M7350/kernel/drivers/media/video/cx23885/altera-ci.c
2024-09-09 08:52:07 +00:00

838 lines
20 KiB
C

/*
* altera-ci.c
*
* CI driver in conjunction with NetUp Dual DVB-T/C RF CI card
*
* Copyright (C) 2010,2011 NetUP Inc.
* Copyright (C) 2010,2011 Igor M. Liplianin <liplianin@netup.ru>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* currently cx23885 GPIO's used.
* GPIO-0 ~INT in
* GPIO-1 TMS out
* GPIO-2 ~reset chips out
* GPIO-3 to GPIO-10 data/addr for CA in/out
* GPIO-11 ~CS out
* GPIO-12 AD_RG out
* GPIO-13 ~WR out
* GPIO-14 ~RD out
* GPIO-15 ~RDY in
* GPIO-16 TCK out
* GPIO-17 TDO in
* GPIO-18 TDI out
*/
/*
* Bit definitions for MC417_RWD and MC417_OEN registers
* bits 31-16
* +-----------+
* | Reserved |
* +-----------+
* bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
* +-------+-------+-------+-------+-------+-------+-------+-------+
* | TDI | TDO | TCK | RDY# | #RD | #WR | AD_RG | #CS |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
* +-------+-------+-------+-------+-------+-------+-------+-------+
* | DATA7| DATA6| DATA5| DATA4| DATA3| DATA2| DATA1| DATA0|
* +-------+-------+-------+-------+-------+-------+-------+-------+
*/
#include <media/videobuf-dma-sg.h>
#include <media/videobuf-dvb.h>
#include "altera-ci.h"
#include "dvb_ca_en50221.h"
/* FPGA regs */
#define NETUP_CI_INT_CTRL 0x00
#define NETUP_CI_BUSCTRL2 0x01
#define NETUP_CI_ADDR0 0x04
#define NETUP_CI_ADDR1 0x05
#define NETUP_CI_DATA 0x06
#define NETUP_CI_BUSCTRL 0x07
#define NETUP_CI_PID_ADDR0 0x08
#define NETUP_CI_PID_ADDR1 0x09
#define NETUP_CI_PID_DATA 0x0a
#define NETUP_CI_TSA_DIV 0x0c
#define NETUP_CI_TSB_DIV 0x0d
#define NETUP_CI_REVISION 0x0f
/* const for ci op */
#define NETUP_CI_FLG_CTL 1
#define NETUP_CI_FLG_RD 1
#define NETUP_CI_FLG_AD 1
static unsigned int ci_dbg;
module_param(ci_dbg, int, 0644);
MODULE_PARM_DESC(ci_dbg, "Enable CI debugging");
static unsigned int pid_dbg;
module_param(pid_dbg, int, 0644);
MODULE_PARM_DESC(pid_dbg, "Enable PID filtering debugging");
MODULE_DESCRIPTION("altera FPGA CI module");
MODULE_AUTHOR("Igor M. Liplianin <liplianin@netup.ru>");
MODULE_LICENSE("GPL");
#define ci_dbg_print(args...) \
do { \
if (ci_dbg) \
printk(KERN_DEBUG args); \
} while (0)
#define pid_dbg_print(args...) \
do { \
if (pid_dbg) \
printk(KERN_DEBUG args); \
} while (0)
struct altera_ci_state;
struct netup_hw_pid_filter;
struct fpga_internal {
void *dev;
struct mutex fpga_mutex;/* two CI's on the same fpga */
struct netup_hw_pid_filter *pid_filt[2];
struct altera_ci_state *state[2];
struct work_struct work;
int (*fpga_rw) (void *dev, int flag, int data, int rw);
int cis_used;
int filts_used;
int strt_wrk;
};
/* stores all private variables for communication with CI */
struct altera_ci_state {
struct fpga_internal *internal;
struct dvb_ca_en50221 ca;
int status;
int nr;
};
/* stores all private variables for hardware pid filtering */
struct netup_hw_pid_filter {
struct fpga_internal *internal;
struct dvb_demux *demux;
/* save old functions */
int (*start_feed)(struct dvb_demux_feed *feed);
int (*stop_feed)(struct dvb_demux_feed *feed);
int status;
int nr;
};
/* internal params node */
struct fpga_inode {
/* pointer for internal params, one for each pair of CI's */
