989 lines
24 KiB
C
989 lines
24 KiB
C
/* Copyright (c) 2002,2007-2013, The Linux Foundation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 and
|
|
* only version 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/memory_alloc.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/highmem.h>
|
|
|
|
#include "kgsl.h"
|
|
#include "kgsl_sharedmem.h"
|
|
#include "kgsl_cffdump.h"
|
|
#include "kgsl_device.h"
|
|
|
|
/* An attribute for showing per-process memory statistics */
|
|
struct kgsl_mem_entry_attribute {
|
|
struct attribute attr;
|
|
int memtype;
|
|
ssize_t (*show)(struct kgsl_process_private *priv,
|
|
int type, char *buf);
|
|
};
|
|
|
|
#define to_mem_entry_attr(a) \
|
|
container_of(a, struct kgsl_mem_entry_attribute, attr)
|
|
|
|
#define __MEM_ENTRY_ATTR(_type, _name, _show) \
|
|
{ \
|
|
.attr = { .name = __stringify(_name), .mode = 0444 }, \
|
|
.memtype = _type, \
|
|
.show = _show, \
|
|
}
|
|
|
|
/*
|
|
* A structure to hold the attributes for a particular memory type.
|
|
* For each memory type in each process we store the current and maximum
|
|
* memory usage and display the counts in sysfs. This structure and
|
|
* the following macro allow us to simplify the definition for those
|
|
* adding new memory types
|
|
*/
|
|
|
|
struct mem_entry_stats {
|
|
int memtype;
|
|
struct kgsl_mem_entry_attribute attr;
|
|
struct kgsl_mem_entry_attribute max_attr;
|
|
};
|
|
|
|
|
|
#define MEM_ENTRY_STAT(_type, _name) \
|
|
{ \
|
|
.memtype = _type, \
|
|
.attr = __MEM_ENTRY_ATTR(_type, _name, mem_entry_show), \
|
|
.max_attr = __MEM_ENTRY_ATTR(_type, _name##_max, \
|
|
mem_entry_max_show), \
|
|
}
|
|
|
|
/**
|
|
* Given a kobj, find the process structure attached to it
|
|
*/
|
|
|
|
static struct kgsl_process_private *
|
|
_get_priv_from_kobj(struct kobject *kobj)
|
|
{
|
|
struct kgsl_process_private *private;
|
|
unsigned long name;
|
|
|
|
if (!kobj)
|
|
return NULL;
|
|
|
|
if (sscanf(kobj->name, "%ld", &name) != 1)
|
|
return NULL;
|
|
|
|
list_for_each_entry(private, &kgsl_driver.process_list, list) {
|
|
if (private->pid == name)
|
|
return private;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* Show the current amount of memory allocated for the given memtype
|
|
*/
|
|
|
|
static ssize_t
|
|
mem_entry_show(struct kgsl_process_private *priv, int type, char *buf)
|
|
{
|
|
return snprintf(buf, PAGE_SIZE, "%d\n", priv->stats[type].cur);
|
|
}
|
|
|
|
/**
|
|
* Show the maximum memory allocated for the given memtype through the life of
|
|
* the process
|
|
*/
|
|
|
|
static ssize_t
|
|
mem_entry_max_show(struct kgsl_process_private *priv, int type, char *buf)
|
|
{
|
|
return snprintf(buf, PAGE_SIZE, "%d\n", priv->stats[type].max);
|
|
}
|
|
|
|
|
|
static void mem_entry_sysfs_release(struct kobject *kobj)
|
|
{
|
|
}
|
|
|
|
static ssize_t mem_entry_sysfs_show(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
struct kgsl_mem_entry_attribute *pattr = to_mem_entry_attr(attr);
|
|
struct kgsl_process_private *priv;
|
|
ssize_t ret;
|
|
|
|
mutex_lock(&kgsl_driver.process_mutex);
|
|
priv = _get_priv_from_kobj(kobj);
|
|
|
|
if (priv && pattr->show)
|
|
ret = pattr->show(priv, pattr->memtype, buf);
|
|
else
|
|
ret = -EIO;
|
|
|
|
mutex_unlock(&kgsl_driver.process_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static const struct sysfs_ops mem_entry_sysfs_ops = {
|
|
.show = mem_entry_sysfs_show,
|
|
};
|
|
|
|
static struct kobj_type ktype_mem_entry = {
|
|
.sysfs_ops = &mem_entry_sysfs_ops,
|
|
.default_attrs = NULL,
