M7350/kernel/drivers/char/ipmi/ipmi_msghandler.c
2024-09-09 08:52:07 +00:00

4569 lines
116 KiB
C

/*
* ipmi_msghandler.c
*
* Incoming and outgoing message routing for an IPMI interface.
*
* Author: MontaVista Software, Inc.
* Corey Minyard <minyard@mvista.com>
* source@mvista.com
*
* Copyright 2002 MontaVista Software Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/poll.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/spinlock.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/ipmi.h>
#include <linux/ipmi_smi.h>
#include <linux/notifier.h>
#include <linux/init.h>
#include <linux/proc_fs.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#define PFX "IPMI message handler: "
#define IPMI_DRIVER_VERSION "39.2"
static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
static int ipmi_init_msghandler(void);
static void smi_recv_tasklet(unsigned long);
static void handle_new_recv_msgs(ipmi_smi_t intf);
static int initialized;
#ifdef CONFIG_PROC_FS
static struct proc_dir_entry *proc_ipmi_root;
#endif /* CONFIG_PROC_FS */
/* Remain in auto-maintenance mode for this amount of time (in ms). */
#define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
#define MAX_EVENTS_IN_QUEUE 25
/*
* Don't let a message sit in a queue forever, always time it with at lest
* the max message timer. This is in milliseconds.
*/
#define MAX_MSG_TIMEOUT 60000
/*
* The main "user" data structure.
*/
struct ipmi_user {
struct list_head link;
/* Set to "0" when the user is destroyed. */
int valid;
struct kref refcount;
/* The upper layer that handles receive messages. */
struct ipmi_user_hndl *handler;
void *handler_data;
/* The interface this user is bound to. */
ipmi_smi_t intf;
/* Does this interface receive IPMI events? */
int gets_events;
};
struct cmd_rcvr {
struct list_head link;
ipmi_user_t user;
unsigned char netfn;
unsigned char cmd;
unsigned int chans;
/*
* This is used to form a linked lised during mass deletion.
* Since this is in an RCU list, we cannot use the link above
* or change any data until the RCU period completes. So we
* use this next variable during mass deletion so we can have
* a list and don't have to wait and restart the search on
* every individual deletion of a command.
*/
struct cmd_rcvr *next;
};
struct seq_table {
unsigned int inuse : 1;
unsigned int broadcast : 1;
unsigned long timeout;
unsigned long orig_timeout;
unsigned int retries_left;
/*
* To verify on an incoming send message response that this is
* the message that the response is for, we keep a sequence id
* and increment it every time we send a message.
*/
long seqid;
/*
* This is held so we can properly respond to the message on a
* timeout, and it is used to hold the temporary data for
* retransmission, too.
*/
struct ipmi_recv_msg *recv_msg;
};
/*
* Store the information in a msgid (long) to allow us to find a
* sequence table entry from the msgid.
*/
#define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
#define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
do { \
seq = ((msgid >> 26) & 0x3f); \
seqid = (msgid & 0x3fffff); \
} while (0)
#define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
struct ipmi_channel {
unsigned char medium;
unsigned char protocol;
/*
* My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
* but may be changed by the user.
*/
unsigned char address;
/*
* My LUN. This should generally stay the SMS LUN, but just in
* case...
*/
unsigned char lun;
};
#ifdef CONFIG_PROC_FS
struct ipmi_proc_entry {
char *name;
struct ipmi_proc_entry *next;
};
#endif
struct bmc_device {
struct platform_device *dev;
struct ipmi_device_id id;
unsigned char guid[16];
int guid_set;
struct kref refcount;
/* bmc device attributes */
struct device_attribute device_id_attr;
struct device_attribute provides_dev_sdrs_attr;
struct device_attribute revision_attr;
struct device_attribute firmware_rev_attr;
struct device_attribute version_attr;
struct device_attribute add_dev_support_attr;
struct device_attribute manufacturer_id_attr;
struct device_attribute product_id_attr;
struct device_attribute guid_attr;
struct device_attribute aux_firmware_rev_attr;
};
/*
* Various statistics for IPMI, these index stats[] in the ipmi_smi
* structure.
*/
enum ipmi_stat_indexes {
/* Commands we got from the user that were invalid. */
IPMI_STAT_sent_invalid_commands = 0,
/* Commands we sent to the MC. */
IPMI_STAT_sent_local_commands,
/* Responses from the MC that were delivered to a user. */
IPMI_STAT_handled_local_responses,
/* Responses from the MC that were not delivered to a user. */
IPMI_STAT_unhandled_local_responses,
/* Commands we sent out to the IPMB bus. */
IPMI_STAT_sent_ipmb_commands,
/* Commands sent on the IPMB that had errors on the SEND CMD */
IPMI_STAT_sent_ipmb_command_errs,
/* Each retransmit increments this count. */
IPMI_STAT_retransmitted_ipmb_commands,
/*
* When a message times out (runs out of retransmits) this is
* incremented.
*/
IPMI_STAT_timed_out_ipmb_commands,
/*
* This is like above, but for broadcasts. Broadcasts are
* *not* included in the above count (they are expected to
* time out).
*/
IPMI_STAT_timed_out_ipmb_broadcasts,
/* Responses I have sent to the IPMB bus. */
IPMI_STAT_sent_ipmb_responses,
/* The response was delivered to the user. */
IPMI_STAT_handled_ipmb_responses,
/* The response had invalid data in it. */
IPMI_STAT_invalid_ipmb_responses,
/* The response didn't have anyone waiting for it. */
IPMI_STAT_unhandled_ipmb_responses,
/* Commands we sent out to the IPMB bus. */
IPMI_STAT_sent_lan_commands,
/* Commands sent on the IPMB that had errors on the SEND CMD */
IPMI_STAT_sent_lan_command_errs,
/* Each retransmit increments this count. */
IPMI_STAT_retransmitted_lan_commands,
/*
* When a message times out (runs out of retransmits) this is
* incremented.
*/
IPMI_STAT_timed_out_lan_commands,
/* Responses I have sent to the IPMB bus. */
IPMI_STAT_sent_lan_responses,
/* The response was delivered to the user. */
IPMI_STAT_handled_lan_responses,
/* The response had invalid data in it. */
IPMI_STAT_invalid_lan_responses,
/* The response didn't have anyone waiting for it. */
IPMI_STAT_unhandled_lan_responses,
/* The command was delivered to the user. */
IPMI_STAT_handled_commands,
/* The command had invalid data in it. */
IPMI_STAT_invalid_commands,
/* The command didn't have anyone waiting for it. */
IPMI_STAT_unhandled_commands,
/* Invalid data in an event. */
IPMI_STAT_invalid_events,
/* Events that were received with the proper format. */
IPMI_STAT_events,
/* Retransmissions on IPMB that failed. */
IPMI_STAT_dropped_rexmit_ipmb_commands,
/* Retransmissions on LAN that failed. */
IPMI_STAT_dropped_rexmit_lan_commands,
/* This *must* remain last, add new values above this. */
IPMI_NUM_STATS
};
#define IPMI_IPMB_NUM_SEQ 64
#define IPMI_MAX_CHANNELS 16
struct ipmi_smi {
/* What interface number are we? */
int intf_num;
struct kref refcount;
/* Used for a list of interfaces. */
struct list_head link;
/*
* The list of upper layers that are using me. seq_lock
* protects this.
*/
struct list_head users;
/* Information to supply to users. */
unsigned char ipmi_version_major;
unsigned char ipmi_version_minor;
/* Used for wake ups at startup. */
wait_queue_head_t waitq;
struct bmc_device *bmc;
char *my_dev_name;
char *sysfs_name;
/*
* This is the lower-layer's sender routine. Note that you
* must either be holding the ipmi_interfaces_mutex or be in
* an umpreemptible region to use this. You must fetch the
* value into a local variable and make sure it is not NULL.
*/
struct ipmi_smi_handlers *handlers;
void *send_info;
#ifdef CONFIG_PROC_FS
/* A list of proc entries for this interface. */
struct mutex proc_entry_lock;
struct ipmi_proc_entry *proc_entries;
#endif
/* Driver-model device for the system interface. */
struct device *si_dev;
/*
* A table of sequence numbers for this interface. We use the
* sequence numbers for IPMB messages that go out of the
* interface to match them up with their responses. A routine
* is called periodically to time the items in this list.
*/
spinlock_t seq_lock;
struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
int curr_seq;
/*
* Messages queued for delivery. If delivery fails (out of memory
* for instance), They will stay in here to be processed later in a
* periodic timer interrupt. The tasklet is for handling received
* messages directly from the handler.
*/
spinlock_t waiting_msgs_lock;
struct list_head waiting_msgs;
atomic_t watchdog_pretimeouts_to_deliver;
struct tasklet_struct recv_tasklet;
/*
* The list of command receivers that are registered for commands
* on this interface.
*/
struct mutex cmd_rcvrs_mutex;
struct list_head cmd_rcvrs;
/*
* Events that were queues because no one was there to receive
* them.
*/
spinlock_t events_lock; /* For dealing with event stuff. */
struct list_head waiting_events;
unsigned int waiting_events_count; /* How many events in queue? */
char delivering_events;
char event_msg_printed;
/*
* The event receiver for my BMC, only really used at panic
* shutdown as a place to store this.
*/
unsigned char event_receiver;
unsigned char event_receiver_lun;
unsigned char local_sel_device;
unsigned char local_event_generator;
/* For handling of maintenance mode. */
int maintenance_mode;
int maintenance_mode_enable;
int auto_maintenance_timeout;
spinlock_t maintenance_mode_lock; /* Used in a timer... */
/*
* A cheap hack, if this is non-null and a message to an
* interface comes in with a NULL user, call this routine with
* it. Note that the message will still be freed by the
* caller. This only works on the system interface.
*/
void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
/*
* When we are scanning the channels for an SMI, this will
* tell which channel we are scanning.
*/
int curr_channel;
/* Channel information */
struct ipmi_channel channels[IPMI_MAX_CHANNELS];
/* Proc FS stuff. */
struct proc_dir_entry *proc_dir;
char proc_dir_name[10];
atomic_t stats[IPMI_NUM_STATS];
/*
* run_to_completion duplicate of smb_info, smi_info
* and ipmi_serial_info structures. Used to decrease numbers of
* parameters passed by "low" level IPMI code.
*/
int run_to_completion;
};
#define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
/**
* The driver model view of the IPMI messaging driver.
*/
static struct platform_driver ipmidriver = {
.driver = {
.name = "ipmi",
.bus = &platform_bus_type
}
};
static DEFINE_MUTEX(ipmidriver_mutex);
static LIST_HEAD(ipmi_interfaces);
static DEFINE_MUTEX(ipmi_interfaces_mutex);
/*
* List of watchers that want to know when smi's are added and deleted.
