReq->multi.actual += mReq->req.actual;
remain_len = mReq->multi.len - mReq->multi.actual;
if (mReq->req.status || !remain_len ||
(mReq->req.actual != mReq->req.length)) {
restore_original_req(mReq);
mEp->multi_req = false;
} else {
mReq->req.buf = mReq->multi.buf +
mReq->multi.actual;
mReq->req.length = min_t(unsigned, remain_len,
(4 * CI13XXX_PAGE_SIZE));
mReq->req.status = -EINPROGRESS;
mReq->req.actual = 0;
list_del_init(&mReq->queue);
retval = _hardware_enqueue(mEp, mReq);
if (retval) {
err("Large req failed in middle");
mReq->req.status = retval;
restore_original_req(mReq);
mEp->multi_req = false;
goto done;
} else {
list_add_tail(&mReq->queue,
&mEp->qh.queue);
return 0;
}
}
}
list_del_init(&mReq->queue);
done:
dbg_done(_usb_addr(mEp), mReq->ptr->token, retval);
if (mReq->req.complete != NULL) {
spin_unlock(mEp->lock);
if ((mEp->type == USB_ENDPOINT_XFER_CONTROL) &&
mReq->req.length)
mEpTemp = &_udc->ep0in;
mReq->req.complete(&mEpTemp->ep, &mReq->req);
spin_lock(mEp->lock);
}
}
if (retval == -EBUSY)
retval = 0;
if (retval < 0)
dbg_event(_usb_addr(mEp), "DONE", retval);
return retval;
}
/**
* isr_tr_complete_handler: transaction complete interrupt handler
* @udc: UDC descriptor
*
* This function handles traffic events
*/
static void isr_tr_complete_handler(struct ci13xxx *udc)
__releases(udc->lock)
__acquires(udc->lock)
{
unsigned i;
u8 tmode = 0;
trace("%p", udc);
if (udc == NULL) {
err("EINVAL");
return;
}
for (i = 0; i < hw_ep_max; i++) {
struct ci13xxx_ep *mEp = &udc->ci13xxx_ep[i];
int type, num, dir, err = -EINVAL;
struct usb_ctrlrequest req;
if (mEp->desc == NULL)
continue; /* not configured */
if (hw_test_and_clear_complete(i)) {
err = isr_tr_complete_low(mEp);
if (mEp->type == USB_ENDPOINT_XFER_CONTROL) {
if (err > 0) /* needs status phase */
err = isr_setup_status_phase(udc);
if (err < 0) {
dbg_event(_usb_addr(mEp),
"ERROR", err);
spin_unlock(udc->lock);
if (usb_ep_set_halt(&mEp->ep))
err("error: ep_set_halt");
spin_lock(udc->lock);
}
}
}
if (mEp->type != USB_ENDPOINT_XFER_CONTROL ||
!hw_test_and_clear_setup_status(i))
continue;
if (i != 0) {
warn("ctrl traffic received at endpoint");
continue;
}
/*
* Flush data and handshake transactions of previous
* setup packet.
*/
_ep_nuke(&udc->ep0out);
_ep_nuke(&udc->ep0in);
/* read_setup_packet */
do {
hw_test_and_set_setup_guard();
memcpy(&req, &mEp->qh.ptr->setup, sizeof(req));
/* Ensure buffer is read before acknowledging to h/w */
mb();
} while (!hw_test_and_clear_setup_guard());
type = req.bRequestType;
udc->ep0_dir = (type & USB_DIR_IN) ? TX : RX;
dbg_setup(_usb_addr(mEp), &req);
switch (req.bRequest) {
case USB_REQ_CLEAR_FEATURE:
if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
le16_to_cpu(req.wValue) ==
USB_ENDPOINT_HALT) {
if (req.wLength != 0)
break;
num = le16_to_cpu(req.wIndex);
dir = num & USB_ENDPOINT_DIR_MASK;
num &= USB_ENDPOINT_NUMBER_MASK;
if (dir) /* TX */
num += hw_ep_max/2;
if (!udc->ci13xxx_ep[num].wedge) {
spin_unlock(udc->lock);
err = usb_ep_clear_halt(
&udc->ci13xxx_ep[num].ep);
spin_lock(udc->lock);
if (err)
break;
}
err = isr_setup_status_phase(udc);
} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) &&
le16_to_cpu(req.wValue) ==
USB_DEVICE_REMOTE_WAKEUP) {
if (req.wLength != 0)
break;
udc->gadget.remote_wakeup = 0;
err = isr_setup_status_phase(udc);
} else {
goto delegate;
}
break;
case USB_REQ_GET_STATUS:
if (type != (USB_DIR_IN|USB_RECIP_DEVICE) &&
type != (USB_DIR_IN|USB_RECIP_ENDPOINT) &&
type != (USB_DIR_IN|USB_RECIP_INTERFACE))
goto delegate;
2024-09-09 08:57:42 +00:00
if (le16_to_cpu(req.wLength) != 2 ||
le16_to_cpu(req.wValue) != 0)
2024-09-09 08:52:07 +00:00
break;
err = isr_get_status_response(udc, &req);
break;
case USB_REQ_SET_ADDRESS:
if (type != (USB_DIR_OUT|USB_RECIP_DEVICE))
goto delegate;
if (le16_to_cpu(req.wLength) != 0 ||
le16_to_cpu(req.wIndex) != 0)
break;
err = hw_usb_set_address((u8)le16_to_cpu(req.wValue));
if (err)
break;
err = isr_setup_status_phase(udc);
break;
case USB_REQ_SET_CONFIGURATION:
if (type == (USB_DIR_OUT|USB_TYPE_STANDARD))
udc->configured = !!req.wValue;
goto delegate;
case USB_REQ_SET_FEATURE:
if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
le16_to_cpu(req.wValue) ==
USB_ENDPOINT_HALT) {
if (req.wLength != 0)
break;
num = le16_to_cpu(req.wIndex);
dir = num & USB_ENDPOINT_DIR_MASK;
num &= USB_ENDPOINT_NUMBER_MASK;
if (dir) /* TX */
num += hw_ep_max/2;
spin_unlock(udc->lock);
