pixelfoo-apps/src/bin/dualmaze/main.rs

347 lines
10 KiB
Rust

use std::cmp::Ordering;
use std::collections::BinaryHeap;
use std::env::args;
use std::io::stdout;
use std::io::Write;
use std::thread::sleep;
use std::time::Duration;
use chrono::Local;
use chrono::Timelike;
use rand::thread_rng;
use rand::Rng;
use pixelfoo::color::Color;
use pixelfoo::point2d::p2d;
use pixelfoo::point2d::Point2d;
use pixelfoo::vec2d::v2d;
use pixelfoo::vec2d::Vec2d;
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum Square {
Unused,
Unknown { prio: i32 },
Corridor,
Wall,
Start,
Finish,
}
impl Square {
pub fn is_unknown(&self) -> bool {
match self {
Square::Unknown { .. } => true,
_ => false,
}
}
}
struct Board(Vec<Vec<Square>>);
fn send<T: Write>(w: &mut T, board: &Board) -> std::io::Result<()> {
for line in &board.0 {
for square in line {
let c = match square {
Square::Unused => Color::black(),
Square::Unknown { prio } => {
if *prio == 0 {
Color::black()
} else if *prio > 0 {
Color::lightblue()
} else {
Color::darkyellow()
}
}
Square::Corridor => Color::yellow(),
Square::Wall => Color::darkblue(),
Square::Start => Color::red(),
Square::Finish => Color::green(),
};
w.write_all(&c.rgb())?;
}
}
w.flush()
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum Orientation {
Horizontal,
Vertical,
}
impl Board {
fn new(board_size: Vec2d, maze_size: Vec2d) -> Board {
Board(
(0..board_size.y)
.map(move |y| {
(0..board_size.x)
.map(|x| {
if x < maze_size.x && y < maze_size.y {
if x == 0 || x == maze_size.x - 1 || y == 0 || y == maze_size.y - 1
{
Square::Wall
} else if x % 2 != 0 && y % 2 != 0 {
Square::Corridor
} else {
Square::Unknown { prio: 0 }
}
} else {
Square::Unused
}
})
.collect::<Vec<_>>()
})
.collect::<Vec<_>>(),
)
}
fn get(&self, pos: Point2d) -> Square {
self.0[pos.y as usize][pos.x as usize]
}
fn set(&mut self, pos: Point2d, sq: Square) {
self.0[pos.y as usize][pos.x as usize] = sq;
}
fn set_orientation(&mut self, desired: Orientation, pos: Point2d) {
let sq = self.get(pos);
match sq {
Square::Unknown { .. } => {
let prio;
if pos.x % 2 == 0 && pos.y % 2 != 0 {
// horizontal corridor, vertical wall
prio = if desired == Orientation::Vertical {
10
} else {
-10
};
} else if pos.x % 2 != 0 && pos.y % 2 == 0 {
// vertical corridor, horizontal wall
prio = if desired == Orientation::Horizontal {
10
} else {
-10
};
} else {
// always corridor at the end
prio = 0;
}
self.set(pos, Square::Unknown { prio });
}
_ => (),
}
}
fn set_horizontal(&mut self, pos: Point2d) {
self.set_orientation(Orientation::Horizontal, pos);
}
fn set_vertical(&mut self, pos: Point2d) {
self.set_orientation(Orientation::Vertical, pos);
}
fn draw_horizontal_segment(&mut self, pos: Point2d, size: Vec2d) {
for x in 0..size.x {
let xn = size.x - 1 - x;
self.set_horizontal(pos + v2d(x, 0));
for y in 1..x.min(xn).min(size.y / 2) + 1 {
self.set_horizontal(pos + v2d(x, y));
self.set_horizontal(pos + v2d(x, -y));
}
}
}
fn draw_vertical_segment(&mut self, pos: Point2d, size: Vec2d) {
for y in 0..size.y {
let yn = size.y - 1 - y;
self.set_vertical(pos + v2d(0, y));
for x in 1..y.min(yn).min(size.x / 2) + 1 {
self.set_vertical(pos + v2d(x, y));
self.set_vertical(pos + v2d(-x, y));
}
}
}
fn draw_7_segments(&mut self, pos: Point2d, size: Vec2d, segments: u8) {
let length = size.x;
let width = size.y;
let delta = length + 1;
let hsize = v2d(length, width);
let vsize = v2d(width, length);
if (segments & (1 << 0)) != 0 {
self.draw_horizontal_segment(pos + v2d(1, 0), hsize);
}
if (segments & (1 << 1)) != 0 {
self.draw_vertical_segment(pos + v2d(delta, 1), vsize);
}
if (segments & (1 << 2)) != 0 {
self.draw_vertical_segment(pos + v2d(delta, delta + 1), vsize);
}
if (segments & (1 << 3)) != 0 {