*/
static LIST_HEAD(smi_watchers);
static DEFINE_MUTEX(smi_watchers_mutex);
#define ipmi_inc_stat(intf, stat) \
atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
#define ipmi_get_stat(intf, stat) \
((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
static int is_lan_addr(struct ipmi_addr *addr)
{
return addr->addr_type == IPMI_LAN_ADDR_TYPE;
}
static int is_ipmb_addr(struct ipmi_addr *addr)
{
return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
}
static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
{
return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
}
static void free_recv_msg_list(struct list_head *q)
{
struct ipmi_recv_msg *msg, *msg2;
list_for_each_entry_safe(msg, msg2, q, link) {
list_del(&msg->link);
ipmi_free_recv_msg(msg);
}
}
static void free_smi_msg_list(struct list_head *q)
{
struct ipmi_smi_msg *msg, *msg2;
list_for_each_entry_safe(msg, msg2, q, link) {
list_del(&msg->link);
ipmi_free_smi_msg(msg);
}
}
static void clean_up_interface_data(ipmi_smi_t intf)
{
int i;
struct cmd_rcvr *rcvr, *rcvr2;
struct list_head list;
tasklet_kill(&intf->recv_tasklet);
free_smi_msg_list(&intf->waiting_msgs);
free_recv_msg_list(&intf->waiting_events);
/*
* Wholesale remove all the entries from the list in the
* interface and wait for RCU to know that none are in use.
*/
mutex_lock(&intf->cmd_rcvrs_mutex);
INIT_LIST_HEAD(&list);
list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
mutex_unlock(&intf->cmd_rcvrs_mutex);
list_for_each_entry_safe(rcvr, rcvr2, &list, link)
kfree(rcvr);
for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
if ((intf->seq_table[i].inuse)
&& (intf->seq_table[i].recv_msg))
ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
}
}
static void intf_free(struct kref *ref)
{
ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
clean_up_interface_data(intf);
kfree(intf);
}
struct watcher_entry {
int intf_num;
ipmi_smi_t intf;
struct list_head link;
};
int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
{
ipmi_smi_t intf;
LIST_HEAD(to_deliver);
struct watcher_entry *e, *e2;
mutex_lock(&smi_watchers_mutex);
mutex_lock(&ipmi_interfaces_mutex);
/* Build a list of things to deliver. */
list_for_each_entry(intf, &ipmi_interfaces, link) {
if (intf->intf_num == -1)
continue;
e = kmalloc(sizeof(*e), GFP_KERNEL);
if (!e)
goto out_err;
kref_get(&intf->refcount);
e->intf = intf;
e->intf_num = intf->intf_num;
list_add_tail(&e->link, &to_deliver);
}
/* We will succeed, so add it to the list. */
list_add(&watcher->link, &smi_watchers);
mutex_unlock(&ipmi_interfaces_mutex);
list_for_each_entry_safe(e, e2, &to_deliver, link) {
list_del(&e->link);
watcher->new_smi(e->intf_num, e->intf->si_dev);
kref_put(&e->intf->refcount, intf_free);
kfree(e);
}
mutex_unlock(&smi_watchers_mutex);
return 0;
out_err:
mutex_unlock(&ipmi_interfaces_mutex);
mutex_unlock(&smi_watchers_mutex);
list_for_each_entry_safe(e, e2, &to_deliver, link) {
list_del(&e->link);
kref_put(&e->intf->refcount, intf_free);
kfree(e);
}
return -ENOMEM;
}
EXPORT_SYMBOL(ipmi_smi_watcher_register);
int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
{
mutex_lock(&smi_watchers_mutex);
list_del(&(watcher->link));
mutex_unlock(&smi_watchers_mutex);
return 0;
}
EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
/*
* Must be called with smi_watchers_mutex held.
*/
static void
call_smi_watchers(int i, struct device *dev)
{
struct ipmi_smi_watcher *w;
list_for_each_entry(w, &smi_watchers, link) {
if (try_module_get(w->owner)) {
w->new_smi(i, dev);
module_put(w->owner);
}
}
}
static int
ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
{
if (addr1->addr_type != addr2->addr_type)
return 0;
if (addr1->channel != addr2->channel)
return 0;
if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
struct ipmi_system_interface_addr *smi_addr1
= (struct ipmi_system_interface_addr *) addr1;
struct ipmi_system_interface_addr *smi_addr2
= (struct ipmi_system_interface_addr *) addr2;
return (smi_addr1->lun == smi_addr2->lun);
}
if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
struct ipmi_ipmb_addr *ipmb_addr1
= (struct ipmi_ipmb_addr *) addr1;
struct ipmi_ipmb_addr *ipmb_addr2
= (struct ipmi_ipmb_addr *) addr2;
return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
&& (ipmb_addr1->lun == ipmb_addr2->lun));
}
if (is_lan_addr(addr1)) {
struct ipmi_lan_addr *lan_addr1
= (struct ipmi_lan_addr *) addr1;
struct ipmi_lan_addr *lan_addr2
= (struct ipmi_lan_addr *) addr2;
return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
&& (lan_addr1->session_handle
== lan_addr2->session_handle)
&& (lan_addr1->lun == lan_addr2->lun));
}
return 1;
}
int ipmi_validate_addr(struct ipmi_addr *addr, int len)
{
if (len < sizeof(struct ipmi_system_interface_addr))
return -EINVAL;
if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
if (addr->channel != IPMI_BMC_CHANNEL)
return -EINVAL;
return 0;
}
if ((addr->channel == IPMI_BMC_CHANNEL)
|| (addr->channel >= IPMI_MAX_CHANNELS)
|| (addr->channel < 0))
return -EINVAL;
if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
if (len < sizeof(struct ipmi_ipmb_addr))
return -EINVAL;
return 0;
}
if (is_lan_addr(addr)) {
if (len < sizeof(struct ipmi_lan_addr))
return -EINVAL;
return 0;
}
return -EINVAL;
}
EXPORT_SYMBOL(ipmi_validate_addr);
unsigned int ipmi_addr_length(int addr_type)
{
if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
return sizeof(struct ipmi_system_interface_addr);
if ((addr_type == IPMI_IPMB_ADDR_TYPE)
|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
return sizeof(struct ipmi_ipmb_addr);
if (addr_type == IPMI_LAN_ADDR_TYPE)
return sizeof(struct ipmi_lan_addr);
return 0;
}
EXPORT_SYMBOL(ipmi_addr_length);
static void deliver_response(struct ipmi_recv_msg *msg)
{
if (!msg->user) {
ipmi_smi_t intf = msg->user_msg_data;
/* Special handling for NULL users. */
if (intf->null_user_handler) {
intf->null_user_handler(intf, msg);
ipmi_inc_stat(intf, handled_local_responses);
} else {
/* No handler, so give up. */
ipmi_inc_stat(intf, unhandled_local_responses);
}
ipmi_free_recv_msg(msg);
} else {
ipmi_user_t user = msg->user;
user->handler->ipmi_recv_hndl(msg, user->handler_data);
}
}
static void
deliver_err_response(struct ipmi_recv_msg *msg, int err)
{
msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
msg->msg_data[0] = err;
msg->msg.netfn |= 1; /* Convert to a response. */
msg->msg.data_len = 1;
msg->msg.data = msg->msg_data;
deliver_response(msg);
}
/*
* Find the next sequence number not being used and add the given
* message with the given timeout to the sequence table. This must be
* called with the interface's seq_lock held.
*/
static int intf_next_seq(ipmi_smi_t intf,
struct ipmi_recv_msg *recv_msg,
unsigned long timeout,
int retries,
int broadcast,
unsigned char *seq,
long *seqid)
{
int rv = 0;
unsigned int i;
for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
i = (i+1)%IPMI_IPMB_NUM_SEQ) {
if (!intf->seq_table[i].inuse)
break;
}
if (!intf->seq_table[i].inuse) {
intf->seq_table[i].recv_msg = recv_msg;
/*
* Start with the maximum timeout, when the send response
* comes in we will start the real timer.
*/
intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
intf->seq_table[i].orig_timeout = timeout;
intf->seq_table[i].retries_left = retries;
intf->seq_table[i].broadcast = broadcast;
intf->seq_table[i].inuse = 1;
intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
*seq = i;
*seqid = intf->seq_table[i].seqid;
intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
} else {
rv = -EAGAIN;
}
return rv;
}
/*
* Return the receive message for the given sequence number and
* release the sequence number so it can be reused. Some other data
* is passed in to be sure the message matches up correctly (to help
* guard against message coming in after their timeout and the
* sequence number being reused).
*/
static int intf_find_seq(ipmi_smi_t intf,
unsigned char seq,
short channel,
unsigned char cmd,
unsigned char netfn,
struct ipmi_addr *addr,
struct ipmi_recv_msg **recv_msg)
{
int rv = -ENODEV;
unsigned long flags;
if (seq >= IPMI_IPMB_NUM_SEQ)
return -EINVAL;
spin_lock_irqsave(&(intf->seq_lock), flags);
if (intf->seq_table[seq].inuse) {
struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
&& (msg->msg.netfn == netfn)
&& (ipmi_addr_equal(addr, &(msg->addr)))) {
*recv_msg = msg;
intf->seq_table[seq].inuse = 0;
rv = 0;
}
}
spin_unlock_irqrestore(&(intf->seq_lock), flags);
return rv;
}
/* Start the timer for a specific sequence table entry. */
static int intf_start_seq_timer(ipmi_smi_t intf,
long msgid)
{
int rv = -ENODEV;
unsigned long flags;
unsigned char seq;
unsigned long seqid;
GET_SEQ_FROM_MSGID(msgid, seq, seqid);
spin_lock_irqsave(&(intf->seq_lock), flags);
/*
* We do this verification because the user can be deleted
* while a message is outstanding.
*/
if ((intf->seq_table[seq].inuse)
&& (intf->seq_table[seq].seqid == seqid)) {
struct seq_table *ent = &(intf->seq_table[seq]);
ent->timeout = ent->orig_timeout;
rv = 0;
}
spin_unlock_irqrestore(&(intf->seq_lock), flags);
return rv;
}
/* Got an error for the send message for a specific sequence number. */
static int intf_err_seq(ipmi_smi_t intf,
long msgid,
unsigned int err)
{
int rv = -ENODEV;
unsigned long flags;
unsigned char seq;
unsigned long seqid;
struct ipmi_recv_msg *msg = NULL;
GET_SEQ_FROM_MSGID(msgid, seq, seqid);
spin_lock_irqsave(&(intf->seq_lock), flags);
/*
* We do this verification because the user can be deleted
* while a message is outstanding.
*/
if ((intf->seq_table[seq].inuse)
&& (intf->seq_table[seq].seqid == seqid)) {
struct seq_table *ent = &(intf->seq_table[seq]);
ent->inuse = 0;
msg = ent->recv_msg;
rv = 0;
}
spin_unlock_irqrestore(&(intf->seq_lock), flags);
if (msg)
deliver_err_response(msg, err);
return rv;
}
int ipmi_create_user(unsigned int if_num,
struct ipmi_user_hndl *handler,
void *handler_data,
ipmi_user_t *user)
{
unsigned long flags;
ipmi_user_t new_user;
int rv = 0;
ipmi_smi_t intf;
/*
* There is no module usecount here, because it's not
* required. Since this can only be used by and called from
* other modules, they will implicitly use this module, and
* thus this can't be removed unless the other modules are
* removed.
*/
if (handler == NULL)
return -EINVAL;
/*
* Make sure the driver is actually initialized, this handles
* problems with initialization order.