|
|
.release = mem_entry_sysfs_release
|
|
};
|
|
|
|
static struct mem_entry_stats mem_stats[] = {
|
|
MEM_ENTRY_STAT(KGSL_MEM_ENTRY_KERNEL, kernel),
|
|
MEM_ENTRY_STAT(KGSL_MEM_ENTRY_PMEM, pmem),
|
|
#ifdef CONFIG_ASHMEM
|
|
MEM_ENTRY_STAT(KGSL_MEM_ENTRY_ASHMEM, ashmem),
|
|
#endif
|
|
MEM_ENTRY_STAT(KGSL_MEM_ENTRY_USER, user),
|
|
#ifdef CONFIG_ION
|
|
MEM_ENTRY_STAT(KGSL_MEM_ENTRY_ION, ion),
|
|
#endif
|
|
};
|
|
|
|
void
|
|
kgsl_process_uninit_sysfs(struct kgsl_process_private *private)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(mem_stats); i++) {
|
|
sysfs_remove_file(&private->kobj, &mem_stats[i].attr.attr);
|
|
sysfs_remove_file(&private->kobj,
|
|
&mem_stats[i].max_attr.attr);
|
|
}
|
|
|
|
kobject_put(&private->kobj);
|
|
}
|
|
|
|
void
|
|
kgsl_process_init_sysfs(struct kgsl_process_private *private)
|
|
{
|
|
unsigned char name[16];
|
|
int i, ret;
|
|
|
|
snprintf(name, sizeof(name), "%d", private->pid);
|
|
|
|
if (kobject_init_and_add(&private->kobj, &ktype_mem_entry,
|
|
kgsl_driver.prockobj, name))
|
|
return;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(mem_stats); i++) {
|
|
/* We need to check the value of sysfs_create_file, but we
|
|
* don't really care if it passed or not */
|
|
|
|
ret = sysfs_create_file(&private->kobj,
|
|
&mem_stats[i].attr.attr);
|
|
ret = sysfs_create_file(&private->kobj,
|
|
&mem_stats[i].max_attr.attr);
|
|
}
|
|
}
|
|
|
|
static int kgsl_drv_memstat_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
unsigned int val = 0;
|
|
|
|
if (!strncmp(attr->attr.name, "vmalloc", 7))
|
|
val = kgsl_driver.stats.vmalloc;
|
|
else if (!strncmp(attr->attr.name, "vmalloc_max", 11))
|
|
val = kgsl_driver.stats.vmalloc_max;
|
|
else if (!strncmp(attr->attr.name, "page_alloc", 10))
|
|
val = kgsl_driver.stats.page_alloc;
|
|
else if (!strncmp(attr->attr.name, "page_alloc_max", 14))
|
|
val = kgsl_driver.stats.page_alloc_max;
|
|
else if (!strncmp(attr->attr.name, "coherent", 8))
|
|
val = kgsl_driver.stats.coherent;
|
|
else if (!strncmp(attr->attr.name, "coherent_max", 12))
|
|
val = kgsl_driver.stats.coherent_max;
|
|
else if (!strncmp(attr->attr.name, "mapped", 6))
|
|
val = kgsl_driver.stats.mapped;
|
|
else if (!strncmp(attr->attr.name, "mapped_max", 10))
|
|
val = kgsl_driver.stats.mapped_max;
|
|
|
|
return snprintf(buf, PAGE_SIZE, "%u\n", val);
|
|
}
|
|
|
|
static int kgsl_drv_histogram_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
int len = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++)
|
|
len += snprintf(buf + len, PAGE_SIZE - len, "%d ",
|
|
kgsl_driver.stats.histogram[i]);
|
|
|
|
len += snprintf(buf + len, PAGE_SIZE - len, "\n");
|
|
return len;
|
|
}
|
|
|
|
static int kgsl_drv_full_cache_threshold_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int ret;
|
|
unsigned int thresh;
|
|
ret = sscanf(buf, "%d", &thresh);
|
|
if (ret != 1)
|
|
return count;
|
|
|
|
kgsl_driver.full_cache_threshold = thresh;
|
|
|
|
return count;
|
|
}
|
|
|
|
static int kgsl_drv_full_cache_threshold_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return snprintf(buf, PAGE_SIZE, "%d\n",
|
|
kgsl_driver.full_cache_threshold);
|
|
}
|
|
|
|
DEVICE_ATTR(vmalloc, 0444, kgsl_drv_memstat_show, NULL);
|
|
DEVICE_ATTR(vmalloc_max, 0444, kgsl_drv_memstat_show, NULL);
|
|
DEVICE_ATTR(page_alloc, 0444, kgsl_drv_memstat_show, NULL);
|
|
DEVICE_ATTR(page_alloc_max, 0444, kgsl_drv_memstat_show, NULL);
|
|
DEVICE_ATTR(coherent, 0444, kgsl_drv_memstat_show, NULL);
|
|
