M7350/bootable/bootloader/lk/platform/msm8994/acpuclock.c

616 lines
14 KiB
C
Raw Normal View History

2024-09-09 08:57:42 +00:00
/* Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#include <debug.h>
#include <reg.h>
#include <mmc.h>
#include <clock.h>
#include <pm8x41.h>
#include <platform/clock.h>
#include <platform/iomap.h>
#include <platform/timer.h>
#include <rpm-smd.h>
#include <regulator.h>
#include <platform.h>
#define RPM_CE_CLK_TYPE 0x6563
#define CE2_CLK_ID 0x1
#define RPM_SMD_KEY_RATE 0x007A484B
#define MAX_LOOPS 500
uint32_t CE2_CLK[][8]=
{
{
RPM_CE_CLK_TYPE, CE2_CLK_ID,
KEY_SOFTWARE_ENABLE, 4, GENERIC_DISABLE,
RPM_SMD_KEY_RATE, 4, 0,
},
{
RPM_CE_CLK_TYPE, CE2_CLK_ID,
KEY_SOFTWARE_ENABLE, 4, GENERIC_ENABLE,
RPM_SMD_KEY_RATE, 4, 176128,
},
};
void hsusb_clock_init(void)
{
int ret;
struct clk *iclk, *cclk;
ret = clk_get_set_enable("usb_iface_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set usb_iface_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("usb_core_clk", 75000000, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set usb_core_clk ret = %d\n", ret);
ASSERT(0);
}
/* Wait for the clocks to be stable since we are disabling soon after. */
mdelay(1);
iclk = clk_get("usb_iface_clk");
cclk = clk_get("usb_core_clk");
clk_disable(iclk);
clk_disable(cclk);
/* Wait for the clock disable to complete. */
mdelay(1);
/* Start the block reset for usb */
writel(1, USB_HS_BCR);
/* Wait for reset to complete. */
mdelay(1);
/* Take usb block out of reset */
writel(0, USB_HS_BCR);
/* Wait for the block to be brought out of reset. */
mdelay(1);
ret = clk_enable(iclk);
if(ret)
{
dprintf(CRITICAL, "failed to set usb_iface_clk after async ret = %d\n", ret);
ASSERT(0);
}
ret = clk_enable(cclk);
if(ret)
{
dprintf(CRITICAL, "failed to set usb_iface_clk after async ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("usb_phy_cfg_ahb2phy_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to enable usb_phy_cfg_ahb2phy_clk = %d\n", ret);
ASSERT(0);
}
}
void clock_init_mmc(uint32_t interface)
{
char clk_name[64];
int ret;
snprintf(clk_name, sizeof(clk_name), "sdc%u_iface_clk", interface);
/* enable interface clock */
ret = clk_get_set_enable(clk_name, 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set sdc%u_iface_clk ret = %d\n", interface, ret);
ASSERT(0);
}
}
/* Configure MMC clock */
void clock_config_mmc(uint32_t interface, uint32_t freq)
{
int ret = 0;
char clk_name[64];
snprintf(clk_name, sizeof(clk_name), "sdc%u_core_clk", interface);
if(freq == MMC_CLK_400KHZ)
{
ret = clk_get_set_enable(clk_name, 400000, 1);
}
else if(freq == MMC_CLK_50MHZ)
{
ret = clk_get_set_enable(clk_name, 50000000, 1);
}
else if(freq == MMC_CLK_96MHZ)
{
ret = clk_get_set_enable(clk_name, 100000000, 1);
}
else if(freq == MMC_CLK_192MHZ)
{
if (platform_is_msm8992())
ret = clk_get_set_enable(clk_name, 172000000, 1);
else
ret = clk_get_set_enable(clk_name, 192000000, 1);
}
else if(freq == MMC_CLK_200MHZ)
{
ret = clk_get_set_enable(clk_name, 200000000, 1);
}
else if(freq == MMC_CLK_400MHZ)
{
if (platform_is_msm8992())
ret = clk_get_set_enable(clk_name, 344000000, 1);
else
ret = clk_get_set_enable(clk_name, 384000000, 1);
}
else
{
dprintf(CRITICAL, "sdc frequency (%u) is not supported\n", freq);
ASSERT(0);
}
if(ret)
{
dprintf(CRITICAL, "failed to set sdc%u_core_clk ret = %d\n", interface, ret);
ASSERT(0);
}
}
/* Configure UART clock based on the UART block id*/
void clock_config_uart_dm(uint8_t id)
{
int ret;
char iclk[64];
char cclk[64];
snprintf(iclk, sizeof(iclk), "uart%u_iface_clk", id);
snprintf(cclk, sizeof(cclk), "uart%u_core_clk", id);
ret = clk_get_set_enable(iclk, 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set uart%u_iface_clk ret = %d\n", id, ret);
ASSERT(0);
}
ret = clk_get_set_enable(cclk, 7372800, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set uart%u_core_clk ret = %d\n", id, ret);
ASSERT(0);
}
}
/* Function to asynchronously reset CE (Crypto Engine).