err = usb_ep_set_halt(&udc->ci13xxx_ep[num].ep);
spin_lock(udc->lock);
if (!err)
isr_setup_status_phase(udc);
} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) {
if (req.wLength != 0)
break;
switch (le16_to_cpu(req.wValue)) {
case USB_DEVICE_REMOTE_WAKEUP:
udc->gadget.remote_wakeup = 1;
err = isr_setup_status_phase(udc);
break;
case USB_DEVICE_TEST_MODE:
tmode = le16_to_cpu(req.wIndex) >> 8;
switch (tmode) {
case TEST_J:
case TEST_K:
case TEST_SE0_NAK:
case TEST_PACKET:
case TEST_FORCE_EN:
udc->test_mode = tmode;
err = isr_setup_status_phase(
udc);
break;
default:
break;
}
default:
2024-09-09 08:57:42 +00:00
goto delegate;
2024-09-09 08:52:07 +00:00
}
} else {
goto delegate;
}
break;
default:
delegate:
if (req.wLength == 0) /* no data phase */
udc->ep0_dir = TX;
spin_unlock(udc->lock);
err = udc->driver->setup(&udc->gadget, &req);
spin_lock(udc->lock);
break;
}
if (err < 0) {
dbg_event(_usb_addr(mEp), "ERROR", err);
spin_unlock(udc->lock);
if (usb_ep_set_halt(&mEp->ep))
err("error: ep_set_halt");
spin_lock(udc->lock);
}
}
}
/******************************************************************************
* ENDPT block
*****************************************************************************/
/**
* ep_enable: configure endpoint, making it usable
*
* Check usb_ep_enable() at "usb_gadget.h" for details
*/
static int ep_enable(struct usb_ep *ep,
const struct usb_endpoint_descriptor *desc)
{
struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep);
int retval = 0;
unsigned long flags;
unsigned mult = 0;
trace("ep = %p, desc = %p", ep, desc);
if (ep == NULL || desc == NULL)
return -EINVAL;
spin_lock_irqsave(mEp->lock, flags);
/* only internal SW should enable ctrl endpts */
mEp->desc = desc;
if (!list_empty(&mEp->qh.queue))
warn("enabling a non-empty endpoint!");
mEp->dir = usb_endpoint_dir_in(desc) ? TX : RX;
mEp->num = usb_endpoint_num(desc);
mEp->type = usb_endpoint_type(desc);
mEp->ep.maxpacket = usb_endpoint_maxp(desc);
dbg_event(_usb_addr(mEp), "ENABLE", 0);
mEp->qh.ptr->cap = 0;
if (mEp->type == USB_ENDPOINT_XFER_CONTROL) {
mEp->qh.ptr->cap |= QH_IOS;
} else if (mEp->type == USB_ENDPOINT_XFER_ISOC) {
mEp->qh.ptr->cap &= ~QH_MULT;
mult = ((mEp->ep.maxpacket >> QH_MULT_SHIFT) + 1) & 0x03;
mEp->qh.ptr->cap |= (mult << ffs_nr(QH_MULT));
} else {
mEp->qh.ptr->cap |= QH_ZLT;
}
mEp->qh.ptr->cap |=
(mEp->ep.maxpacket << ffs_nr(QH_MAX_PKT)) & QH_MAX_PKT;
mEp->qh.ptr->td.next |= TD_TERMINATE; /* needed? */
/* complete all the updates to ept->head before enabling endpoint*/
mb();
/*
* Enable endpoints in the HW other than ep0 as ep0
* is always enabled
*/
if (mEp->num)
retval |= hw_ep_enable(mEp->num, mEp->dir, mEp->type);
spin_unlock_irqrestore(mEp->lock, flags);
return retval;
}
/**
* ep_disable: endpoint is no longer usable
*
* Check usb_ep_disable() at "usb_gadget.h" for details
*/
static int ep_disable(struct usb_ep *ep)
{
struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep);
int direction, retval = 0;
unsigned long flags;
trace("%p", ep);
if (ep == NULL)
return -EINVAL;
else if (mEp->desc == NULL)
return -EBUSY;
spin_lock_irqsave(mEp->lock, flags);
/* only internal SW should disable ctrl endpts */
direction = mEp->dir;
do {
dbg_event(_usb_addr(mEp), "DISABLE", 0);
retval |= _ep_nuke(mEp);
retval |= hw_ep_disable(mEp->num, mEp->dir);
if (mEp->type == USB_ENDPOINT_XFER_CONTROL)
mEp->dir = (mEp->dir == TX) ? RX : TX;
} while (mEp->dir != direction);
if (mEp->last_zptr) {
dma_pool_free(mEp->td_pool, mEp->last_zptr,
mEp->last_zdma);
mEp->last_zptr = NULL;
}
mEp->desc = NULL;
mEp->ep.desc = NULL;
mEp->ep.maxpacket = USHRT_MAX;
spin_unlock_irqrestore(mEp->lock, flags);
return retval;
}
/**
* ep_alloc_request: allocate a request object to use with this endpoint
*
* Check usb_ep_alloc_request() at "usb_gadget.h" for details
*/
static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
{
struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep);
struct ci13xxx_req *mReq = NULL;
trace("%p, %i", ep, gfp_flags);
if (ep == NULL) {
err("EINVAL");
return NULL;
}
mReq = kzalloc(sizeof(struct ci13xxx_req), gfp_flags);
if (mReq != NULL) {
INIT_LIST_HEAD(&mReq->queue);
2024-09-09 08:57:42 +00:00
mReq->req.dma = DMA_ERROR_CODE;
2024-09-09 08:52:07 +00:00
mReq->ptr = dma_pool_alloc(mEp->td_pool, gfp_flags,
&mReq->dma);
if (mReq->ptr == NULL) {
kfree(mReq);
mReq = NULL;
}
}
dbg_event(_usb_addr(mEp), "ALLOC", mReq == NULL);
return (mReq == NULL) ? NULL : &mReq->req;
