836 lines
22 KiB
C
836 lines
22 KiB
C
/*
|
|
* drivers/gpu/ion/ion_cp_heap.c
|
|
*
|
|
* Copyright (C) 2011 Google, Inc.
|
|
* Copyright (c) 2011-2013, The Linux Foundation. All rights reserved.
|
|
*
|
|
* This software is licensed under the terms of the GNU General Public
|
|
* License version 2, as published by the Free Software Foundation, and
|
|
* may be copied, distributed, and modified under those terms.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
*/
|
|
#include <linux/spinlock.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/err.h>
|
|
#include <linux/genalloc.h>
|
|
#include <linux/io.h>
|
|
#include <linux/msm_ion.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/memory_alloc.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <trace/events/kmem.h>
|
|
|
|
#include <asm/mach/map.h>
|
|
|
|
#include <mach/msm_memtypes.h>
|
|
#include <mach/scm.h>
|
|
#include <mach/iommu_domains.h>
|
|
|
|
#include "ion_priv.h"
|
|
|
|
#include <asm/mach/map.h>
|
|
#include <asm/cacheflush.h>
|
|
|
|
#include "msm/ion_cp_common.h"
|
|
/**
|
|
* struct ion_cp_heap - container for the heap and shared heap data
|
|
|
|
* @heap: the heap information structure
|
|
* @pool: memory pool to allocate from.
|
|
* @base: the base address of the memory pool.
|
|
* @permission_type: Identifier for the memory used by SCM for protecting
|
|
* and unprotecting memory.
|
|
* @secure_base: Base address used when securing a heap that is shared.
|
|
* @secure_size: Size used when securing a heap that is shared.
|
|
* @lock: mutex to protect shared access.
|
|
* @heap_protected: Indicates whether heap has been protected or not.
|
|
* @allocated_bytes: the total number of allocated bytes from the pool.
|
|
* @total_size: the total size of the memory pool.
|
|
* @request_region: function pointer to call when first mapping of memory
|
|
* occurs.
|
|
* @release_region: function pointer to call when last mapping of memory
|
|
* unmapped.
|
|
* @bus_id: token used with request/release region.
|
|
* @kmap_cached_count: the total number of times this heap has been mapped in
|
|
* kernel space (cached).
|
|
* @kmap_uncached_count:the total number of times this heap has been mapped in
|
|
* kernel space (un-cached).
|
|
* @umap_count: the total number of times this heap has been mapped in
|
|
* user space.
|
|
* @has_outer_cache: set to 1 if outer cache is used, 0 otherwise.
|
|
*/
|
|
struct ion_cp_heap {
|
|
struct ion_heap heap;
|
|
struct gen_pool *pool;
|
|
ion_phys_addr_t base;
|
|
unsigned int permission_type;
|
|
ion_phys_addr_t secure_base;
|
|
size_t secure_size;
|
|
struct mutex lock;
|
|
unsigned int heap_protected;
|
|
unsigned long allocated_bytes;
|
|
unsigned long total_size;
|
|
int (*heap_request_region)(void *);
|
|
int (*heap_release_region)(void *);
|
|
void *bus_id;
|
|
unsigned long kmap_cached_count;
|
|
unsigned long kmap_uncached_count;
|
|
unsigned long umap_count;
|
|
unsigned int has_outer_cache;
|
|
atomic_t protect_cnt;
|
|
void *cpu_addr;
|
|
size_t heap_size;
|
|
dma_addr_t handle;
|
|
int cma;
|
|
int allow_non_secure_allocation;
|
|
};
|
|
|
|
enum {
|
|
HEAP_NOT_PROTECTED = 0,
|
|
HEAP_PROTECTED = 1,
|
|
};
|
|
|
|
#define DMA_ALLOC_TRIES 5
|
|
|
|
static int allocate_heap_memory(struct ion_heap *heap)
|
|
{
|
|
struct device *dev = heap->priv;
|
|
struct ion_cp_heap *cp_heap =
|
|
container_of(heap, struct ion_cp_heap, heap);
|
|
int ret;
|
|
int tries = 0;
