/* Copyright (c) 2013-2015, The Linux Foundation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of The Linux Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #define RPM_CE_CLK_TYPE 0x6563 #define CE2_CLK_ID 0x1 #define RPM_SMD_KEY_RATE 0x007A484B #define MAX_LOOPS 500 uint32_t CE2_CLK[][8]= { { RPM_CE_CLK_TYPE, CE2_CLK_ID, KEY_SOFTWARE_ENABLE, 4, GENERIC_DISABLE, RPM_SMD_KEY_RATE, 4, 0, }, { RPM_CE_CLK_TYPE, CE2_CLK_ID, KEY_SOFTWARE_ENABLE, 4, GENERIC_ENABLE, RPM_SMD_KEY_RATE, 4, 176128, }, }; void hsusb_clock_init(void) { int ret; struct clk *iclk, *cclk; ret = clk_get_set_enable("usb_iface_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set usb_iface_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("usb_core_clk", 75000000, 1); if(ret) { dprintf(CRITICAL, "failed to set usb_core_clk ret = %d\n", ret); ASSERT(0); } /* Wait for the clocks to be stable since we are disabling soon after. */ mdelay(1); iclk = clk_get("usb_iface_clk"); cclk = clk_get("usb_core_clk"); clk_disable(iclk); clk_disable(cclk); /* Wait for the clock disable to complete. */ mdelay(1); /* Start the block reset for usb */ writel(1, USB_HS_BCR); /* Wait for reset to complete. */ mdelay(1); /* Take usb block out of reset */ writel(0, USB_HS_BCR); /* Wait for the block to be brought out of reset. */ mdelay(1); ret = clk_enable(iclk); if(ret) { dprintf(CRITICAL, "failed to set usb_iface_clk after async ret = %d\n", ret); ASSERT(0); } ret = clk_enable(cclk); if(ret) { dprintf(CRITICAL, "failed to set usb_iface_clk after async ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("usb_phy_cfg_ahb2phy_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to enable usb_phy_cfg_ahb2phy_clk = %d\n", ret); ASSERT(0); } } void clock_init_mmc(uint32_t interface) { char clk_name[64]; int ret; snprintf(clk_name, sizeof(clk_name), "sdc%u_iface_clk", interface); /* enable interface clock */ ret = clk_get_set_enable(clk_name, 0, 1); if(ret) { dprintf(CRITICAL, "failed to set sdc%u_iface_clk ret = %d\n", interface, ret); ASSERT(0); } } /* Configure MMC clock */ void clock_config_mmc(uint32_t interface, uint32_t freq) { int ret = 0; char clk_name[64]; snprintf(clk_name, sizeof(clk_name), "sdc%u_core_clk", interface); if(freq == MMC_CLK_400KHZ) { ret = clk_get_set_enable(clk_name, 400000, 1); } else if(freq == MMC_CLK_50MHZ) { ret = clk_get_set_enable(clk_name, 50000000, 1); } else if(freq == MMC_CLK_96MHZ) { ret = clk_get_set_enable(clk_name, 100000000, 1); } else if(freq == MMC_CLK_192MHZ) { if (platform_is_msm8992()) ret = clk_get_set_enable(clk_name, 172000000, 1); else ret = clk_get_set_enable(clk_name, 192000000, 1); } else if(freq == MMC_CLK_200MHZ) { ret = clk_get_set_enable(clk_name, 200000000, 1); } else if(freq == MMC_CLK_400MHZ) { if (platform_is_msm8992()) ret = clk_get_set_enable(clk_name, 344000000, 1); else ret = clk_get_set_enable(clk_name, 384000000, 1); } else { dprintf(CRITICAL, "sdc frequency (%u) is not supported\n", freq); ASSERT(0); } if(ret) { dprintf(CRITICAL, "failed to set sdc%u_core_clk ret = %d\n", interface, ret); ASSERT(0); } } /* Configure UART clock based on the UART block id*/ void clock_config_uart_dm(uint8_t id) { int ret; char iclk[64]; char cclk[64]; snprintf(iclk, sizeof(iclk), "uart%u_iface_clk", id); snprintf(cclk, sizeof(cclk), "uart%u_core_clk", id); ret = clk_get_set_enable(iclk, 0, 1); if(ret) { dprintf(CRITICAL, "failed to set uart%u_iface_clk ret = %d\n", id, ret); ASSERT(0); } ret = clk_get_set_enable(cclk, 7372800, 1); if(ret) { dprintf(CRITICAL, "failed to set uart%u_core_clk ret = %d\n", id, ret); ASSERT(0); } } /* Function to asynchronously reset CE (Crypto Engine). * Function assumes that all the CE clocks are off. */ static void ce_async_reset(uint8_t instance) { if (instance == 2) { /* Start the block reset for CE */ writel(1, GCC_CE2_BCR); udelay(2); /* Take CE block out of reset */ writel(0, GCC_CE2_BCR); udelay(2); } else { dprintf(CRITICAL, "Unsupported CE instance: %u\n", instance); ASSERT(0); } } void clock_ce_enable(uint8_t instance) { if (instance == 2) rpm_send_data(&CE2_CLK[GENERIC_ENABLE][0], 24, RPM_REQUEST_TYPE); else { dprintf(CRITICAL, "Unsupported CE instance: %u\n", instance); ASSERT(0); } } void clock_ce_disable(uint8_t instance) { if (instance == 2) rpm_send_data(&CE2_CLK[GENERIC_DISABLE][0], 24, RPM_REQUEST_TYPE); else { dprintf(CRITICAL, "Unsupported CE instance: %u\n", instance); ASSERT(0); } } void clock_config_ce(uint8_t instance) { /* Need to enable the clock before disabling since the clk_disable() * has a check to default to nop when the clk_enable() is not called * on that particular clock. */ clock_ce_enable(instance); clock_ce_disable(instance); ce_async_reset(instance); clock_ce_enable(instance); } void clock_usb30_gdsc_enable(void) { uint32_t reg = readl(GCC_USB30_GDSCR); reg &= ~(0x1); writel(reg, GCC_USB30_GDSCR); } /* enables usb30 clocks */ void clock_usb30_init(void) { int ret; ret = clk_get_set_enable("usb30_iface_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set usb30_iface_clk. ret = %d\n", ret); ASSERT(0); } clock_usb30_gdsc_enable(); ret = clk_get_set_enable("usb30_master_clk", 125000000, 1); if(ret) { dprintf(CRITICAL, "failed to set usb30_master_clk. ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("usb30_phy_aux_clk", 1200000, 1); if(ret) { dprintf(CRITICAL, "failed to set usb30_phy_aux_clk. ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("usb30_mock_utmi_clk", 60000000, 1); if(ret) { dprintf(CRITICAL, "failed to set usb30_mock_utmi_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("usb30_sleep_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set usb30_sleep_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("usb_phy_cfg_ahb2phy_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to enable usb_phy_cfg_ahb2phy_clk = %d\n", ret); ASSERT(0); } pm8x41_lnbb_clock_ctrl(1); } void clock_bumpup_pipe3_clk() { int ret = 0; ret = clk_get_set_enable("usb30_pipe_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set usb30_pipe_clk. ret = %d\n", ret); ASSERT(0); } return; } void mdp_gdsc_ctrl(uint8_t enable) { uint32_t reg = 0; reg = readl(MDP_GDSCR); if (enable) { if (!(reg & GDSC_POWER_ON_BIT)) { reg &= ~(BIT(0) | GDSC_EN_FEW_WAIT_MASK); reg |= GDSC_EN_FEW_WAIT_256_MASK; writel(reg, MDP_GDSCR); while(!(readl(MDP_GDSCR) & (GDSC_POWER_ON_BIT))); } else { dprintf(INFO, "MDP GDSC already enabled\n"); } } else { reg |= BIT(0); writel(reg, MDP_GDSCR); while(readl(MDP_GDSCR) & (GDSC_POWER_ON_BIT)); } } /* Configure MDP clock */ void mdp_clock_enable(void) { int ret; /* Set MDP clock to 240MHz */ ret = clk_get_set_enable("mdp_ahb_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set mdp_ahb_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mdss_mdp_clk_src", 300000000, 1); if(ret) { dprintf(CRITICAL, "failed to set mdp_clk_src ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mdss_vsync_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set mdss vsync clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mdss_mdp_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set mdp_clk ret = %d\n", ret); ASSERT(0); } } void mdp_clock_disable() { clk_disable(clk_get("mdss_vsync_clk")); clk_disable(clk_get("mdss_mdp_clk")); clk_disable(clk_get("mdss_mdp_clk_src")); clk_disable(clk_get("mdp_ahb_clk")); } void mmss_bus_clock_enable(void) { int ret; /* Configure MMSSNOC AXI clock */ ret = clk_get_set_enable("mmss_mmssnoc_axi_clk", 300000000, 1); if(ret) { dprintf(CRITICAL, "failed to set mmssnoc_axi_clk ret = %d\n", ret); ASSERT(0); } /* Configure S0 AXI clock */ ret = clk_get_set_enable("mmss_s0_axi_clk", 300000000, 1); if(ret) { dprintf(CRITICAL, "failed to set mmss_s0_axi_clk ret = %d\n", ret); ASSERT(0); } /* Configure AXI clock */ ret = clk_get_set_enable("mdss_axi_clk", 300000000, 1); if(ret) { dprintf(CRITICAL, "failed to set mdss_axi_clk ret = %d\n", ret); ASSERT(0); } } void mmss_bus_clock_disable(void) { /* Disable MDSS AXI clock */ clk_disable(clk_get("mdss_axi_clk")); /* Disable MMSSNOC S0AXI clock */ clk_disable(clk_get("mmss_s0_axi_clk")); /* Disable MMSSNOC AXI clock */ clk_disable(clk_get("mmss_mmssnoc_axi_clk")); } static void rcg_update_config(uint32_t reg) { int i; for (i = 0; i < MAX_LOOPS; i++) { if (!