*/
if (!initialized) {
rv = ipmi_init_msghandler();
if (rv)
return rv;
/*
* The init code doesn't return an error if it was turned
* off, but it won't initialize. Check that.
*/
if (!initialized)
return -ENODEV;
}
new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
if (!new_user)
return -ENOMEM;
mutex_lock(&ipmi_interfaces_mutex);
list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
if (intf->intf_num == if_num)
goto found;
}
/* Not found, return an error */
rv = -EINVAL;
goto out_kfree;
found:
/* Note that each existing user holds a refcount to the interface. */
kref_get(&intf->refcount);
kref_init(&new_user->refcount);
new_user->handler = handler;
new_user->handler_data = handler_data;
new_user->intf = intf;
new_user->gets_events = 0;
if (!try_module_get(intf->handlers->owner)) {
rv = -ENODEV;
goto out_kref;
}
if (intf->handlers->inc_usecount) {
rv = intf->handlers->inc_usecount(intf->send_info);
if (rv) {
module_put(intf->handlers->owner);
goto out_kref;
}
}
/*
* Hold the lock so intf->handlers is guaranteed to be good
* until now
*/
mutex_unlock(&ipmi_interfaces_mutex);
new_user->valid = 1;
spin_lock_irqsave(&intf->seq_lock, flags);
list_add_rcu(&new_user->link, &intf->users);
spin_unlock_irqrestore(&intf->seq_lock, flags);
*user = new_user;
return 0;
out_kref:
kref_put(&intf->refcount, intf_free);
out_kfree:
mutex_unlock(&ipmi_interfaces_mutex);
kfree(new_user);
return rv;
}
EXPORT_SYMBOL(ipmi_create_user);
int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
{
int rv = 0;
ipmi_smi_t intf;
struct ipmi_smi_handlers *handlers;
mutex_lock(&ipmi_interfaces_mutex);
list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
if (intf->intf_num == if_num)
goto found;
}
/* Not found, return an error */
rv = -EINVAL;
mutex_unlock(&ipmi_interfaces_mutex);
return rv;
found:
handlers = intf->handlers;
rv = -ENOSYS;
if (handlers->get_smi_info)
rv = handlers->get_smi_info(intf->send_info, data);
mutex_unlock(&ipmi_interfaces_mutex);
return rv;
}
EXPORT_SYMBOL(ipmi_get_smi_info);
static void free_user(struct kref *ref)
{
ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
kfree(user);
}
int ipmi_destroy_user(ipmi_user_t user)
{
ipmi_smi_t intf = user->intf;
int i;
unsigned long flags;
struct cmd_rcvr *rcvr;
struct cmd_rcvr *rcvrs = NULL;
user->valid = 0;
/* Remove the user from the interface's sequence table. */
spin_lock_irqsave(&intf->seq_lock, flags);
list_del_rcu(&user->link);
for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
if (intf->seq_table[i].inuse
&& (intf->seq_table[i].recv_msg->user == user)) {
intf->seq_table[i].inuse = 0;
ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
}
}
spin_unlock_irqrestore(&intf->seq_lock, flags);
/*
* Remove the user from the command receiver's table. First
* we build a list of everything (not using the standard link,
* since other things may be using it till we do
* synchronize_rcu()) then free everything in that list.
*/
mutex_lock(&intf->cmd_rcvrs_mutex);
list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
if (rcvr->user == user) {
list_del_rcu(&rcvr->link);
rcvr->next = rcvrs;
rcvrs = rcvr;
}
}
mutex_unlock(&intf->cmd_rcvrs_mutex);
synchronize_rcu();
while (rcvrs) {
rcvr = rcvrs;
rcvrs = rcvr->next;
kfree(rcvr);
}
mutex_lock(&ipmi_interfaces_mutex);
if (intf->handlers) {
module_put(intf->handlers->owner);
if (intf->handlers->dec_usecount)
intf->handlers->dec_usecount(intf->send_info);
}
mutex_unlock(&ipmi_interfaces_mutex);
kref_put(&intf->refcount, intf_free);
kref_put(&user->refcount, free_user);
return 0;
}
EXPORT_SYMBOL(ipmi_destroy_user);
void ipmi_get_version(ipmi_user_t user,
unsigned char *major,
unsigned char *minor)
{
*major = user->intf->ipmi_version_major;
*minor = user->intf->ipmi_version_minor;
}
EXPORT_SYMBOL(ipmi_get_version);
int ipmi_set_my_address(ipmi_user_t user,
unsigned int channel,
unsigned char address)
{
if (channel >= IPMI_MAX_CHANNELS)
return -EINVAL;
user->intf->channels[channel].address = address;
return 0;
}
EXPORT_SYMBOL(ipmi_set_my_address);
int ipmi_get_my_address(ipmi_user_t user,
unsigned int channel,
unsigned char *address)
{
if (channel >= IPMI_MAX_CHANNELS)
return -EINVAL;
*address = user->intf->channels[channel].address;
return 0;
}
EXPORT_SYMBOL(ipmi_get_my_address);
int ipmi_set_my_LUN(ipmi_user_t user,
unsigned int channel,
unsigned char LUN)
{
if (channel >= IPMI_MAX_CHANNELS)
return -EINVAL;
user->intf->channels[channel].lun = LUN & 0x3;
return 0;
}
EXPORT_SYMBOL(ipmi_set_my_LUN);
int ipmi_get_my_LUN(ipmi_user_t user,
unsigned int channel,
unsigned char *address)
{
if (channel >= IPMI_MAX_CHANNELS)
return -EINVAL;
*address = user->intf->channels[channel].lun;
return 0;
}
EXPORT_SYMBOL(ipmi_get_my_LUN);
int ipmi_get_maintenance_mode(ipmi_user_t user)
{
int mode;
unsigned long flags;
spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
mode = user->intf->maintenance_mode;
spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
return mode;
}
EXPORT_SYMBOL(ipmi_get_maintenance_mode);
static void maintenance_mode_update(ipmi_smi_t intf)
{
if (intf->handlers->set_maintenance_mode)
intf->handlers->set_maintenance_mode(
intf->send_info, intf->maintenance_mode_enable);
}
int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
{
int rv = 0;
unsigned long flags;
ipmi_smi_t intf = user->intf;
spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
if (intf->maintenance_mode != mode) {
switch (mode) {
case IPMI_MAINTENANCE_MODE_AUTO:
intf->maintenance_mode = mode;
intf->maintenance_mode_enable
= (intf->auto_maintenance_timeout > 0);
break;
case IPMI_MAINTENANCE_MODE_OFF:
intf->maintenance_mode = mode;
intf->maintenance_mode_enable = 0;
break;
case IPMI_MAINTENANCE_MODE_ON:
intf->maintenance_mode = mode;
intf->maintenance_mode_enable = 1;
break;
default:
rv = -EINVAL;
goto out_unlock;
}
maintenance_mode_update(intf);
}
out_unlock:
spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
return rv;
}
EXPORT_SYMBOL(ipmi_set_maintenance_mode);
int ipmi_set_gets_events(ipmi_user_t user, int val)
{
unsigned long flags;
ipmi_smi_t intf = user->intf;
struct ipmi_recv_msg *msg, *msg2;
struct list_head msgs;
INIT_LIST_HEAD(&msgs);
spin_lock_irqsave(&intf->events_lock, flags);
user->gets_events = val;
if (intf->delivering_events)
/*
* Another thread is delivering events for this, so
* let it handle any new events.
*/
goto out;
/* Deliver any queued events. */
while (user->gets_events && !list_empty(&intf->waiting_events)) {
list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
list_move_tail(&msg->link, &msgs);
intf->waiting_events_count = 0;
if (intf->event_msg_printed) {
printk(KERN_WARNING PFX "Event queue no longer"
" full\n");
intf->event_msg_printed = 0;
}
intf->delivering_events = 1;
spin_unlock_irqrestore(&intf->events_lock, flags);
list_for_each_entry_safe(msg, msg2, &msgs, link) {
msg->user = user;
kref_get(&user->refcount);
deliver_response(msg);
}
spin_lock_irqsave(&intf->events_lock, flags);
intf->delivering_events = 0;
}
out:
spin_unlock_irqrestore(&intf->events_lock, flags);
return 0;
}
EXPORT_SYMBOL(ipmi_set_gets_events);
static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t intf,
unsigned char netfn,
unsigned char cmd,
unsigned char chan)
{
struct cmd_rcvr *rcvr;
list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
&& (rcvr->chans & (1 << chan)))
return rcvr;
}
return NULL;
}
static int is_cmd_rcvr_exclusive(ipmi_smi_t intf,
unsigned char netfn,
unsigned char cmd,
unsigned int chans)
{
struct cmd_rcvr *rcvr;
list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
&& (rcvr->chans & chans))
return 0;
}
return 1;
}
int ipmi_register_for_cmd(ipmi_user_t user,
unsigned char netfn,
unsigned char cmd,
unsigned int chans)
{
ipmi_smi_t intf = user->intf;
struct cmd_rcvr *rcvr;
int rv = 0;
rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
if (!rcvr)
return -ENOMEM;
rcvr->cmd = cmd;
rcvr->netfn = netfn;
rcvr->chans = chans;
rcvr->user = user;
mutex_lock(&intf->cmd_rcvrs_mutex);
/* Make sure the command/netfn is not already registered. */
if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
rv = -EBUSY;
goto out_unlock;
}
list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
out_unlock:
mutex_unlock(&intf->cmd_rcvrs_mutex);
if (rv)
kfree(rcvr);
return rv;
}
EXPORT_SYMBOL(ipmi_register_for_cmd);
int ipmi_unregister_for_cmd(ipmi_user_t user,
unsigned char netfn,
unsigned char cmd,
unsigned int chans)
{
ipmi_smi_t intf = user->intf;
struct cmd_rcvr *rcvr;
struct cmd_rcvr *rcvrs = NULL;
int i, rv = -ENOENT;
mutex_lock(&intf->cmd_rcvrs_mutex);
for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
if (((1 << i) & chans) == 0)
continue;
rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
if (rcvr == NULL)
continue;
if (rcvr->user == user) {
rv = 0;
rcvr->chans &= ~chans;
if (rcvr->chans == 0) {
list_del_rcu(&rcvr->link);
rcvr->next = rcvrs;
rcvrs = rcvr;
}
}
}
mutex_unlock(&intf->cmd_rcvrs_mutex);
synchronize_rcu();
while (rcvrs) {
rcvr = rcvrs;
rcvrs = rcvr->next;
kfree(rcvr);
}
return rv;
}
EXPORT_SYMBOL(ipmi_unregister_for_cmd);
static unsigned char
ipmb_checksum(unsigned char *data, int size)
{
unsigned char csum = 0;
for (; size > 0; size--, data++)
csum += *data;
return -csum;
}
static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
struct kernel_ipmi_msg *msg,
struct ipmi_ipmb_addr *ipmb_addr,
long msgid,
unsigned char ipmb_seq,
int broadcast,
unsigned char source_address,
unsigned char source_lun)
{
int i = broadcast;
/* Format the IPMB header data. */
smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
smi_msg->data[1] = IPMI_SEND_MSG_CMD;
smi_msg->data[2] = ipmb_addr->channel;
if (broadcast)
smi_msg->data[3] = 0;
smi_msg->data[i+3] = ipmb_addr->slave_addr;
smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
smi_msg->data[i+6] = source_address;
smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
smi_msg->data[i+8] = msg->cmd;
/* Now tack on the data to the message. */
if (msg->data_len > 0)
memcpy(&(smi_msg->data[i+9]), msg->data,
msg->data_len);
smi_msg->data_size = msg->data_len + 9;
/* Now calculate the checksum and tack it on. */
smi_msg->data[i+smi_msg->data_size]
= ipmb_checksum(&(smi_msg->data[i+6]),
smi_msg->data_size-6);
/*
* Add on the checksum size and the offset from the
* broadcast.