|
|
DEFINE_DMA_ATTRS(attrs);
|
|
dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &attrs);
|
|
|
|
|
|
if (cp_heap->cpu_addr)
|
|
return 0;
|
|
|
|
while (!cp_heap->cpu_addr && (++tries < DMA_ALLOC_TRIES)) {
|
|
cp_heap->cpu_addr = dma_alloc_attrs(dev,
|
|
cp_heap->heap_size,
|
|
&(cp_heap->handle),
|
|
0,
|
|
&attrs);
|
|
if (!cp_heap->cpu_addr) {
|
|
trace_ion_cp_alloc_retry(tries);
|
|
msleep(20);
|
|
}
|
|
}
|
|
|
|
if (!cp_heap->cpu_addr)
|
|
goto out;
|
|
|
|
cp_heap->base = cp_heap->handle;
|
|
|
|
cp_heap->pool = gen_pool_create(12, -1);
|
|
if (!cp_heap->pool)
|
|
goto out_free;
|
|
|
|
ret = gen_pool_add(cp_heap->pool, cp_heap->base,
|
|
cp_heap->heap_size, -1);
|
|
if (ret < 0)
|
|
goto out_pool;
|
|
|
|
return 0;
|
|
|
|
out_pool:
|
|
gen_pool_destroy(cp_heap->pool);
|
|
out_free:
|
|
dma_free_coherent(dev, cp_heap->heap_size, cp_heap->cpu_addr,
|
|
cp_heap->handle);
|
|
out:
|
|
return ION_CP_ALLOCATE_FAIL;
|
|
}
|
|
|
|
static void free_heap_memory(struct ion_heap *heap)
|
|
{
|
|
struct device *dev = heap->priv;
|
|
struct ion_cp_heap *cp_heap =
|
|
container_of(heap, struct ion_cp_heap, heap);
|
|
|
|
/* release memory */
|
|
dma_free_coherent(dev, cp_heap->heap_size, cp_heap->cpu_addr,
|
|
cp_heap->handle);
|
|
gen_pool_destroy(cp_heap->pool);
|
|
cp_heap->pool = NULL;
|
|
cp_heap->cpu_addr = 0;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Get the total number of kernel mappings.
|
|
* Must be called with heap->lock locked.
|
|
*/
|
|
static unsigned long ion_cp_get_total_kmap_count(
|
|
const struct ion_cp_heap *cp_heap)
|
|
{
|
|
return cp_heap->kmap_cached_count + cp_heap->kmap_uncached_count;
|
|
}
|
|
|
|
static int ion_on_first_alloc(struct ion_heap *heap)
|
|
{
|
|
struct ion_cp_heap *cp_heap =
|
|
container_of(heap, struct ion_cp_heap, heap);
|
|
int ret_value;
|
|
|
|
if (cp_heap->cma) {
|
|
ret_value = allocate_heap_memory(heap);
|
|
if (ret_value)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void ion_on_last_free(struct ion_heap *heap)
|
|
{
|
|
struct ion_cp_heap *cp_heap =
|
|
container_of(heap, struct ion_cp_heap, heap);
|
|
|
|
if (cp_heap->cma)
|
|
free_heap_memory(heap);
|
|
}
|
|
|
|
/**
|
|
* Protects memory if heap is unsecured heap.
|
|
* Must be called with heap->lock locked.
|
|
*/
|
|
static int ion_cp_protect(struct ion_heap *heap, int version, void *data)
|
|
{
|
|
struct ion_cp_heap *cp_heap =
|
|
container_of(heap, struct ion_cp_heap, heap);
|
|
int ret_value = 0;
|
|
|
|
if (atomic_inc_return(&cp_heap->protect_cnt) == 1) {
|
|
/* Make sure we are in C state when the heap is protected. */
|
|
if (!cp_heap->allocated_bytes)
|
|
if (ion_on_first_alloc(heap))
|
|
goto out;
|
|
|
|
ret_value = ion_cp_protect_mem(cp_heap->secure_base,
|
|
cp_heap->secure_size, cp_heap->permission_type,
|
|
version, data);
|
|
if (ret_value) {
|
|
pr_err("Failed to protect memory for heap %s - "
|
|
"error code: %d\n", heap->name, ret_value);
|
|
|
|
if (!cp_heap->allocated_bytes)
|
|
ion_on_last_free(heap);
|
|
|
|
atomic_dec(&cp_heap->protect_cnt);
|
|
} else {
|
|
cp_heap->heap_protected = HEAP_PROTECTED;
|
|
pr_debug("Protected heap %s @ 0x%pa\n",
|
|
heap->name, &cp_heap->base);
|
|
}
|
|
}
|
|
out:
|
|
pr_debug("%s: protect count is %d\n", __func__,
|
|
atomic_read(&cp_heap->protect_cnt));
|
|
BUG_ON(atomic_read(&cp_heap->protect_cnt) < 0);
|
|
return ret_value;
|
|
}
|
|
|
|
/**
|
|
* Unprotects memory if heap is secure heap.
