M7350/kernel/sound/soc/msm/msm-pcm-afe.c
2024-09-09 08:52:07 +00:00

619 lines
16 KiB
C

/* Copyright (c) 2011-2012, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/init.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/time.h>
#include <linux/wait.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/dma-mapping.h>
#include <sound/core.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/pcm.h>
#include <sound/initval.h>
#include <sound/control.h>
#include <sound/q6adm.h>
#include <asm/dma.h>
#include <linux/memory_alloc.h>
#include "msm-pcm-afe.h"
#include "msm-pcm-q6.h"
#define MIN_PERIOD_SIZE (128 * 2)
#define MAX_PERIOD_SIZE (128 * 2 * 2 * 6)
static struct snd_pcm_hardware msm_afe_hardware = {
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED),
.formats = SNDRV_PCM_FMTBIT_S16_LE,
.rates = (SNDRV_PCM_RATE_8000 |
SNDRV_PCM_RATE_16000 |
SNDRV_PCM_RATE_48000),
.rate_min = 8000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = MAX_PERIOD_SIZE * 32,
.period_bytes_min = MIN_PERIOD_SIZE,
.period_bytes_max = MAX_PERIOD_SIZE,
.periods_min = 32,
.periods_max = 384,
.fifo_size = 0,
};
static enum hrtimer_restart afe_hrtimer_callback(struct hrtimer *hrt);
static enum hrtimer_restart afe_hrtimer_rec_callback(struct hrtimer *hrt);
static void q6asm_event_handler(uint32_t opcode,
uint32_t token, uint32_t *payload, void *priv)
{
}
static enum hrtimer_restart afe_hrtimer_callback(struct hrtimer *hrt)
{
struct pcm_afe_info *prtd =
container_of(hrt, struct pcm_afe_info, hrt);
struct snd_pcm_substream *substream = prtd->substream;
struct snd_pcm_runtime *runtime = substream->runtime;
if (prtd->start) {
pr_debug("sending frame to DSP: poll_time: %d\n",
prtd->poll_time);
if (prtd->dsp_cnt == runtime->periods)
prtd->dsp_cnt = 0;
afe_rt_proxy_port_write(
(prtd->dma_addr +
(prtd->dsp_cnt *
snd_pcm_lib_period_bytes(prtd->substream))),
snd_pcm_lib_period_bytes(prtd->substream));
prtd->dsp_cnt++;
hrtimer_forward_now(hrt, ns_to_ktime(prtd->poll_time
* 1000));
return HRTIMER_RESTART;
} else
return HRTIMER_NORESTART;
}
static enum hrtimer_restart afe_hrtimer_rec_callback(struct hrtimer *hrt)
{
struct pcm_afe_info *prtd =
container_of(hrt, struct pcm_afe_info, hrt);
struct snd_pcm_substream *substream = prtd->substream;
struct snd_pcm_runtime *runtime = substream->runtime;
if (prtd->start) {
if (prtd->dsp_cnt == runtime->periods)
prtd->dsp_cnt = 0;
afe_rt_proxy_port_read(
(prtd->dma_addr + (prtd->dsp_cnt
* snd_pcm_lib_period_bytes(prtd->substream))),
snd_pcm_lib_period_bytes(prtd->substream));
prtd->dsp_cnt++;
pr_debug("sending frame rec to DSP: poll_time: %d\n",
prtd->poll_time);
hrtimer_forward_now(hrt, ns_to_ktime(prtd->poll_time
* 1000));
return HRTIMER_RESTART;
} else
return HRTIMER_NORESTART;
}
static void pcm_afe_process_tx_pkt(uint32_t opcode,
uint32_t token, uint32_t *payload,
void *priv)
{
struct pcm_afe_info *prtd = priv;
unsigned long dsp_flags;
struct snd_pcm_substream *substream = NULL;
struct snd_pcm_runtime *runtime = NULL;
uint16_t event;
if (prtd == NULL)
return;
substream = prtd->substream;
runtime = substream->runtime;
pr_debug("%s\n", __func__);
spin_lock_irqsave(&prtd->dsp_lock, dsp_flags);
switch (opcode) {
case AFE_EVENT_RT_PROXY_PORT_STATUS: {
event = (uint16_t)((0xFFFF0000 & payload[0]) >> 0x10);
switch (event) {
case AFE_EVENT_RTPORT_START: {
prtd->dsp_cnt = 0;
prtd->poll_time = ((unsigned long)((
snd_pcm_lib_period_bytes
(prtd->substream) *
1000 * 1000)/
(runtime->rate *
runtime->channels * 2)));
pr_debug("prtd->poll_time: %d",
prtd->poll_time);
break;
}
case AFE_EVENT_RTPORT_STOP:
pr_debug("%s: event!=0\n", __func__);
prtd->start = 0;
snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
