/* * ci13xxx_udc.c - MIPS USB IP core family device controller * * Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved. * * Author: David Lopo * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ /* * Description: MIPS USB IP core family device controller * Currently it only supports IP part number CI13412 * * This driver is composed of several blocks: * - HW: hardware interface * - DBG: debug facilities (optional) * - UTIL: utilities * - ISR: interrupts handling * - ENDPT: endpoint operations (Gadget API) * - GADGET: gadget operations (Gadget API) * - BUS: bus glue code, bus abstraction layer * * Compile Options * - CONFIG_USB_GADGET_DEBUG_FILES: enable debug facilities * - STALL_IN: non-empty bulk-in pipes cannot be halted * if defined mass storage compliance succeeds but with warnings * => case 4: Hi > Dn * => case 5: Hi > Di * => case 8: Hi <> Do * if undefined usbtest 13 fails * - TRACE: enable function tracing (depends on DEBUG) * * Main Features * - Chapter 9 & Mass Storage Compliance with Gadget File Storage * - Chapter 9 Compliance with Gadget Zero (STALL_IN undefined) * - Normal & LPM support * * USBTEST Report * - OK: 0-12, 13 (STALL_IN defined) & 14 * - Not Supported: 15 & 16 (ISO) * * TODO List * - OTG * - Isochronous & Interrupt Traffic * - Handle requests which spawns into several TDs * - GET_STATUS(device) - always reports 0 * - Gadget API (majority of optional features) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ci13xxx_udc.h" /****************************************************************************** * DEFINE *****************************************************************************/ #define USB_MAX_TIMEOUT 25 /* 25msec timeout */ #define EP_PRIME_CHECK_DELAY (jiffies + msecs_to_jiffies(1000)) #define MAX_PRIME_CHECK_RETRY 3 /*Wait for 3sec for EP prime failure */ #define EXTRA_ALLOCATION_SIZE 256 /* ctrl register bank access */ static DEFINE_SPINLOCK(udc_lock); /* control endpoint description */ static const struct usb_endpoint_descriptor ctrl_endpt_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_CONTROL, .wMaxPacketSize = cpu_to_le16(CTRL_PAYLOAD_MAX), }; static const struct usb_endpoint_descriptor ctrl_endpt_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_CONTROL, .wMaxPacketSize = cpu_to_le16(CTRL_PAYLOAD_MAX), }; /* UDC descriptor */ static struct ci13xxx *_udc; /* Interrupt statistics */ #define ISR_MASK 0x1F static struct { u32 test; u32 ui; u32 uei; u32 pci; u32 uri; u32 sli; u32 none; struct { u32 cnt; u32 buf[ISR_MASK+1]; u32 idx; } hndl; } isr_statistics; /** * ffs_nr: find first (least significant) bit set * @x: the word to search * * This function returns bit number (instead of position) */ static int ffs_nr(u32 x) { int n = ffs(x); return n ? n-1 : 32; } /****************************************************************************** * HW block *****************************************************************************/ /* register bank descriptor */ static struct { unsigned lpm; /* is LPM? */ void __iomem *abs; /* bus map offset */ void __iomem *cap; /* bus map offset + CAP offset + CAP data */ size_t size; /* bank size */ } hw_bank; /* MSM specific */ #define ABS_AHBBURST (0x0090UL) #define ABS_AHBMODE (0x0098UL) /* UDC register map */ #define ABS_CAPLENGTH (0x100UL) #define ABS_HCCPARAMS (0x108UL) #define ABS_DCCPARAMS (0x124UL) #define ABS_TESTMODE (hw_bank.lpm ? 0x0FCUL : 0x138UL) /* offset to CAPLENTGH (addr + data) */ #define CAP_USBCMD (0x000UL) #define CAP_USBSTS (0x004UL) #define CAP_USBINTR (0x008UL) #define CAP_DEVICEADDR (0x014UL) #define CAP_ENDPTLISTADDR (0x018UL) #define CAP_PORTSC (0x044UL) #define CAP_DEVLC (0x084UL) #define CAP_ENDPTPIPEID (0x0BCUL) #define CAP_USBMODE (hw_bank.lpm ? 0x0C8UL : 0x068UL) #define CAP_ENDPTSETUPSTAT (hw_bank.lpm ? 0x0D8UL : 0x06CUL) #define CAP_ENDPTPRIME (hw_bank.lpm ? 0x0DCUL : 0x070UL) #define CAP_ENDPTFLUSH (hw_bank.lpm ? 0x0E0UL : 0x074UL) #define CAP_ENDPTSTAT (hw_bank.lpm ? 0x0E4UL : 0x078UL) #define CAP_ENDPTCOMPLETE (hw_bank.lpm ? 0x0E8UL : 0x07CUL) #define CAP_ENDPTCTRL (hw_bank.lpm ? 0x0ECUL : 0x080UL) #define CAP_LAST (hw_bank.lpm ? 0x12CUL : 0x0C0UL) #define REMOTE_WAKEUP_DELAY msecs_to_jiffies(200) /* maximum number of enpoints: valid only after hw_device_reset() */ static unsigned hw_ep_max; static void dbg_usb_op_fail(u8 addr, const char *name, const struct ci13xxx_ep *mep); /** * hw_ep_bit: calculates the bit number * @num: endpoint number * @dir: endpoint direction * * This function returns bit number */ static inline int hw_ep_bit(int num, int dir) { return num + (dir ? 16 : 0); } static int ep_to_bit(int n) { int fill = 16 - hw_ep_max / 2; if (n >= hw_ep_max / 2) n += fill; return n; } /** * hw_aread: reads from register bitfield * @addr: address relative to bus map * @mask: bitfield mask * * This function returns register bitfield data */ static u32 hw_aread(u32 addr, u32 mask) { return ioread32(addr + hw_bank.abs) & mask; } /** * hw_awrite: writes to register bitfield * @addr: address relative to bus map * @mask: bitfield mask * @data: new data */ static void hw_awrite(u32 addr, u32 mask, u32 data) { iowrite32(hw_aread(addr, ~mask) | (data & mask), addr + hw_bank.abs); } /** * hw_cread: reads from register bitfield * @addr: address relative to CAP offset plus content * @mask: bitfield mask * * This function returns register bitfield data */ static u32 hw_cread(u32 addr, u32 mask) { return ioread32(addr + hw_bank.cap) & mask; } /** * hw_cwrite: writes to register bitfield * @addr: address relative to CAP offset plus content * @mask: bitfield mask * @data: new data */ static void hw_cwrite(u32 addr, u32 mask, u32 data) { iowrite32(hw_cread(addr, ~mask) | (data & mask), addr + hw_bank.cap); } /** * hw_ctest_and_clear: tests & clears register bitfield * @addr: address relative to CAP offset plus content * @mask: bitfield mask * * This function returns register bitfield data */ static u32 hw_ctest_and_clear(u32 addr, u32 mask) { u32 reg = hw_cread(addr, mask); iowrite32(reg, addr + hw_bank.cap); return reg; } /** * hw_ctest_and_write: tests & writes register bitfield * @addr: address relative to CAP offset plus content * @mask: bitfield mask * @data: new data * * This function returns register bitfield data */ static u32 hw_ctest_and_write(u32 addr, u32 mask, u32 data) { u32 reg = hw_cread(addr, ~0); iowrite32((reg & ~mask) | (data & mask), addr + hw_bank.cap); return (reg & mask) >> ffs_nr(mask); } static int hw_device_init(void __iomem *base) { u32 reg; /* bank is a module variable */ hw_bank.abs = base; hw_bank.cap = hw_bank.abs; hw_bank.cap += ABS_CAPLENGTH; hw_bank.cap += ioread8(hw_bank.cap); reg = hw_aread(ABS_HCCPARAMS, HCCPARAMS_LEN) >> ffs_nr(HCCPARAMS_LEN); hw_bank.lpm = reg; hw_bank.size = hw_bank.cap - hw_bank.abs; hw_bank.size += CAP_LAST; hw_bank.size /= sizeof(u32); reg = hw_aread(ABS_DCCPARAMS, DCCPARAMS_DEN) >> ffs_nr(DCCPARAMS_DEN); hw_ep_max = reg * 2; /* cache hw ENDPT_MAX */ if (hw_ep_max == 0 || hw_ep_max > ENDPT_MAX) return -ENODEV; /* setup lock mode ? */ /* ENDPTSETUPSTAT is '0' by default */ /* HCSPARAMS.bf.ppc SHOULD BE zero for device */ return 0; } /** * hw_device_reset: resets chip (execute without interruption) * @base: register base address * * This function returns an error code */ static int hw_device_reset(struct ci13xxx *udc) { int delay_count = 25; /* 250 usec */ /* should flush & stop before reset */ hw_cwrite(CAP_ENDPTFLUSH, ~0, ~0); hw_cwrite(CAP_USBCMD, USBCMD_RS, 0); hw_cwrite(CAP_USBCMD, USBCMD_RST, USBCMD_RST); while (delay_count-- && hw_cread(CAP_USBCMD, USBCMD_RST)) udelay(10); if (delay_count < 0) pr_err("USB controller reset failed\n"); if (udc->udc_driver->notify_event) udc->udc_driver->notify_event(udc, CI13XXX_CONTROLLER_RESET_EVENT); /* USBMODE should be configured step by step */ hw_cwrite(CAP_USBMODE, USBMODE_CM, USBMODE_CM_IDLE); hw_cwrite(CAP_USBMODE, USBMODE_CM, USBMODE_CM_DEVICE); hw_cwrite(CAP_USBMODE, USBMODE_SLOM, USBMODE_SLOM); /* HW >= 2.3 */ /* * ITC (Interrupt Threshold Control) field is to set the maximum * rate at which the device controller will issue interrupts. * The maximum interrupt interval measured in micro frames. * Valid values are 0, 1, 2, 4, 8, 16, 32, 64. The default value is * 8 micro frames. If CPU can handle interrupts at faster rate, ITC * can be set to lesser value to gain performance. */ if (udc->udc_driver->nz_itc) hw_cwrite(CAP_USBCMD, USBCMD_ITC_MASK, USBCMD_ITC(udc->udc_driver->nz_itc)); else if (udc->udc_driver->flags & CI13XXX_ZERO_ITC) hw_cwrite(CAP_USBCMD, USBCMD_ITC_MASK, USBCMD_ITC(0)); if (hw_cread(CAP_USBMODE, USBMODE_CM) != USBMODE_CM_DEVICE) { pr_err("cannot enter in device mode"); pr_err("lpm = %i", hw_bank.lpm); return -ENODEV; } return 0; } /** * hw_device_state: enables/disables interrupts & starts/stops device (execute * without interruption) * @dma: 0 => disable, !0 => enable and set dma engine * * This function returns an error code */ static int hw_device_state(u32 dma) { struct ci13xxx *udc = _udc; if (dma) { if (!(udc->udc_driver->flags & CI13XXX_DISABLE_STREAMING)) { hw_cwrite(CAP_USBMODE, USBMODE_SDIS, 0); pr_debug("%s(): streaming mode is enabled. USBMODE:%x\n", __func__, hw_cread(CAP_USBMODE, ~0)); } else { hw_cwrite(CAP_USBMODE, USBMODE_SDIS, USBMODE_SDIS); pr_debug("%s(): streaming mode is disabled. USBMODE:%x\n", __func__, hw_cread(CAP_USBMODE, ~0)); } hw_cwrite(CAP_ENDPTLISTADDR, ~0, dma); /* Set BIT(31) to enable AHB2AHB Bypass functionality */ if (udc->udc_driver->flags & CI13XXX_ENABLE_AHB2AHB_BYPASS) { hw_awrite(ABS_AHBMODE, AHB2AHB_BYPASS, AHB2AHB_BYPASS); pr_debug("%s(): ByPass Mode is enabled. AHBMODE:%x\n", __func__, hw_aread(ABS_AHBMODE, ~0)); } /* interrupt, error, port change, reset, sleep/suspend */ hw_cwrite(CAP_USBINTR, ~0, USBi_UI|USBi_UEI|USBi_PCI|USBi_URI|USBi_SLI); hw_cwrite(CAP_USBCMD, USBCMD_RS, USBCMD_RS); } else { hw_cwrite(CAP_USBCMD, USBCMD_RS, 0); hw_cwrite(CAP_USBINTR, ~0, 0); /* Clear BIT(31) to disable AHB2AHB Bypass functionality */ if (udc->udc_driver->flags & CI13XXX_ENABLE_AHB2AHB_BYPASS) { hw_awrite(ABS_AHBMODE, AHB2AHB_BYPASS, 0); pr_debug("%s(): ByPass Mode is disabled. AHBMODE:%x\n", __func__, hw_aread(ABS_AHBMODE, ~0)); } } return 0; } static void debug_ept_flush_info(int ep_num, int dir) { struct ci13xxx *udc = _udc; struct ci13xxx_ep *mep; if (dir) mep = &udc->ci13xxx_ep[ep_num + hw_ep_max/2]; else mep = &udc->ci13xxx_ep[ep_num]; pr_err_ratelimited("USB Registers\n"); pr_err_ratelimited("USBCMD:%x\n", hw_cread(CAP_USBCMD, ~0)); pr_err_ratelimited("USBSTS:%x\n", hw_cread(CAP_USBSTS, ~0)); pr_err_ratelimited("ENDPTLISTADDR:%x\n", hw_cread(CAP_ENDPTLISTADDR, ~0)); pr_err_ratelimited("PORTSC:%x\n", hw_cread(CAP_PORTSC, ~0)); pr_err_ratelimited("USBMODE:%x\n", hw_cread(CAP_USBMODE, ~0)); pr_err_ratelimited("ENDPTSTAT:%x\n", hw_cread(CAP_ENDPTSTAT, ~0)); dbg_usb_op_fail(0xFF, "FLUSHF", mep); } /** * hw_ep_flush: flush endpoint fifo (execute without interruption) * @num: endpoint number * @dir: endpoint direction * * This function returns an error code */ static int hw_ep_flush(int num, int dir) { ktime_t start, diff; int n = hw_ep_bit(num, dir); struct ci13xxx_ep *mEp = &_udc->ci13xxx_ep[n]; /* Flush ep0 even when queue is empty */ if (_udc->skip_flush || (num && list_empty(&mEp->qh.queue))) return 0; start = ktime_get(); do { /* flush any pending transfer */ hw_cwrite(CAP_ENDPTFLUSH, BIT(n), BIT(n)); while (hw_cread(CAP_ENDPTFLUSH, BIT(n))) { cpu_relax(); diff = ktime_sub(ktime_get(), start); if (ktime_to_ms(diff) > USB_MAX_TIMEOUT) { printk_ratelimited(KERN_ERR "%s: Failed to flush ep#%d %s\n", __func__, num, dir ? "IN" : "OUT"); debug_ept_flush_info(num, dir); _udc->skip_flush = true; /* Notify to trigger h/w reset recovery later */ if (_udc->udc_driver->notify_event) _udc->udc_driver->notify_event(_udc, CI13XXX_CONTROLLER_ERROR_EVENT); return 0; } } } while (hw_cread(CAP_ENDPTSTAT, BIT(n))); return 0; } /** * hw_ep_disable: disables endpoint (execute without interruption) * @num: endpoint number * @dir: endpoint direction * * This function returns an error code */ static int hw_ep_disable(int num, int dir) { hw_cwrite(CAP_ENDPTCTRL + num * sizeof(u32), dir ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0); return 0; } /** * hw_ep_enable: enables endpoint (execute without interruption) * @num: endpoint number * @dir: endpoint direction * @type: endpoint type * * This function returns an error code */ static int hw_ep_enable(int num, int dir, int type) { u32 mask, data; if (dir) { mask = ENDPTCTRL_TXT; /* type */ data = type << ffs_nr(mask); mask |= ENDPTCTRL_TXS; /* unstall */ mask |= ENDPTCTRL_TXR; /* reset data toggle */ data |= ENDPTCTRL_TXR; mask |= ENDPTCTRL_TXE; /* enable */ data |= ENDPTCTRL_TXE; } else { mask = ENDPTCTRL_RXT; /* type */ data = type << ffs_nr(mask); mask |= ENDPTCTRL_RXS; /* unstall */ mask |= ENDPTCTRL_RXR; /* reset data toggle */ data |= ENDPTCTRL_RXR; mask |= ENDPTCTRL_RXE; /* enable */ data |= ENDPTCTRL_RXE; } hw_cwrite(CAP_ENDPTCTRL + num * sizeof(u32), mask, data); /* make sure endpoint is enabled before returning */ mb(); return 0; } /** * hw_ep_get_halt: return endpoint halt status * @num: endpoint number * @dir: endpoint direction * * This function returns 1 if endpoint halted */ static int hw_ep_get_halt(int num, int dir) { u32 mask = dir ? ENDPTCTRL_TXS : ENDPTCTRL_RXS; return hw_cread(CAP_ENDPTCTRL + num * sizeof(u32), mask) ? 1 : 0; } /** * hw_test_and_clear_setup_status: test & clear setup status (execute without * interruption) * @n: endpoint number * * This function returns setup status */ static int hw_test_and_clear_setup_status(int n) { n = ep_to_bit(n); return hw_ctest_and_clear(CAP_ENDPTSETUPSTAT, BIT(n)); } /** * hw_ep_prime: primes endpoint (execute without interruption) * @num: endpoint number * @dir: endpoint direction * @is_ctrl: true if control endpoint * * This function returns an error code */ static int hw_ep_prime(int num, int dir, int is_ctrl) { int n = hw_ep_bit(num, dir); if (is_ctrl && dir == RX && hw_cread(CAP_ENDPTSETUPSTAT, BIT(num))) return -EAGAIN; hw_cwrite(CAP_ENDPTPRIME, BIT(n), BIT(n)); if (is_ctrl && dir == RX && hw_cread(CAP_ENDPTSETUPSTAT, BIT(num))) return -EAGAIN; /* status shoult be tested according with manual but it doesn't work */ return 0; } /** * hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute * without interruption) * @num: endpoint number * @dir: endpoint direction * @value: true => stall, false => unstall * * This function returns an error code */ static int hw_ep_set_halt(int num, int dir, int value) { u32 addr, mask_xs, mask_xr; if (value != 0 && value != 1) return -EINVAL; do { if (hw_cread(CAP_ENDPTSETUPSTAT, BIT(num))) return 0; addr = CAP_ENDPTCTRL + num * sizeof(u32); mask_xs = dir ? ENDPTCTRL_TXS : ENDPTCTRL_RXS; mask_xr = dir ? ENDPTCTRL_TXR : ENDPTCTRL_RXR; /* data toggle - reserved for EP0 but it's in ESS */ hw_cwrite(addr, mask_xs|mask_xr, value ? mask_xs : mask_xr); } while (value != hw_ep_get_halt(num, dir)); return 0; } /** * hw_intr_clear: disables interrupt & clears interrupt status (execute without * interruption) * @n: interrupt bit * * This function returns an error code */ static int hw_intr_clear(int n) { if (n >= REG_BITS) return -EINVAL; hw_cwrite(CAP_USBINTR, BIT(n), 0); hw_cwrite(CAP_USBSTS, BIT(n), BIT(n)); return 0; } /** * hw_intr_force: enables interrupt & forces interrupt status (execute without * interruption) * @n: interrupt bit * * This function returns an error code */ static int hw_intr_force(int n) { if (n >= REG_BITS) return -EINVAL; hw_awrite(ABS_TESTMODE, TESTMODE_FORCE, TESTMODE_FORCE); hw_cwrite(CAP_USBINTR, BIT(n), BIT(n)); hw_cwrite(CAP_USBSTS, BIT(n), BIT(n)); hw_awrite(ABS_TESTMODE, TESTMODE_FORCE, 0); return 0; } /** * hw_is_port_high_speed: test if port is high speed * * This function returns true if high speed port */ static int hw_port_is_high_speed(void) { return hw_bank.lpm ? hw_cread(CAP_DEVLC, DEVLC_PSPD) : hw_cread(CAP_PORTSC, PORTSC_HSP); } /** * hw_port_test_get: reads port test mode value * * This function returns port test mode value */ static u8 hw_port_test_get(void) { return hw_cread(CAP_PORTSC, PORTSC_PTC) >> ffs_nr(PORTSC_PTC); } /** * hw_port_test_set: writes port test mode (execute without interruption) * @mode: new value * * This function returns an error code */ static int hw_port_test_set(u8 mode) { const u8 TEST_MODE_MAX = 7; if (mode > TEST_MODE_MAX) return -EINVAL; hw_cwrite(CAP_PORTSC, PORTSC_PTC, mode << ffs_nr(PORTSC_PTC)); return 0; } /** * hw_read_intr_enable: returns interrupt enable register * * This function returns register data */ static u32 hw_read_intr_enable(void) { return hw_cread(CAP_USBINTR, ~0); } /** * hw_read_intr_status: returns interrupt status register * * This function returns register data */ static u32 hw_read_intr_status(void) { return hw_cread(CAP_USBSTS, ~0); } /** * hw_register_read: reads all device registers (execute without interruption) * @buf: destination buffer * @size: buffer size * * This function returns number of registers read */ static size_t hw_register_read(u32 *buf, size_t size) { unsigned i; if (size > hw_bank.size) size = hw_bank.size; for (i = 0; i < size; i++) buf[i] = hw_aread(i * sizeof(u32), ~0); return size; } /** * hw_register_write: writes to register * @addr: register address * @data: register value * * This function returns an error code */ static int hw_register_write(u16 addr, u32 data) { /* align */ addr /= sizeof(u32); if (addr >= hw_bank.size) return -EINVAL; /* align */ addr *= sizeof(u32); hw_awrite(addr, ~0, data); return 0; } /** * hw_test_and_clear_complete: test & clear complete status (execute without * interruption) * @n: endpoint number * * This function returns complete status */ static int hw_test_and_clear_complete(int n) { n = ep_to_bit(n); return hw_ctest_and_clear(CAP_ENDPTCOMPLETE, BIT(n)); } /** * hw_test_and_clear_intr_active: test & clear active interrupts (execute * without interruption) * * This function returns active interrutps */ static u32 hw_test_and_clear_intr_active(void) { u32 reg = hw_read_intr_status() & hw_read_intr_enable(); hw_cwrite(CAP_USBSTS, ~0, reg); return reg; } /** * hw_test_and_clear_setup_guard: test & clear setup guard (execute without * interruption) * * This function returns guard value */ static int hw_test_and_clear_setup_guard(void) { return hw_ctest_and_write(CAP_USBCMD, USBCMD_SUTW, 0); } /** * hw_test_and_set_setup_guard: test & set setup guard (execute without * interruption) * * This function returns guard value */ static int hw_test_and_set_setup_guard(void) { return hw_ctest_and_write(CAP_USBCMD, USBCMD_SUTW, USBCMD_SUTW); } /** * hw_usb_set_address: configures USB address (execute without interruption) * @value: new USB address * * This function returns an error code */ static int hw_usb_set_address(u8 value) { /* advance */ hw_cwrite(CAP_DEVICEADDR, DEVICEADDR_USBADR | DEVICEADDR_USBADRA, value << ffs_nr(DEVICEADDR_USBADR) | DEVICEADDR_USBADRA); return 0; } /** * hw_usb_reset: restart device after a bus reset (execute without * interruption) * * This function returns an error code */ static int hw_usb_reset(void) { int delay_count = 10; /* 100 usec delay */ hw_usb_set_address(0); /* ESS flushes only at end?!? */ hw_cwrite(CAP_ENDPTFLUSH, ~0, ~0); /* flush all EPs */ /* clear complete status */ hw_cwrite(CAP_ENDPTCOMPLETE, 0, 0); /* writes its content */ /* wait until all bits cleared */ while (delay_count-- && hw_cread(CAP_ENDPTPRIME, ~0)) udelay(10); if (delay_count < 0) pr_err("ENDPTPRIME is not cleared during bus reset\n"); /* reset all endpoints ? */ /* reset internal status and wait for further instructions no need to verify the port reset status (ESS does it) */ return 0; } /****************************************************************************** * DBG block *****************************************************************************/ /** * show_device: prints information about device capabilities and status * * Check "device.h" for details */ static ssize_t show_device(struct device *dev, struct device_attribute *attr, char *buf) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); struct usb_gadget *gadget = &udc->gadget; int n = 0; dbg_trace("[%s] %p\n", __func__, buf); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); return 0; } n += scnprintf(buf + n, PAGE_SIZE - n, "speed = %d\n", gadget->speed); n += scnprintf(buf + n, PAGE_SIZE - n, "max_speed = %d\n", gadget->max_speed); /* TODO: Scheduled for removal in 3.8. */ n += scnprintf(buf + n, PAGE_SIZE - n, "is_dualspeed = %d\n", gadget_is_dualspeed(gadget)); n += scnprintf(buf + n, PAGE_SIZE - n, "is_otg = %d\n", gadget->is_otg); n += scnprintf(buf + n, PAGE_SIZE - n, "is_a_peripheral = %d\n", gadget->is_a_peripheral); n += scnprintf(buf + n, PAGE_SIZE - n, "b_hnp_enable = %d\n", gadget->b_hnp_enable); n += scnprintf(buf + n, PAGE_SIZE - n, "a_hnp_support = %d\n", gadget->a_hnp_support); n += scnprintf(buf + n, PAGE_SIZE - n, "a_alt_hnp_support = %d\n", gadget->a_alt_hnp_support); n += scnprintf(buf + n, PAGE_SIZE - n, "name = %s\n", (gadget->name ? gadget->name : "")); return n; } static DEVICE_ATTR(device, S_IRUSR, show_device, NULL); /** * show_driver: prints information about attached gadget (if any) * * Check "device.h" for details */ static ssize_t show_driver(struct device *dev, struct device_attribute *attr, char *buf) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); struct usb_gadget_driver *driver = udc->driver; int n = 0; dbg_trace("[%s] %p\n", __func__, buf); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); return 0; } if (driver == NULL) return scnprintf(buf, PAGE_SIZE, "There is no gadget attached!