DEVICE_ATTR(coherent_max, 0444, kgsl_drv_memstat_show, NULL);
|
|
DEVICE_ATTR(mapped, 0444, kgsl_drv_memstat_show, NULL);
|
|
DEVICE_ATTR(mapped_max, 0444, kgsl_drv_memstat_show, NULL);
|
|
DEVICE_ATTR(histogram, 0444, kgsl_drv_histogram_show, NULL);
|
|
DEVICE_ATTR(full_cache_threshold, 0644,
|
|
kgsl_drv_full_cache_threshold_show,
|
|
kgsl_drv_full_cache_threshold_store);
|
|
|
|
static const struct device_attribute *drv_attr_list[] = {
|
|
&dev_attr_vmalloc,
|
|
&dev_attr_vmalloc_max,
|
|
&dev_attr_page_alloc,
|
|
&dev_attr_page_alloc_max,
|
|
&dev_attr_coherent,
|
|
&dev_attr_coherent_max,
|
|
&dev_attr_mapped,
|
|
&dev_attr_mapped_max,
|
|
&dev_attr_histogram,
|
|
&dev_attr_full_cache_threshold,
|
|
NULL
|
|
};
|
|
|
|
void
|
|
kgsl_sharedmem_uninit_sysfs(void)
|
|
{
|
|
kgsl_remove_device_sysfs_files(&kgsl_driver.virtdev, drv_attr_list);
|
|
}
|
|
|
|
int
|
|
kgsl_sharedmem_init_sysfs(void)
|
|
{
|
|
return kgsl_create_device_sysfs_files(&kgsl_driver.virtdev,
|
|
drv_attr_list);
|
|
}
|
|
|
|
#ifdef CONFIG_OUTER_CACHE
|
|
static void _outer_cache_range_op(int op, unsigned long addr, size_t size)
|
|
{
|
|
switch (op) {
|
|
case KGSL_CACHE_OP_FLUSH:
|
|
outer_flush_range(addr, addr + size);
|
|
break;
|
|
case KGSL_CACHE_OP_CLEAN:
|
|
outer_clean_range(addr, addr + size);
|
|
break;
|
|
case KGSL_CACHE_OP_INV:
|
|
outer_inv_range(addr, addr + size);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void outer_cache_range_op_sg(struct scatterlist *sg, int sglen, int op)
|
|
{
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
for_each_sg(sg, s, sglen, i) {
|
|
unsigned int paddr = kgsl_get_sg_pa(s);
|
|
_outer_cache_range_op(op, paddr, s->length);
|
|
}
|
|
}
|
|
|
|
#else
|
|
static void outer_cache_range_op_sg(struct scatterlist *sg, int sglen, int op)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static int kgsl_page_alloc_vmfault(struct kgsl_memdesc *memdesc,
|
|
struct vm_area_struct *vma,
|
|
struct vm_fault *vmf)
|
|
{
|
|
int i, pgoff;
|
|
struct scatterlist *s = memdesc->sg;
|
|
unsigned int offset;
|
|
|
|
offset = ((unsigned long) vmf->virtual_address - vma->vm_start);
|
|
|
|
if (offset >= memdesc->size)
|
|
return VM_FAULT_SIGBUS;
|
|
|
|
pgoff = offset >> PAGE_SHIFT;
|
|
|
|
/*
|
|
* The sglist might be comprised of mixed blocks of memory depending
|
|
* on how many 64K pages were allocated. This means we have to do math
|
|
* to find the actual 4K page to map in user space
|
|
*/
|
|
|
|
for (i = 0; i < memdesc->sglen; i++) {
|
|
int npages = s->length >> PAGE_SHIFT;
|
|
|
|
if (pgoff < npages) {
|
|
struct page *page = sg_page(s);
|
|
|
|
page = nth_page(page, pgoff);
|
|
|
|
get_page(page);
|
|
vmf->page = page;
|
|
|
|
return 0;
|
|
}
|
|
|
|
pgoff -= npages;
|
|
s = sg_next(s);
|
|
}
|
|
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
|
|
static int kgsl_page_alloc_vmflags(struct kgsl_memdesc *memdesc)
|
|
{
|
|
return VM_RESERVED | VM_DONTEXPAND;
|
|
}
|
|
|
|
static void kgsl_page_alloc_free(struct kgsl_memdesc *memdesc)
|
|
{
|
|
int i = 0;
|
|
struct scatterlist *sg;
|
|
int sglen = memdesc->sglen;
|
|
|
|
kgsl_driver.stats.page_alloc -= memdesc->size;
|
|
|
|
if (memdesc->hostptr) {
|
|
vunmap(memdesc->hostptr);
|
|
kgsl_driver.stats.vmalloc -= memdesc->size;
|
|
}
|
|
if (memdesc->sg)
|
|
for_each_sg(memdesc->sg, sg, sglen, i)
|
|
__free_pages(sg_page(sg), get_order(sg->length));
|
|
}
|
|
|
|
static int kgsl_contiguous_vmflags(struct kgsl_memdesc *memdesc)
|
|
{
|
|
return VM_RESERVED | VM_IO | VM_PFNMAP | VM_DONTEXPAND;
|