*/
smi_msg->data_size += 1 + i;
smi_msg->msgid = msgid;
}
static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
struct kernel_ipmi_msg *msg,
struct ipmi_lan_addr *lan_addr,
long msgid,
unsigned char ipmb_seq,
unsigned char source_lun)
{
/* Format the IPMB header data. */
smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
smi_msg->data[1] = IPMI_SEND_MSG_CMD;
smi_msg->data[2] = lan_addr->channel;
smi_msg->data[3] = lan_addr->session_handle;
smi_msg->data[4] = lan_addr->remote_SWID;
smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
smi_msg->data[7] = lan_addr->local_SWID;
smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
smi_msg->data[9] = msg->cmd;
/* Now tack on the data to the message. */
if (msg->data_len > 0)
memcpy(&(smi_msg->data[10]), msg->data,
msg->data_len);
smi_msg->data_size = msg->data_len + 10;
/* Now calculate the checksum and tack it on. */
smi_msg->data[smi_msg->data_size]
= ipmb_checksum(&(smi_msg->data[7]),
smi_msg->data_size-7);
/*
* Add on the checksum size and the offset from the
* broadcast.
*/
smi_msg->data_size += 1;
smi_msg->msgid = msgid;
}
/*
* Separate from ipmi_request so that the user does not have to be
* supplied in certain circumstances (mainly at panic time). If
* messages are supplied, they will be freed, even if an error
* occurs.
*/
static int i_ipmi_request(ipmi_user_t user,
ipmi_smi_t intf,
struct ipmi_addr *addr,
long msgid,
struct kernel_ipmi_msg *msg,
void *user_msg_data,
void *supplied_smi,
struct ipmi_recv_msg *supplied_recv,
int priority,
unsigned char source_address,
unsigned char source_lun,
int retries,
unsigned int retry_time_ms)
{
int rv = 0;
struct ipmi_smi_msg *smi_msg;
struct ipmi_recv_msg *recv_msg;
unsigned long flags;
struct ipmi_smi_handlers *handlers;
if (supplied_recv)
recv_msg = supplied_recv;
else {
recv_msg = ipmi_alloc_recv_msg();
if (recv_msg == NULL)
return -ENOMEM;
}
recv_msg->user_msg_data = user_msg_data;
if (supplied_smi)
smi_msg = (struct ipmi_smi_msg *) supplied_smi;
else {
smi_msg = ipmi_alloc_smi_msg();
if (smi_msg == NULL) {
ipmi_free_recv_msg(recv_msg);
return -ENOMEM;
}
}
rcu_read_lock();
handlers = intf->handlers;
if (!handlers) {
rv = -ENODEV;
goto out_err;
}
recv_msg->user = user;
if (user)
kref_get(&user->refcount);
recv_msg->msgid = msgid;
/*
* Store the message to send in the receive message so timeout
* responses can get the proper response data.
*/
recv_msg->msg = *msg;
if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
struct ipmi_system_interface_addr *smi_addr;
if (msg->netfn & 1) {
/* Responses are not allowed to the SMI. */
rv = -EINVAL;
goto out_err;
}
smi_addr = (struct ipmi_system_interface_addr *) addr;
if (smi_addr->lun > 3) {
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EINVAL;
goto out_err;
}
memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
&& ((msg->cmd == IPMI_SEND_MSG_CMD)
|| (msg->cmd == IPMI_GET_MSG_CMD)
|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
/*
* We don't let the user do these, since we manage
* the sequence numbers.
*/
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EINVAL;
goto out_err;
}
if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
&& ((msg->cmd == IPMI_COLD_RESET_CMD)
|| (msg->cmd == IPMI_WARM_RESET_CMD)))
|| (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
intf->auto_maintenance_timeout
= IPMI_MAINTENANCE_MODE_TIMEOUT;
if (!intf->maintenance_mode
&& !intf->maintenance_mode_enable) {
intf->maintenance_mode_enable = 1;
maintenance_mode_update(intf);
}
spin_unlock_irqrestore(&intf->maintenance_mode_lock,
flags);
}
if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EMSGSIZE;
goto out_err;
}
smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
smi_msg->data[1] = msg->cmd;
smi_msg->msgid = msgid;
smi_msg->user_data = recv_msg;
if (msg->data_len > 0)
memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
smi_msg->data_size = msg->data_len + 2;
ipmi_inc_stat(intf, sent_local_commands);
} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
struct ipmi_ipmb_addr *ipmb_addr;
unsigned char ipmb_seq;
long seqid;
int broadcast = 0;
if (addr->channel >= IPMI_MAX_CHANNELS) {
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EINVAL;
goto out_err;
}
if (intf->channels[addr->channel].medium
!= IPMI_CHANNEL_MEDIUM_IPMB) {
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EINVAL;
goto out_err;
}
if (retries < 0) {
if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
retries = 0; /* Don't retry broadcasts. */
else
retries = 4;
}
if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
/*
* Broadcasts add a zero at the beginning of the
* message, but otherwise is the same as an IPMB
* address.
*/
addr->addr_type = IPMI_IPMB_ADDR_TYPE;
broadcast = 1;
}
/* Default to 1 second retries. */
if (retry_time_ms == 0)
retry_time_ms = 1000;
/*
* 9 for the header and 1 for the checksum, plus
* possibly one for the broadcast.
*/
if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EMSGSIZE;
goto out_err;
}
ipmb_addr = (struct ipmi_ipmb_addr *) addr;
if (ipmb_addr->lun > 3) {
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EINVAL;
goto out_err;
}
memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
if (recv_msg->msg.netfn & 0x1) {
/*
* It's a response, so use the user's sequence
* from msgid.
*/
ipmi_inc_stat(intf, sent_ipmb_responses);
format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
msgid, broadcast,
source_address, source_lun);
/*
* Save the receive message so we can use it
* to deliver the response.
*/
smi_msg->user_data = recv_msg;
} else {
/* It's a command, so get a sequence for it. */
spin_lock_irqsave(&(intf->seq_lock), flags);
/*
* Create a sequence number with a 1 second
* timeout and 4 retries.
*/
rv = intf_next_seq(intf,
recv_msg,
retry_time_ms,
retries,
broadcast,
&ipmb_seq,
&seqid);
if (rv) {
/*
* We have used up all the sequence numbers,
* probably, so abort.
*/
spin_unlock_irqrestore(&(intf->seq_lock),
flags);
goto out_err;
}
ipmi_inc_stat(intf, sent_ipmb_commands);
/*
* Store the sequence number in the message,
* so that when the send message response
* comes back we can start the timer.
*/
format_ipmb_msg(smi_msg, msg, ipmb_addr,
STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
ipmb_seq, broadcast,
source_address, source_lun);
/*
* Copy the message into the recv message data, so we
* can retransmit it later if necessary.
*/
memcpy(recv_msg->msg_data, smi_msg->data,
smi_msg->data_size);
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg.data_len = smi_msg->data_size;
/*
* We don't unlock until here, because we need
* to copy the completed message into the
* recv_msg before we release the lock.
* Otherwise, race conditions may bite us. I
* know that's pretty paranoid, but I prefer
* to be correct.
*/
spin_unlock_irqrestore(&(intf->seq_lock), flags);
}
} else if (is_lan_addr(addr)) {
struct ipmi_lan_addr *lan_addr;
unsigned char ipmb_seq;
long seqid;
if (addr->channel >= IPMI_MAX_CHANNELS) {
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EINVAL;
goto out_err;
}
if ((intf->channels[addr->channel].medium
!= IPMI_CHANNEL_MEDIUM_8023LAN)
&& (intf->channels[addr->channel].medium
!= IPMI_CHANNEL_MEDIUM_ASYNC)) {
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EINVAL;
goto out_err;
}
retries = 4;
/* Default to 1 second retries. */
if (retry_time_ms == 0)
retry_time_ms = 1000;
/* 11 for the header and 1 for the checksum. */
if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EMSGSIZE;
goto out_err;
}
lan_addr = (struct ipmi_lan_addr *) addr;
if (lan_addr->lun > 3) {
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EINVAL;
goto out_err;
}
memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
if (recv_msg->msg.netfn & 0x1) {
/*
* It's a response, so use the user's sequence
* from msgid.
*/
ipmi_inc_stat(intf, sent_lan_responses);
format_lan_msg(smi_msg, msg, lan_addr, msgid,
msgid, source_lun);
/*
* Save the receive message so we can use it
* to deliver the response.
*/
smi_msg->user_data = recv_msg;
} else {
/* It's a command, so get a sequence for it. */
spin_lock_irqsave(&(intf->seq_lock), flags);
/*
* Create a sequence number with a 1 second
* timeout and 4 retries.
*/
rv = intf_next_seq(intf,
recv_msg,
retry_time_ms,
retries,
0,
&ipmb_seq,
&seqid);
if (rv) {
/*
* We have used up all the sequence numbers,
* probably, so abort.
*/
spin_unlock_irqrestore(&(intf->seq_lock),
flags);
goto out_err;
}
ipmi_inc_stat(intf, sent_lan_commands);
/*
* Store the sequence number in the message,
* so that when the send message response
* comes back we can start the timer.
*/
format_lan_msg(smi_msg, msg, lan_addr,
STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
ipmb_seq, source_lun);
/*
* Copy the message into the recv message data, so we
* can retransmit it later if necessary.
*/
memcpy(recv_msg->msg_data, smi_msg->data,
smi_msg->data_size);
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg.data_len = smi_msg->data_size;
/*
* We don't unlock until here, because we need
* to copy the completed message into the
* recv_msg before we release the lock.
* Otherwise, race conditions may bite us. I
* know that's pretty paranoid, but I prefer
* to be correct.