(readl(reg) & BIT(0))) return; udelay(1); } dprintf(CRITICAL, "failed to update rcg config for reg = 0x%x\n", reg); ASSERT(0); } static void branch_clk_halt_check(uint32_t reg) { int i; for (i = 0; i < MAX_LOOPS; i++) { if (!(readl(reg) & BIT(31))) return; udelay(1); } dprintf(CRITICAL, "failed to enable branch for reg = 0x%x\n", reg); ASSERT(0); } void mmss_dsi_clock_enable(uint32_t cfg_rcgr, uint32_t flags, uint8_t pclk0_m, uint8_t pclk0_n, uint8_t pclk0_d) { int ret; if (flags & MMSS_DSI_CLKS_FLAG_DSI0) { /* Enable DSI0 branch clocks */ /* Set the source for DSI0 byte RCG */ writel(cfg_rcgr, DSI_BYTE0_CFG_RCGR); /* Set the update RCG bit */ writel(0x1, DSI_BYTE0_CMD_RCGR); rcg_update_config(DSI_BYTE0_CMD_RCGR); /* Enable the branch clock */ writel(0x1, DSI_BYTE0_CBCR); branch_clk_halt_check(DSI_BYTE0_CBCR); /* Set the source for DSI0 pixel RCG */ writel(cfg_rcgr, DSI_PIXEL0_CFG_RCGR); /* Set the MND for DSI0 pixel clock */ writel(pclk0_m, DSI_PIXEL0_M); writel(pclk0_n, DSI_PIXEL0_N); writel(pclk0_d, DSI_PIXEL0_D); /* Set the update RCG bit */ writel(0x1, DSI_PIXEL0_CMD_RCGR); rcg_update_config(DSI_PIXEL0_CMD_RCGR); /* Enable the branch clock */ writel(0x1, DSI_PIXEL0_CBCR); branch_clk_halt_check(DSI_PIXEL0_CBCR); ret = clk_get_set_enable("mdss_esc0_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set esc0_clk ret = %d\n", ret); ASSERT(0); } } if (flags & MMSS_DSI_CLKS_FLAG_DSI1) { /* Enable DSI1 branch clocks */ /* Set the source for DSI1 byte RCG */ writel(cfg_rcgr, DSI_BYTE1_CFG_RCGR); /* Set the update RCG bit */ writel(0x1, DSI_BYTE1_CMD_RCGR); rcg_update_config(DSI_BYTE1_CMD_RCGR); /* Enable the branch clock */ writel(0x1, DSI_BYTE1_CBCR); branch_clk_halt_check(DSI_BYTE1_CBCR); /* Set the source for DSI1 pixel RCG */ writel(cfg_rcgr, DSI_PIXEL1_CFG_RCGR); /* Set the MND for DSI1 pixel clock */ writel(pclk0_m, DSI_PIXEL1_M); writel(pclk0_n, DSI_PIXEL1_N); writel(pclk0_d, DSI_PIXEL1_D); /* Set the update RCG bit */ writel(0x1, DSI_PIXEL1_CMD_RCGR); rcg_update_config(DSI_PIXEL1_CMD_RCGR); /* Enable the branch clock */ writel(0x1, DSI_PIXEL1_CBCR); branch_clk_halt_check(DSI_PIXEL1_CBCR); ret = clk_get_set_enable("mdss_esc1_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set esc1_clk ret = %d\n", ret); ASSERT(0); } } } void mmss_dsi_clock_disable(uint32_t flags) { if (flags & MMSS_DSI_CLKS_FLAG_DSI0) { clk_disable(clk_get("mdss_esc0_clk")); writel(0x0, DSI_BYTE0_CBCR); writel(0x0, DSI_PIXEL0_CBCR); } if (flags & MMSS_DSI_CLKS_FLAG_DSI1) { clk_disable(clk_get("mdss_esc1_clk")); writel(0x0, DSI_BYTE1_CBCR); writel(0x0, DSI_PIXEL1_CBCR); } } void hdmi_core_ahb_clk_enable(void) { int ret; /* Configure hdmi ahb clock */ ret = clk_get_set_enable("hdmi_ahb_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set hdmi_ahb_clk ret = %d\n", ret); ASSERT(0); } /* Configure hdmi core clock */ ret = clk_get_set_enable("hdmi_core_clk", 19200000, 1); if(ret) { dprintf(CRITICAL, "failed to set hdmi_core_clk ret = %d\n", ret); ASSERT(0); } } void hdmi_pixel_clk_enable(uint32_t rate) { int ret; /* Configure hdmi pixel clock */ ret = clk_get_set_enable("hdmi_extp_clk", rate, 1); if(ret) { dprintf(CRITICAL, "failed to set hdmi_extp_clk ret = %d\n", ret); ASSERT(0); } } void hdmi_pixel_clk_disable(void) { clk_disable(clk_get("hdmi_extp_clk")); } void hdmi_core_ahb_clk_disable(void) { clk_disable(clk_get("hdmi_core_clk")); clk_disable(clk_get("hdmi_ahb_clk")); }