* Function assumes that all the CE clocks are off.
*/
static void ce_async_reset(uint8_t instance)
{
if (instance == 2)
{
/* Start the block reset for CE */
writel(1, GCC_CE2_BCR);
udelay(2);
/* Take CE block out of reset */
writel(0, GCC_CE2_BCR);
udelay(2);
}
else
{
dprintf(CRITICAL, "Unsupported CE instance: %u\n", instance);
ASSERT(0);
}
}
void clock_ce_enable(uint8_t instance)
{
if (instance == 2)
rpm_send_data(&CE2_CLK[GENERIC_ENABLE][0], 24, RPM_REQUEST_TYPE);
else
{
dprintf(CRITICAL, "Unsupported CE instance: %u\n", instance);
ASSERT(0);
}
}
void clock_ce_disable(uint8_t instance)
{
if (instance == 2)
rpm_send_data(&CE2_CLK[GENERIC_DISABLE][0], 24, RPM_REQUEST_TYPE);
else
{
dprintf(CRITICAL, "Unsupported CE instance: %u\n", instance);
ASSERT(0);
}
}
void clock_config_ce(uint8_t instance)
{
/* Need to enable the clock before disabling since the clk_disable()
* has a check to default to nop when the clk_enable() is not called
* on that particular clock.
*/
clock_ce_enable(instance);
clock_ce_disable(instance);
ce_async_reset(instance);
clock_ce_enable(instance);
}
void clock_usb30_gdsc_enable(void)
{
uint32_t reg = readl(GCC_USB30_GDSCR);
reg &= ~(0x1);
writel(reg, GCC_USB30_GDSCR);
}
/* enables usb30 clocks */
void clock_usb30_init(void)
{
int ret;
ret = clk_get_set_enable("usb30_iface_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set usb30_iface_clk. ret = %d\n", ret);
ASSERT(0);
}
clock_usb30_gdsc_enable();
ret = clk_get_set_enable("usb30_master_clk", 125000000, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set usb30_master_clk. ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("usb30_phy_aux_clk", 1200000, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set usb30_phy_aux_clk. ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("usb30_mock_utmi_clk", 60000000, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set usb30_mock_utmi_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("usb30_sleep_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set usb30_sleep_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("usb_phy_cfg_ahb2phy_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to enable usb_phy_cfg_ahb2phy_clk = %d\n", ret);
ASSERT(0);
}
pm8x41_lnbb_clock_ctrl(1);
}
void clock_bumpup_pipe3_clk()
{
int ret = 0;
ret = clk_get_set_enable("usb30_pipe_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set usb30_pipe_clk. ret = %d\n", ret);
ASSERT(0);
}
return;
}
void mdp_gdsc_ctrl(uint8_t enable)
{
uint32_t reg = 0;
reg = readl(MDP_GDSCR);
if (enable) {
if (!(reg & GDSC_POWER_ON_BIT)) {
reg &= ~(BIT(0) | GDSC_EN_FEW_WAIT_MASK);
reg |= GDSC_EN_FEW_WAIT_256_MASK;
writel(reg, MDP_GDSCR);