*/
spin_unlock_irqrestore(&(intf->seq_lock), flags);
}
} else {
/* Unknown address type. */
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EINVAL;
goto out_err;
}
#ifdef DEBUG_MSGING
{
int m;
for (m = 0; m < smi_msg->data_size; m++)
printk(" %2.2x", smi_msg->data[m]);
printk("\n");
}
#endif
handlers->sender(intf->send_info, smi_msg, priority);
rcu_read_unlock();
return 0;
out_err:
rcu_read_unlock();
ipmi_free_smi_msg(smi_msg);
ipmi_free_recv_msg(recv_msg);
return rv;
}
static int check_addr(ipmi_smi_t intf,
struct ipmi_addr *addr,
unsigned char *saddr,
unsigned char *lun)
{
if (addr->channel >= IPMI_MAX_CHANNELS)
return -EINVAL;
*lun = intf->channels[addr->channel].lun;
*saddr = intf->channels[addr->channel].address;
return 0;
}
int ipmi_request_settime(ipmi_user_t user,
struct ipmi_addr *addr,
long msgid,
struct kernel_ipmi_msg *msg,
void *user_msg_data,
int priority,
int retries,
unsigned int retry_time_ms)
{
unsigned char saddr, lun;
int rv;
if (!user)
return -EINVAL;
rv = check_addr(user->intf, addr, &saddr, &lun);
if (rv)
return rv;
return i_ipmi_request(user,
user->intf,
addr,
msgid,
msg,
user_msg_data,
NULL, NULL,
priority,
saddr,
lun,
retries,
retry_time_ms);
}
EXPORT_SYMBOL(ipmi_request_settime);
int ipmi_request_supply_msgs(ipmi_user_t user,
struct ipmi_addr *addr,
long msgid,
struct kernel_ipmi_msg *msg,
void *user_msg_data,
void *supplied_smi,
struct ipmi_recv_msg *supplied_recv,
int priority)
{
unsigned char saddr, lun;
int rv;
if (!user)
return -EINVAL;
rv = check_addr(user->intf, addr, &saddr, &lun);
if (rv)
return rv;
return i_ipmi_request(user,
user->intf,
addr,
msgid,
msg,
user_msg_data,
supplied_smi,
supplied_recv,
priority,
saddr,
lun,
-1, 0);
}
EXPORT_SYMBOL(ipmi_request_supply_msgs);
#ifdef CONFIG_PROC_FS
static int smi_ipmb_proc_show(struct seq_file *m, void *v)
{
ipmi_smi_t intf = m->private;
int i;
seq_printf(m, "%x", intf->channels[0].address);
for (i = 1; i < IPMI_MAX_CHANNELS; i++)
seq_printf(m, " %x", intf->channels[i].address);
return seq_putc(m, '\n');
}
static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, smi_ipmb_proc_show, PDE(inode)->data);
}
static const struct file_operations smi_ipmb_proc_ops = {
.open = smi_ipmb_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int smi_version_proc_show(struct seq_file *m, void *v)
{
ipmi_smi_t intf = m->private;
return seq_printf(m, "%u.%u\n",
ipmi_version_major(&intf->bmc->id),
ipmi_version_minor(&intf->bmc->id));
}
static int smi_version_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, smi_version_proc_show, PDE(inode)->data);
}
static const struct file_operations smi_version_proc_ops = {
.open = smi_version_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int smi_stats_proc_show(struct seq_file *m, void *v)
{
ipmi_smi_t intf = m->private;
seq_printf(m, "sent_invalid_commands: %u\n",
ipmi_get_stat(intf, sent_invalid_commands));
seq_printf(m, "sent_local_commands: %u\n",
ipmi_get_stat(intf, sent_local_commands));
seq_printf(m, "handled_local_responses: %u\n",
ipmi_get_stat(intf, handled_local_responses));
seq_printf(m, "unhandled_local_responses: %u\n",
ipmi_get_stat(intf, unhandled_local_responses));
seq_printf(m, "sent_ipmb_commands: %u\n",
ipmi_get_stat(intf, sent_ipmb_commands));
seq_printf(m, "sent_ipmb_command_errs: %u\n",
ipmi_get_stat(intf, sent_ipmb_command_errs));
seq_printf(m, "retransmitted_ipmb_commands: %u\n",
ipmi_get_stat(intf, retransmitted_ipmb_commands));
seq_printf(m, "timed_out_ipmb_commands: %u\n",
ipmi_get_stat(intf, timed_out_ipmb_commands));
seq_printf(m, "timed_out_ipmb_broadcasts: %u\n",
ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
seq_printf(m, "sent_ipmb_responses: %u\n",
ipmi_get_stat(intf, sent_ipmb_responses));
seq_printf(m, "handled_ipmb_responses: %u\n",
ipmi_get_stat(intf, handled_ipmb_responses));
seq_printf(m, "invalid_ipmb_responses: %u\n",
ipmi_get_stat(intf, invalid_ipmb_responses));
seq_printf(m, "unhandled_ipmb_responses: %u\n",
ipmi_get_stat(intf, unhandled_ipmb_responses));
seq_printf(m, "sent_lan_commands: %u\n",
ipmi_get_stat(intf, sent_lan_commands));
seq_printf(m, "sent_lan_command_errs: %u\n",
ipmi_get_stat(intf, sent_lan_command_errs));
seq_printf(m, "retransmitted_lan_commands: %u\n",
ipmi_get_stat(intf, retransmitted_lan_commands));
seq_printf(m, "timed_out_lan_commands: %u\n",
ipmi_get_stat(intf, timed_out_lan_commands));
seq_printf(m, "sent_lan_responses: %u\n",
ipmi_get_stat(intf, sent_lan_responses));
seq_printf(m, "handled_lan_responses: %u\n",
ipmi_get_stat(intf, handled_lan_responses));
seq_printf(m, "invalid_lan_responses: %u\n",
ipmi_get_stat(intf, invalid_lan_responses));
seq_printf(m, "unhandled_lan_responses: %u\n",
ipmi_get_stat(intf, unhandled_lan_responses));
seq_printf(m, "handled_commands: %u\n",
ipmi_get_stat(intf, handled_commands));
seq_printf(m, "invalid_commands: %u\n",
ipmi_get_stat(intf, invalid_commands));
seq_printf(m, "unhandled_commands: %u\n",
ipmi_get_stat(intf, unhandled_commands));
seq_printf(m, "invalid_events: %u\n",
ipmi_get_stat(intf, invalid_events));
seq_printf(m, "events: %u\n",
ipmi_get_stat(intf, events));
seq_printf(m, "failed rexmit LAN msgs: %u\n",
ipmi_get_stat(intf, dropped_rexmit_lan_commands));
seq_printf(m, "failed rexmit IPMB msgs: %u\n",
ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
return 0;
}
static int smi_stats_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, smi_stats_proc_show, PDE(inode)->data);
}
static const struct file_operations smi_stats_proc_ops = {
.open = smi_stats_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#endif /* CONFIG_PROC_FS */
int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
const struct file_operations *proc_ops,
void *data)
{
int rv = 0;
#ifdef CONFIG_PROC_FS
struct proc_dir_entry *file;
struct ipmi_proc_entry *entry;
/* Create a list element. */
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
entry->name = kmalloc(strlen(name)+1, GFP_KERNEL);
if (!entry->name) {
kfree(entry);
return -ENOMEM;
}
strcpy(entry->name, name);
file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
if (!file) {
kfree(entry->name);
kfree(entry);
rv = -ENOMEM;
} else {
mutex_lock(&smi->proc_entry_lock);
/* Stick it on the list. */
entry->next = smi->proc_entries;
smi->proc_entries = entry;
mutex_unlock(&smi->proc_entry_lock);
}
#endif /* CONFIG_PROC_FS */
return rv;
}
EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
static int add_proc_entries(ipmi_smi_t smi, int num)
{
int rv = 0;
#ifdef CONFIG_PROC_FS
sprintf(smi->proc_dir_name, "%d", num);
smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
if (!smi->proc_dir)
rv = -ENOMEM;
if (rv == 0)
rv = ipmi_smi_add_proc_entry(smi, "stats",
&smi_stats_proc_ops,
smi);
if (rv == 0)
rv = ipmi_smi_add_proc_entry(smi, "ipmb",
&smi_ipmb_proc_ops,
smi);
if (rv == 0)
rv = ipmi_smi_add_proc_entry(smi, "version",
&smi_version_proc_ops,
smi);
#endif /* CONFIG_PROC_FS */
return rv;
}
static void remove_proc_entries(ipmi_smi_t smi)
{
#ifdef CONFIG_PROC_FS
struct ipmi_proc_entry *entry;
mutex_lock(&smi->proc_entry_lock);
while (smi->proc_entries) {
entry = smi->proc_entries;
smi->proc_entries = entry->next;
remove_proc_entry(entry->name, smi->proc_dir);
kfree(entry->name);
kfree(entry);
}
mutex_unlock(&smi->proc_entry_lock);
remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
#endif /* CONFIG_PROC_FS */
}
static int __find_bmc_guid(struct device *dev, void *data)
{
unsigned char *id = data;
struct bmc_device *bmc = dev_get_drvdata(dev);
return memcmp(bmc->guid, id, 16) == 0;
}
static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
unsigned char *guid)
{
struct device *dev;
dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
if (dev)
return dev_get_drvdata(dev);
else
return NULL;
}
struct prod_dev_id {
unsigned int product_id;
unsigned char device_id;
};
static int __find_bmc_prod_dev_id(struct device *dev, void *data)
{
struct prod_dev_id *id = data;
struct bmc_device *bmc = dev_get_drvdata(dev);
return (bmc->id.product_id == id->product_id
&& bmc->id.device_id == id->device_id);
}
static struct bmc_device *ipmi_find_bmc_prod_dev_id(
struct device_driver *drv,
unsigned int product_id, unsigned char device_id)
{
struct prod_dev_id id = {
.product_id = product_id,
.device_id = device_id,
};
struct device *dev;
dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
if (dev)
return dev_get_drvdata(dev);
else
return NULL;
}
static ssize_t device_id_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = dev_get_drvdata(dev);
return snprintf(buf, 10, "%u\n", bmc->id.device_id);
}
static ssize_t provides_dev_sdrs_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = dev_get_drvdata(dev);
return snprintf(buf, 10, "%u\n",
(bmc->id.device_revision & 0x80) >> 7);
}
static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = dev_get_drvdata(dev);
return snprintf(buf, 20, "%u\n",
bmc->id.device_revision & 0x0F);
}
static ssize_t firmware_rev_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = dev_get_drvdata(dev);
return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
bmc->id.firmware_revision_2);
}
static ssize_t ipmi_version_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = dev_get_drvdata(dev);
return snprintf(buf, 20, "%u.%u\n",
ipmi_version_major(&bmc->id),
ipmi_version_minor(&bmc->id));
}
static ssize_t add_dev_support_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = dev_get_drvdata(dev);
return snprintf(buf, 10, "0x%02x\n",
bmc->id.additional_device_support);
}
static ssize_t manufacturer_id_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = dev_get_drvdata(dev);
return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
}
static ssize_t product_id_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = dev_get_drvdata(dev);
return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
}
static ssize_t aux_firmware_rev_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = dev_get_drvdata(dev);
return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
bmc->id.aux_firmware_revision[3],
bmc->id.aux_firmware_revision[2],
bmc->id.aux_firmware_revision[1],
bmc->id.aux_firmware_revision[0]);
}
static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = dev_get_drvdata(dev);
return snprintf(buf, 100, "%Lx%Lx\n",
(long long) bmc->guid[0],
(long long) bmc->guid[8]);
}
static void remove_files(struct bmc_device *bmc)
{
if (!bmc->dev)
return;
device_remove_file(&bmc->dev->dev,
&bmc->device_id_attr);
device_remove_file(&bmc->dev->dev,
&bmc->provides_dev_sdrs_attr);
device_remove_file(&bmc->dev->dev,
&bmc->revision_attr);
device_remove_file(&bmc->dev->dev,
&bmc->firmware_rev_attr);
device_remove_file(&bmc->dev->dev,
&bmc->version_attr);
device_remove_file(&bmc->dev->dev,