\n"); n += scnprintf(buf + n, PAGE_SIZE - n, "function = %s\n", (driver->function ? driver->function : "")); n += scnprintf(buf + n, PAGE_SIZE - n, "max speed = %d\n", driver->max_speed); return n; } static DEVICE_ATTR(driver, S_IRUSR, show_driver, NULL); /* Maximum event message length */ #define DBG_DATA_MSG 64UL /* Maximum event messages */ #define DBG_DATA_MAX 128UL /* Event buffer descriptor */ static struct { char (buf[DBG_DATA_MAX])[DBG_DATA_MSG]; /* buffer */ unsigned idx; /* index */ unsigned tty; /* print to console? */ rwlock_t lck; /* lock */ } dbg_data = { .idx = 0, .tty = 0, .lck = __RW_LOCK_UNLOCKED(lck) }; /** * dbg_dec: decrements debug event index * @idx: buffer index */ static void dbg_dec(unsigned *idx) { *idx = (*idx - 1) & (DBG_DATA_MAX-1); } /** * dbg_inc: increments debug event index * @idx: buffer index */ static void dbg_inc(unsigned *idx) { *idx = (*idx + 1) & (DBG_DATA_MAX-1); } static unsigned int ep_addr_txdbg_mask; module_param(ep_addr_txdbg_mask, uint, S_IRUGO | S_IWUSR); static unsigned int ep_addr_rxdbg_mask; module_param(ep_addr_rxdbg_mask, uint, S_IRUGO | S_IWUSR); static int allow_dbg_print(u8 addr) { int dir, num; /* allow bus wide events */ if (addr == 0xff) return 1; dir = addr & USB_ENDPOINT_DIR_MASK ? TX : RX; num = addr & ~USB_ENDPOINT_DIR_MASK; num = 1 << num; if ((dir == TX) && (num & ep_addr_txdbg_mask)) return 1; if ((dir == RX) && (num & ep_addr_rxdbg_mask)) return 1; return 0; } #define TIME_BUF_LEN 20 /*get_timestamp - returns time of day in us */ static char *get_timestamp(char *tbuf) { unsigned long long t; unsigned long nanosec_rem; t = cpu_clock(smp_processor_id()); nanosec_rem = do_div(t, 1000000000)/1000; scnprintf(tbuf, TIME_BUF_LEN, "[%5lu.%06lu] ", (unsigned long)t, nanosec_rem); return tbuf; } /** * dbg_print: prints the common part of the event * @addr: endpoint address * @name: event name * @status: status * @extra: extra information */ static void dbg_print(u8 addr, const char *name, int status, const char *extra) { unsigned long flags; char tbuf[TIME_BUF_LEN]; if (!allow_dbg_print(addr)) return; write_lock_irqsave(&dbg_data.lck, flags); scnprintf(dbg_data.buf[dbg_data.idx], DBG_DATA_MSG, "%s\t? %02X %-7.7s %4i ?\t%s\n", get_timestamp(tbuf), addr, name, status, extra); dbg_inc(&dbg_data.idx); write_unlock_irqrestore(&dbg_data.lck, flags); if (dbg_data.tty != 0) pr_notice("%s\t? %02X %-7.7s %4i ?\t%s\n", get_timestamp(tbuf), addr, name, status, extra); } /** * dbg_done: prints a DONE event * @addr: endpoint address * @td: transfer descriptor * @status: status */ static void dbg_done(u8 addr, const u32 token, int status) { char msg[DBG_DATA_MSG]; scnprintf(msg, sizeof(msg), "%d %02X", (int)(token & TD_TOTAL_BYTES) >> ffs_nr(TD_TOTAL_BYTES), (int)(token & TD_STATUS) >> ffs_nr(TD_STATUS)); dbg_print(addr, "DONE", status, msg); } /** * dbg_event: prints a generic event * @addr: endpoint address * @name: event name * @status: status */ static void dbg_event(u8 addr, const char *name, int status) { if (name != NULL) dbg_print(addr, name, status, ""); } /* * dbg_queue: prints a QUEUE event * @addr: endpoint address * @req: USB request * @status: status */ static void dbg_queue(u8 addr, const struct usb_request *req, int status) { char msg[DBG_DATA_MSG]; if (req != NULL) { scnprintf(msg, sizeof(msg), "%d %d", !req->no_interrupt, req->length); dbg_print(addr, "QUEUE", status, msg); } } /** * dbg_setup: prints a SETUP event * @addr: endpoint address * @req: setup request */ static void dbg_setup(u8 addr, const struct usb_ctrlrequest *req) { char msg[DBG_DATA_MSG]; if (req != NULL) { scnprintf(msg, sizeof(msg), "%02X %02X %04X %04X %d", req->bRequestType, req->bRequest, le16_to_cpu(req->wValue), le16_to_cpu(req->wIndex), le16_to_cpu(req->wLength)); dbg_print(addr, "SETUP", 0, msg); } } /** * dbg_usb_op_fail: prints USB Operation FAIL event * @addr: endpoint address * @mEp: endpoint structure */ static void dbg_usb_op_fail(u8 addr, const char *name, const struct ci13xxx_ep *mep) { char msg[DBG_DATA_MSG]; struct ci13xxx_req *req; struct list_head *ptr = NULL; if (mep != NULL) { scnprintf(msg, sizeof(msg), "%s Fail EP%d%s QH:%08X", name, mep->num, mep->dir ? "IN" : "OUT", mep->qh.ptr->cap); dbg_print(addr, name, 0, msg); scnprintf(msg, sizeof(msg), "cap:%08X %08X %08X\n", mep->qh.ptr->curr, mep->qh.ptr->td.next, mep->qh.ptr->td.token); dbg_print(addr, "QHEAD", 0, msg); list_for_each(ptr, &mep->qh.queue) { req = list_entry(ptr, struct ci13xxx_req, queue); scnprintf(msg, sizeof(msg), "%pa:%08X:%08X\n", &req->dma, req->ptr->next, req->ptr->token); dbg_print(addr, "REQ", 0, msg); scnprintf(msg, sizeof(msg), "%08X:%d\n", req->ptr->page[0], req->req.status); dbg_print(addr, "REQPAGE", 0, msg); } } } /** * show_events: displays the event buffer * * Check "device.h" for details */ static ssize_t show_events(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long flags; unsigned i, j, n = 0; dbg_trace("[%s] %p\n", __func__, buf); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); return 0; } read_lock_irqsave(&dbg_data.lck, flags); i = dbg_data.idx; for (dbg_dec(&i); i != dbg_data.idx; dbg_dec(&i)) { n += strlen(dbg_data.buf[i]); if (n >= PAGE_SIZE) { n -= strlen(dbg_data.buf[i]); break; } } for (j = 0, dbg_inc(&i); j < n; dbg_inc(&i)) j += scnprintf(buf + j, PAGE_SIZE - j, "%s", dbg_data.buf[i]); read_unlock_irqrestore(&dbg_data.lck, flags); return n; } /** * store_events: configure if events are going to be also printed to console * * Check "device.h" for details */ static ssize_t store_events(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned tty; dbg_trace("[%s] %p, %d\n", __func__, buf, count); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); goto done; } if (sscanf(buf, "%u", &tty) != 1 || tty > 1) { dev_err(dev, "<1|0>: enable|disable console log\n"); goto done; } dbg_data.tty = tty; dev_info(dev, "tty = %u", dbg_data.tty); done: return count; } static DEVICE_ATTR(events, S_IRUSR | S_IWUSR, show_events, store_events); /** * show_inters: interrupt status, enable status and historic * * Check "device.h" for details */ static ssize_t show_inters(struct device *dev, struct device_attribute *attr, char *buf) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); unsigned long flags; u32 intr; unsigned i, j, n = 0; dbg_trace("[%s] %p\n", __func__, buf); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); return 0; } spin_lock_irqsave(udc->lock, flags); n += scnprintf(buf + n, PAGE_SIZE - n, "status = %08x\n", hw_read_intr_status()); n += scnprintf(buf + n, PAGE_SIZE - n, "enable = %08x\n", hw_read_intr_enable()); n += scnprintf(buf + n, PAGE_SIZE - n, "*test = %d\n", isr_statistics.test); n += scnprintf(buf + n, PAGE_SIZE - n, "? ui = %d\n", isr_statistics.ui); n += scnprintf(buf + n, PAGE_SIZE - n, "? uei = %d\n", isr_statistics.uei); n += scnprintf(buf + n, PAGE_SIZE - n, "? pci = %d\n", isr_statistics.pci); n += scnprintf(buf + n, PAGE_SIZE - n, "? uri = %d\n", isr_statistics.uri); n += scnprintf(buf + n, PAGE_SIZE - n, "? sli = %d\n", isr_statistics.sli); n += scnprintf(buf + n, PAGE_SIZE - n, "*none = %d\n", isr_statistics.none); n += scnprintf(buf + n, PAGE_SIZE - n, "*hndl = %d\n", isr_statistics.hndl.cnt); for (i = isr_statistics.hndl.idx, j = 0; j <= ISR_MASK; j++, i++) { i &= ISR_MASK; intr = isr_statistics.hndl.buf[i]; if (USBi_UI & intr) n += scnprintf(buf + n, PAGE_SIZE - n, "ui "); intr &= ~USBi_UI; if (USBi_UEI & intr) n += scnprintf(buf + n, PAGE_SIZE - n, "uei "); intr &= ~USBi_UEI; if (USBi_PCI & intr) n += scnprintf(buf + n, PAGE_SIZE - n, "pci "); intr &= ~USBi_PCI; if (USBi_URI & intr) n += scnprintf(buf + n, PAGE_SIZE - n, "uri "); intr &= ~USBi_URI; if (USBi_SLI & intr) n += scnprintf(buf + n, PAGE_SIZE - n, "sli "); intr &= ~USBi_SLI; if (intr) n += scnprintf(buf + n, PAGE_SIZE - n, "??? "); if (isr_statistics.hndl.buf[i]) n += scnprintf(buf + n, PAGE_SIZE - n, "\n"); } spin_unlock_irqrestore(udc->lock, flags); return n; } /** * store_inters: enable & force or disable an individual interrutps * (to be used for test purposes only) * * Check "device.h" for details */ static ssize_t store_inters(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); unsigned long flags; unsigned en, bit; dbg_trace("[%s] %p, %d\n", __func__, buf, count); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); goto done; } if (sscanf(buf, "%u %u", &en, &bit) != 2 || en > 1) { dev_err(dev, "<1|0> : enable|disable interrupt"); goto done; } spin_lock_irqsave(udc->lock, flags); if (en) { if (hw_intr_force(bit)) dev_err(dev, "invalid bit number\n"); else isr_statistics.test++; } else { if (hw_intr_clear(bit)) dev_err(dev, "invalid bit number\n"); } spin_unlock_irqrestore(udc->lock, flags); done: return count; } static DEVICE_ATTR(inters, S_IRUSR | S_IWUSR, show_inters, store_inters); /** * show_port_test: reads port test mode * * Check "device.h" for details */ static ssize_t show_port_test(struct device *dev, struct device_attribute *attr, char *buf) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); unsigned long flags; unsigned mode; dbg_trace("[%s] %p\n", __func__, buf); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); return 0; } spin_lock_irqsave(udc->lock, flags); mode = hw_port_test_get(); spin_unlock_irqrestore(udc->lock, flags); return scnprintf(buf, PAGE_SIZE, "mode = %u\n", mode); } /** * store_port_test: writes port test mode * * Check "device.h" for details */ static ssize_t store_port_test(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); unsigned long flags; unsigned mode; dbg_trace("[%s] %p, %d\n", __func__, buf, count); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); goto done; } if (sscanf(buf, "%u", &mode) != 1) { dev_err(dev, ": set port test mode"); goto done; } spin_lock_irqsave(udc->lock, flags); if (hw_port_test_set(mode)) dev_err(dev, "invalid mode\n"); spin_unlock_irqrestore(udc->lock, flags); done: return count; } static DEVICE_ATTR(port_test, S_IRUSR | S_IWUSR, show_port_test, store_port_test); /** * show_qheads: DMA contents of all queue heads * * Check "device.h" for details */ static ssize_t show_qheads(struct device *dev, struct device_attribute *attr, char *buf) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); unsigned long flags; unsigned i, j, n = 0; dbg_trace("[%s] %p\n", __func__, buf); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); return 0; } spin_lock_irqsave(udc->lock, flags); for (i = 0; i < hw_ep_max/2; i++) { struct ci13xxx_ep *mEpRx = &udc->ci13xxx_ep[i]; struct ci13xxx_ep *mEpTx = &udc->ci13xxx_ep[i + hw_ep_max/2]; n += scnprintf(buf + n, PAGE_SIZE - n, "EP=%02i: RX=%08X TX=%08X\n", i, (u32)mEpRx->qh.dma, (u32)mEpTx->qh.dma); for (j = 0; j < (sizeof(struct ci13xxx_qh)/sizeof(u32)); j++) { n += scnprintf(buf + n, PAGE_SIZE - n, " %04X: %08X %08X\n", j, *((u32 *)mEpRx->qh.ptr + j), *((u32 *)mEpTx->qh.ptr + j)); } } spin_unlock_irqrestore(udc->lock, flags); return n; } static DEVICE_ATTR(qheads, S_IRUSR, show_qheads, NULL); /** * show_registers: dumps all registers * * Check "device.h" for details */ #define DUMP_ENTRIES 512 static ssize_t show_registers(struct device *dev, struct device_attribute *attr, char *buf) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); unsigned long flags; u32 *dump; unsigned i, k, n = 0; dbg_trace("[%s] %p\n", __func__, buf); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); return 0; } dump = kmalloc(sizeof(u32) * DUMP_ENTRIES, GFP_KERNEL); if (!dump) { dev_err(dev, "%s: out of memory\n", __func__); return 0; } spin_lock_irqsave(udc->lock, flags); k = hw_register_read(dump, DUMP_ENTRIES); spin_unlock_irqrestore(udc->lock, flags); for (i = 0; i < k; i++) { n += scnprintf(buf + n, PAGE_SIZE - n, "reg[0x%04X] = 0x%08X\n", i * (unsigned)sizeof(u32), dump[i]); } kfree(dump); return n; } /** * store_registers: writes value to register address * * Check "device.h" for details */ static ssize_t store_registers(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); unsigned long addr, data, flags; dbg_trace("[%s] %p, %d\n", __func__, buf, count); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); goto