|
|
* Must be called with heap->lock locked.
|
|
*/
|
|
static void ion_cp_unprotect(struct ion_heap *heap, int version, void *data)
|
|
{
|
|
struct ion_cp_heap *cp_heap =
|
|
container_of(heap, struct ion_cp_heap, heap);
|
|
|
|
if (atomic_dec_and_test(&cp_heap->protect_cnt)) {
|
|
int error_code = ion_cp_unprotect_mem(
|
|
cp_heap->secure_base, cp_heap->secure_size,
|
|
cp_heap->permission_type, version, data);
|
|
if (error_code) {
|
|
pr_err("Failed to un-protect memory for heap %s - "
|
|
"error code: %d\n", heap->name, error_code);
|
|
} else {
|
|
cp_heap->heap_protected = HEAP_NOT_PROTECTED;
|
|
pr_debug("Un-protected heap %s @ 0x%x\n", heap->name,
|
|
(unsigned int) cp_heap->base);
|
|
|
|
if (!cp_heap->allocated_bytes)
|
|
ion_on_last_free(heap);
|
|
}
|
|
}
|
|
pr_debug("%s: protect count is %d\n", __func__,
|
|
atomic_read(&cp_heap->protect_cnt));
|
|
BUG_ON(atomic_read(&cp_heap->protect_cnt) < 0);
|
|
}
|
|
|
|
ion_phys_addr_t ion_cp_allocate(struct ion_heap *heap,
|
|
unsigned long size,
|
|
unsigned long align,
|
|
unsigned long flags)
|
|
{
|
|
unsigned long offset;
|
|
unsigned long secure_allocation = flags & ION_FLAG_SECURE;
|
|
unsigned long force_contig = flags & ION_FLAG_FORCE_CONTIGUOUS;
|
|
|
|
struct ion_cp_heap *cp_heap =
|
|
container_of(heap, struct ion_cp_heap, heap);
|
|
|
|
mutex_lock(&cp_heap->lock);
|
|
if (!secure_allocation && cp_heap->heap_protected == HEAP_PROTECTED) {
|
|
mutex_unlock(&cp_heap->lock);
|
|
pr_err("ION cannot allocate un-secure memory from protected"
|
|
" heap %s\n", heap->name);
|
|
return ION_CP_ALLOCATE_FAIL;
|
|
}
|
|
|
|
if (!force_contig && !secure_allocation &&
|
|
!cp_heap->allow_non_secure_allocation) {
|
|
mutex_unlock(&cp_heap->lock);
|
|
pr_debug("%s: non-secure allocation disallowed from this heap\n",
|
|
__func__);
|
|
return ION_CP_ALLOCATE_FAIL;
|
|
}
|
|
|
|
/*
|
|
* The check above already checked for non-secure allocations when the
|
|
* heap is protected. HEAP_PROTECTED implies that this must be a secure
|
|
* allocation. If the heap is protected and there are userspace or
|
|
* cached kernel mappings, something has gone wrong in the security
|
|
* model.
|
|
*/
|
|
if (cp_heap->heap_protected == HEAP_PROTECTED) {
|
|
BUG_ON(cp_heap->umap_count != 0);
|
|
BUG_ON(cp_heap->kmap_cached_count != 0);
|
|
}
|
|
|
|
/*
|
|
* if this is the first reusable allocation, transition
|
|
* the heap
|
|
*/
|
|
if (!cp_heap->allocated_bytes)
|
|
if (ion_on_first_alloc(heap)) {
|
|
mutex_unlock(&cp_heap->lock);
|
|
return ION_RESERVED_ALLOCATE_FAIL;
|
|
}
|
|
|
|
cp_heap->allocated_bytes += size;
|
|
mutex_unlock(&cp_heap->lock);
|
|
|
|
offset = gen_pool_alloc_aligned(cp_heap->pool,
|
|
size, ilog2(align));
|
|
|
|
if (!offset) {
|
|
mutex_lock(&cp_heap->lock);
|
|
cp_heap->allocated_bytes -= size;
|
|
if ((cp_heap->total_size -
|
|
cp_heap->allocated_bytes) >= size)
|
|
pr_debug("%s: heap %s has enough memory (%lx) but"
|
|
" the allocation of size %lx still failed."