break;
case AFE_EVENT_RTPORT_LOW_WM:
pr_debug("%s: Underrun\n", __func__);
break;
case AFE_EVENT_RTPORT_HI_WM:
pr_debug("%s: Overrun\n", __func__);
break;
default:
break;
}
break;
}
case APR_BASIC_RSP_RESULT: {
switch (payload[0]) {
case AFE_SERVICE_CMD_RTPORT_WR:
pr_debug("write done\n");
prtd->pcm_irq_pos += snd_pcm_lib_period_bytes
(prtd->substream);
snd_pcm_period_elapsed(prtd->substream);
break;
default:
break;
}
break;
}
default:
break;
}
spin_unlock_irqrestore(&prtd->dsp_lock, dsp_flags);
}
static void pcm_afe_process_rx_pkt(uint32_t opcode,
uint32_t token, uint32_t *payload,
void *priv)
{
struct pcm_afe_info *prtd = priv;
unsigned long dsp_flags;
struct snd_pcm_substream *substream = NULL;
struct snd_pcm_runtime *runtime = NULL;
uint16_t event;
if (prtd == NULL)
return;
substream = prtd->substream;
runtime = substream->runtime;
pr_debug("%s\n", __func__);
spin_lock_irqsave(&prtd->dsp_lock, dsp_flags);
switch (opcode) {
case AFE_EVENT_RT_PROXY_PORT_STATUS: {
event = (uint16_t)((0xFFFF0000 & payload[0]) >> 0x10);
switch (event) {
case AFE_EVENT_RTPORT_START: {
prtd->dsp_cnt = 0;
prtd->poll_time = ((unsigned long)((
snd_pcm_lib_period_bytes(prtd->substream)
* 1000 * 1000)/(runtime->rate
* runtime->channels * 2)));
pr_debug("prtd->poll_time : %d", prtd->poll_time);
break;
}
case AFE_EVENT_RTPORT_STOP:
pr_debug("%s: event!=0\n", __func__);
prtd->start = 0;
snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
break;
case AFE_EVENT_RTPORT_LOW_WM:
pr_debug("%s: Underrun\n", __func__);
break;
case AFE_EVENT_RTPORT_HI_WM:
pr_debug("%s: Overrun\n", __func__);
break;
default:
break;
}
break;
}
case APR_BASIC_RSP_RESULT: {
switch (payload[0]) {
case AFE_SERVICE_CMD_RTPORT_RD:
pr_debug("Read done\n");
prtd->pcm_irq_pos += snd_pcm_lib_period_bytes
(prtd->substream);
snd_pcm_period_elapsed(prtd->substream);
break;
default:
break;
}
break;
}
default:
break;
}
spin_unlock_irqrestore(&prtd->dsp_lock, dsp_flags);
}
static int msm_afe_playback_prepare(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct pcm_afe_info *prtd = runtime->private_data;
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai *dai = rtd->cpu_dai;
int ret = 0;
pr_debug("%s: sample_rate=%d\n", __func__, runtime->rate);
pr_debug("%s: dai->id =%x\n", __func__, dai->id);
ret = afe_register_get_events(dai->id,
pcm_afe_process_tx_pkt, prtd);
if (ret < 0) {
pr_err("afe-pcm:register for events failed\n");
return ret;
}
pr_debug("%s:success\n", __func__);
prtd->prepared++;
return ret;
}
static int msm_afe_capture_prepare(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct pcm_afe_info *prtd = runtime->private_data;
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai *dai = rtd->cpu_dai;
int ret = 0;
pr_debug("%s\n", __func__);
pr_debug("%s: dai->id =%x\n", __func__, dai->id);
ret = afe_register_get_events(dai->id,
pcm_afe_process_rx_pkt, prtd);
if (ret < 0) {
pr_err("afe-pcm:register for events failed\n");
return ret;
}
pr_debug("%s:success\n", __func__);
prtd->prepared++;
return 0;
}
/* Conventional and unconventional sample rate supported */
static unsigned int supported_sample_rates[] = {
8000, 16000, 48000
};
static struct snd_pcm_hw_constraint_list constraints_sample_rates = {
.count = ARRAY_SIZE(supported_sample_rates),
.list = supported_sample_rates,
.mask = 0,
};
static int msm_afe_open(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct pcm_afe_info *prtd = NULL;
int ret = 0;
prtd = kzalloc(sizeof(struct pcm_afe_info), GFP_KERNEL);
if (prtd == NULL) {
pr_err("Failed to allocate memory for msm_audio\n");
return -ENOMEM;
} else
pr_debug("prtd %x\n", (unsigned int)prtd);
mutex_init(&prtd->lock);
spin_lock_init(&prtd->dsp_lock);