struct fpga_internal *internal;
struct fpga_inode *next_inode;
};
/* first internal params */
static struct fpga_inode *fpga_first_inode;
/* find chip by dev */
static struct fpga_inode *find_inode(void *dev)
{
struct fpga_inode *temp_chip = fpga_first_inode;
if (temp_chip == NULL)
return temp_chip;
/*
Search for the last fpga CI chip or
find it by dev */
while ((temp_chip != NULL) &&
(temp_chip->internal->dev != dev))
temp_chip = temp_chip->next_inode;
return temp_chip;
}
/* check demux */
static struct fpga_internal *check_filter(struct fpga_internal *temp_int,
void *demux_dev, int filt_nr)
{
if (temp_int == NULL)
return NULL;
if ((temp_int->pid_filt[filt_nr]) == NULL)
return NULL;
if (temp_int->pid_filt[filt_nr]->demux == demux_dev)
return temp_int;
return NULL;
}
/* find chip by demux */
static struct fpga_inode *find_dinode(void *demux_dev)
{
struct fpga_inode *temp_chip = fpga_first_inode;
struct fpga_internal *temp_int;
/*
* Search of the last fpga CI chip or
* find it by demux
*/
while (temp_chip != NULL) {
if (temp_chip->internal != NULL) {
temp_int = temp_chip->internal;
if (check_filter(temp_int, demux_dev, 0))
break;
if (check_filter(temp_int, demux_dev, 1))
break;
}
temp_chip = temp_chip->next_inode;
}
return temp_chip;
}
/* deallocating chip */
static void remove_inode(struct fpga_internal *internal)
{
struct fpga_inode *prev_node = fpga_first_inode;
struct fpga_inode *del_node = find_inode(internal->dev);
if (del_node != NULL) {
if (del_node == fpga_first_inode) {
fpga_first_inode = del_node->next_inode;
} else {
while (prev_node->next_inode != del_node)
prev_node = prev_node->next_inode;
if (del_node->next_inode == NULL)
prev_node->next_inode = NULL;
else
prev_node->next_inode =
prev_node->next_inode->next_inode;
}
kfree(del_node);
}
}
/* allocating new chip */
static struct fpga_inode *append_internal(struct fpga_internal *internal)
{
struct fpga_inode *new_node = fpga_first_inode;
if (new_node == NULL) {
new_node = kmalloc(sizeof(struct fpga_inode), GFP_KERNEL);
fpga_first_inode = new_node;
} else {
while (new_node->next_inode != NULL)
new_node = new_node->next_inode;
new_node->next_inode =
kmalloc(sizeof(struct fpga_inode), GFP_KERNEL);
if (new_node->next_inode != NULL)
new_node = new_node->next_inode;
else
new_node = NULL;
}
if (new_node != NULL) {
new_node->internal = internal;
new_node->next_inode = NULL;
}
return new_node;
}
static int netup_fpga_op_rw(struct fpga_internal *inter, int addr,
u8 val, u8 read)
{
inter->fpga_rw(inter->dev, NETUP_CI_FLG_AD, addr, 0);
return inter->fpga_rw(inter->dev, 0, val, read);
}
/* flag - mem/io, read - read/write */
int altera_ci_op_cam(struct dvb_ca_en50221 *en50221, int slot,
u8 flag, u8 read, int addr, u8 val)
{
struct altera_ci_state *state = en50221->data;
struct fpga_internal *inter = state->internal;
u8 store;
int mem = 0;
if (0 != slot)
return -EINVAL;
mutex_lock(&inter->fpga_mutex);
netup_fpga_op_rw(inter, NETUP_CI_ADDR0, ((addr << 1) & 0xfe), 0);
netup_fpga_op_rw(inter, NETUP_CI_ADDR1, ((addr >> 7) & 0x7f), 0);
store = netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL, 0, NETUP_CI_FLG_RD);
store &= 0x0f;
store |= ((state->nr << 7) | (flag << 6));
netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL, store, 0);