}
/**
* ep_free_request: frees a request object
*
* Check usb_ep_free_request() at "usb_gadget.h" for details
*/
static void ep_free_request(struct usb_ep *ep, struct usb_request *req)
{
struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep);
struct ci13xxx_req *mReq = container_of(req, struct ci13xxx_req, req);
unsigned long flags;
trace("%p, %p", ep, req);
if (ep == NULL || req == NULL) {
err("EINVAL");
return;
} else if (!list_empty(&mReq->queue)) {
err("EBUSY");
return;
}
spin_lock_irqsave(mEp->lock, flags);
if (mReq->ptr)
dma_pool_free(mEp->td_pool, mReq->ptr, mReq->dma);
kfree(mReq);
dbg_event(_usb_addr(mEp), "FREE", 0);
spin_unlock_irqrestore(mEp->lock, flags);
}
/**
* ep_queue: queues (submits) an I/O request to an endpoint
*
* Check usb_ep_queue()* at usb_gadget.h" for details
*/
static int ep_queue(struct usb_ep *ep, struct usb_request *req,
gfp_t __maybe_unused gfp_flags)
{
struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep);
struct ci13xxx_req *mReq = container_of(req, struct ci13xxx_req, req);
int retval = 0;
unsigned long flags;
struct ci13xxx *udc = _udc;
trace("%p, %p, %X", ep, req, gfp_flags);
spin_lock_irqsave(mEp->lock, flags);
if (ep == NULL || req == NULL || mEp->desc == NULL) {
retval = -EINVAL;
goto done;
}
if (!udc->softconnect) {
retval = -ENODEV;
goto done;
}
if (!udc->configured && mEp->type !=
USB_ENDPOINT_XFER_CONTROL) {
trace("usb is not configured"
"ept #%d, ept name#%s\n",
mEp->num, mEp->ep.name);
retval = -ESHUTDOWN;
goto done;
}
if (mEp->type == USB_ENDPOINT_XFER_CONTROL) {
if (req->length)
mEp = (_udc->ep0_dir == RX) ?
&_udc->ep0out : &_udc->ep0in;
if (!list_empty(&mEp->qh.queue)) {
_ep_nuke(mEp);
retval = -EOVERFLOW;
warn("endpoint ctrl %X nuked", _usb_addr(mEp));
}
}
2024-09-09 08:57:42 +00:00
if (ep->endless && udc->gadget.speed == USB_SPEED_FULL) {
err("Queueing endless req is not supported for FS");
retval = -EINVAL;
goto done;
}
2024-09-09 08:52:07 +00:00
/* first nuke then test link, e.g. previous status has not sent */
if (!list_empty(&mReq->queue)) {
retval = -EBUSY;
err("request already in queue");
goto done;
}
if (mEp->multi_req) {
retval = -EAGAIN;
err("Large request is in progress. come again");
goto done;
}
if (req->length > (4 * CI13XXX_PAGE_SIZE)) {
if (!list_empty(&mEp->qh.queue)) {
retval = -EAGAIN;
err("Queue is busy. Large req is not allowed");
goto done;
}
if ((mEp->type != USB_ENDPOINT_XFER_BULK) ||
(mEp->dir != RX)) {
retval = -EINVAL;
err("Larger req is supported only for Bulk OUT");
goto done;
}
mEp->multi_req = true;
mReq->multi.len = req->length;
mReq->multi.buf = req->buf;
req->length = (4 * CI13XXX_PAGE_SIZE);
}
dbg_queue(_usb_addr(mEp), req, retval);
/* push request */
mReq->req.status = -EINPROGRESS;
mReq->req.actual = 0;
if (udc->rw_pending) {
list_add_tail(&mReq->queue, &mEp->rw_queue);
retval = 0;
goto done;
}
if (udc->suspended) {
/* Remote Wakeup */
if (!udc->gadget.remote_wakeup) {
2024-09-09 08:57:42 +00:00
dev_dbg(mEp->device, "%s: queue failed (suspend).",
__func__);
dev_dbg(mEp->device, "%s: Remote wakeup is not supported. ept #%d\n",
2024-09-09 08:52:07 +00:00
__func__, mEp->num);
retval = -EAGAIN;
goto done;
}
list_add_tail(&mReq->queue, &mEp->rw_queue);
udc->rw_pending = true;
schedule_delayed_work(&udc->rw_work,
REMOTE_WAKEUP_DELAY);
retval = 0;
goto done;
}
retval = _hardware_enqueue(mEp, mReq);
if (retval == -EALREADY) {
dbg_event(_usb_addr(mEp), "QUEUE", retval);
retval = 0;
}
if (!retval)
list_add_tail(&mReq->queue, &mEp->qh.queue);
else if (mEp->multi_req)
mEp->multi_req = false;
done:
spin_unlock_irqrestore(mEp->lock, flags);
return retval;
}
/**
* ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint
*
* Check usb_ep_dequeue() at "usb_gadget.h" for details
*/
static int ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep);
struct ci13xxx_ep *mEpTemp = mEp;
struct ci13xxx_req *mReq = container_of(req, struct ci13xxx_req, req);
2024-09-09 08:57:42 +00:00
struct ci13xxx *udc = _udc;
2024-09-09 08:52:07 +00:00
unsigned long flags;
trace("%p, %p", ep, req);
2024-09-09 08:57:42 +00:00
if (udc->udc_driver->in_lpm && udc->udc_driver->in_lpm(udc)) {
dev_err(udc->transceiver->dev,
"%s: Unable to dequeue while in LPM\n",
__func__);
return -EAGAIN;
}
2024-09-09 08:52:07 +00:00
spin_lock_irqsave(mEp->lock, flags);
/*
* Only ep0 IN is exposed to composite. When a req is dequeued
* on ep0, check both ep0 IN and ep0 OUT queues.