|
|
" Memory is probably fragmented.\n",
|
|
__func__, heap->name,
|
|
cp_heap->total_size -
|
|
cp_heap->allocated_bytes, size);
|
|
if (!cp_heap->allocated_bytes &&
|
|
cp_heap->heap_protected == HEAP_NOT_PROTECTED)
|
|
ion_on_last_free(heap);
|
|
mutex_unlock(&cp_heap->lock);
|
|
|
|
return ION_CP_ALLOCATE_FAIL;
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
void ion_cp_free(struct ion_heap *heap, ion_phys_addr_t addr,
|
|
unsigned long size)
|
|
{
|
|
struct ion_cp_heap *cp_heap =
|
|
container_of(heap, struct ion_cp_heap, heap);
|
|
|
|
if (addr == ION_CP_ALLOCATE_FAIL)
|
|
return;
|
|
gen_pool_free(cp_heap->pool, addr, size);
|
|
|
|
mutex_lock(&cp_heap->lock);
|
|
cp_heap->allocated_bytes -= size;
|
|
|
|
if (!cp_heap->allocated_bytes &&
|
|
cp_heap->heap_protected == HEAP_NOT_PROTECTED)
|
|
ion_on_last_free(heap);
|
|
|
|
mutex_unlock(&cp_heap->lock);
|
|
}
|
|
|
|
static int ion_cp_heap_phys(struct ion_heap *heap,
|
|
struct ion_buffer *buffer,
|
|
ion_phys_addr_t *addr, size_t *len)
|
|
{
|
|
struct ion_cp_buffer *buf = buffer->priv_virt;
|
|
|
|
*addr = buf->buffer;
|
|
*len = buffer->size;
|
|
return 0;
|
|
}
|
|
|
|
static int ion_cp_heap_allocate(struct ion_heap *heap,
|
|
struct ion_buffer *buffer,
|
|
unsigned long size, unsigned long align,
|
|
unsigned long flags)
|
|
{
|
|
struct ion_cp_buffer *buf;
|
|
phys_addr_t addr;
|
|
|
|
/*
|
|
* we never want Ion to fault pages in for us with this
|
|
* heap. We want to set up the mappings ourselves in .map_user
|
|
*/
|
|
flags |= ION_FLAG_CACHED_NEEDS_SYNC;
|
|
|
|
buf = kzalloc(sizeof(*buf), GFP_KERNEL);
|
|
if (!buf)
|
|
return ION_CP_ALLOCATE_FAIL;
|
|
|
|
addr = ion_cp_allocate(heap, size, align, flags);
|
|
if (addr == ION_CP_ALLOCATE_FAIL)
|
|
return -ENOMEM;
|
|
|
|
buf->buffer = addr;
|
|
buf->want_delayed_unsecure = 0;
|
|
atomic_set(&buf->secure_cnt, 0);
|
|
mutex_init(&buf->lock);
|
|
buf->is_secure = flags & ION_FLAG_SECURE ? 1 : 0;
|
|
buffer->priv_virt = buf;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ion_cp_heap_free(struct ion_buffer *buffer)
|
|
{
|
|
struct ion_heap *heap = buffer->heap;
|
|
struct ion_cp_buffer *buf = buffer->priv_virt;
|
|
|
|
ion_cp_free(heap, buf->buffer, buffer->size);
|
|
WARN_ON(atomic_read(&buf->secure_cnt));
|
|
WARN_ON(atomic_read(&buf->map_cnt));
|
|
kfree(buf);
|
|
|
|
buffer->priv_virt = NULL;
|
|
}
|
|
|
|
struct sg_table *ion_cp_heap_create_sg_table(struct ion_buffer *buffer)
|
|
{
|
|
size_t chunk_size = buffer->size;
|
|
struct ion_cp_buffer *buf = buffer->priv_virt;
|
|
|
|
if (ION_IS_CACHED(buffer->flags))
|
|
chunk_size = PAGE_SIZE;
|
|
else if (buf->is_secure && IS_ALIGNED(buffer->size, SZ_1M))
|
|
chunk_size = SZ_1M;
|
|
|
|
return ion_create_chunked_sg_table(buf->buffer, chunk_size,
|
|
buffer->size);
|
|
}
|
|
|
|
struct sg_table *ion_cp_heap_map_dma(struct ion_heap *heap,
|
|
struct ion_buffer *buffer)
|
|
{
|
|
return ion_cp_heap_create_sg_table(buffer);
|
|
}
|
|
|
|
void ion_cp_heap_unmap_dma(struct ion_heap *heap,
|
|
struct ion_buffer *buffer)
|
|
{
|
|
if (buffer->sg_table)
|
|
sg_free_table(buffer->sg_table);
|
|
kfree(buffer->sg_table);
|
|
buffer->sg_table = 0;
|
|
}
|
|
|
|
/**
|
|
* Call request region for SMI memory of this is the first mapping.