mem = netup_fpga_op_rw(inter, NETUP_CI_DATA, val, read);
mutex_unlock(&inter->fpga_mutex);
ci_dbg_print("%s: %s: addr=[0x%02x], %s=%x\n", __func__,
(read) ? "read" : "write", addr,
(flag == NETUP_CI_FLG_CTL) ? "ctl" : "mem",
(read) ? mem : val);
return mem;
}
int altera_ci_read_attribute_mem(struct dvb_ca_en50221 *en50221,
int slot, int addr)
{
return altera_ci_op_cam(en50221, slot, 0, NETUP_CI_FLG_RD, addr, 0);
}
int altera_ci_write_attribute_mem(struct dvb_ca_en50221 *en50221,
int slot, int addr, u8 data)
{
return altera_ci_op_cam(en50221, slot, 0, 0, addr, data);
}
int altera_ci_read_cam_ctl(struct dvb_ca_en50221 *en50221, int slot, u8 addr)
{
return altera_ci_op_cam(en50221, slot, NETUP_CI_FLG_CTL,
NETUP_CI_FLG_RD, addr, 0);
}
int altera_ci_write_cam_ctl(struct dvb_ca_en50221 *en50221, int slot,
u8 addr, u8 data)
{
return altera_ci_op_cam(en50221, slot, NETUP_CI_FLG_CTL, 0, addr, data);
}
int altera_ci_slot_reset(struct dvb_ca_en50221 *en50221, int slot)
{
struct altera_ci_state *state = en50221->data;
struct fpga_internal *inter = state->internal;
/* reasonable timeout for CI reset is 10 seconds */
unsigned long t_out = jiffies + msecs_to_jiffies(9999);
int ret;
ci_dbg_print("%s\n", __func__);
if (0 != slot)
return -EINVAL;
mutex_lock(&inter->fpga_mutex);
ret = netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL, 0, NETUP_CI_FLG_RD);
netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL,
(ret & 0xcf) | (1 << (5 - state->nr)), 0);
mutex_unlock(&inter->fpga_mutex);
for (;;) {
mdelay(50);
mutex_lock(&inter->fpga_mutex);
ret = netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL,
0, NETUP_CI_FLG_RD);
mutex_unlock(&inter->fpga_mutex);
if ((ret & (1 << (5 - state->nr))) == 0)
break;
if (time_after(jiffies, t_out))
break;
}
ci_dbg_print("%s: %d msecs\n", __func__,
jiffies_to_msecs(jiffies + msecs_to_jiffies(9999) - t_out));
return 0;
}
int altera_ci_slot_shutdown(struct dvb_ca_en50221 *en50221, int slot)
{
/* not implemented */
return 0;
}
int altera_ci_slot_ts_ctl(struct dvb_ca_en50221 *en50221, int slot)
{
struct altera_ci_state *state = en50221->data;
struct fpga_internal *inter = state->internal;
int ret;
ci_dbg_print("%s\n", __func__);
if (0 != slot)
return -EINVAL;
mutex_lock(&inter->fpga_mutex);
ret = netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL, 0, NETUP_CI_FLG_RD);
netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL,
(ret & 0x0f) | (1 << (3 - state->nr)), 0);
mutex_unlock(&inter->fpga_mutex);
return 0;
}
/* work handler */
static void netup_read_ci_status(struct work_struct *work)
{
struct fpga_internal *inter =
container_of(work, struct fpga_internal, work);
int ret;
ci_dbg_print("%s\n", __func__);
mutex_lock(&inter->fpga_mutex);
/* ack' irq */
ret = netup_fpga_op_rw(inter, NETUP_CI_INT_CTRL, 0, NETUP_CI_FLG_RD);
ret = netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL, 0, NETUP_CI_FLG_RD);
mutex_unlock(&inter->fpga_mutex);
if (inter->state[1] != NULL) {
inter->state[1]->status =
((ret & 1) == 0 ?
DVB_CA_EN50221_POLL_CAM_PRESENT |
DVB_CA_EN50221_POLL_CAM_READY : 0);
ci_dbg_print("%s: setting CI[1] status = 0x%x\n",
__func__, inter->state[1]->status);
};
if (inter->state[0] != NULL) {
inter->state[0]->status =
((ret & 2) == 0 ?