&bmc->add_dev_support_attr);
device_remove_file(&bmc->dev->dev,
&bmc->manufacturer_id_attr);
device_remove_file(&bmc->dev->dev,
&bmc->product_id_attr);
if (bmc->id.aux_firmware_revision_set)
device_remove_file(&bmc->dev->dev,
&bmc->aux_firmware_rev_attr);
if (bmc->guid_set)
device_remove_file(&bmc->dev->dev,
&bmc->guid_attr);
}
static void
cleanup_bmc_device(struct kref *ref)
{
struct bmc_device *bmc;
bmc = container_of(ref, struct bmc_device, refcount);
remove_files(bmc);
platform_device_unregister(bmc->dev);
kfree(bmc);
}
static void ipmi_bmc_unregister(ipmi_smi_t intf)
{
struct bmc_device *bmc = intf->bmc;
if (intf->sysfs_name) {
sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
kfree(intf->sysfs_name);
intf->sysfs_name = NULL;
}
if (intf->my_dev_name) {
sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
kfree(intf->my_dev_name);
intf->my_dev_name = NULL;
}
mutex_lock(&ipmidriver_mutex);
kref_put(&bmc->refcount, cleanup_bmc_device);
intf->bmc = NULL;
mutex_unlock(&ipmidriver_mutex);
}
static int create_files(struct bmc_device *bmc)
{
int err;
bmc->device_id_attr.attr.name = "device_id";
bmc->device_id_attr.attr.mode = S_IRUGO;
bmc->device_id_attr.show = device_id_show;
sysfs_attr_init(&bmc->device_id_attr.attr);
bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
sysfs_attr_init(&bmc->provides_dev_sdrs_attr.attr);
bmc->revision_attr.attr.name = "revision";
bmc->revision_attr.attr.mode = S_IRUGO;
bmc->revision_attr.show = revision_show;
sysfs_attr_init(&bmc->revision_attr.attr);
bmc->firmware_rev_attr.attr.name = "firmware_revision";
bmc->firmware_rev_attr.attr.mode = S_IRUGO;
bmc->firmware_rev_attr.show = firmware_rev_show;
sysfs_attr_init(&bmc->firmware_rev_attr.attr);
bmc->version_attr.attr.name = "ipmi_version";
bmc->version_attr.attr.mode = S_IRUGO;
bmc->version_attr.show = ipmi_version_show;
sysfs_attr_init(&bmc->version_attr.attr);
bmc->add_dev_support_attr.attr.name = "additional_device_support";
bmc->add_dev_support_attr.attr.mode = S_IRUGO;
bmc->add_dev_support_attr.show = add_dev_support_show;
sysfs_attr_init(&bmc->add_dev_support_attr.attr);
bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
bmc->manufacturer_id_attr.show = manufacturer_id_show;
sysfs_attr_init(&bmc->manufacturer_id_attr.attr);
bmc->product_id_attr.attr.name = "product_id";
bmc->product_id_attr.attr.mode = S_IRUGO;
bmc->product_id_attr.show = product_id_show;
sysfs_attr_init(&bmc->product_id_attr.attr);
bmc->guid_attr.attr.name = "guid";
bmc->guid_attr.attr.mode = S_IRUGO;
bmc->guid_attr.show = guid_show;
sysfs_attr_init(&bmc->guid_attr.attr);
bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
sysfs_attr_init(&bmc->aux_firmware_rev_attr.attr);
err = device_create_file(&bmc->dev->dev,
&bmc->device_id_attr);
if (err)
goto out;
err = device_create_file(&bmc->dev->dev,
&bmc->provides_dev_sdrs_attr);
if (err)
goto out_devid;
err = device_create_file(&bmc->dev->dev,
&bmc->revision_attr);
if (err)
goto out_sdrs;
err = device_create_file(&bmc->dev->dev,
&bmc->firmware_rev_attr);
if (err)
goto out_rev;
err = device_create_file(&bmc->dev->dev,
&bmc->version_attr);
if (err)
goto out_firm;
err = device_create_file(&bmc->dev->dev,
&bmc->add_dev_support_attr);
if (err)
goto out_version;
err = device_create_file(&bmc->dev->dev,
&bmc->manufacturer_id_attr);
if (err)
goto out_add_dev;
err = device_create_file(&bmc->dev->dev,
&bmc->product_id_attr);
if (err)
goto out_manu;
if (bmc->id.aux_firmware_revision_set) {
err = device_create_file(&bmc->dev->dev,
&bmc->aux_firmware_rev_attr);
if (err)
goto out_prod_id;
}
if (bmc->guid_set) {
err = device_create_file(&bmc->dev->dev,
&bmc->guid_attr);
if (err)
goto out_aux_firm;
}
return 0;
out_aux_firm:
if (bmc->id.aux_firmware_revision_set)
device_remove_file(&bmc->dev->dev,
&bmc->aux_firmware_rev_attr);
out_prod_id:
device_remove_file(&bmc->dev->dev,
&bmc->product_id_attr);
out_manu:
device_remove_file(&bmc->dev->dev,
&bmc->manufacturer_id_attr);
out_add_dev:
device_remove_file(&bmc->dev->dev,
&bmc->add_dev_support_attr);
out_version:
device_remove_file(&bmc->dev->dev,
&bmc->version_attr);
out_firm:
device_remove_file(&bmc->dev->dev,
&bmc->firmware_rev_attr);
out_rev:
device_remove_file(&bmc->dev->dev,
&bmc->revision_attr);
out_sdrs:
device_remove_file(&bmc->dev->dev,
&bmc->provides_dev_sdrs_attr);
out_devid:
device_remove_file(&bmc->dev->dev,
&bmc->device_id_attr);
out:
return err;
}
static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
const char *sysfs_name)
{
int rv;
struct bmc_device *bmc = intf->bmc;
struct bmc_device *old_bmc;
int size;
char dummy[1];
mutex_lock(&ipmidriver_mutex);
/*
* Try to find if there is an bmc_device struct
* representing the interfaced BMC already
*/
if (bmc->guid_set)
old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
else
old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
bmc->id.product_id,
bmc->id.device_id);
/*
* If there is already an bmc_device, free the new one,
* otherwise register the new BMC device
*/
if (old_bmc) {
kfree(bmc);
intf->bmc = old_bmc;
bmc = old_bmc;
kref_get(&bmc->refcount);
mutex_unlock(&ipmidriver_mutex);
printk(KERN_INFO
"ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
" prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
bmc->id.manufacturer_id,
bmc->id.product_id,
bmc->id.device_id);
} else {
char name[14];
unsigned char orig_dev_id = bmc->id.device_id;
int warn_printed = 0;
snprintf(name, sizeof(name),
"ipmi_bmc.%4.4x", bmc->id.product_id);
while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
bmc->id.product_id,
bmc->id.device_id)) {
if (!warn_printed) {
printk(KERN_WARNING PFX
"This machine has two different BMCs"
" with the same product id and device"
" id. This is an error in the"
" firmware, but incrementing the"
" device id to work around the problem."
" Prod ID = 0x%x, Dev ID = 0x%x\n",
bmc->id.product_id, bmc->id.device_id);
warn_printed = 1;
}
bmc->id.device_id++; /* Wraps at 255 */
if (bmc->id.device_id == orig_dev_id) {
printk(KERN_ERR PFX
"Out of device ids!\n");
break;
}
}
bmc->dev = platform_device_alloc(name, bmc->id.device_id);
if (!bmc->dev) {
mutex_unlock(&ipmidriver_mutex);
printk(KERN_ERR
"ipmi_msghandler:"
" Unable to allocate platform device\n");
return -ENOMEM;
}
bmc->dev->dev.driver = &ipmidriver.driver;
dev_set_drvdata(&bmc->dev->dev, bmc);
kref_init(&bmc->refcount);
rv = platform_device_add(bmc->dev);
mutex_unlock(&ipmidriver_mutex);
if (rv) {
platform_device_put(bmc->dev);
bmc->dev = NULL;
printk(KERN_ERR
"ipmi_msghandler:"
" Unable to register bmc device: %d\n",
rv);
/*
* Don't go to out_err, you can only do that if
* the device is registered already.
*/
return rv;
}
rv = create_files(bmc);
if (rv) {
mutex_lock(&ipmidriver_mutex);
platform_device_unregister(bmc->dev);
mutex_unlock(&ipmidriver_mutex);
return rv;
}
dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
"prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
bmc->id.manufacturer_id,
bmc->id.product_id,
bmc->id.device_id);
}
/*
* create symlink from system interface device to bmc device
* and back.
*/
intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
if (!intf->sysfs_name) {
rv = -ENOMEM;
printk(KERN_ERR
"ipmi_msghandler: allocate link to BMC: %d\n",
rv);
goto out_err;
}
rv = sysfs_create_link(&intf->si_dev->kobj,
&bmc->dev->dev.kobj, intf->sysfs_name);
if (rv) {
kfree(intf->sysfs_name);
intf->sysfs_name = NULL;
printk(KERN_ERR
"ipmi_msghandler: Unable to create bmc symlink: %d\n",
rv);
goto out_err;
}
size = snprintf(dummy, 0, "ipmi%d", ifnum);
intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
if (!intf->my_dev_name) {
kfree(intf->sysfs_name);
intf->sysfs_name = NULL;
rv = -ENOMEM;
printk(KERN_ERR
"ipmi_msghandler: allocate link from BMC: %d\n",
rv);
goto out_err;
}
snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
intf->my_dev_name);
if (rv) {
kfree(intf->sysfs_name);
intf->sysfs_name = NULL;
kfree(intf->my_dev_name);
intf->my_dev_name = NULL;
printk(KERN_ERR
"ipmi_msghandler:"
" Unable to create symlink to bmc: %d\n",
rv);
goto out_err;
}
return 0;
out_err:
ipmi_bmc_unregister(intf);
return rv;
}
static int
send_guid_cmd(ipmi_smi_t intf, int chan)
{
struct kernel_ipmi_msg msg;
struct ipmi_system_interface_addr si;
si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
si.channel = IPMI_BMC_CHANNEL;
si.lun = 0;
msg.netfn = IPMI_NETFN_APP_REQUEST;
msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
msg.data = NULL;
msg.data_len = 0;
return i_ipmi_request(NULL,
intf,
(struct ipmi_addr *) &si,
0,
&msg,
intf,
NULL,
NULL,
0,
intf->channels[0].address,
intf->channels[0].lun,
-1, 0);
}
static void
guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
{
if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
|| (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
/* Not for me */
return;
if (msg->msg.data[0] != 0) {
/* Error from getting the GUID, the BMC doesn't have one. */
intf->bmc->guid_set = 0;
goto out;
}
if (msg->msg.data_len < 17) {
intf->bmc->guid_set = 0;
printk(KERN_WARNING PFX
"guid_handler: The GUID response from the BMC was too"
" short, it was %d but should have been 17. Assuming"
" GUID is not available.\n",
msg->msg.data_len);
goto out;
}
memcpy(intf->bmc->guid, msg->msg.data, 16);
intf->bmc->guid_set = 1;
out:
wake_up(&intf->waitq);
}
static void
get_guid(ipmi_smi_t intf)
{
int rv;
intf->bmc->guid_set = 0x2;
intf->null_user_handler = guid_handler;
rv = send_guid_cmd(intf, 0);
if (rv)
/* Send failed, no GUID available. */
intf->bmc->guid_set = 0;
wait_event(intf->waitq, intf->bmc->guid_set != 2);
intf->null_user_handler = NULL;
}
static int
send_channel_info_cmd(ipmi_smi_t intf, int chan)
{
struct kernel_ipmi_msg msg;
unsigned char data[1];
struct ipmi_system_interface_addr si;
si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
si.channel = IPMI_BMC_CHANNEL;
si.lun = 0;
msg.netfn = IPMI_NETFN_APP_REQUEST;
msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
msg.data = data;
msg.data_len = 1;
data[0] = chan;
return i_ipmi_request(NULL,
intf,
(struct ipmi_addr *) &si,
0,
&msg,
intf,
NULL,
NULL,
0,
intf->channels[0].address,
intf->channels[0].lun,
-1, 0);
}
static void
channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
{
int rv = 0;
int chan;
if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
&& (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
&& (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
/* It's the one we want */
if (msg->msg.data[0] != 0) {
/* Got an error from the channel, just go on. */
if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
/*
* If the MC does not support this
* command, that is legal. We just
* assume it has one IPMB at channel
* zero.