while(!(readl(MDP_GDSCR) & (GDSC_POWER_ON_BIT)));
} else {
dprintf(INFO, "MDP GDSC already enabled\n");
}
} else {
reg |= BIT(0);
writel(reg, MDP_GDSCR);
while(readl(MDP_GDSCR) & (GDSC_POWER_ON_BIT));
}
}
/* Configure MDP clock */
void mdp_clock_enable(void)
{
int ret;
/* Set MDP clock to 240MHz */
ret = clk_get_set_enable("mdp_ahb_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mdp_ahb_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("mdss_mdp_clk_src", 300000000, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mdp_clk_src ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("mdss_vsync_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mdss vsync clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("mdss_mdp_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mdp_clk ret = %d\n", ret);
ASSERT(0);
}
}
void mdp_clock_disable()
{
clk_disable(clk_get("mdss_vsync_clk"));
clk_disable(clk_get("mdss_mdp_clk"));
clk_disable(clk_get("mdss_mdp_clk_src"));
clk_disable(clk_get("mdp_ahb_clk"));
}
void mmss_bus_clock_enable(void)
{
int ret;
/* Configure MMSSNOC AXI clock */
ret = clk_get_set_enable("mmss_mmssnoc_axi_clk", 300000000, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mmssnoc_axi_clk ret = %d\n", ret);
ASSERT(0);
}
/* Configure S0 AXI clock */
ret = clk_get_set_enable("mmss_s0_axi_clk", 300000000, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mmss_s0_axi_clk ret = %d\n", ret);
ASSERT(0);
}
/* Configure AXI clock */
ret = clk_get_set_enable("mdss_axi_clk", 300000000, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mdss_axi_clk ret = %d\n", ret);
ASSERT(0);
}
}
void mmss_bus_clock_disable(void)
{
/* Disable MDSS AXI clock */
clk_disable(clk_get("mdss_axi_clk"));
/* Disable MMSSNOC S0AXI clock */
clk_disable(clk_get("mmss_s0_axi_clk"));
/* Disable MMSSNOC AXI clock */
clk_disable(clk_get("mmss_mmssnoc_axi_clk"));
}
static void rcg_update_config(uint32_t reg)
{
int i;
for (i = 0; i < MAX_LOOPS; i++) {
if (!(readl(reg) & BIT(0)))
return;
udelay(1);
}
dprintf(CRITICAL, "failed to update rcg config for reg = 0x%x\n", reg);
ASSERT(0);
}
static void branch_clk_halt_check(uint32_t reg)
{
int i;
for (i = 0; i < MAX_LOOPS; i++) {
if (!(readl(reg) & BIT(31)))
return;
udelay(1);
}
dprintf(CRITICAL, "failed to enable branch for reg = 0x%x\n", reg);
ASSERT(0);
}
void mmss_dsi_clock_enable(uint32_t cfg_rcgr, uint32_t flags,
uint8_t pclk0_m, uint8_t pclk0_n, uint8_t pclk0_d)
{
int ret;
if (flags & MMSS_DSI_CLKS_FLAG_DSI0) {
/* Enable DSI0 branch clocks */
/* Set the source for DSI0 byte RCG */
writel(cfg_rcgr, DSI_BYTE0_CFG_RCGR);
/* Set the update RCG bit */
writel(0x1, DSI_BYTE0_CMD_RCGR);
rcg_update_config(DSI_BYTE0_CMD_RCGR);