DVB_CA_EN50221_POLL_CAM_PRESENT |
DVB_CA_EN50221_POLL_CAM_READY : 0);
ci_dbg_print("%s: setting CI[0] status = 0x%x\n",
__func__, inter->state[0]->status);
};
}
/* CI irq handler */
int altera_ci_irq(void *dev)
{
struct fpga_inode *temp_int = NULL;
struct fpga_internal *inter = NULL;
ci_dbg_print("%s\n", __func__);
if (dev != NULL) {
temp_int = find_inode(dev);
if (temp_int != NULL) {
inter = temp_int->internal;
schedule_work(&inter->work);
}
}
return 1;
}
EXPORT_SYMBOL(altera_ci_irq);
int altera_poll_ci_slot_status(struct dvb_ca_en50221 *en50221, int slot,
int open)
{
struct altera_ci_state *state = en50221->data;
if (0 != slot)
return -EINVAL;
return state->status;
}
void altera_hw_filt_release(void *main_dev, int filt_nr)
{
struct fpga_inode *temp_int = find_inode(main_dev);
struct netup_hw_pid_filter *pid_filt = NULL;
ci_dbg_print("%s\n", __func__);
if (temp_int != NULL) {
pid_filt = temp_int->internal->pid_filt[filt_nr - 1];
/* stored old feed controls */
pid_filt->demux->start_feed = pid_filt->start_feed;
pid_filt->demux->stop_feed = pid_filt->stop_feed;
if (((--(temp_int->internal->filts_used)) <= 0) &&
((temp_int->internal->cis_used) <= 0)) {
ci_dbg_print("%s: Actually removing\n", __func__);
remove_inode(temp_int->internal);
kfree(pid_filt->internal);
}
kfree(pid_filt);
}
}
EXPORT_SYMBOL(altera_hw_filt_release);
void altera_ci_release(void *dev, int ci_nr)
{
struct fpga_inode *temp_int = find_inode(dev);
struct altera_ci_state *state = NULL;
ci_dbg_print("%s\n", __func__);
if (temp_int != NULL) {
state = temp_int->internal->state[ci_nr - 1];
altera_hw_filt_release(dev, ci_nr);
if (((temp_int->internal->filts_used) <= 0) &&
((--(temp_int->internal->cis_used)) <= 0)) {
ci_dbg_print("%s: Actually removing\n", __func__);
remove_inode(temp_int->internal);
kfree(state->internal);
}
if (state != NULL) {
if (state->ca.data != NULL)
dvb_ca_en50221_release(&state->ca);
kfree(state);
}
}
}
EXPORT_SYMBOL(altera_ci_release);
static void altera_pid_control(struct netup_hw_pid_filter *pid_filt,
u16 pid, int onoff)
{
struct fpga_internal *inter = pid_filt->internal;
u8 store = 0;
/* pid 0-0x1f always enabled, don't touch them */
if ((pid == 0x2000) || (pid < 0x20))
return;
mutex_lock(&inter->fpga_mutex);
netup_fpga_op_rw(inter, NETUP_CI_PID_ADDR0, (pid >> 3) & 0xff, 0);
netup_fpga_op_rw(inter, NETUP_CI_PID_ADDR1,
((pid >> 11) & 0x03) | (pid_filt->nr << 2), 0);
store = netup_fpga_op_rw(inter, NETUP_CI_PID_DATA, 0, NETUP_CI_FLG_RD);
if (onoff)/* 0 - on, 1 - off */
store |= (1 << (pid & 7));
else
store &= ~(1 << (pid & 7));
netup_fpga_op_rw(inter, NETUP_CI_PID_DATA, store, 0);
mutex_unlock(&inter->fpga_mutex);
pid_dbg_print("%s: (%d) set pid: %5d 0x%04x '%s'\n", __func__,
pid_filt->nr, pid, pid, onoff ? "off" : "on");
}
static void altera_toggle_fullts_streaming(struct netup_hw_pid_filter *pid_filt,
int filt_nr, int onoff)
{
struct fpga_internal *inter = pid_filt->internal;
u8 store = 0;
int i;
pid_dbg_print("%s: pid_filt->nr[%d] now %s\n", __func__, pid_filt->nr,
onoff ? "off" : "on");
if (onoff)/* 0 - on, 1 - off */
store = 0xff;/* ignore pid */
else
store = 0;/* enable pid */
mutex_lock(&inter->fpga_mutex);
for (i = 0; i < 1024; i++) {
