Initial commit
This commit is contained in:
commit
197df1c46b
61
convergence.py
Executable file
61
convergence.py
Executable file
@ -0,0 +1,61 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
import numpy as np
|
||||||
|
import time
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import colorsys
|
||||||
|
Nx = int(sys.argv[1])
|
||||||
|
Ny = int(sys.argv[2])
|
||||||
|
N = max(Nx, Ny)
|
||||||
|
|
||||||
|
def CpxRandNormal(min, max, N):
|
||||||
|
mu = (min+max)/2
|
||||||
|
sigma = (max-min)/2
|
||||||
|
return np.random.normal(mu, sigma, (N, N))+1.0j*np.random.normal(mu, sigma, (N, N))
|
||||||
|
def CpxRand(min, max, N):
|
||||||
|
return np.random.uniform(min, max, (N, N))+1.0j*np.random.uniform(min, max, (N, N))
|
||||||
|
|
||||||
|
A = CpxRandNormal(-100, 100, N)
|
||||||
|
B = CpxRand(-1, 1, N)*0.1
|
||||||
|
C = CpxRand(-1, 1, N)
|
||||||
|
|
||||||
|
A_ex = np.linalg.inv(np.eye(N)-B)@C
|
||||||
|
|
||||||
|
dir = -1
|
||||||
|
solve = True
|
||||||
|
t = 0
|
||||||
|
while True:
|
||||||
|
t += 0.003
|
||||||
|
if solve:
|
||||||
|
A = 0.9*A+0.1*(B@A+C)
|
||||||
|
else:
|
||||||
|
A += CpxRandNormal(0, 0.008, N)
|
||||||
|
diff = A-A_ex
|
||||||
|
#angles = (np.angle(diff)+np.pi)/(2*np.pi
|
||||||
|
#diff = np.abs(diff)
|
||||||
|
#diff = 1-diff/(1+diff)
|
||||||
|
a = np.abs(np.real(diff))
|
||||||
|
a = a/(a+1)
|
||||||
|
b = np.abs(np.imag(diff))
|
||||||
|
b = b/(b+1)
|
||||||
|
img = np.zeros((Ny, Nx, 3))
|
||||||
|
for x in range(Nx):
|
||||||
|
for y in range(Ny):
|
||||||
|
c = colorsys.hsv_to_rgb((t+0.2+a[x, y]*0.2)%1, 1, 0.5*b[x, y]+0.5)
|
||||||
|
img[y,x,:] = np.array(c)*255
|
||||||
|
#img[:,:,0] = np.minimum(np.abs(diff*255).astype(int), 255)[:Ny,:Nx]
|
||||||
|
out = img.reshape((Nx*Ny*3,)).astype(np.uint8)
|
||||||
|
#A += np.random.uniform(-0.01, 0.01, (N, N))
|
||||||
|
|
||||||
|
#print(len(out))
|
||||||
|
os.write(1, out.tobytes())
|
||||||
|
|
||||||
|
if solve and np.sum(np.abs(diff)) <= 0.001*N*N:
|
||||||
|
solve = False
|
||||||
|
elif not solve and np.sum(np.abs(diff)) >= 1*N*N:
|
||||||
|
solve = True
|
||||||
|
|
||||||
|
#os.write(2, b"frame")
|
||||||
|
#print(angles, diff)
|
||||||
|
|
||||||
|
time.sleep(0.01)
|
81
pendlum.py
Executable file
81
pendlum.py
Executable file
@ -0,0 +1,81 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
import numpy as np
|
||||||
|
import sys
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
import colorsys
|
||||||
|
|
||||||
|
Nx = int(sys.argv[1])
|
||||||
|
Ny = int(sys.argv[2])
|
||||||
|
N = 100
|
||||||
|
iterations = 2
|
||||||
|
try:
|
||||||
|
N = int(sys.argv[3])
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def rk4(f, x, dt):
|
||||||
|
k1 = f(x)
|
||||||
|
k2 = f(x+k1*dt/2)
|
||||||
|
k3 = f(x+k2*dt/2)
|
||||||
|
k4 = f(x+k3*dt)
|
||||||
|
return x+dt*(k1+2*k2+2*k3+k4)/6.0
|
||||||
|
dt = 0.08
|
||||||
|
m = 1
|
||||||
|
l = 1
|
||||||
|
g = 1
|
||||||
|
|
||||||
|
def sq(x): return x*x
|
||||||
|
|
||||||
|
def rhs(x):
|
||||||
|
phi1 = x[0]
|
||||||
|
p1 = x[1]
|
||||||
|
phi2 = x[2]
|
||||||
|
p2 = x[3]
|
||||||
|
|
||||||
|
dphi1 = 6/(m*l*l)*(2*p1-3*np.cos(phi1-phi2)*p2)/(16-9*sq(np.cos(phi1-phi2)))