|
|
*/
|
|
static int ion_cp_request_region(struct ion_cp_heap *cp_heap)
|
|
{
|
|
int ret_value = 0;
|
|
if ((cp_heap->umap_count + ion_cp_get_total_kmap_count(cp_heap)) == 0)
|
|
if (cp_heap->heap_request_region)
|
|
ret_value = cp_heap->heap_request_region(
|
|
cp_heap->bus_id);
|
|
return ret_value;
|
|
}
|
|
|
|
/**
|
|
* Call release region for SMI memory of this is the last un-mapping.
|
|
*/
|
|
static int ion_cp_release_region(struct ion_cp_heap *cp_heap)
|
|
{
|
|
int ret_value = 0;
|
|
if ((cp_heap->umap_count + ion_cp_get_total_kmap_count(cp_heap)) == 0)
|
|
if (cp_heap->heap_release_region)
|
|
ret_value = cp_heap->heap_release_region(
|
|
cp_heap->bus_id);
|
|
return ret_value;
|
|
}
|
|
|
|
void *ion_cp_heap_map_kernel(struct ion_heap *heap, struct ion_buffer *buffer)
|
|
{
|
|
struct ion_cp_heap *cp_heap =
|
|
container_of(heap, struct ion_cp_heap, heap);
|
|
void *ret_value = NULL;
|
|
struct ion_cp_buffer *buf = buffer->priv_virt;
|
|
|
|
mutex_lock(&cp_heap->lock);
|
|
if ((cp_heap->heap_protected == HEAP_NOT_PROTECTED) ||
|
|
((cp_heap->heap_protected == HEAP_PROTECTED) &&
|
|
!ION_IS_CACHED(buffer->flags))) {
|
|
|
|
if (ion_cp_request_region(cp_heap)) {
|
|
mutex_unlock(&cp_heap->lock);
|
|
return NULL;
|
|
}
|
|
|
|
if (cp_heap->cma) {
|
|
int npages = PAGE_ALIGN(buffer->size) / PAGE_SIZE;
|
|
struct page **pages = vmalloc(
|
|
sizeof(struct page *) * npages);
|
|
int i;
|
|
pgprot_t pgprot;
|
|
|
|
if (!pages) {
|
|
mutex_unlock(&cp_heap->lock);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
if (ION_IS_CACHED(buffer->flags))
|
|
pgprot = PAGE_KERNEL;
|
|
else
|
|
pgprot = pgprot_writecombine(PAGE_KERNEL);
|
|
|
|
for (i = 0; i < npages; i++) {
|
|
pages[i] = phys_to_page(buf->buffer +
|
|
i * PAGE_SIZE);
|
|
}
|
|
ret_value = vmap(pages, npages, VM_IOREMAP, pgprot);
|
|
vfree(pages);
|
|
} else {
|
|
if (ION_IS_CACHED(buffer->flags))
|
|
ret_value = ioremap_cached(buf->buffer,
|
|
buffer->size);
|
|
else
|
|
ret_value = ioremap(buf->buffer,
|
|
buffer->size);
|
|
}
|
|
|
|
if (!ret_value) {
|
|
ion_cp_release_region(cp_heap);
|
|
} else {
|
|
if (ION_IS_CACHED(buffer->flags))
|
|
++cp_heap->kmap_cached_count;
|
|
else
|
|
++cp_heap->kmap_uncached_count;
|
|
atomic_inc(&buf->map_cnt);
|
|
}
|
|
}
|
|
mutex_unlock(&cp_heap->lock);
|
|
return ret_value;
|
|
}
|
|
|
|
void ion_cp_heap_unmap_kernel(struct ion_heap *heap,
|
|
struct ion_buffer *buffer)
|
|
{
|
|
struct ion_cp_heap *cp_heap =
|
|
container_of(heap, struct ion_cp_heap, heap);
|
|
struct ion_cp_buffer *buf = buffer->priv_virt;
|
|
|
|
if (cp_heap->cma)
|
|
vunmap(buffer->vaddr);
|
|
else
|
|
__arm_iounmap(buffer->vaddr);
|
|
|
|
buffer->vaddr = NULL;
|
|
|