netup_fpga_op_rw(inter, NETUP_CI_PID_ADDR0, i & 0xff, 0);
netup_fpga_op_rw(inter, NETUP_CI_PID_ADDR1,
((i >> 8) & 0x03) | (pid_filt->nr << 2), 0);
/* pid 0-0x1f always enabled */
netup_fpga_op_rw(inter, NETUP_CI_PID_DATA,
(i > 3 ? store : 0), 0);
}
mutex_unlock(&inter->fpga_mutex);
}
int altera_pid_feed_control(void *demux_dev, int filt_nr,
struct dvb_demux_feed *feed, int onoff)
{
struct fpga_inode *temp_int = find_dinode(demux_dev);
struct fpga_internal *inter = temp_int->internal;
struct netup_hw_pid_filter *pid_filt = inter->pid_filt[filt_nr - 1];
altera_pid_control(pid_filt, feed->pid, onoff ? 0 : 1);
/* call old feed proc's */
if (onoff)
pid_filt->start_feed(feed);
else
pid_filt->stop_feed(feed);
if (feed->pid == 0x2000)
altera_toggle_fullts_streaming(pid_filt, filt_nr,
onoff ? 0 : 1);
return 0;
}
EXPORT_SYMBOL(altera_pid_feed_control);
int altera_ci_start_feed(struct dvb_demux_feed *feed, int num)
{
altera_pid_feed_control(feed->demux, num, feed, 1);
return 0;
}
int altera_ci_stop_feed(struct dvb_demux_feed *feed, int num)
{
altera_pid_feed_control(feed->demux, num, feed, 0);
return 0;
}
int altera_ci_start_feed_1(struct dvb_demux_feed *feed)
{
return altera_ci_start_feed(feed, 1);
}
int altera_ci_stop_feed_1(struct dvb_demux_feed *feed)
{
return altera_ci_stop_feed(feed, 1);
}
int altera_ci_start_feed_2(struct dvb_demux_feed *feed)
{
return altera_ci_start_feed(feed, 2);
}
int altera_ci_stop_feed_2(struct dvb_demux_feed *feed)
{
return altera_ci_stop_feed(feed, 2);
}
int altera_hw_filt_init(struct altera_ci_config *config, int hw_filt_nr)
{
struct netup_hw_pid_filter *pid_filt = NULL;
struct fpga_inode *temp_int = find_inode(config->dev);
struct fpga_internal *inter = NULL;
int ret = 0;
pid_filt = kzalloc(sizeof(struct netup_hw_pid_filter), GFP_KERNEL);
ci_dbg_print("%s\n", __func__);
if (!pid_filt) {
ret = -ENOMEM;
goto err;
}
if (temp_int != NULL) {
inter = temp_int->internal;
(inter->filts_used)++;
ci_dbg_print("%s: Find Internal Structure!\n", __func__);
} else {
inter = kzalloc(sizeof(struct fpga_internal), GFP_KERNEL);
if (!inter) {
ret = -ENOMEM;
goto err;
}
temp_int = append_internal(inter);
inter->filts_used = 1;
inter->dev = config->dev;
inter->fpga_rw = config->fpga_rw;
mutex_init(&inter->fpga_mutex);
inter->strt_wrk = 1;
ci_dbg_print("%s: Create New Internal Structure!\n", __func__);
}
ci_dbg_print("%s: setting hw pid filter = %p for ci = %d\n", __func__,
pid_filt, hw_filt_nr - 1);
inter->pid_filt[hw_filt_nr - 1] = pid_filt;
pid_filt->demux = config->demux;
pid_filt->internal = inter;
pid_filt->nr = hw_filt_nr - 1;
/* store old feed controls */
pid_filt->start_feed = config->demux->start_feed;
pid_filt->stop_feed = config->demux->stop_feed;
/* replace with new feed controls */
if (hw_filt_nr == 1) {
pid_filt->demux->start_feed = altera_ci_start_feed_1;
pid_filt->demux->stop_feed = altera_ci_stop_feed_1;
} else if (hw_filt_nr == 2) {
pid_filt->demux->start_feed = altera_ci_start_feed_2;
pid_filt->demux->stop_feed = altera_ci_stop_feed_2;
}
altera_toggle_fullts_streaming(pid_filt, 0, 1);
return 0;
err:
ci_dbg_print("%s: Can't init hardware filter: Error %d\n",
__func__, ret);
kfree(pid_filt);
return ret;
}
EXPORT_SYMBOL(altera_hw_filt_init);