|
}
|
|
|
|
/*
|
|
* kgsl_page_alloc_map_kernel - Map the memory in memdesc to kernel address
|
|
* space
|
|
*
|
|
* @memdesc - The memory descriptor which contains information about the memory
|
|
*
|
|
* Return: 0 on success else error code
|
|
*/
|
|
static int kgsl_page_alloc_map_kernel(struct kgsl_memdesc *memdesc)
|
|
{
|
|
if (!memdesc->hostptr) {
|
|
pgprot_t page_prot = pgprot_writecombine(PAGE_KERNEL);
|
|
struct page **pages = NULL;
|
|
struct scatterlist *sg;
|
|
int npages = PAGE_ALIGN(memdesc->size) >> PAGE_SHIFT;
|
|
int sglen = memdesc->sglen;
|
|
int i, count = 0;
|
|
|
|
/* create a list of pages to call vmap */
|
|
pages = vmalloc(npages * sizeof(struct page *));
|
|
if (!pages) {
|
|
KGSL_CORE_ERR("vmalloc(%d) failed\n",
|
|
npages * sizeof(struct page *));
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for_each_sg(memdesc->sg, sg, sglen, i) {
|
|
struct page *page = sg_page(sg);
|
|
int j;
|
|
|
|
for (j = 0; j < sg->length >> PAGE_SHIFT; j++)
|
|
pages[count++] = page++;
|
|
}
|
|
|
|
|
|
memdesc->hostptr = vmap(pages, count,
|
|
VM_IOREMAP, page_prot);
|
|
KGSL_STATS_ADD(memdesc->size, kgsl_driver.stats.vmalloc,
|
|
kgsl_driver.stats.vmalloc_max);
|
|
vfree(pages);
|
|
}
|
|
if (!memdesc->hostptr)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kgsl_contiguous_vmfault(struct kgsl_memdesc *memdesc,
|
|
struct vm_area_struct *vma,
|
|
struct vm_fault *vmf)
|
|
{
|
|
unsigned long offset, pfn;
|
|
int ret;
|
|
|
|
offset = ((unsigned long) vmf->virtual_address - vma->vm_start) >>
|
|
PAGE_SHIFT;
|
|
|
|
pfn = (memdesc->physaddr >> PAGE_SHIFT) + offset;
|
|
ret = vm_insert_pfn(vma, (unsigned long) vmf->virtual_address, pfn);
|
|
|
|
if (ret == -ENOMEM || ret == -EAGAIN)
|
|
return VM_FAULT_OOM;
|
|
else if (ret == -EFAULT)
|
|
return VM_FAULT_SIGBUS;
|
|
|
|
return VM_FAULT_NOPAGE;
|
|
}
|
|
|
|
static void kgsl_ebimem_free(struct kgsl_memdesc *memdesc)
|
|
|
|
{
|
|
kgsl_driver.stats.coherent -= memdesc->size;
|
|
if (memdesc->hostptr)
|
|
iounmap(memdesc->hostptr);
|
|
|
|
free_contiguous_memory_by_paddr(memdesc->physaddr);
|
|
}
|
|
|
|
static int kgsl_ebimem_map_kernel(struct kgsl_memdesc *memdesc)
|
|
{
|
|
if (!memdesc->hostptr) {
|
|
memdesc->hostptr = ioremap(memdesc->physaddr, memdesc->size);
|
|
if (!memdesc->hostptr) {
|
|
KGSL_CORE_ERR("ioremap failed, addr:0x%p, size:0x%x\n",
|
|
memdesc->hostptr, memdesc->size);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kgsl_coherent_free(struct kgsl_memdesc *memdesc)
|
|
{
|
|
kgsl_driver.stats.coherent -= memdesc->size;
|
|
dma_free_coherent(NULL, memdesc->size,
|
|
memdesc->hostptr, memdesc->physaddr);
|
|
}
|
|
|
|
/* Global - also used by kgsl_drm.c */
|
|
struct kgsl_memdesc_ops kgsl_page_alloc_ops = {
|
|
.free = kgsl_page_alloc_free,
|
|
.vmflags = kgsl_page_alloc_vmflags,
|
|
.vmfault = kgsl_page_alloc_vmfault,
|
|
.map_kernel_mem = kgsl_page_alloc_map_kernel,
|
|
};
|
|
EXPORT_SYMBOL(kgsl_page_alloc_ops);
|
|
|
|
static struct kgsl_memdesc_ops kgsl_ebimem_ops = {
|
|
.free = kgsl_ebimem_free,
|
|
.vmflags = kgsl_contiguous_vmflags,
|
|
.vmfault = kgsl_contiguous_vmfault,
|
|
.map_kernel_mem = kgsl_ebimem_map_kernel,
|
|
};
|
|
|
|
static struct kgsl_memdesc_ops kgsl_coherent_ops = {
|
|
.free = kgsl_coherent_free,
|
|
};
|
|
|
|
void kgsl_cache_range_op(struct kgsl_memdesc *memdesc, int op)
|
|
{
|
|
/*
|
|
* If the buffer is mapped in the kernel operate on that address
|
|
* otherwise use the user address
|
|
*/
|
|
|
|
void *addr = (memdesc->hostptr) ?