|
mutex_lock(&cp_heap->lock);
|
|
if (ION_IS_CACHED(buffer->flags))
|
|
--cp_heap->kmap_cached_count;
|
|
else
|
|
--cp_heap->kmap_uncached_count;
|
|
|
|
atomic_dec(&buf->map_cnt);
|
|
ion_cp_release_region(cp_heap);
|
|
mutex_unlock(&cp_heap->lock);
|
|
|
|
return;
|
|
}
|
|
|
|
int ion_cp_heap_map_user(struct ion_heap *heap, struct ion_buffer *buffer,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
int ret_value = -EAGAIN;
|
|
struct ion_cp_heap *cp_heap =
|
|
container_of(heap, struct ion_cp_heap, heap);
|
|
struct ion_cp_buffer *buf = buffer->priv_virt;
|
|
|
|
mutex_lock(&cp_heap->lock);
|
|
if (cp_heap->heap_protected == HEAP_NOT_PROTECTED && !buf->is_secure) {
|
|
if (ion_cp_request_region(cp_heap)) {
|
|
mutex_unlock(&cp_heap->lock);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!ION_IS_CACHED(buffer->flags))
|
|
vma->vm_page_prot = pgprot_writecombine(
|
|
vma->vm_page_prot);
|
|
|
|
ret_value = remap_pfn_range(vma, vma->vm_start,
|
|
__phys_to_pfn(buf->buffer) + vma->vm_pgoff,
|
|
vma->vm_end - vma->vm_start,
|
|
vma->vm_page_prot);
|
|
|
|
if (ret_value) {
|
|
ion_cp_release_region(cp_heap);
|
|
} else {
|
|
atomic_inc(&buf->map_cnt);
|
|
++cp_heap->umap_count;
|
|
}
|
|
|
|
}
|
|
mutex_unlock(&cp_heap->lock);
|
|
return ret_value;
|
|
}
|
|
|
|
void ion_cp_heap_unmap_user(struct ion_heap *heap,
|
|
struct ion_buffer *buffer)
|
|
{
|
|
struct ion_cp_heap *cp_heap =
|
|
container_of(heap, struct ion_cp_heap, heap);
|
|
struct ion_cp_buffer *buf = buffer->priv_virt;
|
|
|
|
mutex_lock(&cp_heap->lock);
|
|
--cp_heap->umap_count;
|
|
atomic_dec(&buf->map_cnt);
|
|
ion_cp_release_region(cp_heap);
|
|
mutex_unlock(&cp_heap->lock);
|
|
}
|
|
|
|
static int ion_cp_print_debug(struct ion_heap *heap, struct seq_file *s,
|
|
const struct rb_root *mem_map)
|
|
{
|
|
unsigned long total_alloc;
|
|
unsigned long total_size;
|
|
unsigned long umap_count;
|
|
unsigned long kmap_count;
|
|
unsigned long heap_protected;
|
|
struct ion_cp_heap *cp_heap =
|
|
container_of(heap, struct ion_cp_heap, heap);
|
|
|
|
mutex_lock(&cp_heap->lock);
|
|
total_alloc = cp_heap->allocated_bytes;
|
|
total_size = cp_heap->total_size;
|
|
umap_count = cp_heap->umap_count;
|
|
kmap_count = ion_cp_get_total_kmap_count(cp_heap);
|
|
heap_protected = cp_heap->heap_protected == HEAP_PROTECTED;
|
|
mutex_unlock(&cp_heap->lock);
|
|
|
|
seq_printf(s, "total bytes currently allocated: %lx\n", total_alloc);
|
|
seq_printf(s, "total heap size: %lx\n", total_size);
|
|
seq_printf(s, "umapping count: %lx\n", umap_count);
|
|
seq_printf(s, "kmapping count: %lx\n", kmap_count);
|
|
seq_printf(s, "heap protected: %s\n", heap_protected ? "Yes" : "No");
|
|
|
|
if (mem_map) {