int altera_ci_init(struct altera_ci_config *config, int ci_nr)
{
struct altera_ci_state *state;
struct fpga_inode *temp_int = find_inode(config->dev);
struct fpga_internal *inter = NULL;
int ret = 0;
u8 store = 0;
state = kzalloc(sizeof(struct altera_ci_state), GFP_KERNEL);
ci_dbg_print("%s\n", __func__);
if (!state) {
ret = -ENOMEM;
goto err;
}
if (temp_int != NULL) {
inter = temp_int->internal;
(inter->cis_used)++;
ci_dbg_print("%s: Find Internal Structure!\n", __func__);
} else {
inter = kzalloc(sizeof(struct fpga_internal), GFP_KERNEL);
if (!inter) {
ret = -ENOMEM;
goto err;
}
temp_int = append_internal(inter);
inter->cis_used = 1;
inter->dev = config->dev;
inter->fpga_rw = config->fpga_rw;
mutex_init(&inter->fpga_mutex);
inter->strt_wrk = 1;
ci_dbg_print("%s: Create New Internal Structure!\n", __func__);
}
ci_dbg_print("%s: setting state = %p for ci = %d\n", __func__,
state, ci_nr - 1);
inter->state[ci_nr - 1] = state;
state->internal = inter;
state->nr = ci_nr - 1;
state->ca.owner = THIS_MODULE;
state->ca.read_attribute_mem = altera_ci_read_attribute_mem;
state->ca.write_attribute_mem = altera_ci_write_attribute_mem;
state->ca.read_cam_control = altera_ci_read_cam_ctl;
state->ca.write_cam_control = altera_ci_write_cam_ctl;
state->ca.slot_reset = altera_ci_slot_reset;
state->ca.slot_shutdown = altera_ci_slot_shutdown;
state->ca.slot_ts_enable = altera_ci_slot_ts_ctl;
state->ca.poll_slot_status = altera_poll_ci_slot_status;
state->ca.data = state;
ret = dvb_ca_en50221_init(config->adapter,
&state->ca,
/* flags */ 0,
/* n_slots */ 1);
if (0 != ret)
goto err;
altera_hw_filt_init(config, ci_nr);
if (inter->strt_wrk) {
INIT_WORK(&inter->work, netup_read_ci_status);
inter->strt_wrk = 0;
}
ci_dbg_print("%s: CI initialized!\n", __func__);
mutex_lock(&inter->fpga_mutex);
/* Enable div */
netup_fpga_op_rw(inter, NETUP_CI_TSA_DIV, 0x0, 0);
netup_fpga_op_rw(inter, NETUP_CI_TSB_DIV, 0x0, 0);
/* enable TS out */
store = netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL2, 0, NETUP_CI_FLG_RD);
store |= (3 << 4);
netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL2, store, 0);
ret = netup_fpga_op_rw(inter, NETUP_CI_REVISION, 0, NETUP_CI_FLG_RD);
/* enable irq */
netup_fpga_op_rw(inter, NETUP_CI_INT_CTRL, 0x44, 0);
mutex_unlock(&inter->fpga_mutex);
ci_dbg_print("%s: NetUP CI Revision = 0x%x\n", __func__, ret);
schedule_work(&inter->work);
return 0;
err:
ci_dbg_print("%s: Cannot initialize CI: Error %d.\n", __func__, ret);
kfree(state);
return ret;
}
EXPORT_SYMBOL(altera_ci_init);
int altera_ci_tuner_reset(void *dev, int ci_nr)
{
struct fpga_inode *temp_int = find_inode(dev);
struct fpga_internal *inter = NULL;
u8 store;
ci_dbg_print("%s\n", __func__);
if (temp_int == NULL)
return -1;
if (temp_int->internal == NULL)
return -1;
inter = temp_int->internal;
mutex_lock(&inter->fpga_mutex);
store = netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL2, 0, NETUP_CI_FLG_RD);
store &= ~(4 << (2 - ci_nr));
netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL2, store, 0);
msleep(100);
store |= (4 << (2 - ci_nr));
netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL2, store, 0);
mutex_unlock(&inter->fpga_mutex);
return 0;
}
EXPORT_SYMBOL(altera_ci_tuner_reset);