*/
intf->channels[0].medium
= IPMI_CHANNEL_MEDIUM_IPMB;
intf->channels[0].protocol
= IPMI_CHANNEL_PROTOCOL_IPMB;
rv = -ENOSYS;
intf->curr_channel = IPMI_MAX_CHANNELS;
wake_up(&intf->waitq);
goto out;
}
goto next_channel;
}
if (msg->msg.data_len < 4) {
/* Message not big enough, just go on. */
goto next_channel;
}
chan = intf->curr_channel;
intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
next_channel:
intf->curr_channel++;
if (intf->curr_channel >= IPMI_MAX_CHANNELS)
wake_up(&intf->waitq);
else
rv = send_channel_info_cmd(intf, intf->curr_channel);
if (rv) {
/* Got an error somehow, just give up. */
intf->curr_channel = IPMI_MAX_CHANNELS;
wake_up(&intf->waitq);
printk(KERN_WARNING PFX
"Error sending channel information: %d\n",
rv);
}
}
out:
return;
}
static void ipmi_poll(ipmi_smi_t intf)
{
if (intf->handlers->poll)
intf->handlers->poll(intf->send_info);
/* In case something came in */
handle_new_recv_msgs(intf);
}
void ipmi_poll_interface(ipmi_user_t user)
{
ipmi_poll(user->intf);
}
EXPORT_SYMBOL(ipmi_poll_interface);
int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
void *send_info,
struct ipmi_device_id *device_id,
struct device *si_dev,
const char *sysfs_name,
unsigned char slave_addr)
{
int i, j;
int rv;
ipmi_smi_t intf;
ipmi_smi_t tintf;
struct list_head *link;
/*
* Make sure the driver is actually initialized, this handles
* problems with initialization order.
*/
if (!initialized) {
rv = ipmi_init_msghandler();
if (rv)
return rv;
/*
* The init code doesn't return an error if it was turned
* off, but it won't initialize. Check that.
*/
if (!initialized)
return -ENODEV;
}
intf = kzalloc(sizeof(*intf), GFP_KERNEL);
if (!intf)
return -ENOMEM;
intf->ipmi_version_major = ipmi_version_major(device_id);
intf->ipmi_version_minor = ipmi_version_minor(device_id);
intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
if (!intf->bmc) {
kfree(intf);
return -ENOMEM;
}
intf->intf_num = -1; /* Mark it invalid for now. */
kref_init(&intf->refcount);
intf->bmc->id = *device_id;
intf->si_dev = si_dev;
for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
intf->channels[j].lun = 2;
}
if (slave_addr != 0)
intf->channels[0].address = slave_addr;
INIT_LIST_HEAD(&intf->users);
intf->handlers = handlers;
intf->send_info = send_info;
spin_lock_init(&intf->seq_lock);
for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
intf->seq_table[j].inuse = 0;
intf->seq_table[j].seqid = 0;
}
intf->curr_seq = 0;
#ifdef CONFIG_PROC_FS
mutex_init(&intf->proc_entry_lock);
#endif
spin_lock_init(&intf->waiting_msgs_lock);
INIT_LIST_HEAD(&intf->waiting_msgs);
tasklet_init(&intf->recv_tasklet,
smi_recv_tasklet,
(unsigned long) intf);
atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
spin_lock_init(&intf->events_lock);
INIT_LIST_HEAD(&intf->waiting_events);
intf->waiting_events_count = 0;
mutex_init(&intf->cmd_rcvrs_mutex);
spin_lock_init(&intf->maintenance_mode_lock);
INIT_LIST_HEAD(&intf->cmd_rcvrs);
init_waitqueue_head(&intf->waitq);
for (i = 0; i < IPMI_NUM_STATS; i++)
atomic_set(&intf->stats[i], 0);
intf->proc_dir = NULL;
mutex_lock(&smi_watchers_mutex);
mutex_lock(&ipmi_interfaces_mutex);
/* Look for a hole in the numbers. */
i = 0;
link = &ipmi_interfaces;
list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
if (tintf->intf_num != i) {
link = &tintf->link;
break;
}
i++;
}
/* Add the new interface in numeric order. */
if (i == 0)
list_add_rcu(&intf->link, &ipmi_interfaces);
else
list_add_tail_rcu(&intf->link, link);
rv = handlers->start_processing(send_info, intf);
if (rv)
goto out;
get_guid(intf);
if ((intf->ipmi_version_major > 1)
|| ((intf->ipmi_version_major == 1)
&& (intf->ipmi_version_minor >= 5))) {
/*
* Start scanning the channels to see what is
* available.
*/
intf->null_user_handler = channel_handler;
intf->curr_channel = 0;
rv = send_channel_info_cmd(intf, 0);
if (rv)
goto out;
/* Wait for the channel info to be read. */
wait_event(intf->waitq,
intf->curr_channel >= IPMI_MAX_CHANNELS);
intf->null_user_handler = NULL;
} else {
/* Assume a single IPMB channel at zero. */
intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
intf->curr_channel = IPMI_MAX_CHANNELS;
}
if (rv == 0)
rv = add_proc_entries(intf, i);
rv = ipmi_bmc_register(intf, i, sysfs_name);
out:
if (rv) {
if (intf->proc_dir)
remove_proc_entries(intf);
intf->handlers = NULL;
list_del_rcu(&intf->link);
mutex_unlock(&ipmi_interfaces_mutex);
mutex_unlock(&smi_watchers_mutex);
synchronize_rcu();
kref_put(&intf->refcount, intf_free);
} else {
/*
* Keep memory order straight for RCU readers. Make
* sure everything else is committed to memory before
* setting intf_num to mark the interface valid.
*/
smp_wmb();
intf->intf_num = i;
mutex_unlock(&ipmi_interfaces_mutex);
/* After this point the interface is legal to use. */
call_smi_watchers(i, intf->si_dev);
mutex_unlock(&smi_watchers_mutex);
}
return rv;
}
EXPORT_SYMBOL(ipmi_register_smi);
static void cleanup_smi_msgs(ipmi_smi_t intf)
{
int i;
struct seq_table *ent;
/* No need for locks, the interface is down. */
for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
ent = &(intf->seq_table[i]);
if (!ent->inuse)
continue;
deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
}
}
int ipmi_unregister_smi(ipmi_smi_t intf)
{
struct ipmi_smi_watcher *w;
int intf_num = intf->intf_num;
ipmi_bmc_unregister(intf);
mutex_lock(&smi_watchers_mutex);
mutex_lock(&ipmi_interfaces_mutex);
intf->intf_num = -1;
intf->handlers = NULL;
list_del_rcu(&intf->link);
mutex_unlock(&ipmi_interfaces_mutex);
synchronize_rcu();
cleanup_smi_msgs(intf);
remove_proc_entries(intf);
/*
* Call all the watcher interfaces to tell them that
* an interface is gone.
*/
list_for_each_entry(w, &smi_watchers, link)
w->smi_gone(intf_num);
mutex_unlock(&smi_watchers_mutex);
kref_put(&intf->refcount, intf_free);
return 0;
}
EXPORT_SYMBOL(ipmi_unregister_smi);
static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf,
struct ipmi_smi_msg *msg)
{
struct ipmi_ipmb_addr ipmb_addr;
struct ipmi_recv_msg *recv_msg;
/*
* This is 11, not 10, because the response must contain a
* completion code.
*/
if (msg->rsp_size < 11) {
/* Message not big enough, just ignore it. */
ipmi_inc_stat(intf, invalid_ipmb_responses);
return 0;
}
if (msg->rsp[2] != 0) {
/* An error getting the response, just ignore it. */
return 0;
}
ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
ipmb_addr.slave_addr = msg->rsp[6];
ipmb_addr.channel = msg->rsp[3] & 0x0f;
ipmb_addr.lun = msg->rsp[7] & 3;
/*
* It's a response from a remote entity. Look up the sequence
* number and handle the response.
*/
if (intf_find_seq(intf,
msg->rsp[7] >> 2,
msg->rsp[3] & 0x0f,
msg->rsp[8],
(msg->rsp[4] >> 2) & (~1),
(struct ipmi_addr *) &(ipmb_addr),
&recv_msg)) {
/*
* We were unable to find the sequence number,
* so just nuke the message.
*/
ipmi_inc_stat(intf, unhandled_ipmb_responses);
return 0;
}
memcpy(recv_msg->msg_data,
&(msg->rsp[9]),
msg->rsp_size - 9);
/*
* The other fields matched, so no need to set them, except
* for netfn, which needs to be the response that was
* returned, not the request value.