self.draw_horizontal_segment(pos + v2d(1, 2 * delta), hsize);
}
if (segments & (1 << 4)) != 0 {
self.draw_vertical_segment(pos + v2d(0, delta + 1), vsize);
}
if (segments & (1 << 5)) != 0 {
self.draw_vertical_segment(pos + v2d(0, 1), vsize);
}
if (segments & (1 << 6)) != 0 {
self.draw_horizontal_segment(pos + v2d(1, delta), hsize);
}
}
fn draw_digit(&mut self, pos: Point2d, size: Vec2d, digit: u8) {
let segment_table = vec![0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07, 0x7f, 0x6f];
let segments = segment_table[digit as usize];
self.draw_7_segments(pos, size, segments);
}
}
#[derive(Debug)]
struct Move {
from: Point2d,
dir: Vec2d,
prio: i32,
}
impl PartialEq for Move {
fn eq(&self, other: &Move) -> bool {
self.prio == other.prio
}
}
impl Eq for Move {}
impl PartialOrd for Move {
fn partial_cmp(&self, other: &Move) -> Option<Ordering> {
self.prio.partial_cmp(&other.prio)
}
}
impl Ord for Move {
fn cmp(&self, other: &Move) -> Ordering {
self.prio.cmp(&other.prio)
}
}
fn add_move<R>(board: &Board, open: &mut BinaryHeap<Move>, rng: &mut R, from: Point2d, dir: Vec2d)
where
R: Rng,
{
if let Square::Unknown { prio } = board.get(from + dir) {
open.push(Move {
from,
dir,
prio: prio * 100 + rng.gen_range(0, 1000),
});
}
}
const DEFAULT_ARG: isize = 16;
fn main() -> std::io::Result<()> {
let args = args().collect::<Vec<_>>();
eprintln!("executing {}", args[0]);
let x_size = args[1].parse::<usize>().unwrap();
let y_size = args[2].parse::<usize>().unwrap();
let arg = args[3].parse::<isize>().unwrap_or(DEFAULT_ARG);
eprintln!("screen size {}x{}, arg {}", x_size, y_size, arg);
let mut rng = thread_rng();
let t_frame = 0.040; // s
let delay = Duration::new(0, (1_000_000_000.0 * t_frame) as u32);
let board_size = v2d(x_size as i32, y_size as i32);
// round down to odd size for maze
let maze_size = v2d(
(board_size.x - 1) / 2 * 2 + 1,
(board_size.y - 1) / 2 * 2 + 1,
);
let mut board = Board(Vec::new());
let mut open = BinaryHeap::new();
let mut last_drawn_minute = 99;
loop {
if open.is_empty() {
// get time
let dt = Local::now();
let h = dt.hour();
let m = dt.minute();
if m != last_drawn_minute {
last_drawn_minute = m;
board = Board::new(board_size, maze_size);
// draw time in prios
let segment_size = v2d(11, 5);
board.draw_digit(p2d(5, 7), segment_size, (h / 10) as u8);
board.draw_digit(p2d(23, 7), segment_size, (h % 10) as u8);
board.draw_digit(p2d(41, 7), segment_size, (m / 10) as u8);
board.draw_digit(p2d(59, 7), segment_size, (m % 10) as u8);
// start building walls from the border
for x in (2..(maze_size.x - 2)).step_by(2) {
add_move(&board, &mut open, &mut rng, p2d(x, 0), v2d(0, 1));
add_move(
&board,
&mut open,
&mut rng,
p2d(x, maze_size.y - 1),
v2d(0, -1),
);
}
for y in (2..(maze_size.y - 2)).step_by(2) {
add_move(&board, &mut open, &mut rng, p2d(0, y), v2d(1, 0));
add_move(
&board,
&mut open,
&mut rng,
p2d(maze_size.x - 1, y),
v2d(-1, 0),
);
}
}
}
// draw maze
let work = arg.max(1);
let mut count = 0;
while !open.is_empty() && count < work {
let Move {
from: p0,
dir: dir0,
..
} = open.pop().unwrap();
let p1 = p0 + dir0;
let p2 = p1 + dir0;
if board.get(p1).is_unknown() {
board.set(p1, Square::Wall);
board.set(p2, Square::Wall);
for dir1 in Vec2d::directions() {
let p3 = p2 + dir1;
let p4 = p3 + dir1;
if board.get(p3).is_unknown() {
if board.get(p4).is_unknown() {
add_move(&board, &mut open, &mut rng, p2, dir1);
} else {
board.set(p3, Square::Corridor);
}
}
}
count += 1;
}
if open.is_empty() {
board.set(p2d(1, 1), Square::Start);
board.set(p2d(maze_size.x - 2, maze_size.y - 2), Square::Finish);
}
}
let mut buf = Vec::with_capacity((board_size.x * board_size.y * 3) as usize);
send(&mut buf, &board)?;
stdout().write_all(&buf)?;
stdout().flush()?;
sleep(delay);
}
}