*/
if (ep == NULL || req == NULL || mReq->req.status != -EALREADY ||
mEp->desc == NULL || list_empty(&mReq->queue) ||
(list_empty(&mEp->qh.queue) && ((mEp->type !=
USB_ENDPOINT_XFER_CONTROL) ||
list_empty(&_udc->ep0out.qh.queue)))) {
spin_unlock_irqrestore(mEp->lock, flags);
return -EINVAL;
}
dbg_event(_usb_addr(mEp), "DEQUEUE", 0);
if ((mEp->type == USB_ENDPOINT_XFER_CONTROL)) {
hw_ep_flush(_udc->ep0out.num, RX);
hw_ep_flush(_udc->ep0in.num, TX);
} else {
hw_ep_flush(mEp->num, mEp->dir);
}
/* pop request */
list_del_init(&mReq->queue);
if (mReq->map) {
dma_unmap_single(mEp->device, mReq->req.dma, mReq->req.length,
mEp->dir ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
2024-09-09 08:57:42 +00:00
mReq->req.dma = DMA_ERROR_CODE;
2024-09-09 08:52:07 +00:00
mReq->map = 0;
}
req->status = -ECONNRESET;
if (mEp->multi_req) {
restore_original_req(mReq);
mEp->multi_req = false;
}
if (mReq->req.complete != NULL) {
spin_unlock(mEp->lock);
if ((mEp->type == USB_ENDPOINT_XFER_CONTROL) &&
mReq->req.length)
mEpTemp = &_udc->ep0in;
mReq->req.complete(&mEpTemp->ep, &mReq->req);
if (mEp->type == USB_ENDPOINT_XFER_CONTROL)
mReq->req.complete = NULL;
spin_lock(mEp->lock);
}
spin_unlock_irqrestore(mEp->lock, flags);
return 0;
}
static int is_sps_req(struct ci13xxx_req *mReq)
{
return (CI13XX_REQ_VENDOR_ID(mReq->req.udc_priv) == MSM_VENDOR_ID &&
mReq->req.udc_priv & MSM_SPS_MODE);
}
/**
* ep_set_halt: sets the endpoint halt feature
*
* Check usb_ep_set_halt() at "usb_gadget.h" for details
*/
static int ep_set_halt(struct usb_ep *ep, int value)
{
struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep);
2024-09-09 08:57:42 +00:00
struct ci13xxx *udc = _udc;
2024-09-09 08:52:07 +00:00
int direction, retval = 0;
unsigned long flags;
trace("%p, %i", ep, value);
if (ep == NULL || mEp->desc == NULL)
return -EINVAL;
2024-09-09 08:57:42 +00:00
if (udc->suspended) {
dev_err(udc->transceiver->dev,
"%s: Unable to halt EP while suspended\n", __func__);
return -EINVAL;
}
2024-09-09 08:52:07 +00:00
spin_lock_irqsave(mEp->lock, flags);
#ifndef STALL_IN
/* g_file_storage MS compliant but g_zero fails chapter 9 compliance */
if (value && mEp->type == USB_ENDPOINT_XFER_BULK && mEp->dir == TX &&
!list_empty(&mEp->qh.queue) &&
!is_sps_req(list_entry(mEp->qh.queue.next, struct ci13xxx_req,
queue))){
spin_unlock_irqrestore(mEp->lock, flags);
return -EAGAIN;
}
#endif
direction = mEp->dir;
do {
dbg_event(_usb_addr(mEp), "HALT", value);
retval |= hw_ep_set_halt(mEp->num, mEp->dir, value);
if (!value)
mEp->wedge = 0;
if (mEp->type == USB_ENDPOINT_XFER_CONTROL)
mEp->dir = (mEp->dir == TX) ? RX : TX;
} while (mEp->dir != direction);
spin_unlock_irqrestore(mEp->lock, flags);
return retval;
}
/**
* ep_set_wedge: sets the halt feature and ignores clear requests
*
* Check usb_ep_set_wedge() at "usb_gadget.h" for details
*/
static int ep_set_wedge(struct usb_ep *ep)
{
struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep);
unsigned long flags;
trace("%p", ep);
if (ep == NULL || mEp->desc == NULL)
return -EINVAL;
spin_lock_irqsave(mEp->lock, flags);
dbg_event(_usb_addr(mEp), "WEDGE", 0);
mEp->wedge = 1;
spin_unlock_irqrestore(mEp->lock, flags);
return usb_ep_set_halt(ep);
}
/**
* ep_fifo_flush: flushes contents of a fifo
*
* Check usb_ep_fifo_flush() at "usb_gadget.h" for details
*/
static void ep_fifo_flush(struct usb_ep *ep)
{
2024-09-09 08:57:42 +00:00
struct ci13xxx *udc = _udc;
2024-09-09 08:52:07 +00:00
struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep);
unsigned long flags;
trace("%p", ep);
if (ep == NULL) {
err("%02X: -EINVAL", _usb_addr(mEp));
return;
}
2024-09-09 08:57:42 +00:00
if (udc->udc_driver->in_lpm && udc->udc_driver->in_lpm(udc)) {
dev_err(udc->transceiver->dev,
"%s: Unable to fifo_flush while in LPM\n",
__func__);
return;
}
2024-09-09 08:52:07 +00:00
spin_lock_irqsave(mEp->lock, flags);
dbg_event(_usb_addr(mEp), "FFLUSH", 0);
/*
* _ep_nuke() takes care of flushing the endpoint.