done; } if (sscanf(buf, "%li %li", &addr, &data) != 2) { dev_err(dev, " : write data to register address"); goto done; } spin_lock_irqsave(udc->lock, flags); if (hw_register_write(addr, data)) dev_err(dev, "invalid address range\n"); spin_unlock_irqrestore(udc->lock, flags); done: return count; } static DEVICE_ATTR(registers, S_IRUSR | S_IWUSR, show_registers, store_registers); /** * show_requests: DMA contents of all requests currently queued (all endpts) * * Check "device.h" for details */ static ssize_t show_requests(struct device *dev, struct device_attribute *attr, char *buf) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); unsigned long flags; struct list_head *ptr = NULL; struct ci13xxx_req *req = NULL; unsigned i, j, n = 0, qSize = sizeof(struct ci13xxx_td)/sizeof(u32); dbg_trace("[%s] %p\n", __func__, buf); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); return 0; } spin_lock_irqsave(udc->lock, flags); for (i = 0; i < hw_ep_max; i++) list_for_each(ptr, &udc->ci13xxx_ep[i].qh.queue) { req = list_entry(ptr, struct ci13xxx_req, queue); n += scnprintf(buf + n, PAGE_SIZE - n, "EP=%02i: TD=%08X %s\n", i % hw_ep_max/2, (u32)req->dma, ((i < hw_ep_max/2) ? "RX" : "TX")); for (j = 0; j < qSize; j++) n += scnprintf(buf + n, PAGE_SIZE - n, " %04X: %08X\n", j, *((u32 *)req->ptr + j)); } spin_unlock_irqrestore(udc->lock, flags); return n; } static DEVICE_ATTR(requests, S_IRUSR, show_requests, NULL); /* EP# and Direction */ static ssize_t prime_ept(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); struct ci13xxx_ep *mEp; unsigned int ep_num, dir; int n; struct ci13xxx_req *mReq = NULL; if (sscanf(buf, "%u %u", &ep_num, &dir) != 2) { dev_err(dev, " : prime the ep"); goto done; } if (dir) mEp = &udc->ci13xxx_ep[ep_num + hw_ep_max/2]; else mEp = &udc->ci13xxx_ep[ep_num]; n = hw_ep_bit(mEp->num, mEp->dir); mReq = list_entry(mEp->qh.queue.next, struct ci13xxx_req, queue); mEp->qh.ptr->td.next = mReq->dma; mEp->qh.ptr->td.token &= ~TD_STATUS; wmb(); hw_cwrite(CAP_ENDPTPRIME, BIT(n), BIT(n)); while (hw_cread(CAP_ENDPTPRIME, BIT(n))) cpu_relax(); pr_info("%s: prime:%08x stat:%08x ep#%d dir:%s\n", __func__, hw_cread(CAP_ENDPTPRIME, ~0), hw_cread(CAP_ENDPTSTAT, ~0), mEp->num, mEp->dir ? "IN" : "OUT"); done: return count; } static DEVICE_ATTR(prime, S_IWUSR, NULL, prime_ept); /* EP# and Direction */ static ssize_t print_dtds(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); struct ci13xxx_ep *mEp; unsigned int ep_num, dir; int n; struct list_head *ptr = NULL; struct ci13xxx_req *req = NULL; if (sscanf(buf, "%u %u", &ep_num, &dir) != 2) { dev_err(dev, " : to print dtds"); goto done; } if (dir) mEp = &udc->ci13xxx_ep[ep_num + hw_ep_max/2]; else mEp = &udc->ci13xxx_ep[ep_num]; n = hw_ep_bit(mEp->num, mEp->dir); pr_info("%s: prime:%08x stat:%08x ep#%d dir:%s dTD_update_fail_count: %lu mEp->dTD_update_fail_count: %lu mEp->dTD_active_re_q_count: %lu mEp->prime_fail_count: %lu\n", __func__, hw_cread(CAP_ENDPTPRIME, ~0), hw_cread(CAP_ENDPTSTAT, ~0), mEp->num, mEp->dir ? "IN" : "OUT", udc->dTD_update_fail_count, mEp->dTD_update_fail_count, mEp->dTD_active_re_q_count, mEp->prime_fail_count); pr_info("QH: cap:%08x cur:%08x next:%08x token:%08x\n", mEp->qh.ptr->cap, mEp->qh.ptr->curr, mEp->qh.ptr->td.next, mEp->qh.ptr->td.token); list_for_each(ptr, &mEp->qh.queue) { req = list_entry(ptr, struct ci13xxx_req, queue); pr_info("\treq:%pa next:%08x token:%08x page0:%08x status:%d\n", &req->dma, req->ptr->next, req->ptr->token, req->ptr->page[0], req->req.status); } done: return count; } static DEVICE_ATTR(dtds, S_IWUSR, NULL, print_dtds); static int ci13xxx_wakeup(struct usb_gadget *_gadget) { struct ci13xxx *udc = container_of(_gadget, struct ci13xxx, gadget); unsigned long flags; int ret = 0; trace(); spin_lock_irqsave(udc->lock, flags); if (!udc->gadget.remote_wakeup) { ret = -EOPNOTSUPP; dbg_trace("remote wakeup feature is not enabled\n"); goto out; } spin_unlock_irqrestore(udc->lock, flags); pm_runtime_get_sync(&_gadget->dev); udc->udc_driver->notify_event(udc, CI13XXX_CONTROLLER_REMOTE_WAKEUP_EVENT); if (udc->transceiver) usb_phy_set_suspend(udc->transceiver, 0); spin_lock_irqsave(udc->lock, flags); if (!hw_cread(CAP_PORTSC, PORTSC_SUSP)) { ret = -EINVAL; dbg_trace("port is not suspended\n"); pm_runtime_put(&_gadget->dev); goto out; } hw_cwrite(CAP_PORTSC, PORTSC_FPR, PORTSC_FPR); pm_runtime_mark_last_busy(&_gadget->dev); pm_runtime_put_autosuspend(&_gadget->dev); out: spin_unlock_irqrestore(udc->lock, flags); return ret; } static void usb_do_remote_wakeup(struct work_struct *w) { struct ci13xxx *udc = _udc; unsigned long flags; bool do_wake; /* * This work can not be canceled from interrupt handler. Check * if wakeup conditions are still met. */ spin_lock_irqsave(udc->lock, flags); do_wake = udc->suspended && udc->gadget.remote_wakeup; spin_unlock_irqrestore(udc->lock, flags); if (do_wake) ci13xxx_wakeup(&udc->gadget); } static ssize_t usb_remote_wakeup(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); ci13xxx_wakeup(&udc->gadget); return count; } static DEVICE_ATTR(wakeup, S_IWUSR, 0, usb_remote_wakeup); /** * dbg_create_files: initializes the attribute interface * @dev: device * * This function returns an error code */ __maybe_unused static int dbg_create_files(struct device *dev) { int retval = 0; if (dev == NULL) return -EINVAL; retval = device_create_file(dev, &dev_attr_device); if (retval) goto done; retval = device_create_file(dev, &dev_attr_driver); if (retval) goto rm_device; retval = device_create_file(dev, &dev_attr_events); if (retval) goto rm_driver; retval = device_create_file(dev, &dev_attr_inters); if (retval) goto rm_events; retval = device_create_file(dev, &dev_attr_port_test); if (retval) goto rm_inters; retval = device_create_file(dev, &dev_attr_qheads); if (retval) goto rm_port_test; retval = device_create_file(dev, &dev_attr_registers); if (retval) goto rm_qheads; retval = device_create_file(dev, &dev_attr_requests); if (retval) goto rm_registers; retval = device_create_file(dev, &dev_attr_wakeup); if (retval) goto rm_remote_wakeup; retval = device_create_file(dev, &dev_attr_prime); if (retval) goto rm_prime; retval = device_create_file(dev, &dev_attr_dtds); if (retval) goto rm_dtds; return 0; rm_dtds: device_remove_file(dev, &dev_attr_dtds); rm_prime: device_remove_file(dev, &dev_attr_prime); rm_remote_wakeup: device_remove_file(dev, &dev_attr_wakeup); rm_registers: device_remove_file(dev, &dev_attr_registers); rm_qheads: device_remove_file(dev, &dev_attr_qheads); rm_port_test: device_remove_file(dev, &dev_attr_port_test); rm_inters: device_remove_file(dev, &dev_attr_inters); rm_events: device_remove_file(dev, &dev_attr_events); rm_driver: device_remove_file(dev, &dev_attr_driver); rm_device: device_remove_file(dev, &dev_attr_device); done: return retval; } /** * dbg_remove_files: destroys the attribute interface * @dev: device * * This function returns an error code */ __maybe_unused static int dbg_remove_files(struct device *dev) { if (dev == NULL) return -EINVAL; device_remove_file(dev, &dev_attr_requests); device_remove_file(dev, &dev_attr_registers); device_remove_file(dev, &dev_attr_qheads); device_remove_file(dev, &dev_attr_port_test); device_remove_file(dev, &dev_attr_inters); device_remove_file(dev, &dev_attr_events); device_remove_file(dev, &dev_attr_driver); device_remove_file(dev, &dev_attr_device); device_remove_file(dev, &dev_attr_wakeup); return 0; } /****************************************************************************** * UTIL block *****************************************************************************/ /** * _usb_addr: calculates endpoint address from direction & number * @ep: endpoint */ static inline u8 _usb_addr(struct ci13xxx_ep *ep) { return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num; } static void ep_prime_timer_func(unsigned long data) { struct ci13xxx_ep *mep = (struct ci13xxx_ep *)data; struct ci13xxx_req *req; struct list_head *ptr = NULL; int n = hw_ep_bit(mep->num, mep->dir); unsigned long flags; spin_lock_irqsave(mep->lock, flags); if (_udc && (!_udc->vbus_active || _udc->suspended)) { pr_debug("ep%d%s prime timer when vbus_active=%d,suspend=%d\n", mep->num, mep->dir ? "IN" : "OUT", _udc->vbus_active, _udc->suspended); goto out; } if (!hw_cread(CAP_ENDPTPRIME, BIT(n))) goto out; if (list_empty(&mep->qh.queue)) goto out; req = list_entry(mep->qh.queue.next, struct ci13xxx_req, queue); mb(); if (!(TD_STATUS_ACTIVE & req->ptr->token)) goto out; mep->prime_timer_count++; if (mep->prime_timer_count == MAX_PRIME_CHECK_RETRY) { mep->prime_timer_count = 0; pr_info("ep%d dir:%s QH:cap:%08x cur:%08x next:%08x tkn:%08x\n", mep->num, mep->dir ? "IN" : "OUT", mep->qh.ptr->cap, mep->qh.ptr->curr, mep->qh.ptr->td.next, mep->qh.ptr->td.token); list_for_each(ptr, &mep->qh.queue) { req = list_entry(ptr, struct ci13xxx_req, queue); pr_info("\treq:%pa:%08xtkn:%08xpage0:%08xsts:%d\n", &req->dma, req->ptr->next, req->ptr->token, req->ptr->page[0], req->req.status); } dbg_usb_op_fail(0xFF, "PRIMEF", mep); mep->prime_fail_count++; } else { mod_timer(&mep->prime_timer, EP_PRIME_CHECK_DELAY); } spin_unlock_irqrestore(mep->lock, flags); return; out: mep->prime_timer_count = 0; spin_unlock_irqrestore(mep->lock, flags); } /** * _hardware_queue: configures a request at hardware level * @gadget: gadget * @mEp: endpoint * * This function returns an error code */ static int _hardware_enqueue(struct ci13xxx_ep *mEp, struct ci13xxx_req *mReq) { unsigned i; int ret = 0; unsigned length = mReq->req.length; struct ci13xxx *udc = _udc; trace("%p, %p", mEp, mReq); /* don't queue twice */ if (mReq->req.status == -EALREADY) return -EALREADY; mReq->req.status = -EALREADY; if (length && mReq->req.dma == DMA_ERROR_CODE) { mReq->req.dma = \ dma_map_single(mEp->device, mReq->req.buf, length, mEp->dir ? DMA_TO_DEVICE : DMA_FROM_DEVICE); if (mReq->req.dma == 0) return -ENOMEM; mReq->map = 1; } if (mReq->req.zero && length && (length % mEp->ep.maxpacket == 0)) { mReq->zptr = dma_pool_alloc(mEp->td_pool, GFP_ATOMIC, &mReq->zdma); if (mReq->zptr == NULL) { if (mReq->map) { dma_unmap_single(mEp->device, mReq->req.dma, length, mEp->dir ? DMA_TO_DEVICE : DMA_FROM_DEVICE); mReq->req.dma = DMA_ERROR_CODE; mReq->map = 0; } return -ENOMEM; } memset(mReq->zptr, 0, sizeof(*mReq->zptr)); mReq->zptr->next = TD_TERMINATE; mReq->zptr->token = TD_STATUS_ACTIVE; if (!mReq->req.no_interrupt) mReq->zptr->token |= TD_IOC; } /* * TD configuration * TODO - handle requests which spawns into several TDs */ memset(mReq->ptr, 0, sizeof(*mReq->ptr)); mReq->ptr->token = length << ffs_nr(TD_TOTAL_BYTES); mReq->ptr->token &= TD_TOTAL_BYTES; mReq->ptr->token |= TD_STATUS_ACTIVE; if (mReq->zptr) { mReq->ptr->next = mReq->zdma; } else { mReq->ptr->next = TD_TERMINATE; if (!mReq->req.no_interrupt) mReq->ptr->token |= TD_IOC; } /* MSM Specific: updating the request as required for * SPS mode. Enable MSM DMA engine according * to the UDC private data in the request. */ if (CI13XX_REQ_VENDOR_ID(mReq->req.udc_priv) == MSM_VENDOR_ID) { if (mReq->req.udc_priv & MSM_SPS_MODE) { mReq->ptr->token = TD_STATUS_ACTIVE; if (mReq->req.udc_priv & MSM_IS_FINITE_TRANSFER) mReq->ptr->next = TD_TERMINATE; else mReq->ptr->next = MSM_ETD_TYPE | mReq->dma; if (!mReq->req.no_interrupt) mReq->ptr->token |= MSM_ETD_IOC; } mReq->req.dma = 0; } mReq->ptr->page[0] = mReq->req.dma; for (i = 1; i < 5; i++) mReq->ptr->page[i] = (mReq->req.dma + i * CI13XXX_PAGE_SIZE) & ~TD_RESERVED_MASK; wmb(); /* Remote Wakeup */ if (udc->suspended) { if (!udc->gadget.remote_wakeup) { mReq->req.status = -EAGAIN; dev_dbg(mEp->device, "%s: queue failed (suspend).", __func__); dev_dbg(mEp->device, "%s: Remote wakeup is not supported. ept #%d\n", __func__, mEp->num); return -EAGAIN; } usb_phy_set_suspend(udc->transceiver, 0); schedule_delayed_work(&udc->rw_work, REMOTE_WAKEUP_DELAY); } if (!list_empty(&mEp->qh.queue)) { struct ci13xxx_req *mReqPrev; int n = hw_ep_bit(mEp->num, mEp->dir); int tmp_stat; ktime_t start, diff; mReqPrev = list_entry(mEp->qh.queue.prev, struct ci13xxx_req, queue); if (mReqPrev->zptr) mReqPrev->zptr->next = mReq->dma & TD_ADDR_MASK; else mReqPrev->ptr->next = mReq->dma & TD_ADDR_MASK; wmb(); if (hw_cread(CAP_ENDPTPRIME, BIT(n))) goto done; start = ktime_get(); do { hw_cwrite(CAP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW); tmp_stat = hw_cread(CAP_ENDPTSTAT, BIT(n)); diff = ktime_sub(ktime_get(), start); /* poll for max. 100ms */ if (ktime_to_ms(diff) > USB_MAX_TIMEOUT) { if (hw_cread(CAP_USBCMD, USBCMD_ATDTW)) break; printk_ratelimited(KERN_ERR "%s:queue failed ep#%d %s\n", __func__, mEp->num, mEp->dir ? "IN" : "OUT"); return -EAGAIN; } } while (!hw_cread(CAP_USBCMD, USBCMD_ATDTW)); hw_cwrite(CAP_USBCMD, USBCMD_ATDTW, 0); if (tmp_stat) goto done; } /* Hardware may leave few TDs unprocessed, check and reprime with 1st */ if (!list_empty(&mEp->qh.queue)) { struct ci13xxx_req *mReq_active, *mReq_next; u32 i = 0; /* Nothing to be done if hardware already finished this TD */ if ((TD_STATUS_ACTIVE & mReq->ptr->token) == 0) goto done; /* Iterate forward to find first TD with ACTIVE bit set */ mReq_active = mReq; list_for_each_entry(mReq_next, &mEp->qh.queue, queue) { i++; mEp->dTD_active_re_q_count++; if (TD_STATUS_ACTIVE & mReq_next->ptr->token) { mReq_active = mReq_next; dbg_event(_usb_addr(mEp), "ReQUE", mReq_next->ptr->token); pr_debug("!!ReQ(%u-%u-%x)-%u!!\n", mEp->num, mEp->dir, mReq_next->ptr->token, i); break; } } /* QH configuration */ mEp->qh.ptr->td.next = mReq_active->dma; mEp->qh.ptr->td.token &= ~TD_STATUS; goto prime; } /* QH configuration */ mEp->qh.ptr->td.next = mReq->dma; /* TERMINATE = 0 */ if (CI13XX_REQ_VENDOR_ID(mReq->req.udc_priv) == MSM_VENDOR_ID) { if (mReq->req.udc_priv & MSM_SPS_MODE) { mEp->qh.ptr->td.next |= MSM_ETD_TYPE; i = hw_cread(CAP_ENDPTPIPEID + mEp->num * sizeof(u32), ~0); /* Read current value of this EPs pipe id */ i = (mEp->dir == TX) ? ((i >> MSM_TX_PIPE_ID_OFS) & MSM_PIPE_ID_MASK) : (i & MSM_PIPE_ID_MASK); /* If requested pipe id is different from current, then write it */ if (i != (mReq->req.udc_priv & MSM_PIPE_ID_MASK)) { if (mEp->dir == TX) hw_cwrite( CAP_ENDPTPIPEID + mEp->num * sizeof(u32), MSM_PIPE_ID_MASK << MSM_TX_PIPE_ID_OFS, (mReq->req.udc_priv & MSM_PIPE_ID_MASK) << MSM_TX_PIPE_ID_OFS); else hw_cwrite( CAP_ENDPTPIPEID + mEp->num * sizeof(u32), MSM_PIPE_ID_MASK, mReq->req.udc_priv & MSM_PIPE_ID_MASK); } } } mEp->qh.ptr->td.token &= ~TD_STATUS; /* clear status */ mEp->qh.ptr->cap |= QH_ZLT; prime: wmb(); /* synchronize before ep prime */ ret = hw_ep_prime(mEp->num, mEp->dir, mEp->type == USB_ENDPOINT_XFER_CONTROL); if (!ret) mod_timer(&mEp->prime_timer, EP_PRIME_CHECK_DELAY); done: return ret; } /** * _hardware_dequeue: handles a request at hardware level * @gadget: gadget * @mEp: endpoint * * This function returns an error code */ static int _hardware_dequeue(struct ci13xxx_ep *mEp, struct ci13xxx_req *mReq) { trace("%p, %p", mEp, mReq); if (mReq->req.status != -EALREADY) return -EINVAL; /* clean speculative fetches on req->ptr->token */ mb(); if ((TD_STATUS_ACTIVE & mReq->ptr->token) != 0) return -EBUSY; if (CI13XX_REQ_VENDOR_ID(mReq->req.udc_priv) == MSM_VENDOR_ID) if ((mReq->req.udc_priv & MSM_SPS_MODE) && (mReq->req.udc_priv & MSM_IS_FINITE_TRANSFER)) return -EBUSY; if (mReq->zptr) { if ((TD_STATUS_ACTIVE & mReq->zptr->token) != 0) return -EBUSY; /* The controller may access this dTD one more time. * Defer freeing this to next zero length dTD completion. * It is safe to assume that controller will no longer * access the previous dTD after next dTD completion. */ if (mEp->last_zptr) dma_pool_free(mEp->td_pool, mEp->last_zptr, mEp->last_zdma); mEp->last_zptr = mReq->zptr; mEp->last_zdma = mReq->zdma; mReq->zptr = NULL; } mReq->req.status = 0; if (mReq->map) { dma_unmap_single(mEp->device, mReq->req.dma, mReq->req.length, mEp->dir ? DMA_TO_DEVICE : DMA_FROM_DEVICE); mReq->req.dma = DMA_ERROR_CODE; mReq->map = 0; } mReq->req.status = mReq->ptr->token & TD_STATUS; if ((TD_STATUS_HALTED & mReq->req.status) != 0) mReq->req.status = -1; else if ((TD_STATUS_DT_ERR & mReq->req.status) != 0) mReq->req.status = -1; else if ((TD_STATUS_TR_ERR & mReq->req.status) != 0) mReq->req.status = -1; mReq->req.actual = mReq->ptr->token & TD_TOTAL_BYTES; mReq->req.actual >>= ffs_nr(TD_TOTAL_BYTES); mReq->req.actual = mReq->req.length - mReq->req.actual; mReq->req.actual = mReq->req.status ? 0 : mReq->req.actual; return mReq->req.actual; } /** * purge_rw_queue: Purge requests pending at the remote-wakeup * queue and send them to the HW. * * Go over all of the endpoints and push any pending requests to * the HW queue. */ static void purge_rw_queue(struct ci13xxx *udc) { int i; struct ci13xxx_ep *mEp = NULL; struct ci13xxx_req *mReq = NULL; /* * Go over all of the endpoints and push any pending requests to * the HW queue. */ for (i = 0; i < hw_ep_max; i++) { mEp = &udc->ci13xxx_ep[i]; while (!list_empty(&udc->ci13xxx_ep[i].rw_queue)) { int retval; /* pop oldest request */ mReq = list_entry(udc->ci13xxx_ep[i].rw_queue.next, struct ci13xxx_req, queue); list_del_init(&mReq->queue); retval = _hardware_enqueue(mEp, mReq); if (retval != 0) { dbg_event(_usb_addr(mEp), "QUEUE", retval); mReq->req.status = retval; if (mReq->req.complete != NULL) { if (mEp->type == USB_ENDPOINT_XFER_CONTROL) mReq->req.complete( &(_udc->ep0in.ep), &mReq->req); else mReq->req.complete( &mEp->ep, &mReq->req); } retval = 0; } if (!retval) list_add_tail(&mReq->queue, &mEp->qh.queue); else if (mEp->multi_req) mEp->multi_req = false; } } udc->rw_pending = false; } /** * restore_original_req: Restore original req's attributes * @mReq: Request * * This function restores original req's attributes. Call * this function before completing the large req (>16K). */ static void restore_original_req(struct ci13xxx_req *mReq) { mReq->req.buf = mReq->multi.buf; mReq->req.length = mReq->multi.len; if (!mReq->req.status) mReq->req.actual = mReq->multi.actual; mReq->multi.len = 0; mReq->multi.actual = 0; mReq->multi.buf = NULL; } /** * release_ep_request: Free and endpoint request and release * resources * @mReq: request * @mEp: endpoint * */ static void release_ep_request(struct ci13xxx_ep *mEp, struct ci13xxx_req *mReq) { struct ci13xxx_ep *mEpTemp = mEp; unsigned val; /* MSM Specific: Clear end point specific register */ if (CI13XX_REQ_VENDOR_ID(mReq->req.udc_priv) == MSM_VENDOR_ID) { if (mReq->req.udc_priv & MSM_SPS_MODE) { val = hw_cread(CAP_ENDPTPIPEID + mEp->num * sizeof(u32), ~0); if (val != MSM_EP_PIPE_ID_RESET_VAL) hw_cwrite( CAP_ENDPTPIPEID + mEp->num * sizeof(u32), ~0, MSM_EP_PIPE_ID_RESET_VAL); } } mReq->req.status = -ESHUTDOWN; if (mReq->map) { dma_unmap_single(mEp->device, mReq->req.dma, mReq->req.length, mEp->dir ? DMA_TO_DEVICE : DMA_FROM_DEVICE); mReq->req.dma = DMA_ERROR_CODE; mReq->map = 0; } if (mEp->multi_req) { restore_original_req(mReq); mEp->multi_req = false; } if (mReq->req.complete != NULL) { spin_unlock(mEp->lock); if ((mEp->type == USB_ENDPOINT_XFER_CONTROL) && mReq->req.length) mEpTemp = &_udc->ep0in; mReq->req.complete(&mEpTemp->ep, &mReq->req); if (mEp->type == USB_ENDPOINT_XFER_CONTROL) mReq->req.complete = NULL; spin_lock(mEp->lock); } } /** * _ep_nuke: dequeues all endpoint requests * @mEp: endpoint * * This function returns an error code * Caller must hold lock */ static int _ep_nuke(struct ci13xxx_ep *mEp) __releases(mEp->lock) __acquires(mEp->lock) { trace("%p", mEp); if (mEp == NULL) return -EINVAL; del_timer(&mEp->prime_timer); mEp->prime_timer_count = 0; hw_ep_flush(mEp->num, mEp->dir); while (!list_empty(&mEp->qh.queue)) { /* pop oldest request */ struct ci13xxx_req *mReq = list_entry(mEp->qh.queue.next, struct ci13xxx_req, queue); list_del_init(&mReq->queue); release_ep_request(mEp, mReq); } /* Clear the requests pending at the remote-wakeup queue */ while (!list_empty(&mEp->rw_queue)) { /* pop oldest request */ struct ci13xxx_req *mReq = list_entry(mEp->rw_queue.next, struct ci13xxx_req, queue); list_del_init(&mReq->queue); release_ep_request(mEp, mReq); } return 0; } /** * _gadget_stop_activity: stops all USB activity, flushes & disables all endpts * @gadget: gadget * * This function returns an error code */ static int _gadget_stop_activity(struct usb_gadget *gadget) { struct ci13xxx *udc = container_of(gadget, struct ci13xxx, gadget); unsigned long flags; trace("%p", gadget); if (gadget == NULL) return -EINVAL; spin_lock_irqsave(udc->lock, flags); udc->gadget.speed = USB_SPEED_UNKNOWN; udc->gadget.remote_wakeup = 0; udc->suspended = 0; udc->configured = 0; spin_unlock_irqrestore(udc->lock, flags); gadget->xfer_isr_count = 0; udc->driver->disconnect(gadget); spin_lock_irqsave(udc->lock, flags); _ep_nuke(&udc->ep0out); _ep_nuke(&udc->ep0in); spin_unlock_irqrestore(udc->lock, flags); if (udc->ep0in.last_zptr) { dma_pool_free(udc->ep0in.td_pool, udc->ep0in.last_zptr, udc->ep0in.last_zdma); udc->ep0in.last_zptr = NULL; } return 0; } /****************************************************************************** * ISR block *****************************************************************************/ /** * isr_reset_handler: USB reset interrupt handler * @udc: UDC device * * This function resets USB engine after a bus reset occurred */ static void isr_reset_handler(struct ci13xxx *udc) __releases(udc->lock) __acquires(udc->lock) { int retval; trace("%p", udc); if (udc == NULL) { err("EINVAL"); return; } dbg_event(0xFF, "BUS RST", 0); spin_unlock(udc->lock); if (udc->suspended) { if (udc->udc_driver->notify_event) udc->udc_driver->notify_event(udc, CI13XXX_CONTROLLER_RESUME_EVENT); if (udc->transceiver) usb_phy_set_suspend(udc->transceiver, 0); udc->driver->resume(&udc->gadget); udc->suspended = 0; } /*stop charging upon reset */ if (udc->transceiver) usb_phy_set_power(udc->transceiver, 100); retval = _gadget_stop_activity(&udc->gadget); if (retval) goto done; if (udc->rw_pending) purge_rw_queue(udc); _udc->skip_flush = false; retval = hw_usb_reset(); if (retval) goto done; spin_lock(udc->lock); done: if (retval) err("error: %i", retval); } /** * isr_resume_handler: USB PCI interrupt handler * @udc: UDC device * */ static void isr_resume_handler(struct ci13xxx *udc) { udc->gadget.speed = hw_port_is_high_speed() ? USB_SPEED_HIGH : USB_SPEED_FULL; if (udc->suspended) { spin_unlock(udc->lock); if (udc->udc_driver->notify_event) udc->udc_driver->notify_event(udc, CI13XXX_CONTROLLER_RESUME_EVENT); if (udc->transceiver) usb_phy_set_suspend(udc->transceiver, 