prtd->dsp_cnt = 0;
mutex_lock(&prtd->lock);
runtime->hw = msm_afe_hardware;
prtd->substream = substream;
runtime->private_data = prtd;
prtd->audio_client = q6asm_audio_client_alloc(
(app_cb)q6asm_event_handler, prtd);
if (!prtd->audio_client) {
pr_debug("%s: Could not allocate memory\n", __func__);
mutex_unlock(&prtd->lock);
kfree(prtd);
return -ENOMEM;
}
hrtimer_init(&prtd->hrt, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
prtd->hrt.function = afe_hrtimer_callback;
else if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
prtd->hrt.function = afe_hrtimer_rec_callback;
mutex_unlock(&prtd->lock);
ret = snd_pcm_hw_constraint_list(runtime, 0,
SNDRV_PCM_HW_PARAM_RATE,
&constraints_sample_rates);
if (ret < 0)
pr_err("snd_pcm_hw_constraint_list failed\n");
/* Ensure that buffer size is a multiple of period size */
ret = snd_pcm_hw_constraint_integer(runtime,
SNDRV_PCM_HW_PARAM_PERIODS);
if (ret < 0)
pr_err("snd_pcm_hw_constraint_integer failed\n");
return 0;
}
static int msm_afe_close(struct snd_pcm_substream *substream)
{
int rc = 0;
struct snd_dma_buffer *dma_buf;
struct snd_pcm_runtime *runtime;
struct pcm_afe_info *prtd;
struct snd_soc_pcm_runtime *rtd = NULL;
struct snd_soc_dai *dai = NULL;
int dir = IN;
int ret = 0;
pr_debug("%s\n", __func__);
if (substream == NULL) {
pr_err("substream is NULL\n");
return -EINVAL;
}
rtd = substream->private_data;
dai = rtd->cpu_dai;
runtime = substream->runtime;
prtd = runtime->private_data;
mutex_lock(&prtd->lock);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
dir = IN;
ret = afe_unregister_get_events(dai->id);
if (ret < 0)
pr_err("AFE unregister for events failed\n");
} else if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
dir = OUT;
ret = afe_unregister_get_events(dai->id);
if (ret < 0)
pr_err("AFE unregister for events failed\n");
}
hrtimer_cancel(&prtd->hrt);
rc = afe_cmd_memory_unmap(runtime->dma_addr);
if (rc < 0)
pr_err("AFE memory unmap failed\n");
pr_debug("release all buffer\n");
dma_buf = &substream->dma_buffer;
if (dma_buf == NULL) {
pr_debug("dma_buf is NULL\n");
goto done;
}
if (dma_buf->area) {
dma_buf->area = NULL;
}
q6asm_audio_client_buf_free_contiguous(dir,
prtd->audio_client);
done:
pr_debug("%s: dai->id =%x\n", __func__, dai->id);
q6asm_audio_client_free(prtd->audio_client);
mutex_unlock(&prtd->lock);
prtd->prepared--;
kfree(prtd);
return 0;
}
static int msm_afe_prepare(struct snd_pcm_substream *substream)
{
int ret = 0;
struct snd_pcm_runtime *runtime = substream->runtime;
struct pcm_afe_info *prtd = runtime->private_data;
prtd->pcm_irq_pos = 0;
if (prtd->prepared)
return 0;
mutex_lock(&prtd->lock);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
ret = msm_afe_playback_prepare(substream);
else if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
ret = msm_afe_capture_prepare(substream);
mutex_unlock(&prtd->lock);
return ret;
}
static int msm_afe_mmap(struct snd_pcm_substream *substream,
struct vm_area_struct *vma)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct pcm_afe_info *prtd = runtime->private_data;
int result = 0;
pr_debug("%s\n", __func__);
prtd->mmap_flag = 1;
if (runtime->dma_addr && runtime->dma_bytes) {
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
result = remap_pfn_range(vma, vma->vm_start,
runtime->dma_addr >> PAGE_SHIFT,
runtime->dma_bytes,
vma->vm_page_prot);
} else {
pr_err("Physical address or size of buf is NULL");
return -EINVAL;
}
return result;
}
static int msm_afe_trigger(struct snd_pcm_substream *substream, int cmd)
{
int ret = 0;
struct snd_pcm_runtime *runtime = substream->runtime;
struct pcm_afe_info *prtd = runtime->private_data;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