* some function drivers expect udc to retire all
* pending requests upon flushing an endpoint. There
* is no harm in doing it.
*/
_ep_nuke(mEp);
spin_unlock_irqrestore(mEp->lock, flags);
}
/**
* Endpoint-specific part of the API to the USB controller hardware
* Check "usb_gadget.h" for details
*/
static const struct usb_ep_ops usb_ep_ops = {
.enable = ep_enable,
.disable = ep_disable,
.alloc_request = ep_alloc_request,
.free_request = ep_free_request,
.queue = ep_queue,
.dequeue = ep_dequeue,
.set_halt = ep_set_halt,
.set_wedge = ep_set_wedge,
.fifo_flush = ep_fifo_flush,
};
/******************************************************************************
* GADGET block
*****************************************************************************/
static int ci13xxx_vbus_session(struct usb_gadget *_gadget, int is_active)
{
struct ci13xxx *udc = container_of(_gadget, struct ci13xxx, gadget);
unsigned long flags;
int gadget_ready = 0;
if (!(udc->udc_driver->flags & CI13XXX_PULLUP_ON_VBUS))
return -EOPNOTSUPP;
spin_lock_irqsave(udc->lock, flags);
udc->vbus_active = is_active;
if (udc->driver)
gadget_ready = 1;
spin_unlock_irqrestore(udc->lock, flags);
if (gadget_ready) {
if (is_active) {
hw_device_reset(udc);
2024-09-09 08:57:42 +00:00
if (udc->udc_driver->notify_event)
udc->udc_driver->notify_event(udc,
CI13XXX_CONTROLLER_CONNECT_EVENT);
2024-09-09 08:52:07 +00:00
if (udc->softconnect)
hw_device_state(udc->ep0out.qh.dma);
} else {
hw_device_state(0);
_gadget_stop_activity(&udc->gadget);
if (udc->udc_driver->notify_event)
udc->udc_driver->notify_event(udc,
CI13XXX_CONTROLLER_DISCONNECT_EVENT);
}
}
return 0;
}
2024-09-09 08:57:42 +00:00
#define VBUS_DRAW_BUF_LEN 10
#define MAX_OVERRIDE_VBUS_ALLOWED 900 /* 900 mA */
static char vbus_draw_mA[VBUS_DRAW_BUF_LEN];
module_param_string(vbus_draw_mA, vbus_draw_mA, VBUS_DRAW_BUF_LEN,
S_IRUGO | S_IWUSR);
2024-09-09 08:52:07 +00:00
static int ci13xxx_vbus_draw(struct usb_gadget *_gadget, unsigned mA)
{
struct ci13xxx *udc = container_of(_gadget, struct ci13xxx, gadget);
2024-09-09 08:57:42 +00:00
unsigned int override_mA = 0;
/* override param to draw more current if battery draining faster */
if ((mA == CONFIG_USB_GADGET_VBUS_DRAW) &&
(vbus_draw_mA[0] != '\0')) {
if ((!kstrtoint(vbus_draw_mA, 10, &override_mA)) &&
(override_mA <= MAX_OVERRIDE_VBUS_ALLOWED)) {
mA = override_mA;
}
}
2024-09-09 08:52:07 +00:00
if (udc->transceiver)
return usb_phy_set_power(udc->transceiver, mA);
return -ENOTSUPP;
}
static int ci13xxx_pullup(struct usb_gadget *_gadget, int is_active)
{
struct ci13xxx *udc = container_of(_gadget, struct ci13xxx, gadget);
unsigned long flags;
spin_lock_irqsave(udc->lock, flags);
udc->softconnect = is_active;
if (((udc->udc_driver->flags & CI13XXX_PULLUP_ON_VBUS) &&
!udc->vbus_active) || !udc->driver) {
spin_unlock_irqrestore(udc->lock, flags);
return 0;
}
spin_unlock_irqrestore(udc->lock, flags);
2024-09-09 08:57:42 +00:00
pm_runtime_get_sync(&_gadget->dev);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
spin_lock_irqsave(udc->lock, flags);
if (!udc->vbus_active) {
spin_unlock_irqrestore(udc->lock, flags);
pm_runtime_put_sync(&_gadget->dev);
return 0;
}
if (is_active) {
spin_unlock(udc->lock);
if (udc->udc_driver->notify_event)
udc->udc_driver->notify_event(udc,
CI13XXX_CONTROLLER_CONNECT_EVENT);
spin_lock(udc->lock);
2024-09-09 08:52:07 +00:00
hw_device_state(udc->ep0out.qh.dma);
2024-09-09 08:57:42 +00:00
} else {
2024-09-09 08:52:07 +00:00
hw_device_state(0);
2024-09-09 08:57:42 +00:00
}
spin_unlock_irqrestore(udc->lock, flags);
pm_runtime_mark_last_busy(&_gadget->dev);
pm_runtime_put_autosuspend(&_gadget->dev);
2024-09-09 08:52:07 +00:00
return 0;
}
2024-09-09 08:57:42 +00:00
static int ci13xxx_start(struct usb_gadget *gadget,
struct usb_gadget_driver *driver);
static int ci13xxx_stop(struct usb_gadget *gadget,
struct usb_gadget_driver *driver);
2024-09-09 08:52:07 +00:00
/**
* Device operations part of the API to the USB controller hardware,
* which don't involve endpoints (or i/o)
* Check "usb_gadget.h" for details
*/
static const struct usb_gadget_ops usb_gadget_ops = {
.vbus_session = ci13xxx_vbus_session,
.wakeup = ci13xxx_wakeup,
.vbus_draw = ci13xxx_vbus_draw,
.pullup = ci13xxx_pullup,
2024-09-09 08:57:42 +00:00
.udc_start = ci13xxx_start,
.udc_stop = ci13xxx_stop,
2024-09-09 08:52:07 +00:00
};
/**
* ci13xxx_start: register a gadget driver
2024-09-09 08:57:42 +00:00
* @gadget: our gadget
2024-09-09 08:52:07 +00:00
* @driver: the driver being registered
*
* Interrupts are enabled here.