0); udc->driver->resume(&udc->gadget); spin_lock(udc->lock); if (udc->rw_pending) purge_rw_queue(udc); udc->suspended = 0; } } /** * isr_resume_handler: USB SLI interrupt handler * @udc: UDC device * */ static void isr_suspend_handler(struct ci13xxx *udc) { if (udc->gadget.speed != USB_SPEED_UNKNOWN && udc->vbus_active) { if (udc->suspended == 0) { spin_unlock(udc->lock); udc->driver->suspend(&udc->gadget); if (udc->udc_driver->notify_event) udc->udc_driver->notify_event(udc, CI13XXX_CONTROLLER_SUSPEND_EVENT); if (udc->transceiver) usb_phy_set_suspend(udc->transceiver, 1); spin_lock(udc->lock); udc->suspended = 1; } } } /** * isr_get_status_complete: get_status request complete function * @ep: endpoint * @req: request handled * * Caller must release lock */ static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req) { trace("%p, %p", ep, req); if (ep == NULL || req == NULL) { err("EINVAL"); return; } if (req->status) err("GET_STATUS failed"); } /** * isr_get_status_response: get_status request response * @udc: udc struct * @setup: setup request packet * * This function returns an error code */ static int isr_get_status_response(struct ci13xxx *udc, struct usb_ctrlrequest *setup) __releases(mEp->lock) __acquires(mEp->lock) { struct ci13xxx_ep *mEp = &udc->ep0in; struct usb_request *req = udc->status; int dir, num, retval; trace("%p, %p", mEp, setup); if (mEp == NULL || setup == NULL) return -EINVAL; req->complete = isr_get_status_complete; req->length = 2; req->buf = udc->status_buf; if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) { /* Assume that device is bus powered for now. */ *((u16 *)req->buf) = _udc->gadget.remote_wakeup << 1; retval = 0; } else if ((setup->bRequestType & USB_RECIP_MASK) \ == USB_RECIP_ENDPOINT) { dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ? TX : RX; num = le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK; *((u16 *)req->buf) = hw_ep_get_halt(num, dir); } /* else do nothing; reserved for future use */ spin_unlock(mEp->lock); retval = usb_ep_queue(&mEp->ep, req, GFP_ATOMIC); spin_lock(mEp->lock); return retval; } /** * isr_setup_status_complete: setup_status request complete function * @ep: endpoint * @req: request handled * * Caller must release lock. Put the port in test mode if test mode * feature is selected. */ static void isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req) { struct ci13xxx *udc = req->context; unsigned long flags; trace("%p, %p", ep, req); spin_lock_irqsave(udc->lock, flags); if (udc->test_mode) hw_port_test_set(udc->test_mode); spin_unlock_irqrestore(udc->lock, flags); } /** * isr_setup_status_phase: queues the status phase of a setup transation * @udc: udc struct * * This function returns an error code */ static int isr_setup_status_phase(struct ci13xxx *udc) __releases(mEp->lock) __acquires(mEp->lock) { int retval; struct ci13xxx_ep *mEp; trace("%p", udc); mEp = (udc->ep0_dir == TX) ? &udc->ep0out : &udc->ep0in; udc->status->context = udc; udc->status->complete = isr_setup_status_complete; udc->status->length = 0; spin_unlock(mEp->lock); retval = usb_ep_queue(&mEp->ep, udc->status, GFP_ATOMIC); spin_lock(mEp->lock); return retval; } /** * isr_tr_complete_low: transaction complete low level handler * @mEp: endpoint * * This function returns an error code * Caller must hold lock */ static int isr_tr_complete_low(struct ci13xxx_ep *mEp) __releases(mEp->lock) __acquires(mEp->lock) { struct ci13xxx_req *mReq, *mReqTemp; struct ci13xxx_ep *mEpTemp = mEp; int uninitialized_var(retval); int req_dequeue = 1; struct ci13xxx *udc = _udc; trace("%p", mEp); if (list_empty(&mEp->qh.queue)) return 0; del_timer(&mEp->prime_timer); mEp->prime_timer_count = 0; list_for_each_entry_safe(mReq, mReqTemp, &mEp->qh.queue, queue) { dequeue: retval = _hardware_dequeue(mEp, mReq); if (retval < 0) { /* * FIXME: don't know exact delay * required for HW to update dTD status * bits. This is a temporary workaround till * HW designers come back on this. */ if (retval == -EBUSY && req_dequeue && (mEp->dir == 0 || mEp->num == 0)) { req_dequeue = 0; udc->dTD_update_fail_count++; mEp->dTD_update_fail_count++; udelay(10); goto dequeue; } break; } req_dequeue = 0; if (mEp->multi_req) { /* Large request in progress */ unsigned remain_len; mReq->multi.actual += mReq->req.actual; remain_len = mReq->multi.len - mReq->multi.actual; if (mReq->req.status || !remain_len || (mReq->req.actual != mReq->req.length)) { restore_original_req(mReq); mEp->multi_req = false; } else { mReq->req.buf = mReq->multi.buf + mReq->multi.actual; mReq->req.length = min_t(unsigned, remain_len, (4 * CI13XXX_PAGE_SIZE)); mReq->req.status = -EINPROGRESS; mReq->req.actual = 0; list_del_init(&mReq->queue); retval = _hardware_enqueue(mEp, mReq); if (retval) { err("Large req failed in middle"); mReq->req.status = retval; restore_original_req(mReq); mEp->multi_req = false; goto done; } else { list_add_tail(&mReq->queue, &mEp->qh.queue); return 0; } } } list_del_init(&mReq->queue); done: dbg_done(_usb_addr(mEp), mReq->ptr->token, retval); if (mReq->req.complete != NULL) { spin_unlock(mEp->lock); if ((mEp->type == USB_ENDPOINT_XFER_CONTROL) && mReq->req.length) mEpTemp = &_udc->ep0in; mReq->req.complete(&mEpTemp->ep, &mReq->req); spin_lock(mEp->lock); } } if (retval == -EBUSY) retval = 0; if (retval < 0) dbg_event(_usb_addr(mEp), "DONE", retval); return retval; } /** * isr_tr_complete_handler: transaction complete interrupt handler * @udc: UDC descriptor * * This function handles traffic events */ static void isr_tr_complete_handler(struct ci13xxx *udc) __releases(udc->lock) __acquires(udc->lock) { unsigned i; u8 tmode = 0; trace("%p", udc); if (udc == NULL) { err("EINVAL"); return; } for (i = 0; i < hw_ep_max; i++) { struct ci13xxx_ep *mEp = &udc->ci13xxx_ep[i]; int type, num, dir, err = -EINVAL; struct usb_ctrlrequest req; if (mEp->desc == NULL) continue; /* not configured */ if (hw_test_and_clear_complete(i)) { err = isr_tr_complete_low(mEp); if (mEp->type == USB_ENDPOINT_XFER_CONTROL) { if (err > 0) /* needs status phase */ err = isr_setup_status_phase(udc); if (err < 0) { dbg_event(_usb_addr(mEp), "ERROR", err); spin_unlock(udc->lock); if (usb_ep_set_halt(&mEp->ep)) err("error: ep_set_halt"); spin_lock(udc->lock); } } } if (mEp->type != USB_ENDPOINT_XFER_CONTROL || !hw_test_and_clear_setup_status(i)) continue; if (i != 0) { warn("ctrl traffic received at endpoint"); continue; } /* * Flush data and handshake transactions of previous * setup packet. */ _ep_nuke(&udc->ep0out); _ep_nuke(&udc->ep0in); /* read_setup_packet */ do { hw_test_and_set_setup_guard(); memcpy(&req, &mEp->qh.ptr->setup, sizeof(req)); /* Ensure buffer is read before acknowledging to h/w */ mb(); } while (!hw_test_and_clear_setup_guard()); type = req.bRequestType; udc->ep0_dir = (type & USB_DIR_IN) ? TX : RX; dbg_setup(_usb_addr(mEp), &req); switch (req.bRequest) { case USB_REQ_CLEAR_FEATURE: if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) && le16_to_cpu(req.wValue) == USB_ENDPOINT_HALT) { if (req.wLength != 0) break; num = le16_to_cpu(req.wIndex); dir = num & USB_ENDPOINT_DIR_MASK; num &= USB_ENDPOINT_NUMBER_MASK; if (dir) /* TX */ num += hw_ep_max/2; if (!udc->ci13xxx_ep[num].wedge) { spin_unlock(udc->lock); err = usb_ep_clear_halt( &udc->ci13xxx_ep[num].ep); spin_lock(udc->lock); if (err) break; } err = isr_setup_status_phase(udc); } else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) && le16_to_cpu(req.wValue) == USB_DEVICE_REMOTE_WAKEUP) { if (req.wLength != 0) break; udc->gadget.remote_wakeup = 0; err = isr_setup_status_phase(udc); } else { goto delegate; } break; case USB_REQ_GET_STATUS: if (type != (USB_DIR_IN|USB_RECIP_DEVICE) && type != (USB_DIR_IN|USB_RECIP_ENDPOINT) && type != (USB_DIR_IN|USB_RECIP_INTERFACE)) goto delegate; if (le16_to_cpu(req.wLength) != 2 || le16_to_cpu(req.wValue) != 0) break; err = isr_get_status_response(udc, &req); break; case USB_REQ_SET_ADDRESS: if (type != (USB_DIR_OUT|USB_RECIP_DEVICE)) goto delegate; if (le16_to_cpu(req.wLength) != 0 || le16_to_cpu(req.wIndex) != 0) break; err = hw_usb_set_address((u8)le16_to_cpu(req.wValue)); if (err) break; err = isr_setup_status_phase(udc); break; case USB_REQ_SET_CONFIGURATION: if (type == (USB_DIR_OUT|USB_TYPE_STANDARD)) udc->configured = !!req.wValue; goto delegate; case USB_REQ_SET_FEATURE: if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) && le16_to_cpu(req.wValue) == USB_ENDPOINT_HALT) { if (req.wLength != 0) break; num = le16_to_cpu(req.wIndex); dir = num & USB_ENDPOINT_DIR_MASK; num &= USB_ENDPOINT_NUMBER_MASK; if (dir) /* TX */ num += hw_ep_max/2; spin_unlock(udc->lock); err = usb_ep_set_halt(&udc->ci13xxx_ep[num].ep); spin_lock(udc->lock); if (!err) isr_setup_status_phase(udc); } else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) { if (req.wLength != 0) break; switch (le16_to_cpu(req.wValue)) { case USB_DEVICE_REMOTE_WAKEUP: udc->gadget.remote_wakeup = 1; err = isr_setup_status_phase(udc); break; case USB_DEVICE_TEST_MODE: tmode = le16_to_cpu(req.wIndex) >> 8; switch (tmode) { case TEST_J: case TEST_K: case TEST_SE0_NAK: case TEST_PACKET: case TEST_FORCE_EN: udc->test_mode = tmode; err = isr_setup_status_phase( udc); break; default: break; } default: goto delegate; } } else { goto delegate; } break; default: delegate: if (req.wLength == 0) /* no data phase */ udc->ep0_dir = TX; spin_unlock(udc->lock); err = udc->driver->setup(&udc->gadget, &req); spin_lock(udc->lock); break; } if (err < 0) { dbg_event(_usb_addr(mEp), "ERROR", err); spin_unlock(udc->lock); if (usb_ep_set_halt(&mEp->ep)) err("error: ep_set_halt"); spin_lock(udc->lock); } } } /****************************************************************************** * ENDPT block *****************************************************************************/ /** * ep_enable: configure endpoint, making it usable * * Check usb_ep_enable() at "usb_gadget.h" for details */ static int ep_enable(struct usb_ep *ep, const struct usb_endpoint_descriptor *desc) { struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep); int retval = 0; unsigned long flags; unsigned mult = 0; trace("ep = %p, desc = %p", ep, desc); if (ep == NULL || desc == NULL) return -EINVAL; spin_lock_irqsave(mEp->lock, flags); /* only internal SW should enable ctrl endpts */ mEp->desc = desc; if (!list_empty(&mEp->qh.queue)) warn("enabling a non-empty endpoint!"); mEp->dir = usb_endpoint_dir_in(desc) ? TX : RX; mEp->num = usb_endpoint_num(desc); mEp->type = usb_endpoint_type(desc); mEp->ep.maxpacket = usb_endpoint_maxp(desc); dbg_event(_usb_addr(mEp), "ENABLE", 0); mEp->qh.ptr->cap = 0; if (mEp->type == USB_ENDPOINT_XFER_CONTROL) { mEp->qh.ptr->cap |= QH_IOS; } else if (mEp->type == USB_ENDPOINT_XFER_ISOC) { mEp->qh.ptr->cap &= ~QH_MULT; mult = ((mEp->ep.maxpacket >> QH_MULT_SHIFT) + 1) & 0x03; mEp->qh.ptr->cap |= (mult << ffs_nr(QH_MULT)); } else { mEp->qh.ptr->cap |= QH_ZLT; } mEp->qh.ptr->cap |= (mEp->ep.maxpacket << ffs_nr(QH_MAX_PKT)) & QH_MAX_PKT; mEp->qh.ptr->td.next |= TD_TERMINATE; /* needed? */ /* complete all the updates to ept->head before enabling endpoint*/ mb(); /* * Enable endpoints in the HW other than ep0 as ep0 * is always enabled */ if (mEp->num) retval |= hw_ep_enable(mEp->num, mEp->dir, mEp->type); spin_unlock_irqrestore(mEp->lock, flags); return