pr_debug("%s: SNDRV_PCM_TRIGGER_START\n", __func__);
prtd->start = 1;
hrtimer_start(&prtd->hrt, ns_to_ktime(0),
HRTIMER_MODE_REL);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
pr_debug("%s: SNDRV_PCM_TRIGGER_STOP\n", __func__);
prtd->start = 0;
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int msm_afe_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_dma_buffer *dma_buf = &substream->dma_buffer;
struct pcm_afe_info *prtd = runtime->private_data;
struct audio_buffer *buf;
int dir, ret;
pr_debug("%s:\n", __func__);
mutex_lock(&prtd->lock);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
dir = IN;
else
dir = OUT;
ret = q6asm_audio_client_buf_alloc_contiguous(dir,
prtd->audio_client,
runtime->hw.period_bytes_min,
runtime->hw.periods_max);
if (ret < 0) {
pr_err("Audio Start: Buffer Allocation failed rc = %d\n", ret);
mutex_unlock(&prtd->lock);
return -ENOMEM;
}
buf = prtd->audio_client->port[dir].buf;
if (buf == NULL || buf[0].data == NULL) {
mutex_unlock(&prtd->lock);
return -ENOMEM;
}
pr_debug("%s:buf = %p\n", __func__, buf);
dma_buf->dev.type = SNDRV_DMA_TYPE_DEV;
dma_buf->dev.dev = substream->pcm->card->dev;
dma_buf->private_data = NULL;
dma_buf->area = buf[0].data;
dma_buf->addr = buf[0].phys;
dma_buf->bytes = runtime->hw.buffer_bytes_max;
if (!dma_buf->area) {
pr_err("%s:MSM AFE physical memory allocation failed\n",
__func__);
mutex_unlock(&prtd->lock);
return -ENOMEM;
}
memset(dma_buf->area, 0, runtime->hw.buffer_bytes_max);
prtd->dma_addr = (u32) dma_buf->addr;
mutex_unlock(&prtd->lock);
snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
ret = afe_cmd_memory_map(dma_buf->addr, dma_buf->bytes);
if (ret < 0)
pr_err("fail to map memory to DSP\n");
return ret;
}
static snd_pcm_uframes_t msm_afe_pointer(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct pcm_afe_info *prtd = runtime->private_data;
if (prtd->pcm_irq_pos >= snd_pcm_lib_buffer_bytes(substream))
prtd->pcm_irq_pos = 0;
pr_debug("pcm_irq_pos = %d\n", prtd->pcm_irq_pos);
return bytes_to_frames(runtime, (prtd->pcm_irq_pos));
}
static struct snd_pcm_ops msm_afe_ops = {
.open = msm_afe_open,
.hw_params = msm_afe_hw_params,
.trigger = msm_afe_trigger,
.close = msm_afe_close,
.prepare = msm_afe_prepare,
.mmap = msm_afe_mmap,
.pointer = msm_afe_pointer,
};
static int msm_asoc_pcm_new(struct snd_soc_pcm_runtime *rtd)
{
struct snd_card *card = rtd->card->snd_card;
int ret = 0;
pr_debug("%s\n", __func__);
if (!card->dev->coherent_dma_mask)
card->dev->coherent_dma_mask = DMA_BIT_MASK(32);
return ret;
}
static int msm_afe_afe_probe(struct snd_soc_platform *platform)
{
pr_debug("%s\n", __func__);
return 0;
}
static struct snd_soc_platform_driver msm_soc_platform = {
.ops = &msm_afe_ops,
.pcm_new = msm_asoc_pcm_new,
.probe = msm_afe_afe_probe,
};
static __devinit int msm_afe_probe(struct platform_device *pdev)
{
pr_debug("%s: dev name %s\n", __func__, dev_name(&pdev->dev));
return snd_soc_register_platform(&pdev->dev,
&msm_soc_platform);
}
static int msm_afe_remove(struct platform_device *pdev)
{
pr_debug("%s\n", __func__);
snd_soc_unregister_platform(&pdev->dev);
return 0;
}
static struct platform_driver msm_afe_driver = {
.driver = {
.name = "msm-pcm-afe",
.owner = THIS_MODULE,
},
.probe = msm_afe_probe,
.remove = __devexit_p(msm_afe_remove),
};
static int __init msm_soc_platform_init(void)
{
pr_debug("%s\n", __func__);
return platform_driver_register(&msm_afe_driver);
}
module_init(msm_soc_platform_init);
static void __exit msm_soc_platform_exit(void)
{
pr_debug("%s\n", __func__);
platform_driver_unregister(&msm_afe_driver);
}
module_exit(msm_soc_platform_exit);
MODULE_DESCRIPTION("AFE PCM module platform driver");
MODULE_LICENSE("GPL v2");