*/
2024-09-09 08:57:42 +00:00
static int ci13xxx_start(struct usb_gadget *gadget,
struct usb_gadget_driver *driver)
2024-09-09 08:52:07 +00:00
{
struct ci13xxx *udc = _udc;
unsigned long flags;
int retval = -ENOMEM;
trace("%p", driver);
if (driver == NULL ||
driver->setup == NULL ||
driver->disconnect == NULL)
return -EINVAL;
else if (udc == NULL)
return -ENODEV;
else if (udc->driver != NULL)
return -EBUSY;
spin_lock_irqsave(udc->lock, flags);
info("hw_ep_max = %d", hw_ep_max);
udc->gadget.dev.driver = NULL;
2024-09-09 08:57:42 +00:00
spin_unlock_irqrestore(udc->lock, flags);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
pm_runtime_get_sync(&udc->gadget.dev);
2024-09-09 08:52:07 +00:00
udc->ep0out.ep.desc = &ctrl_endpt_out_desc;
retval = usb_ep_enable(&udc->ep0out.ep);
if (retval)
2024-09-09 08:57:42 +00:00
goto pm_put;
2024-09-09 08:52:07 +00:00
udc->ep0in.ep.desc = &ctrl_endpt_in_desc;
retval = usb_ep_enable(&udc->ep0in.ep);
if (retval)
2024-09-09 08:57:42 +00:00
goto pm_put;
2024-09-09 08:52:07 +00:00
udc->status = usb_ep_alloc_request(&udc->ep0in.ep, GFP_KERNEL);
2024-09-09 08:57:42 +00:00
if (!udc->status) {
retval = -ENOMEM;
goto pm_put;
}
udc->status_buf = kzalloc(2 + udc->gadget.extra_buf_alloc,
GFP_KERNEL); /* for GET_STATUS */
2024-09-09 08:52:07 +00:00
if (!udc->status_buf) {
usb_ep_free_request(&udc->ep0in.ep, udc->status);
2024-09-09 08:57:42 +00:00
retval = -ENOMEM;
goto pm_put;
2024-09-09 08:52:07 +00:00
}
spin_lock_irqsave(udc->lock, flags);
udc->gadget.ep0 = &udc->ep0in.ep;
/* bind gadget */
driver->driver.bus = NULL;
udc->gadget.dev.driver = &driver->driver;
udc->driver = driver;
if (udc->udc_driver->flags & CI13XXX_PULLUP_ON_VBUS) {
if (udc->vbus_active) {
if (udc->udc_driver->flags & CI13XXX_REGS_SHARED)
hw_device_reset(udc);
} else {
goto done;
}
}
2024-09-09 08:57:42 +00:00
if (!udc->softconnect)
2024-09-09 08:52:07 +00:00
goto done;
retval = hw_device_state(udc->ep0out.qh.dma);
2024-09-09 08:57:42 +00:00
done:
2024-09-09 08:52:07 +00:00
spin_unlock_irqrestore(udc->lock, flags);
if (udc->udc_driver->notify_event)
udc->udc_driver->notify_event(udc,
CI13XXX_CONTROLLER_UDC_STARTED_EVENT);
2024-09-09 08:57:42 +00:00
pm_put:
pm_runtime_put(&udc->gadget.dev);
2024-09-09 08:52:07 +00:00
return retval;
}
/**
* ci13xxx_stop: unregister a gadget driver
*
* Check usb_gadget_unregister_driver() at "usb_gadget.h" for details
*/
2024-09-09 08:57:42 +00:00
static int ci13xxx_stop(struct usb_gadget *gadget,
struct usb_gadget_driver *driver)
2024-09-09 08:52:07 +00:00
{
struct ci13xxx *udc = _udc;
2024-09-09 08:57:42 +00:00
unsigned long flags;
2024-09-09 08:52:07 +00:00
trace("%p", driver);
if (driver == NULL ||
driver->unbind == NULL ||
driver->setup == NULL ||
driver->disconnect == NULL ||
driver != udc->driver)
return -EINVAL;
spin_lock_irqsave(udc->lock, flags);
if (!(udc->udc_driver->flags & CI13XXX_PULLUP_ON_VBUS) ||
udc->vbus_active) {
hw_device_state(0);
spin_unlock_irqrestore(udc->lock, flags);
_gadget_stop_activity(&udc->gadget);
spin_lock_irqsave(udc->lock, flags);
}
spin_unlock_irqrestore(udc->lock, flags);
usb_ep_free_request(&udc->ep0in.ep, udc->status);
kfree(udc->status_buf);
return 0;
}
/******************************************************************************
* BUS block
*****************************************************************************/
/**
* udc_irq: global interrupt handler
*
* This function returns IRQ_HANDLED if the IRQ has been handled
* It locks access to registers
*/
static irqreturn_t udc_irq(void)
{
struct ci13xxx *udc = _udc;
irqreturn_t retval;
u32 intr;
trace();