|
||||||
|
dphi2 = 6/(m*l*l)*(8*p2-3*np.cos(phi1-phi2)*p1)/(16-9*sq(np.cos(phi1-phi2)))
|
||||||
|
|
||||||
|
dp1 = -0.5*m*l*l*(dphi1*dphi2*np.sin(phi1-phi2)+3*g/l*np.sin(phi1))
|
||||||
|
dp2 = -0.5*m*l*l*(-dphi1*dphi2*np.sin(phi1-phi2)+g/l*np.sin(phi2))
|
||||||
|
return np.array([dphi1, dp1, dphi2, dp2])
|
||||||
|
|
||||||
|
s = np.array([np.pi+0.1, 0, np.pi-0.1, 0])
|
||||||
|
|
||||||
|
angles = np.linspace(np.pi, np.pi/3, N)+np.random.uniform(-np.pi/6/N, np.pi/6/N, N)
|
||||||
|
angles = np.random.uniform(-np.pi/6, np.pi/3, N)+np.pi
|
||||||
|
states = [np.array([np.pi, 0, a, 0]) for a in angles]
|
||||||
|
|
||||||
|
def clamp(x, min_, max_):
|
||||||
|
return max(min_, min(max_, x))
|
||||||
|
|
||||||
|
buffer = bytearray(b"\x00"*Nx*Ny*3)
|
||||||
|
|
||||||
|
def setpixel(x, y, r, g, b):
|
||||||
|
xi = int(Nx*(x+1.2)/2.4)
|
||||||
|
yi = int(Ny*(y+1.2)/2.4)
|
||||||
|
if xi < 0 or xi >= Nx or yi < 0 or yi >= Ny:
|
||||||
|
return
|
||||||
|
idx = xi+Nx*yi
|
||||||
|
buffer[3*idx+0] = r
|
||||||
|
buffer[3*idx+1] = g
|
||||||
|
buffer[3*idx+2] = b
|
||||||
|
timestep = 0
|
||||||
|
timefac = 0.03
|
||||||
|
while True:
|
||||||
|
timestep += 1
|
||||||
|
for s, i in zip(states, range(len(states))):
|
||||||
|
phi1 = s[0]
|
||||||
|
phi2 = s[2]
|
||||||
|
x1 = np.sin(phi1)*l
|
||||||
|
y1 = np.cos(phi1)*l
|
||||||
|
x2 = np.sin(phi2)*l+x1
|
||||||
|
y2 = np.cos(phi2)*l+y1
|
||||||
|
h = 0.2*i/N+0*timestep*timefac/iterations
|
||||||
|
r, g, b = colorsys.hsv_to_rgb(h%1, 1, 1)
|
||||||
|
setpixel(x2, y2, int(r*255), int(g*255), int(b*255))
|
||||||
|
states[i] = rk4(rhs, s, dt/iterations)
|
||||||
|
if timestep > 10*iterations and timestep % iterations == 0:
|
||||||
|
#time.sleep(0.01)
|
||||||
|
os.write(1, buffer)
|
||||||
|
|
80
quadratic.py
Executable file
80
quadratic.py
Executable file
@ -0,0 +1,80 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import time
|
||||||
|
import colorsys
|
||||||
|
|
||||||
|
Nx = int(sys.argv[1])
|
||||||
|
Ny = int(sys.argv[2])
|
||||||
|
iterations = 10
|
||||||
|
|
||||||
|
class Slider:
|
||||||
|
def __init__(self, lo, hi, step, pos=0):
|
||||||
|
self.lo = lo
|
||||||
|
self.hi = hi
|
||||||
|
self.stepSize = step
|
||||||
|
self.pos = 0
|
||||||
|
self.dir = 1
|
||||||
|
|
||||||
|
def step(self):
|
||||||
|
if self.pos >= self.hi:
|
||||||
|
self.dir = -1
|
||||||
|
elif self.pos <= self.lo:
|
||||||
|
self.dir = 1
|
||||||
|
|
||||||
|
self.pos += self.dir * self.stepSize
|
||||||
|
return self.pos
|
||||||
|
|
||||||
|
Sa = Slider(-10, 10, 0.1/iterations, 0) #1.1
|
||||||
|
Sb = Slider(-10, 10, 0.2/iterations, 1) #-2.1
|
||||||
|
Sc = Slider(-10, 10, 0.2/iterations, 2) #-0.33
|
||||||
|
Sd = Slider(-10, 10, 0.1/iterations, 3) #1.7
|
||||||
|
Se = Slider(-10, 10, 0.2/iterations, 4)
|
||||||
|
Sf = Slider(-10, 10, 0.01/iterations, 5)
|
||||||
|
|
||||||
|
x, y = np.meshgrid(
|
||||||
|
np.linspace(-4, 4, Nx),
|
||||||
|
np.linspace(-4, 4, Ny))
|
||||||
|
|
||||||
|
color = 1.0
|
||||||
|
|
||||||
|
img = np.zeros( [Ny, Nx, 3] )
|
||||||
|
|
||||||
|
cr = 1.0
|
||||||
|
cg = 0.5
|
||||||
|
cb = 0.25
|