|
|
memdesc->hostptr : (void *) memdesc->useraddr;
|
|
|
|
int size = memdesc->size;
|
|
|
|
if (addr != NULL) {
|
|
switch (op) {
|
|
case KGSL_CACHE_OP_FLUSH:
|
|
dmac_flush_range(addr, addr + size);
|
|
break;
|
|
case KGSL_CACHE_OP_CLEAN:
|
|
dmac_clean_range(addr, addr + size);
|
|
break;
|
|
case KGSL_CACHE_OP_INV:
|
|
dmac_inv_range(addr, addr + size);
|
|
break;
|
|
}
|
|
}
|
|
outer_cache_range_op_sg(memdesc->sg, memdesc->sglen, op);
|
|
}
|
|
EXPORT_SYMBOL(kgsl_cache_range_op);
|
|
|
|
static int
|
|
_kgsl_sharedmem_page_alloc(struct kgsl_memdesc *memdesc,
|
|
struct kgsl_pagetable *pagetable,
|
|
size_t size)
|
|
{
|
|
int pcount = 0, order, ret = 0;
|
|
int j, len, page_size, sglen_alloc, sglen = 0;
|
|
struct page **pages = NULL;
|
|
pgprot_t page_prot = pgprot_writecombine(PAGE_KERNEL);
|
|
void *ptr;
|
|
unsigned int align;
|
|
int step = ((VMALLOC_END - VMALLOC_START)/8) >> PAGE_SHIFT;
|
|
|
|
align = (memdesc->flags & KGSL_MEMALIGN_MASK) >> KGSL_MEMALIGN_SHIFT;
|
|
|
|
page_size = (align >= ilog2(SZ_64K) && size >= SZ_64K)
|
|
? SZ_64K : PAGE_SIZE;
|
|
/* update align flags for what we actually use */
|
|
if (page_size != PAGE_SIZE)
|
|
kgsl_memdesc_set_align(memdesc, ilog2(page_size));
|
|
|
|
/*
|
|
* There needs to be enough room in the sg structure to be able to
|
|
* service the allocation entirely with PAGE_SIZE sized chunks
|
|
*/
|
|
|
|
sglen_alloc = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
|
|
memdesc->size = size;
|
|
memdesc->pagetable = pagetable;
|
|
memdesc->ops = &kgsl_page_alloc_ops;
|
|
|
|
memdesc->sglen_alloc = sglen_alloc;
|
|
memdesc->sg = kgsl_sg_alloc(memdesc->sglen_alloc);
|
|
|
|
if (memdesc->sg == NULL) {
|
|
ret = -ENOMEM;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Allocate space to store the list of pages to send to vmap.
|
|
* This is an array of pointers so we can track 1024 pages per page of
|
|
* allocation which means we can handle up to a 8MB buffer request with
|
|
* two pages; well within the acceptable limits for using kmalloc.
|
|
*/
|
|
|
|
pages = kmalloc(memdesc->sglen_alloc * sizeof(struct page *),
|
|
GFP_KERNEL);
|
|
|
|
if (pages == NULL) {
|
|
ret = -ENOMEM;
|
|
goto done;
|
|
}
|
|
|
|
kmemleak_not_leak(memdesc->sg);
|
|
|
|
sg_init_table(memdesc->sg, memdesc->sglen_alloc);
|
|
|
|
len = size;
|
|
|
|
while (len > 0) {
|
|
struct page *page;
|
|
unsigned int gfp_mask = __GFP_HIGHMEM;
|
|
int j;
|
|
|
|
/* don't waste space at the end of the allocation*/
|
|
if (len < page_size)
|
|
page_size = PAGE_SIZE;
|
|
|
|
/*
|
|
* Don't do some of the more aggressive memory recovery
|
|
* techniques for large order allocations
|
|
*/
|
|
if (page_size != PAGE_SIZE)
|
|
gfp_mask |= __GFP_COMP | __GFP_NORETRY |
|
|
__GFP_NO_KSWAPD | __GFP_NOWARN;
|
|
else
|
|
gfp_mask |= GFP_KERNEL;
|
|
|
|
page = alloc_pages(gfp_mask, get_order(page_size));
|
|
|
|
if (page == NULL) {
|
|
if (page_size != PAGE_SIZE) {
|
|
page_size = PAGE_SIZE;
|
|
continue;
|
|
}
|
|
|
|
KGSL_CORE_ERR(
|
|
"Out of memory: only allocated %dKB of %dKB requested\n",
|
|
(size - len) >> 10, size >> 10);
|
|
|
|
ret = -ENOMEM;
|
|
goto done;
|
|
}
|
|
|
|
for (j = 0; j < page_size >> PAGE_SHIFT; j++)
|
|
pages[pcount++] = nth_page(page, j);
|
|
|
|
sg_set_page(&memdesc->sg[sglen++], page, page_size, 0);
|
|
len -= page_size;
|
|
}
|
|
|
|
memdesc->sglen = sglen;
|
|
|
|
/*
|
|
* All memory that goes to the user has to be zeroed out before it gets
|
|
* exposed to userspace. This means that the memory has to be mapped in
|
|
* the kernel, zeroed (memset) and then unmapped. This also means that
|
|
* the dcache has to be flushed to ensure coherency between the kernel
|
|
* and user pages. We used to pass __GFP_ZERO to alloc_page which mapped
|
|
* zeroed and unmaped each individual page, and then we had to turn
|
|
* around and call flush_dcache_page() on that page to clear the caches.