if (udc == NULL) {
err("ENODEV");
return IRQ_HANDLED;
}
spin_lock(udc->lock);
2024-09-09 08:57:42 +00:00
if (udc->udc_driver->in_lpm && udc->udc_driver->in_lpm(udc)) {
spin_unlock(udc->lock);
return IRQ_NONE;
}
2024-09-09 08:52:07 +00:00
if (udc->udc_driver->flags & CI13XXX_REGS_SHARED) {
if (hw_cread(CAP_USBMODE, USBMODE_CM) !=
USBMODE_CM_DEVICE) {
spin_unlock(udc->lock);
return IRQ_NONE;
}
}
intr = hw_test_and_clear_intr_active();
if (intr) {
isr_statistics.hndl.buf[isr_statistics.hndl.idx++] = intr;
isr_statistics.hndl.idx &= ISR_MASK;
isr_statistics.hndl.cnt++;
/* order defines priority - do NOT change it */
if (USBi_URI & intr) {
isr_statistics.uri++;
2024-09-09 08:57:42 +00:00
if (!hw_cread(CAP_PORTSC, PORTSC_PR))
pr_info("%s: USB reset interrupt is delayed\n",
__func__);
2024-09-09 08:52:07 +00:00
isr_reset_handler(udc);
}
if (USBi_PCI & intr) {
isr_statistics.pci++;
isr_resume_handler(udc);
}
if (USBi_UEI & intr)
isr_statistics.uei++;
if (USBi_UI & intr) {
isr_statistics.ui++;
2024-09-09 08:57:42 +00:00
udc->gadget.xfer_isr_count++;
2024-09-09 08:52:07 +00:00
isr_tr_complete_handler(udc);
}
if (USBi_SLI & intr) {
isr_suspend_handler(udc);
isr_statistics.sli++;
}
retval = IRQ_HANDLED;
} else {
isr_statistics.none++;
retval = IRQ_NONE;
}
spin_unlock(udc->lock);
return retval;
}
2024-09-09 08:57:42 +00:00
static void destroy_eps(struct ci13xxx *ci)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
int i;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
for (i = 0; i < hw_ep_max; i++) {
struct ci13xxx_ep *mEp = &ci->ci13xxx_ep[i];
dma_pool_free(ci->qh_pool, mEp->qh.ptr, mEp->qh.dma);
}
2024-09-09 08:52:07 +00:00
}
/**
* udc_probe: parent probe must call this to initialize UDC
* @dev: parent device
* @regs: registers base address
* @name: driver name
*
* This function returns an error code
* No interrupts active, the IRQ has not been requested yet
* Kernel assumes 32-bit DMA operations by default, no need to dma_set_mask
*/
static int udc_probe(struct ci13xxx_udc_driver *driver, struct device *dev,
void __iomem *regs)
{
struct ci13xxx *udc;
struct ci13xxx_platform_data *pdata;
2024-09-09 08:57:42 +00:00
int retval = 0, i, j;
2024-09-09 08:52:07 +00:00
trace("%p, %p, %p", dev, regs, driver->name);
if (dev == NULL || regs == NULL || driver == NULL ||
driver->name == NULL)
return -EINVAL;
udc = kzalloc(sizeof(struct ci13xxx), GFP_KERNEL);
if (udc == NULL)
return -ENOMEM;
udc->lock = &udc_lock;
udc->regs = regs;
udc->udc_driver = driver;
udc->gadget.ops = &usb_gadget_ops;
udc->gadget.speed = USB_SPEED_UNKNOWN;
udc->gadget.max_speed = USB_SPEED_HIGH;
2024-09-09 08:57:42 +00:00
udc->gadget.is_otg = 0;
2024-09-09 08:52:07 +00:00
udc->gadget.name = driver->name;
2024-09-09 08:57:42 +00:00
/* alloc resources */
udc->qh_pool = dma_pool_create("ci13xxx_qh", dev,
sizeof(struct ci13xxx_qh),
64, CI13XXX_PAGE_SIZE);
if (udc->qh_pool == NULL) {
retval = -ENOMEM;
goto free_udc;
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
udc->td_pool = dma_pool_create("ci13xxx_td", dev,
sizeof(struct ci13xxx_td),
64, CI13XXX_PAGE_SIZE);
if (udc->td_pool == NULL) {
retval = -ENOMEM;
goto free_qh_pool;
2024-09-09 08:52:07 +00:00
}
INIT_DELAYED_WORK(&udc->rw_work, usb_do_remote_wakeup);
retval = hw_device_init(regs);
if (retval < 0)
2024-09-09 08:57:42 +00:00
goto free_qh_pool;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
INIT_LIST_HEAD(&udc->gadget.ep_list);
2024-09-09 08:52:07 +00:00
for (i = 0; i < hw_ep_max; i++) {
struct ci13xxx_ep *mEp = &udc->ci13xxx_ep[i];
INIT_LIST_HEAD(&mEp->ep.ep_list);
INIT_LIST_HEAD(&mEp->rw_queue);