retval; } /** * ep_disable: endpoint is no longer usable * * Check usb_ep_disable() at "usb_gadget.h" for details */ static int ep_disable(struct usb_ep *ep) { struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep); int direction, retval = 0; unsigned long flags; trace("%p", ep); if (ep == NULL) return -EINVAL; else if (mEp->desc == NULL) return -EBUSY; spin_lock_irqsave(mEp->lock, flags); /* only internal SW should disable ctrl endpts */ direction = mEp->dir; do { dbg_event(_usb_addr(mEp), "DISABLE", 0); retval |= _ep_nuke(mEp); retval |= hw_ep_disable(mEp->num, mEp->dir); if (mEp->type == USB_ENDPOINT_XFER_CONTROL) mEp->dir = (mEp->dir == TX) ? RX : TX; } while (mEp->dir != direction); if (mEp->last_zptr) { dma_pool_free(mEp->td_pool, mEp->last_zptr, mEp->last_zdma); mEp->last_zptr = NULL; } mEp->desc = NULL; mEp->ep.desc = NULL; mEp->ep.maxpacket = USHRT_MAX; spin_unlock_irqrestore(mEp->lock, flags); return retval; } /** * ep_alloc_request: allocate a request object to use with this endpoint * * Check usb_ep_alloc_request() at "usb_gadget.h" for details */ static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags) { struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep); struct ci13xxx_req *mReq = NULL; trace("%p, %i", ep, gfp_flags); if (ep == NULL) { err("EINVAL"); return NULL; } mReq = kzalloc(sizeof(struct ci13xxx_req), gfp_flags); if (mReq != NULL) { INIT_LIST_HEAD(&mReq->queue); mReq->req.dma = DMA_ERROR_CODE; mReq->ptr = dma_pool_alloc(mEp->td_pool, gfp_flags, &mReq->dma); if (mReq->ptr == NULL) { kfree(mReq); mReq = NULL; } } dbg_event(_usb_addr(mEp), "ALLOC", mReq == NULL); return (mReq == NULL) ? NULL : &mReq->req; } /** * ep_free_request: frees a request object * * Check usb_ep_free_request() at "usb_gadget.h" for details */ static void ep_free_request(struct usb_ep *ep, struct usb_request *req) { struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep); struct ci13xxx_req *mReq = container_of(req, struct ci13xxx_req, req); unsigned long flags; trace("%p, %p", ep, req); if (ep == NULL || req == NULL) { err("EINVAL"); return; } else if (!list_empty(&mReq->queue)) { err("EBUSY"); return; } spin_lock_irqsave(mEp->lock, flags); if (mReq->ptr) dma_pool_free(mEp->td_pool, mReq->ptr, mReq->dma); kfree(mReq); dbg_event(_usb_addr(mEp), "FREE", 0); spin_unlock_irqrestore(mEp->lock, flags); } /** * ep_queue: queues (submits) an I/O request to an endpoint * * Check usb_ep_queue()* at usb_gadget.h" for details */ static int ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t __maybe_unused gfp_flags) { struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep); struct ci13xxx_req *mReq = container_of(req, struct ci13xxx_req, req); int retval = 0; unsigned long flags; struct ci13xxx *udc = _udc; trace("%p, %p, %X", ep, req, gfp_flags); spin_lock_irqsave(mEp->lock, flags); if (ep == NULL || req == NULL || mEp->desc == NULL) { retval = -EINVAL; goto done; } if (!udc->softconnect) { retval = -ENODEV; goto done; } if (!udc->configured && mEp->type != USB_ENDPOINT_XFER_CONTROL) { trace("usb is not configured" "ept #%d, ept name#%s\n", mEp->num, mEp->ep.name); retval = -ESHUTDOWN; goto done; } if (mEp->type == USB_ENDPOINT_XFER_CONTROL) { if (req->length) mEp = (_udc->ep0_dir == RX) ? &_udc->ep0out : &_udc->ep0in; if (!list_empty(&mEp->qh.queue)) { _ep_nuke(mEp); retval = -EOVERFLOW; warn("endpoint ctrl %X nuked", _usb_addr(mEp)); } } if (ep->endless && udc->gadget.speed == USB_SPEED_FULL) { err("Queueing endless req is not supported for FS"); retval = -EINVAL; goto done; } /* first nuke then test link, e.g. previous status has not sent */ if (!list_empty(&mReq->queue)) { retval = -EBUSY; err("request already in queue"); goto done; } if (mEp->multi_req) { retval = -EAGAIN; err("Large request is in progress. come again"); goto done; } if (req->length > (4 * CI13XXX_PAGE_SIZE)) { if (!list_empty(&mEp->qh.queue)) { retval = -EAGAIN; err("Queue is busy. Large req is not allowed"); goto done; } if ((mEp->type != USB_ENDPOINT_XFER_BULK) || (mEp->dir != RX)) { retval = -EINVAL; err("Larger req is supported only for Bulk OUT"); goto done; } mEp->multi_req = true; mReq->multi.len = req->length; mReq->multi.buf = req->buf; req->length = (4 * CI13XXX_PAGE_SIZE); } dbg_queue(_usb_addr(mEp), req, retval); /* push request */ mReq->req.status = -EINPROGRESS; mReq->req.actual = 0; if (udc->rw_pending) { list_add_tail(&mReq->queue, &mEp->rw_queue); retval = 0; goto done; } if (udc->suspended) { /* Remote Wakeup */ if (!udc->gadget.remote_wakeup) { dev_dbg(mEp->device, "%s: queue failed (suspend).", __func__); dev_dbg(mEp->device, "%s: Remote wakeup is not supported. ept #%d\n", __func__, mEp->num); retval = -EAGAIN; goto done; } list_add_tail(&mReq->queue, &mEp->rw_queue); udc->rw_pending = true; schedule_delayed_work(&udc->rw_work, REMOTE_WAKEUP_DELAY); retval = 0; goto done; } retval = _hardware_enqueue(mEp, mReq); if (retval == -EALREADY) { dbg_event(_usb_addr(mEp), "QUEUE", retval); retval = 0; } if (!retval) list_add_tail(&mReq->queue, &mEp->qh.queue); else if (mEp->multi_req) mEp->multi_req = false; done: spin_unlock_irqrestore(mEp->lock, flags); return retval; } /** * ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint * * Check usb_ep_dequeue() at "usb_gadget.h" for details */ static int ep_dequeue(struct usb_ep *ep, struct usb_request *req) { struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep); struct ci13xxx_ep *mEpTemp = mEp; struct ci13xxx_req *mReq = container_of(req, struct ci13xxx_req, req); struct ci13xxx *udc = _udc; unsigned long flags; trace("%p, %p", ep, req); if (udc->udc_driver->in_lpm && udc->udc_driver->in_lpm(udc)) { dev_err(udc->transceiver->dev, "%s: Unable to dequeue while in LPM\n", __func__); return -EAGAIN; } spin_lock_irqsave(mEp->lock, flags); /* * Only ep0 IN is exposed to composite. When a req is dequeued * on ep0, check both ep0 IN and ep0 OUT queues. */ if (ep == NULL || req == NULL || mReq->req.status != -EALREADY || mEp->desc == NULL || list_empty(&mReq->queue) || (list_empty(&mEp->qh.queue) && ((mEp->type != USB_ENDPOINT_XFER_CONTROL) || list_empty(&_udc->ep0out.qh.queue)))) { spin_unlock_irqrestore(mEp->lock, flags); return -EINVAL; } dbg_event(_usb_addr(mEp), "DEQUEUE", 0); if ((mEp->type == USB_ENDPOINT_XFER_CONTROL)) { hw_ep_flush(_udc->ep0out.num, RX); hw_ep_flush(_udc->ep0in.num, TX); } else { hw_ep_flush(mEp->num, mEp->dir); } /* pop request */ list_del_init(&mReq->queue); if (mReq->map) { dma_unmap_single(mEp->device, mReq->req.dma, mReq->req.length, mEp->dir ? DMA_TO_DEVICE : DMA_FROM_DEVICE); mReq->req.dma = DMA_ERROR_CODE; mReq->map = 0; } req->status = -ECONNRESET; if (mEp->multi_req) { restore_original_req(mReq); mEp->multi_req = false; } if (mReq->req.complete != NULL) { spin_unlock(mEp->lock); if ((mEp->type == USB_ENDPOINT_XFER_CONTROL) && mReq->req.length) mEpTemp = &_udc->ep0in; mReq->req.complete(&mEpTemp->ep, &mReq->req); if (mEp->type == USB_ENDPOINT_XFER_CONTROL) mReq->req.complete = NULL; spin_lock(mEp->lock); } spin_unlock_irqrestore(mEp->lock, flags); return 0; } static int is_sps_req(struct ci13xxx_req *mReq) { return (CI13XX_REQ_VENDOR_ID(mReq->req.udc_priv) == MSM_VENDOR_ID && mReq->req.udc_priv & MSM_SPS_MODE); } /** * ep_set_halt: sets the endpoint halt feature * * Check usb_ep_set_halt() at "usb_gadget.h" for details */ static int ep_set_halt(struct usb_ep *ep, int value) { struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep); struct ci13xxx *udc = _udc; int direction, retval = 0; unsigned long flags; trace("%p, %i", ep, value); if (ep == NULL || mEp->desc == NULL) return -EINVAL; if (udc->suspended) { dev_err(udc->transceiver->dev, "%s: Unable to halt EP while suspended\n", __func__); return -EINVAL; } spin_lock_irqsave(mEp->lock, flags); #ifndef STALL_IN /* g_file_storage MS compliant but g_zero fails chapter 9 compliance */ if (value && mEp->type == USB_ENDPOINT_XFER_BULK && mEp->dir == TX && !list_empty(&mEp->qh.queue) && !is_sps_req(list_entry(mEp->qh.queue.next, struct ci13xxx_req, queue))){ spin_unlock_irqrestore(mEp->lock, flags); return -EAGAIN; } #endif direction = mEp->dir; do { dbg_event(_usb_addr(mEp), "HALT", value); retval |= hw_ep_set_halt(mEp->num, mEp->dir, value); if (!value) mEp->wedge = 0; if (mEp->type == USB_ENDPOINT_XFER_CONTROL) mEp->dir = (mEp->dir == TX) ? RX : TX; } while (mEp->dir != direction); spin_unlock_irqrestore(mEp->lock, flags); return retval; } /** * ep_set_wedge: sets the halt feature and ignores clear requests * * Check usb_ep_set_wedge() at "usb_gadget.h" for details */ static int ep_set_wedge(struct usb_ep *ep) { struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep); unsigned long flags; trace("%p", ep); if (ep == NULL || mEp->desc == NULL) return -EINVAL; spin_lock_irqsave(mEp->lock, flags); dbg_event(_usb_addr(mEp), "WEDGE", 0); mEp->wedge = 1; spin_unlock_irqrestore(mEp->lock, flags); return usb_ep_set_halt(ep); } /** * ep_fifo_flush: flushes contents of a fifo * * Check usb_ep_fifo_flush() at "usb_gadget.h" for details */ static void ep_fifo_flush(struct usb_ep *ep) { struct ci13xxx *udc = _udc; struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep); unsigned long flags; trace("%p", ep); if (ep == NULL) { err("%02X: -EINVAL", _usb_addr(mEp)); return; } if (udc->udc_driver->in_lpm && udc->udc_driver->in_lpm(udc)) { dev_err(udc->transceiver->dev, "%s: Unable to fifo_flush while in LPM\n", __func__); return; } spin_lock_irqsave(mEp->lock, flags); dbg_event(_usb_addr(mEp), "FFLUSH", 0); /* * _ep_nuke() takes care of flushing the endpoint. * some function drivers expect udc to retire all * pending requests upon flushing an endpoint. There * is no harm in doing it. */ _ep_nuke(mEp); spin_unlock_irqrestore(mEp->lock, flags); } /** * Endpoint-specific part of the API to the USB controller hardware * Check "usb_gadget.h" for details */ static const struct usb_ep_ops usb_ep_ops = { .enable = ep_enable, .disable = ep_disable, .alloc_request = ep_alloc_request, .free_request = ep_free_request, .queue = ep_queue, .dequeue = ep_dequeue, .set_halt = ep_set_halt, .set_wedge = ep_set_wedge, .fifo_flush = ep_fifo_flush, }; /****************************************************************************** * GADGET block *****************************************************************************/ static int ci13xxx_vbus_session(struct usb_gadget *_gadget, int is_active) { struct ci13xxx *udc = container_of(_gadget, struct ci13xxx, gadget); unsigned long flags; int gadget_ready = 0; if (!