|
|
* This was killing us for performance. Instead, we found it is much
|
|
* faster to allocate the pages without GFP_ZERO, map a chunk of the
|
|
* range ('step' pages), memset it, flush it and then unmap
|
|
* - this results in a factor of 4 improvement for speed for large
|
|
* buffers. There is a small decrease in speed for small buffers,
|
|
* but only on the order of a few microseconds at best. The 'step'
|
|
* size is based on a guess at the amount of free vmalloc space, but
|
|
* will scale down if there's not enough free space.
|
|
*/
|
|
for (j = 0; j < pcount; j += step) {
|
|
step = min(step, pcount - j);
|
|
|
|
ptr = vmap(&pages[j], step, VM_IOREMAP, page_prot);
|
|
|
|
if (ptr != NULL) {
|
|
memset(ptr, 0, step * PAGE_SIZE);
|
|
dmac_flush_range(ptr, ptr + step * PAGE_SIZE);
|
|
vunmap(ptr);
|
|
} else {
|
|
int k;
|
|
/* Very, very, very slow path */
|
|
|
|
for (k = j; k < j + step; k++) {
|
|
ptr = kmap_atomic(pages[k]);
|
|
memset(ptr, 0, PAGE_SIZE);
|
|
dmac_flush_range(ptr, ptr + PAGE_SIZE);
|
|
kunmap_atomic(ptr);
|
|
}
|
|
/* scale down the step size to avoid this path */
|
|
if (step > 1)
|
|
step >>= 1;
|
|
}
|
|
}
|
|
|
|
outer_cache_range_op_sg(memdesc->sg, memdesc->sglen,
|
|
KGSL_CACHE_OP_FLUSH);
|
|
|
|
KGSL_STATS_ADD(size, kgsl_driver.stats.page_alloc,
|
|
kgsl_driver.stats.page_alloc_max);
|
|
|
|
order = get_order(size);
|
|
|
|
if (order < 16)
|
|
kgsl_driver.stats.histogram[order]++;
|
|
|
|
done:
|
|
kfree(pages);
|
|
|
|
if (ret)
|
|
kgsl_sharedmem_free(memdesc);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
kgsl_sharedmem_page_alloc(struct kgsl_memdesc *memdesc,
|
|
struct kgsl_pagetable *pagetable, size_t size)
|
|
{
|
|
int ret = 0;
|
|
BUG_ON(size == 0);
|
|
|
|
size = ALIGN(size, PAGE_SIZE * 2);
|
|
|
|
ret = _kgsl_sharedmem_page_alloc(memdesc, pagetable, size);
|
|
if (!ret)
|
|
ret = kgsl_page_alloc_map_kernel(memdesc);
|
|
if (ret)
|
|
kgsl_sharedmem_free(memdesc);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(kgsl_sharedmem_page_alloc);
|
|
|
|
int
|
|
kgsl_sharedmem_page_alloc_user(struct kgsl_memdesc *memdesc,
|
|
struct kgsl_pagetable *pagetable,
|
|
size_t size)
|
|
{
|
|
return _kgsl_sharedmem_page_alloc(memdesc, pagetable, PAGE_ALIGN(size));
|
|
}
|
|
EXPORT_SYMBOL(kgsl_sharedmem_page_alloc_user);
|
|
|
|
int
|
|
kgsl_sharedmem_alloc_coherent(struct kgsl_memdesc *memdesc, size_t size)
|
|
{
|
|
int result = 0;
|
|
|
|
size = ALIGN(size, PAGE_SIZE);
|
|
|
|
memdesc->size = size;
|
|
memdesc->ops = &kgsl_coherent_ops;
|
|
|
|
memdesc->hostptr = dma_alloc_coherent(NULL, size, &memdesc->physaddr,
|
|
GFP_KERNEL);
|
|
if (memdesc->hostptr == NULL) {
|
|
KGSL_CORE_ERR("dma_alloc_coherent(%d) failed\n", size);
|
|
result = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
result = memdesc_sg_phys(memdesc, memdesc->physaddr, size);
|
|
if (result)
|
|
goto err;
|
|
|
|
/* Record statistics */
|
|
|
|
KGSL_STATS_ADD(size, kgsl_driver.stats.coherent,
|
|
kgsl_driver.stats.coherent_max);
|
|
|
|
err:
|
|
if (result)
|
|
kgsl_sharedmem_free(memdesc);
|
|
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL(kgsl_sharedmem_alloc_coherent);
|