setup_timer(&mEp->prime_timer, ep_prime_timer_func,
(unsigned long) mEp);
}
2024-09-09 08:57:42 +00:00
for (i = 0; i < hw_ep_max/2; i++) {
for (j = RX; j <= TX; j++) {
int k = i + j * hw_ep_max/2;
struct ci13xxx_ep *mEp = &udc->ci13xxx_ep[k];
scnprintf(mEp->name, sizeof(mEp->name), "ep%i%s", i,
(j == TX) ? "in" : "out");
mEp->lock = udc->lock;
mEp->device = &udc->gadget.dev;
mEp->td_pool = udc->td_pool;
mEp->ep.name = mEp->name;
mEp->ep.ops = &usb_ep_ops;
usb_ep_set_maxpacket_limit(&mEp->ep,
k ? USHRT_MAX : CTRL_PAYLOAD_MAX);
INIT_LIST_HEAD(&mEp->qh.queue);
mEp->qh.ptr = dma_pool_alloc(udc->qh_pool, GFP_KERNEL,
&mEp->qh.dma);
if (mEp->qh.ptr == NULL)
retval = -ENOMEM;
else
memset(mEp->qh.ptr, 0, sizeof(*mEp->qh.ptr));
/* skip ep0 out and in endpoints */
if (i == 0)
continue;
list_add_tail(&mEp->ep.ep_list, &udc->gadget.ep_list);
}
}
if (retval)
goto free_dma_pools;
udc->gadget.ep0 = &udc->ep0in.ep;
pdata = dev->platform_data;
if (pdata) {
udc->gadget.usb_core_id = pdata->usb_core_id;
if (pdata->enable_axi_prefetch)
udc->gadget.extra_buf_alloc = EXTRA_ALLOCATION_SIZE;
}
if (udc->udc_driver->flags & CI13XXX_REQUIRE_TRANSCEIVER) {
udc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
if (udc->transceiver == NULL) {
retval = -ENODEV;
goto destroy_eps;
}
}
2024-09-09 08:52:07 +00:00
if (!(udc->udc_driver->flags & CI13XXX_REGS_SHARED)) {
retval = hw_device_reset(udc);
if (retval)
goto put_transceiver;
}
if (udc->transceiver) {
retval = otg_set_peripheral(udc->transceiver->otg,
&udc->gadget);
if (retval)
2024-09-09 08:57:42 +00:00
goto put_transceiver;
2024-09-09 08:52:07 +00:00
}
retval = usb_add_gadget_udc(dev, &udc->gadget);
if (retval)
goto remove_trans;
2024-09-09 08:57:42 +00:00
#ifdef CONFIG_USB_GADGET_DEBUG_FILES
retval = dbg_create_files(&udc->gadget.dev);
if (retval) {
pr_err("Registering sysfs files for debug failed!!!!\n");
goto del_udc;
}
#endif
2024-09-09 08:52:07 +00:00
pm_runtime_no_callbacks(&udc->gadget.dev);
2024-09-09 08:57:42 +00:00
pm_runtime_set_active(&udc->gadget.dev);
2024-09-09 08:52:07 +00:00
pm_runtime_enable(&udc->gadget.dev);
2024-09-09 08:57:42 +00:00
/* Use delayed LPM especially for composition-switch in LPM (suspend) */
pm_runtime_set_autosuspend_delay(&udc->gadget.dev, 2000);
pm_runtime_use_autosuspend(&udc->gadget.dev);
2024-09-09 08:52:07 +00:00
_udc = udc;
return retval;
2024-09-09 08:57:42 +00:00
del_udc:
usb_del_gadget_udc(&udc->gadget);
2024-09-09 08:52:07 +00:00
remove_trans:
2024-09-09 08:57:42 +00:00
if (udc->transceiver)
2024-09-09 08:52:07 +00:00
otg_set_peripheral(udc->transceiver->otg, &udc->gadget);
err("error = %i", retval);
put_transceiver:
if (udc->transceiver)
2024-09-09 08:57:42 +00:00
usb_put_phy(udc->transceiver);
destroy_eps:
destroy_eps(udc);
free_dma_pools:
dma_pool_destroy(udc->td_pool);
free_qh_pool:
dma_pool_destroy(udc->qh_pool);
2024-09-09 08:52:07 +00:00
free_udc:
kfree(udc);
_udc = NULL;
return retval;
}
/**
* udc_remove: parent remove must call this to remove UDC
*
* No interrupts active, the IRQ has been released
*/
static void udc_remove(void)
{
struct ci13xxx *udc = _udc;
if (udc == NULL) {
err("EINVAL");
return;
}
usb_del_gadget_udc(&udc->gadget);
if (udc->transceiver) {
otg_set_peripheral(udc->transceiver->otg, &udc->gadget);
2024-09-09 08:57:42 +00:00
usb_put_phy(udc->transceiver);
2024-09-09 08:52:07 +00:00
}
#ifdef CONFIG_USB_GADGET_DEBUG_FILES
dbg_remove_files(&udc->gadget.dev);
#endif
2024-09-09 08:57:42 +00:00
destroy_eps(udc);
dma_pool_destroy(udc->td_pool);
dma_pool_destroy(udc->qh_pool);
2024-09-09 08:52:07 +00:00
kfree(udc);
_udc = NULL;
}