/* Enable the branch clock */
writel(0x1, DSI_BYTE0_CBCR);
branch_clk_halt_check(DSI_BYTE0_CBCR);
/* Set the source for DSI0 pixel RCG */
writel(cfg_rcgr, DSI_PIXEL0_CFG_RCGR);
/* Set the MND for DSI0 pixel clock */
writel(pclk0_m, DSI_PIXEL0_M);
writel(pclk0_n, DSI_PIXEL0_N);
writel(pclk0_d, DSI_PIXEL0_D);
/* Set the update RCG bit */
writel(0x1, DSI_PIXEL0_CMD_RCGR);
rcg_update_config(DSI_PIXEL0_CMD_RCGR);
/* Enable the branch clock */
writel(0x1, DSI_PIXEL0_CBCR);
branch_clk_halt_check(DSI_PIXEL0_CBCR);
ret = clk_get_set_enable("mdss_esc0_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set esc0_clk ret = %d\n", ret);
ASSERT(0);
}
}
if (flags & MMSS_DSI_CLKS_FLAG_DSI1) {
/* Enable DSI1 branch clocks */
/* Set the source for DSI1 byte RCG */
writel(cfg_rcgr, DSI_BYTE1_CFG_RCGR);
/* Set the update RCG bit */
writel(0x1, DSI_BYTE1_CMD_RCGR);
rcg_update_config(DSI_BYTE1_CMD_RCGR);
/* Enable the branch clock */
writel(0x1, DSI_BYTE1_CBCR);
branch_clk_halt_check(DSI_BYTE1_CBCR);
/* Set the source for DSI1 pixel RCG */
writel(cfg_rcgr, DSI_PIXEL1_CFG_RCGR);
/* Set the MND for DSI1 pixel clock */
writel(pclk0_m, DSI_PIXEL1_M);
writel(pclk0_n, DSI_PIXEL1_N);
writel(pclk0_d, DSI_PIXEL1_D);
/* Set the update RCG bit */
writel(0x1, DSI_PIXEL1_CMD_RCGR);
rcg_update_config(DSI_PIXEL1_CMD_RCGR);
/* Enable the branch clock */
writel(0x1, DSI_PIXEL1_CBCR);
branch_clk_halt_check(DSI_PIXEL1_CBCR);
ret = clk_get_set_enable("mdss_esc1_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set esc1_clk ret = %d\n", ret);
ASSERT(0);
}
}
}
void mmss_dsi_clock_disable(uint32_t flags)
{
if (flags & MMSS_DSI_CLKS_FLAG_DSI0) {
clk_disable(clk_get("mdss_esc0_clk"));
writel(0x0, DSI_BYTE0_CBCR);
writel(0x0, DSI_PIXEL0_CBCR);
}
if (flags & MMSS_DSI_CLKS_FLAG_DSI1) {
clk_disable(clk_get("mdss_esc1_clk"));
writel(0x0, DSI_BYTE1_CBCR);
writel(0x0, DSI_PIXEL1_CBCR);
}
}
void hdmi_core_ahb_clk_enable(void)
{
int ret;
/* Configure hdmi ahb clock */
ret = clk_get_set_enable("hdmi_ahb_clk", 0, 1);
if(ret) {
dprintf(CRITICAL, "failed to set hdmi_ahb_clk ret = %d\n", ret);
ASSERT(0);
}
/* Configure hdmi core clock */
ret = clk_get_set_enable("hdmi_core_clk", 19200000, 1);
if(ret) {
dprintf(CRITICAL, "failed to set hdmi_core_clk ret = %d\n", ret);
ASSERT(0);
}
}
void hdmi_pixel_clk_enable(uint32_t rate)
{
int ret;
/* Configure hdmi pixel clock */
ret = clk_get_set_enable("hdmi_extp_clk", rate, 1);
if(ret) {
dprintf(CRITICAL, "failed to set hdmi_extp_clk ret = %d\n", ret);
ASSERT(0);
}
}
void hdmi_pixel_clk_disable(void)
{
clk_disable(clk_get("hdmi_extp_clk"));
}
void hdmi_core_ahb_clk_disable(void)
{
clk_disable(clk_get("hdmi_core_clk"));
clk_disable(clk_get("hdmi_ahb_clk"));
}