|
|
|
void kgsl_sharedmem_free(struct kgsl_memdesc *memdesc)
|
|
{
|
|
if (memdesc == NULL || memdesc->size == 0)
|
|
return;
|
|
|
|
if (memdesc->gpuaddr)
|
|
kgsl_mmu_unmap(memdesc->pagetable, memdesc);
|
|
|
|
if (memdesc->ops && memdesc->ops->free)
|
|
memdesc->ops->free(memdesc);
|
|
|
|
kgsl_sg_free(memdesc->sg, memdesc->sglen_alloc);
|
|
|
|
memset(memdesc, 0, sizeof(*memdesc));
|
|
}
|
|
EXPORT_SYMBOL(kgsl_sharedmem_free);
|
|
|
|
static int
|
|
_kgsl_sharedmem_ebimem(struct kgsl_memdesc *memdesc,
|
|
struct kgsl_pagetable *pagetable, size_t size)
|
|
{
|
|
int result = 0;
|
|
|
|
memdesc->size = size;
|
|
memdesc->pagetable = pagetable;
|
|
memdesc->ops = &kgsl_ebimem_ops;
|
|
memdesc->physaddr = allocate_contiguous_ebi_nomap(size, SZ_8K);
|
|
|
|
if (memdesc->physaddr == 0) {
|
|
KGSL_CORE_ERR("allocate_contiguous_ebi_nomap(%d) failed\n",
|
|
size);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
result = memdesc_sg_phys(memdesc, memdesc->physaddr, size);
|
|
|
|
if (result)
|
|
goto err;
|
|
|
|
KGSL_STATS_ADD(size, kgsl_driver.stats.coherent,
|
|
kgsl_driver.stats.coherent_max);
|
|
|
|
err:
|
|
if (result)
|
|
kgsl_sharedmem_free(memdesc);
|
|
|
|
return result;
|
|
}
|
|
|
|
int
|
|
kgsl_sharedmem_ebimem_user(struct kgsl_memdesc *memdesc,
|
|
struct kgsl_pagetable *pagetable,
|
|
size_t size)
|
|
{
|
|
size = ALIGN(size, PAGE_SIZE);
|
|
return _kgsl_sharedmem_ebimem(memdesc, pagetable, size);
|
|
}
|
|
EXPORT_SYMBOL(kgsl_sharedmem_ebimem_user);
|
|
|
|
int
|
|
kgsl_sharedmem_ebimem(struct kgsl_memdesc *memdesc,
|
|
struct kgsl_pagetable *pagetable, size_t size)
|
|
{
|
|
int result;
|
|
size = ALIGN(size, 8192);
|
|
result = _kgsl_sharedmem_ebimem(memdesc, pagetable, size);
|
|
|
|
if (result)
|
|
return result;
|
|
|
|
memdesc->hostptr = ioremap(memdesc->physaddr, size);
|
|
|
|
if (memdesc->hostptr == NULL) {
|
|
KGSL_CORE_ERR("ioremap failed\n");
|
|
kgsl_sharedmem_free(memdesc);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(kgsl_sharedmem_ebimem);
|
|
|
|
int
|
|
kgsl_sharedmem_readl(const struct kgsl_memdesc *memdesc,
|
|
uint32_t *dst,
|
|
unsigned int offsetbytes)
|
|
{
|
|
uint32_t *src;
|
|
BUG_ON(memdesc == NULL || memdesc->hostptr == NULL || dst == NULL);
|
|
WARN_ON(offsetbytes % sizeof(uint32_t) != 0);
|
|
if (offsetbytes % sizeof(uint32_t) != 0)
|
|
return -EINVAL;
|
|
|
|
WARN_ON(offsetbytes + sizeof(uint32_t) > memdesc->size);
|
|
if (offsetbytes + sizeof(uint32_t) > memdesc->size)
|
|
return -ERANGE;
|
|
src = (uint32_t *)(memdesc->hostptr + offsetbytes);
|
|
*dst = *src;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(kgsl_sharedmem_readl);
|
|
|
|
int
|
|
kgsl_sharedmem_writel(struct kgsl_device *device,
|
|
const struct kgsl_memdesc *memdesc,
|
|
unsigned int offsetbytes,
|
|
uint32_t src)
|
|
{
|
|
uint32_t *dst;
|
|
BUG_ON(memdesc == NULL || memdesc->hostptr == NULL);
|
|
WARN_ON(offsetbytes % sizeof(uint32_t) != 0);
|
|
if (offsetbytes % sizeof(uint32_t) != 0)
|
|
return -EINVAL;
|
|
|
|
WARN_ON(offsetbytes + sizeof(uint32_t) > memdesc->size);
|
|
if (offsetbytes + sizeof(uint32_t) > memdesc->size)
|
|
return -ERANGE;
|
|
kgsl_cffdump_setmem(device,