(udc->udc_driver->flags & CI13XXX_PULLUP_ON_VBUS)) return -EOPNOTSUPP; spin_lock_irqsave(udc->lock, flags); udc->vbus_active = is_active; if (udc->driver) gadget_ready = 1; spin_unlock_irqrestore(udc->lock, flags); if (gadget_ready) { if (is_active) { hw_device_reset(udc); if (udc->udc_driver->notify_event) udc->udc_driver->notify_event(udc, CI13XXX_CONTROLLER_CONNECT_EVENT); if (udc->softconnect) hw_device_state(udc->ep0out.qh.dma); } else { hw_device_state(0); _gadget_stop_activity(&udc->gadget); if (udc->udc_driver->notify_event) udc->udc_driver->notify_event(udc, CI13XXX_CONTROLLER_DISCONNECT_EVENT); } } return 0; } #define VBUS_DRAW_BUF_LEN 10 #define MAX_OVERRIDE_VBUS_ALLOWED 900 /* 900 mA */ static char vbus_draw_mA[VBUS_DRAW_BUF_LEN]; module_param_string(vbus_draw_mA, vbus_draw_mA, VBUS_DRAW_BUF_LEN, S_IRUGO | S_IWUSR); static int ci13xxx_vbus_draw(struct usb_gadget *_gadget, unsigned mA) { struct ci13xxx *udc = container_of(_gadget, struct ci13xxx, gadget); unsigned int override_mA = 0; /* override param to draw more current if battery draining faster */ if ((mA == CONFIG_USB_GADGET_VBUS_DRAW) && (vbus_draw_mA[0] != '\0')) { if ((!kstrtoint(vbus_draw_mA, 10, &override_mA)) && (override_mA <= MAX_OVERRIDE_VBUS_ALLOWED)) { mA = override_mA; } } if (udc->transceiver) return usb_phy_set_power(udc->transceiver, mA); return -ENOTSUPP; } static int ci13xxx_pullup(struct usb_gadget *_gadget, int is_active) { struct ci13xxx *udc = container_of(_gadget, struct ci13xxx, gadget); unsigned long flags; spin_lock_irqsave(udc->lock, flags); udc->softconnect = is_active; if (((udc->udc_driver->flags & CI13XXX_PULLUP_ON_VBUS) && !udc->vbus_active) || !udc->driver) { spin_unlock_irqrestore(udc->lock, flags); return 0; } spin_unlock_irqrestore(udc->lock, flags); pm_runtime_get_sync(&_gadget->dev); spin_lock_irqsave(udc->lock, flags); if (!udc->vbus_active) { spin_unlock_irqrestore(udc->lock, flags); pm_runtime_put_sync(&_gadget->dev); return 0; } if (is_active) { spin_unlock(udc->lock); if (udc->udc_driver->notify_event) udc->udc_driver->notify_event(udc, CI13XXX_CONTROLLER_CONNECT_EVENT); spin_lock(udc->lock); hw_device_state(udc->ep0out.qh.dma); } else { hw_device_state(0); } spin_unlock_irqrestore(udc->lock, flags); pm_runtime_mark_last_busy(&_gadget->dev); pm_runtime_put_autosuspend(&_gadget->dev); return 0; } static int ci13xxx_start(struct usb_gadget *gadget, struct usb_gadget_driver *driver); static int ci13xxx_stop(struct usb_gadget *gadget, struct usb_gadget_driver *driver); /** * Device operations part of the API to the USB controller hardware, * which don't involve endpoints (or i/o) * Check "usb_gadget.h" for details */ static const struct usb_gadget_ops usb_gadget_ops = { .vbus_session = ci13xxx_vbus_session, .wakeup = ci13xxx_wakeup, .vbus_draw = ci13xxx_vbus_draw, .pullup = ci13xxx_pullup, .udc_start = ci13xxx_start, .udc_stop = ci13xxx_stop, }; /** * ci13xxx_start: register a gadget driver * @gadget: our gadget * @driver: the driver being registered * * Interrupts are enabled here. */ static int ci13xxx_start(struct usb_gadget *gadget, struct usb_gadget_driver *driver) { struct ci13xxx *udc = _udc; unsigned long flags; int retval = -ENOMEM; trace("%p", driver); if (driver == NULL || driver->setup == NULL || driver->disconnect == NULL) return -EINVAL; else if (udc == NULL) return -ENODEV; else if (udc->driver != NULL) return -EBUSY; spin_lock_irqsave(udc->lock, flags); info("hw_ep_max = %d", hw_ep_max); udc->gadget.dev.driver = NULL; spin_unlock_irqrestore(udc->lock, flags); pm_runtime_get_sync(&udc->gadget.dev); udc->ep0out.ep.desc = &ctrl_endpt_out_desc; retval = usb_ep_enable(&udc->ep0out.ep); if (retval) goto pm_put; udc->ep0in.ep.desc = &ctrl_endpt_in_desc; retval = usb_ep_enable(&udc->ep0in.ep); if (retval) goto pm_put; udc->status = usb_ep_alloc_request(&udc->ep0in.ep, GFP_KERNEL); if (!udc->status) { retval = -ENOMEM; goto pm_put; } udc->status_buf = kzalloc(2 + udc->gadget.extra_buf_alloc, GFP_KERNEL); /* for GET_STATUS */ if (!udc->status_buf) { usb_ep_free_request(&udc->ep0in.ep, udc->status); retval = -ENOMEM; goto pm_put; } spin_lock_irqsave(udc->lock, flags); udc->gadget.ep0 = &udc->ep0in.ep; /* bind gadget */ driver->driver.bus = NULL; udc->gadget.dev.driver = &driver->driver; udc->driver = driver; if (udc->udc_driver->flags & CI13XXX_PULLUP_ON_VBUS) { if (udc->vbus_active) { if (udc->udc_driver->flags & CI13XXX_REGS_SHARED) hw_device_reset(udc); } else { goto done; } } if (!udc->softconnect) goto done; retval = hw_device_state(udc->ep0out.qh.dma); done: spin_unlock_irqrestore(udc->lock, flags); if (udc->udc_driver->notify_event) udc->udc_driver->notify_event(udc, CI13XXX_CONTROLLER_UDC_STARTED_EVENT); pm_put: pm_runtime_put(&udc->gadget.dev); return retval; } /** * ci13xxx_stop: unregister a gadget driver * * Check usb_gadget_unregister_driver() at "usb_gadget.h" for details */ static int ci13xxx_stop(struct usb_gadget *gadget, struct usb_gadget_driver *driver) { struct ci13xxx *udc = _udc; unsigned long flags; trace("%p", driver); if (driver == NULL || driver->unbind == NULL || driver->setup == NULL || driver->disconnect == NULL || driver != udc->driver) return -EINVAL; spin_lock_irqsave(udc->lock, flags); if (!(udc->udc_driver->flags & CI13XXX_PULLUP_ON_VBUS) || udc->vbus_active) { hw_device_state(0); spin_unlock_irqrestore(udc->lock, flags); _gadget_stop_activity(&udc->gadget); spin_lock_irqsave(udc->lock, flags); } spin_unlock_irqrestore(udc->lock, flags); usb_ep_free_request(&udc->ep0in.ep, udc->status); kfree(udc->status_buf); return 0; } /****************************************************************************** * BUS block *****************************************************************************/ /** * udc_irq: global interrupt handler * * This function returns IRQ_HANDLED if the IRQ has been handled * It locks access to registers */ static irqreturn_t udc_irq(void) { struct ci13xxx *udc = _udc; irqreturn_t retval; u32 intr; trace(); if (udc == NULL) { err("ENODEV"); return IRQ_HANDLED; } spin_lock(udc->lock); if (udc->udc_driver->in_lpm && udc->udc_driver->in_lpm(udc)) { spin_unlock(udc->lock); return IRQ_NONE; } if (udc->udc_driver->flags & CI13XXX_REGS_SHARED) { if (hw_cread(CAP_USBMODE, USBMODE_CM) != USBMODE_CM_DEVICE) { spin_unlock(udc->lock); return IRQ_NONE; } } intr = hw_test_and_clear_intr_active(); if (intr) { isr_statistics.hndl.buf[isr_statistics.hndl.idx++] = intr; isr_statistics.hndl.idx &= ISR_MASK; isr_statistics.hndl.cnt++; /* order defines priority - do NOT change it */ if (USBi_URI & intr) { isr_statistics.uri++; if (!hw_cread(CAP_PORTSC, PORTSC_PR)) pr_info("%s: USB reset interrupt is delayed\n", __func__); isr_reset_handler(udc); } if (USBi_PCI & intr) { isr_statistics.pci++; isr_resume_handler(udc); } if (USBi_UEI & intr) isr_statistics.uei++; if (USBi_UI & intr) { isr_statistics.ui++; udc->gadget.xfer_isr_count++; isr_tr_complete_handler(udc); } if (USBi_SLI & intr) { isr_suspend_handler(udc); isr_statistics.sli++; } retval = IRQ_HANDLED; } else { isr_statistics.none++; retval = IRQ_NONE; } spin_unlock(udc->lock); return retval; } static void destroy_eps(struct ci13xxx *ci) { int i; for (i = 0; i < hw_ep_max; i++) { struct ci13xxx_ep *mEp = &ci->ci13xxx_ep[i]; dma_pool_free(ci->qh_pool, mEp->qh.ptr, mEp->qh.dma); } } /** * udc_probe: parent probe must call this to initialize UDC * @dev: parent device * @regs: registers base address * @name: driver name * * This function returns an error code * No interrupts active, the IRQ has not been requested yet * Kernel assumes 32-bit DMA operations by default, no need to dma_set_mask */ static int udc_probe(struct ci13xxx_udc_driver *driver, struct device *dev, void __iomem *regs) { struct ci13xxx *udc; struct ci13xxx_platform_data *pdata; int retval = 0, i, j; trace("%p, %p, %p", dev, regs, driver->name); if (dev == NULL || regs == NULL || driver == NULL || driver->name == NULL) return -EINVAL; udc = kzalloc(sizeof(struct ci13xxx), GFP_KERNEL); if (udc == NULL) return -ENOMEM; udc->lock = &udc_lock; udc->regs = regs; udc->udc_driver = driver; udc->gadget.ops = &usb_gadget_ops; udc->gadget.speed = USB_SPEED_UNKNOWN; udc->gadget.max_speed = USB_SPEED_HIGH; udc->gadget.is_otg = 0; udc->gadget.name = driver->name; /* alloc resources */ udc->qh_pool = dma_pool_create("ci13xxx_qh", dev, sizeof(struct ci13xxx_qh), 64, CI13XXX_PAGE_SIZE); if (udc->qh_pool == NULL) { retval = -ENOMEM; goto free_udc; } udc->td_pool = dma_pool_create("ci13xxx_td", dev, sizeof(struct ci13xxx_td), 64, CI13XXX_PAGE_SIZE); if (udc->td_pool == NULL) { retval = -ENOMEM; goto free_qh_pool; } INIT_DELAYED_WORK(&udc->rw_work, usb_do_remote_wakeup); retval = hw_device_init(regs); if (retval < 0) goto free_qh_pool; INIT_LIST_HEAD(&udc->gadget.ep_list); for (i = 0; i < hw_ep_max; i++) { struct ci13xxx_ep *mEp = &udc->ci13xxx_ep[i]; INIT_LIST_HEAD(&mEp->ep.ep_list); INIT_LIST_HEAD(&mEp->rw_queue); setup_timer(&mEp->prime_timer, ep_prime_timer_func, (unsigned long) mEp); } for (i = 0; i < hw_ep_max/2; i++) { for (j = RX; j <= TX; j++) { int k = i + j * hw_ep_max/2; struct ci13xxx_ep *mEp = &udc->ci13xxx_ep[k]; scnprintf(mEp->name, sizeof(mEp->name), "ep%i%s", i, (j == TX) ? "in" : "out"); mEp->lock = udc->lock; mEp->device = &udc->gadget.dev; mEp->td_pool = udc->td_pool; mEp->ep.name = mEp->name; mEp->ep.ops = &usb_ep_ops; usb_ep_set_maxpacket_limit(&mEp->ep, k ? USHRT_MAX : CTRL_PAYLOAD_MAX); INIT_LIST_HEAD(&mEp->qh.queue); mEp->qh.ptr = dma_pool_alloc(udc->qh_pool, GFP_KERNEL, &mEp->qh.dma); if (mEp->qh.ptr == NULL) retval = -ENOMEM; else memset(mEp->qh.ptr, 0, sizeof(*mEp->qh.ptr)); /* skip ep0 out and in endpoints */ if (i == 0) continue; list_add_tail(&mEp->ep.ep_list, &udc->gadget.ep_list); } } if (retval) goto free_dma_pools; udc->gadget.ep0 = &udc->ep0in.ep; pdata = dev->platform_data; if (pdata) { udc->gadget.usb_core_id = pdata->usb_core_id; if (pdata->enable_axi_prefetch) udc->gadget.extra_buf_alloc = EXTRA_ALLOCATION_SIZE; } if (udc->udc_driver->flags & CI13XXX_REQUIRE_TRANSCEIVER) { udc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2); if (udc->transceiver == NULL) { retval = -ENODEV; goto destroy_eps; } } if (!(udc->udc_driver->flags & CI13XXX_REGS_SHARED)) { retval = hw_device_reset(udc); if (retval) goto put_transceiver; } if (udc->transceiver) { retval = otg_set_peripheral(udc->transceiver->otg, &udc->gadget); if (retval) goto put_transceiver; } retval = usb_add_gadget_udc(dev, &udc->gadget); if (retval) goto remove_trans; #ifdef CONFIG_USB_GADGET_DEBUG_FILES retval = dbg_create_files(&udc->gadget.dev); if (retval) { pr_err("Registering sysfs files for debug failed!!!!\n"); goto del_udc; } #endif pm_runtime_no_callbacks(&udc->gadget.dev); pm_runtime_set_active(&udc->gadget.dev); pm_runtime_enable(&udc->gadget.dev); /* Use delayed LPM especially for composition-switch in LPM (suspend) */ pm_runtime_set_autosuspend_delay(&udc->gadget.dev, 2000); pm_runtime_use_autosuspend(&udc->gadget.dev); _udc = udc; return retval; del_udc: usb_del_gadget_udc(&udc->gadget); remove_trans: if (udc->transceiver) otg_set_peripheral(udc->transceiver->otg, &udc->gadget); err("error = %i", retval); put_transceiver: if (udc->transceiver) usb_put_phy(udc->transceiver); destroy_eps: destroy_eps(udc); free_dma_pools: dma_pool_destroy(udc->td_pool); free_qh_pool: dma_pool_destroy(udc->qh_pool); free_udc: kfree(udc); _udc = NULL; return retval; } /** * udc_remove: parent remove must call this to remove UDC * * No interrupts active, the IRQ has been released */ static void udc_remove(void) { struct ci13xxx *udc = _udc; if (udc == NULL) { err("EINVAL"); return; } usb_del_gadget_udc(&udc->gadget); if (udc->transceiver) { otg_set_peripheral(udc->transceiver->otg, &udc->gadget); usb_put_phy(udc->transceiver); } #ifdef CONFIG_USB_GADGET_DEBUG_FILES dbg_remove_files(&udc->gadget.dev); #endif destroy_eps(udc); dma_pool_destroy(udc->td_pool); dma_pool_destroy(udc->qh_pool); kfree(udc); _udc = NULL; }