||||||
|
|
||||||
|
step = 0
|
||||||
|
while True:
|
||||||
|
a = Sa.step()
|
||||||
|
b = Sb.step()
|
||||||
|
c = Sc.step()
|
||||||
|
d = Sd.step()
|
||||||
|
e = Se.step()
|
||||||
|
f = Sf.step()
|
||||||
|
|
||||||
|
curve = (np.abs(a*x**2 + b*x*y + c*y**2 + d*x + e*y + f) <= 1.5)*1
|
||||||
|
|
||||||
|
cr, cg, cb = colorsys.hsv_to_rgb(color, 1, 1)
|
||||||
|
|
||||||
|
|
||||||
|
s = np.shape(curve)
|
||||||
|
|
||||||
|
#img[:,:,0] = curve
|
||||||
|
img[:,:,0] = np.where(curve > 0, curve*cr*255, img[:,:,0])
|
||||||
|
img[:,:,1] = np.where(curve > 0, curve*cg*255, img[:,:,1])
|
||||||
|
img[:,:,2] = np.where(curve > 0, curve*cb*255, img[:,:,2])
|
||||||
|
|
||||||
|
step += 1
|
||||||
|
if step % iterations == 0:
|
||||||
|
out = img.reshape((Nx*Ny*3,)).astype(np.uint8)
|
||||||
|
os.write(1, out.tobytes())
|
||||||
|
time.sleep(0.01)
|
||||||
|
|
||||||
|
color = (color+0.01/iterations ) % 1
|
||||||
|
|
||||||
|
cb = (cb + 0.05) % 1
|
||||||
|
|
||||||
|
|
63
swifthohenberg.py
Executable file
63
swifthohenberg.py
Executable file
@ -0,0 +1,63 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
import sys
|
||||||
|
import os
|
||||||
|
import numpy as np
|
||||||
|
Nx = int(sys.argv[1])
|
||||||
|
Ny = int(sys.argv[2])
|
||||||
|
param = sys.argv[3]
|
||||||
|
|
||||||
|
buffer = bytearray(b" "*(3*Nx*Ny))
|
||||||
|
|
||||||
|
|
||||||
|
Lx = 32 #128 #Physikalische Laenge des Gebietes in x-Richtung
|
||||||
|
Ly =32 #128#Physikalische Laenge des Gebietes in y-Richtung
|
||||||
|
|
||||||
|
x, y = np.meshgrid(np.arange(Nx)* Lx/Nx, np.arange(Ny)* Ly/Ny) #x-Array
|
||||||
|
kx, ky = np.meshgrid(np.fft.fftfreq(Nx,Lx/(Nx*2.0*np.pi)), np.fft.fftfreq(Ny,Ly/(Ny*2.0*np.pi)))
|
||||||
|
ksq = kx*kx + ky*ky
|
||||||
|
|
||||||
|
c = 0.0+(np.random.random((Ny,Nx))-0.5)*0.1
|
||||||
|
eps=0.3
|
||||||
|
delta=0.0
|
||||||
|
#eps = 0.1
|
||||||
|
#delta = 1.0
|
||||||
|
|
||||||
|
t = 0.0
|
||||||
|
dt = 0.01
|
||||||
|
T_End = 300000
|
||||||
|
N_t = int(T_End / dt)
|
||||||
|
|
||||||
|
plotEveryNth = 100
|
||||||
|
ck = np.fft.fft2(c) #FFT(c)
|
||||||
|
# Lineare Terme
|
||||||
|
def rhs_lin(ksq):
|
||||||
|
result=eps-(1.0-ksq)**2
|
||||||
|
return result
|
||||||
|
|
||||||
|
Eu=1.0/(1.0-dt*rhs_lin(ksq))
|
||||||
|
i = 0
|
||||||
|
def lerp_sat(a, t, b):
|
||||||
|
v = (1-t)*a+t*b
|
||||||
|
v = int(v)
|
||||||
|
if v < 0:
|
||||||
|
v = 0
|
||||||
|
if v > 255:
|
||||||
|
v = 255
|
||||||
|
return v
|
||||||
|
|
||||||
|
while True:
|
||||||
|
i+= 1
|
||||||
|
ck=Eu*(ck+dt*(delta*np.fft.fft2(np.fft.ifft2(ck)**2)-np.fft.fft2(np.fft.ifft2(ck)**3)))
|
||||||
|
c=np.fft.ifft2(ck)
|
||||||
|
eps = 0.1+0.2*np.cos(i/10000)
|
||||||
|
delta = np.sin(i/10000)
|
||||||
|
if(i % plotEveryNth == 0):
|
||||||
|
myc = c.real
|
||||||
|
myc = (myc-np.min(myc))/(np.max(myc)-np.min(myc))
|
||||||
|
for px in range(Nx):
|
||||||
|
for py in range(Ny):
|
||||||
|
idx = 3*(px+Nx*py)
|
||||||
|
buffer[idx+0] = lerp_sat(0xff, myc[py,px], 0x00)
|
||||||
|
buffer[idx+1] = lerp_sat(0x00, myc[py,px], 0xff)
|
||||||
|
buffer[idx+2] = 0
|
||||||
|
os.write(1, buffer)
|
Loading…
Reference in New Issue
Block a user