|
|
memdesc->gpuaddr + offsetbytes,
|
|
src, sizeof(uint32_t));
|
|
dst = (uint32_t *)(memdesc->hostptr + offsetbytes);
|
|
*dst = src;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(kgsl_sharedmem_writel);
|
|
|
|
int
|
|
kgsl_sharedmem_set(struct kgsl_device *device,
|
|
const struct kgsl_memdesc *memdesc, unsigned int offsetbytes,
|
|
unsigned int value, unsigned int sizebytes)
|
|
{
|
|
BUG_ON(memdesc == NULL || memdesc->hostptr == NULL);
|
|
BUG_ON(offsetbytes + sizebytes > memdesc->size);
|
|
|
|
kgsl_cffdump_setmem(device,
|
|
memdesc->gpuaddr + offsetbytes, value,
|
|
sizebytes);
|
|
memset(memdesc->hostptr + offsetbytes, value, sizebytes);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(kgsl_sharedmem_set);
|
|
|
|
/*
|
|
* kgsl_sharedmem_map_vma - Map a user vma to physical memory
|
|
*
|
|
* @vma - The user vma to map
|
|
* @memdesc - The memory descriptor which contains information about the
|
|
* physical memory
|
|
*
|
|
* Return: 0 on success else error code
|
|
*/
|
|
int
|
|
kgsl_sharedmem_map_vma(struct vm_area_struct *vma,
|
|
const struct kgsl_memdesc *memdesc)
|
|
{
|
|
unsigned long addr = vma->vm_start;
|
|
unsigned long size = vma->vm_end - vma->vm_start;
|
|
int ret, i = 0;
|
|
|
|
if (!memdesc->sg || (size != memdesc->size) ||
|
|
(memdesc->sglen != (size / PAGE_SIZE)))
|
|
return -EINVAL;
|
|
|
|
for (; addr < vma->vm_end; addr += PAGE_SIZE, i++) {
|
|
ret = vm_insert_page(vma, addr, sg_page(&memdesc->sg[i]));
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(kgsl_sharedmem_map_vma);
|
|
|
|
static const char * const memtype_str[] = {
|
|
[KGSL_MEMTYPE_OBJECTANY] = "any(0)",
|
|
[KGSL_MEMTYPE_FRAMEBUFFER] = "framebuffer",
|
|
[KGSL_MEMTYPE_RENDERBUFFER] = "renderbuffer",
|
|
[KGSL_MEMTYPE_ARRAYBUFFER] = "arraybuffer",
|
|
[KGSL_MEMTYPE_ELEMENTARRAYBUFFER] = "elementarraybuffer",
|
|
[KGSL_MEMTYPE_VERTEXARRAYBUFFER] = "vertexarraybuffer",
|
|
[KGSL_MEMTYPE_TEXTURE] = "texture",
|
|
[KGSL_MEMTYPE_SURFACE] = "surface",
|
|
[KGSL_MEMTYPE_EGL_SURFACE] = "egl_surface",
|
|
[KGSL_MEMTYPE_GL] = "gl",
|
|
[KGSL_MEMTYPE_CL] = "cl",
|
|
[KGSL_MEMTYPE_CL_BUFFER_MAP] = "cl_buffer_map",
|
|
[KGSL_MEMTYPE_CL_BUFFER_NOMAP] = "cl_buffer_nomap",
|
|
[KGSL_MEMTYPE_CL_IMAGE_MAP] = "cl_image_map",
|
|
[KGSL_MEMTYPE_CL_IMAGE_NOMAP] = "cl_image_nomap",
|
|
[KGSL_MEMTYPE_CL_KERNEL_STACK] = "cl_kernel_stack",
|
|
[KGSL_MEMTYPE_COMMAND] = "command",
|
|
[KGSL_MEMTYPE_2D] = "2d",
|
|
[KGSL_MEMTYPE_EGL_IMAGE] = "egl_image",
|
|
[KGSL_MEMTYPE_EGL_SHADOW] = "egl_shadow",
|
|
[KGSL_MEMTYPE_MULTISAMPLE] = "egl_multisample",
|
|
/* KGSL_MEMTYPE_KERNEL handled below, to avoid huge array */
|
|
};
|
|
|
|
void kgsl_get_memory_usage(char *name, size_t name_size, unsigned int memflags)
|
|
{
|
|
unsigned char type;
|
|
|
|
type = (memflags & KGSL_MEMTYPE_MASK) >> KGSL_MEMTYPE_SHIFT;
|
|
if (type == KGSL_MEMTYPE_KERNEL)
|
|
strlcpy(name, "kernel", name_size);
|
|
else if (type < ARRAY_SIZE(memtype_str) && memtype_str[type] != NULL)
|
|
strlcpy(name, memtype_str[type], name_size);
|
|
else
|
|
snprintf(name, name_size, "unknown(%3d)", type);
|
|
}
|
|
EXPORT_SYMBOL(kgsl_get_memory_usage);
|