|
|
unsigned long base = cp_heap->base;
|
|
unsigned long size = cp_heap->total_size;
|
|
unsigned long end = base+size;
|
|
unsigned long last_end = base;
|
|
struct rb_node *n;
|
|
|
|
seq_printf(s, "\nMemory Map\n");
|
|
seq_printf(s, "%16.s %14.s %14.s %14.s\n",
|
|
"client", "start address", "end address",
|
|
"size (hex)");
|
|
|
|
for (n = rb_first(mem_map); n; n = rb_next(n)) {
|
|
struct mem_map_data *data =
|
|
rb_entry(n, struct mem_map_data, node);
|
|
const char *client_name = "(null)";
|
|
|
|
if (last_end < data->addr) {
|
|
phys_addr_t da;
|
|
|
|
da = data->addr-1;
|
|
seq_printf(s, "%16.s %14pa %14pa %14lu (%lx)\n",
|
|
"FREE", &last_end, &da,
|
|
data->addr-last_end,
|
|
data->addr-last_end);
|
|
}
|
|
|
|
if (data->client_name)
|
|
client_name = data->client_name;
|
|
|
|
seq_printf(s, "%16.s %14pa %14pa %14lu (%lx)\n",
|
|
client_name, &data->addr,
|
|
&data->addr_end,
|
|
data->size, data->size);
|
|
last_end = data->addr_end+1;
|
|
}
|
|
if (last_end < end) {
|
|
seq_printf(s, "%16.s %14lx %14lx %14lu (%lx)\n", "FREE",
|
|
last_end, end-1, end-last_end, end-last_end);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ion_cp_secure_heap(struct ion_heap *heap, int version, void *data)
|
|
{
|
|
int ret_value;
|
|
struct ion_cp_heap *cp_heap =
|
|
container_of(heap, struct ion_cp_heap, heap);
|
|
mutex_lock(&cp_heap->lock);
|
|
if (cp_heap->umap_count == 0 && cp_heap->kmap_cached_count == 0) {
|
|
ret_value = ion_cp_protect(heap, version, data);
|
|
} else {
|
|
pr_err("ION cannot secure heap with outstanding mappings: "
|
|
"User space: %lu, kernel space (cached): %lu\n",
|
|
cp_heap->umap_count, cp_heap->kmap_cached_count);
|
|
ret_value = -EINVAL;
|
|
}
|
|
|
|
mutex_unlock(&cp_heap->lock);
|
|
return ret_value;
|
|
}
|
|
|
|
int ion_cp_unsecure_heap(struct ion_heap *heap, int version, void *data)
|
|
{
|
|
int ret_value = 0;
|
|
struct ion_cp_heap *cp_heap =
|
|
container_of(heap, struct ion_cp_heap, heap);
|
|
mutex_lock(&cp_heap->lock);
|
|
ion_cp_unprotect(heap, version, data);
|
|
mutex_unlock(&cp_heap->lock);
|
|
return ret_value;
|
|
}
|
|
|
|
static struct ion_heap_ops cp_heap_ops = {
|
|
.allocate = ion_cp_heap_allocate,
|
|
.free = ion_cp_heap_free,
|
|
.phys = ion_cp_heap_phys,
|
|
.map_user = ion_cp_heap_map_user,
|
|
.unmap_user = ion_cp_heap_unmap_user,
|
|
.map_kernel = ion_cp_heap_map_kernel,
|
|
.unmap_kernel = ion_cp_heap_unmap_kernel,
|
|
.map_dma = ion_cp_heap_map_dma,
|
|
.unmap_dma = ion_cp_heap_unmap_dma,
|
|
.print_debug = ion_cp_print_debug,
|
|
.secure_heap = ion_cp_secure_heap,
|
|
.unsecure_heap = ion_cp_unsecure_heap,
|
|
.secure_buffer = ion_cp_secure_buffer,
|
|
.unsecure_buffer = ion_cp_unsecure_buffer,
|
|
};
|
|
|
|
struct ion_heap *ion_cp_heap_create(struct ion_platform_heap *heap_data)
|
|
{
|
|
struct ion_cp_heap *cp_heap;
|
|
int ret;
|
|
|
|
cp_heap = kzalloc(sizeof(*cp_heap), GFP_KERNEL);
|
|
if (!cp_heap)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
mutex_init(&cp_heap->lock);
|
|
|
|
|
|
cp_heap->allocated_bytes = 0;
|
|
cp_heap->umap_count = 0;
|
|
cp_heap->kmap_cached_count = 0;
|
|
cp_heap->kmap_uncached_count = 0;
|
|
cp_heap->total_size = heap_data->size;
|
|
cp_heap->heap.ops = &cp_heap_ops;
|
|
cp_heap->heap.type = (enum ion_heap_type) ION_HEAP_TYPE_CP;
|
|
cp_heap->heap_protected = HEAP_NOT_PROTECTED;
|
|
cp_heap->secure_base = heap_data->base;
|
|
cp_heap->secure_size = heap_data->size;
|
|
cp_heap->has_outer_cache = heap_data->has_outer_cache;
|
|
cp_heap->heap_size = heap_data->size;
|
|
|
|
atomic_set(&cp_heap->protect_cnt, 0);
|
|
if (heap_data->extra_data) {
|
|
struct ion_cp_heap_pdata *extra_data =
|
|
heap_data->extra_data;
|
|
cp_heap->permission_type = extra_data->permission_type;
|
|
if (extra_data->secure_size) {
|
|
cp_heap->secure_base = extra_data->secure_base;
|
|
cp_heap->secure_size = extra_data->secure_size;
|
|
}
|
|
if (extra_data->setup_region)
|
|
cp_heap->bus_id = extra_data->setup_region();
|
|
if (extra_data->request_region)
|
|
cp_heap->heap_request_region =
|
|
extra_data->request_region;
|
|
if (extra_data->release_region)
|
|
cp_heap->heap_release_region =
|
|
extra_data->release_region;
|
|
cp_heap->cma = extra_data->is_cma;
|
|
cp_heap->allow_non_secure_allocation =
|
|
extra_data->allow_nonsecure_alloc;
|
|
|
|
}
|
|
|
|
if (cp_heap->cma) {
|
|
cp_heap->pool = NULL;
|
|
cp_heap->cpu_addr = 0;
|
|
cp_heap->heap.priv = heap_data->priv;
|
|
} else {
|
|
cp_heap->pool = gen_pool_create(12, -1);
|
|
if (!cp_heap->pool)
|
|
goto free_heap;
|
|
|
|
cp_heap->base = heap_data->base;
|
|
ret = gen_pool_add(cp_heap->pool, cp_heap->base,
|
|
heap_data->size, -1);
|
|
if (ret < 0)
|
|
goto destroy_pool;
|
|
|
|
}
|
|
return &cp_heap->heap;
|
|
|
|
destroy_pool:
|
|
gen_pool_destroy(cp_heap->pool);
|
|
|
|
free_heap:
|
|
kfree(cp_heap);
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
void ion_cp_heap_destroy(struct ion_heap *heap)
|
|
{
|
|
struct ion_cp_heap *cp_heap =
|
|
container_of(heap, struct ion_cp_heap, heap);
|
|
|
|
gen_pool_destroy(cp_heap->pool);
|
|
kfree(cp_heap);
|
|
cp_heap = NULL;
|
|
}
|
|
|
|
void ion_cp_heap_get_base(struct ion_heap *heap, unsigned long *base,
|
|
unsigned long *size) \
|
|
{
|
|
struct ion_cp_heap *cp_heap =
|
|
container_of(heap, struct ion_cp_heap, heap);
|
|
*base = cp_heap->base;
|
|
*size = cp_heap->total_size;
|
|
}
|
|
|
|
|