*/
recv_msg->msg.netfn = msg->rsp[4] >> 2;
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg.data_len = msg->rsp_size - 10;
recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
ipmi_inc_stat(intf, handled_ipmb_responses);
deliver_response(recv_msg);
return 0;
}
static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf,
struct ipmi_smi_msg *msg)
{
struct cmd_rcvr *rcvr;
int rv = 0;
unsigned char netfn;
unsigned char cmd;
unsigned char chan;
ipmi_user_t user = NULL;
struct ipmi_ipmb_addr *ipmb_addr;
struct ipmi_recv_msg *recv_msg;
struct ipmi_smi_handlers *handlers;
if (msg->rsp_size < 10) {
/* Message not big enough, just ignore it. */
ipmi_inc_stat(intf, invalid_commands);
return 0;
}
if (msg->rsp[2] != 0) {
/* An error getting the response, just ignore it. */
return 0;
}
netfn = msg->rsp[4] >> 2;
cmd = msg->rsp[8];
chan = msg->rsp[3] & 0xf;
rcu_read_lock();
rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
if (rcvr) {
user = rcvr->user;
kref_get(&user->refcount);
} else
user = NULL;
rcu_read_unlock();
if (user == NULL) {
/* We didn't find a user, deliver an error response. */
ipmi_inc_stat(intf, unhandled_commands);
msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
msg->data[1] = IPMI_SEND_MSG_CMD;
msg->data[2] = msg->rsp[3];
msg->data[3] = msg->rsp[6];
msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
/* rqseq/lun */
msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
msg->data[8] = msg->rsp[8]; /* cmd */
msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
msg->data_size = 11;
#ifdef DEBUG_MSGING
{
int m;
printk("Invalid command:");
for (m = 0; m < msg->data_size; m++)
printk(" %2.2x", msg->data[m]);
printk("\n");
}
#endif
rcu_read_lock();
handlers = intf->handlers;
if (handlers) {
handlers->sender(intf->send_info, msg, 0);
/*
* We used the message, so return the value
* that causes it to not be freed or
* queued.
*/
rv = -1;
}
rcu_read_unlock();
} else {
/* Deliver the message to the user. */
ipmi_inc_stat(intf, handled_commands);
recv_msg = ipmi_alloc_recv_msg();
if (!recv_msg) {
/*
* We couldn't allocate memory for the
* message, so requeue it for handling
* later.
*/
rv = 1;
kref_put(&user->refcount, free_user);
} else {
/* Extract the source address from the data. */
ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
ipmb_addr->slave_addr = msg->rsp[6];
ipmb_addr->lun = msg->rsp[7] & 3;
ipmb_addr->channel = msg->rsp[3] & 0xf;
/*
* Extract the rest of the message information
* from the IPMB header.
*/
recv_msg->user = user;
recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
recv_msg->msgid = msg->rsp[7] >> 2;
recv_msg->msg.netfn = msg->rsp[4] >> 2;
recv_msg->msg.cmd = msg->rsp[8];
recv_msg->msg.data = recv_msg->msg_data;
/*
* We chop off 10, not 9 bytes because the checksum
* at the end also needs to be removed.
*/
recv_msg->msg.data_len = msg->rsp_size - 10;
memcpy(recv_msg->msg_data,
&(msg->rsp[9]),
msg->rsp_size - 10);
deliver_response(recv_msg);
}
}
return rv;
}
static int handle_lan_get_msg_rsp(ipmi_smi_t intf,
struct ipmi_smi_msg *msg)
{
struct ipmi_lan_addr lan_addr;
struct ipmi_recv_msg *recv_msg;
/*
* This is 13, not 12, because the response must contain a
* completion code.
*/
if (msg->rsp_size < 13) {
/* Message not big enough, just ignore it. */
ipmi_inc_stat(intf, invalid_lan_responses);
return 0;
}
if (msg->rsp[2] != 0) {
/* An error getting the response, just ignore it. */
return 0;
}
lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
lan_addr.session_handle = msg->rsp[4];
lan_addr.remote_SWID = msg->rsp[8];
lan_addr.local_SWID = msg->rsp[5];
lan_addr.channel = msg->rsp[3] & 0x0f;
lan_addr.privilege = msg->rsp[3] >> 4;
lan_addr.lun = msg->rsp[9] & 3;
/*
* It's a response from a remote entity. Look up the sequence
* number and handle the response.
*/
if (intf_find_seq(intf,
msg->rsp[9] >> 2,
msg->rsp[3] & 0x0f,
msg->rsp[10],
(msg->rsp[6] >> 2) & (~1),
(struct ipmi_addr *) &(lan_addr),
&recv_msg)) {
/*
* We were unable to find the sequence number,
* so just nuke the message.
*/
ipmi_inc_stat(intf, unhandled_lan_responses);
return 0;
}
memcpy(recv_msg->msg_data,
&(msg->rsp[11]),
msg->rsp_size - 11);
/*
* The other fields matched, so no need to set them, except
* for netfn, which needs to be the response that was
* returned, not the request value.
*/
recv_msg->msg.netfn = msg->rsp[6] >> 2;
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg.data_len = msg->rsp_size - 12;
recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
ipmi_inc_stat(intf, handled_lan_responses);
deliver_response(recv_msg);
return 0;
}
static int handle_lan_get_msg_cmd(ipmi_smi_t intf,
struct ipmi_smi_msg *msg)
{
struct cmd_rcvr *rcvr;
int rv = 0;
unsigned char netfn;
unsigned char cmd;
unsigned char chan;
ipmi_user_t user = NULL;
struct ipmi_lan_addr *lan_addr;
struct ipmi_recv_msg *recv_msg;
if (msg->rsp_size < 12) {
/* Message not big enough, just ignore it. */
ipmi_inc_stat(intf, invalid_commands);
return 0;
}
if (msg->rsp[2] != 0) {
/* An error getting the response, just ignore it. */
return 0;
}
netfn = msg->rsp[6] >> 2;
cmd = msg->rsp[10];
chan = msg->rsp[3] & 0xf;
rcu_read_lock();
rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
if (rcvr) {
user = rcvr->user;
kref_get(&user->refcount);
} else
user = NULL;
rcu_read_unlock();
if (user == NULL) {
/* We didn't find a user, just give up. */
ipmi_inc_stat(intf, unhandled_commands);
/*
* Don't do anything with these messages, just allow
* them to be freed.
*/
rv = 0;
} else {
/* Deliver the message to the user. */
ipmi_inc_stat(intf, handled_commands);
recv_msg = ipmi_alloc_recv_msg();
if (!recv_msg) {
/*
* We couldn't allocate memory for the
* message, so requeue it for handling later.
*/
rv = 1;
kref_put(&user->refcount, free_user);
} else {
/* Extract the source address from the data. */
lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
lan_addr->session_handle = msg->rsp[4];
lan_addr->remote_SWID = msg->rsp[8];
lan_addr->local_SWID = msg->rsp[5];
lan_addr->lun = msg->rsp[9] & 3;
lan_addr->channel = msg->rsp[3] & 0xf;
lan_addr->privilege = msg->rsp[3] >> 4;
/*
* Extract the rest of the message information
* from the IPMB header.
*/
recv_msg->user = user;
recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
recv_msg->msgid = msg->rsp[9] >> 2;
recv_msg->msg.netfn = msg->rsp[6] >> 2;
recv_msg->msg.cmd = msg->rsp[10];
recv_msg->msg.data = recv_msg->msg_data;
/*
* We chop off 12, not 11 bytes because the checksum
* at the end also needs to be removed.
*/
recv_msg->msg.data_len = msg->rsp_size - 12;
memcpy(recv_msg->msg_data,
&(msg->rsp[11]),
msg->rsp_size - 12);
deliver_response(recv_msg);
}
}
return rv;
}
/*
* This routine will handle "Get Message" command responses with
* channels that use an OEM Medium. The message format belongs to
* the OEM. See IPMI 2.0 specification, Chapter 6 and
* Chapter 22, sections 22.6 and 22.24 for more details.
*/
static int handle_oem_get_msg_cmd(ipmi_smi_t intf,
struct ipmi_smi_msg *msg)
{
struct cmd_rcvr *rcvr;
int rv = 0;
unsigned char netfn;
unsigned char cmd;
unsigned char chan;
ipmi_user_t user = NULL;
struct ipmi_system_interface_addr *smi_addr;
struct ipmi_recv_msg *recv_msg;
/*
* We expect the OEM SW to perform error checking
* so we just do some basic sanity checks
*/
if (msg->rsp_size < 4) {
/* Message not big enough, just ignore it. */
ipmi_inc_stat(intf, invalid_commands);
return 0;
}
if (msg->rsp[2] != 0) {
/* An error getting the response, just ignore it. */
return 0;
}
/*
* This is an OEM Message so the OEM needs to know how
* handle the message. We do no interpretation.
*/
netfn = msg->rsp[0] >> 2;
cmd = msg->rsp[1];
chan = msg->rsp[3] & 0xf;
rcu_read_lock();
rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
if (rcvr) {
user = rcvr->user;
kref_get(&user->refcount);
} else
user = NULL;
rcu_read_unlock();
if (user == NULL) {
/* We didn't find a user, just give up. */
ipmi_inc_stat(intf, unhandled_commands);
/*
* Don't do anything with these messages, just allow
* them to be freed.
*/
rv = 0;
} else {
/* Deliver the message to the user. */
ipmi_inc_stat(intf, handled_commands);
recv_msg = ipmi_alloc_recv_msg();
if (!recv_msg) {
/*
* We couldn't allocate memory for the
* message, so requeue it for handling
* later.
*/
rv = 1;
kref_put(&user->refcount, free_user);
} else {
/*
* OEM Messages are expected to be delivered via
* the system interface to SMS software. We might
* need to visit this again depending on OEM
* requirements
*/
smi_addr = ((struct ipmi_system_interface_addr *)
&(recv_msg->addr));
smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
smi_addr->channel = IPMI_BMC_CHANNEL;
smi_addr->lun = msg->rsp[0] & 3;
recv_msg->user = user;
recv_msg->user_msg_data = NULL;
recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
recv_msg->msg.netfn = msg->rsp[0] >> 2;
recv_msg->msg.cmd = msg->rsp[1];
recv_msg->msg.data = recv_msg->msg_data;
/*
* The message starts at byte 4 which follows the
* the Channel Byte in the "GET MESSAGE" command
*/
recv_msg->msg.data_len = msg->rsp_size - 4;
memcpy(recv_msg->msg_data,
&(msg->rsp[4]),
msg->rsp_size - 4);
deliver_response(recv_msg);
}
}
return rv;
}
static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
struct ipmi_smi_msg *msg)
{
struct ipmi_system_interface_addr *smi_addr;
recv_msg->msgid = 0;
smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
smi_addr->channel = IPMI_BMC_CHANNEL;
smi_addr->lun = msg->rsp[0] & 3;
recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
recv_msg->msg.netfn = msg->rsp[0] >> 2;
recv_msg->msg.cmd = msg->rsp[1];
memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg.data_len = msg->rsp_size - 3;
}
static int handle_read_event_rsp(ipmi_smi_t intf,
struct ipmi_smi_msg *msg)
{
struct ipmi_recv_msg *recv_msg, *recv_msg2;
struct list_head msgs;
ipmi_user_t user;
int rv = 0;
int deliver_count = 0;
unsigned long flags;
if (msg->rsp_size < 19) {
/* Message is too small to be an IPMB event. */
ipmi_inc_stat(intf, invalid_events);
return 0;
}
if (msg->rsp[2] != 0) {
/* An error getting the event, just ignore it. */
return 0;
}
INIT_LIST_HEAD(&msgs);
spin_lock_irqsave(&intf->events_lock, flags);
ipmi_inc_stat(intf, events);
/*
* Allocate and fill in one message for every user that is
* getting events.
*/
rcu_read_lock();
list_for_each_entry_rcu(user, &intf->users, link) {
if (!user->gets_events)
continue;
recv_msg = ipmi_alloc_recv_msg();
if (!recv_msg) {
rcu_read_unlock();
list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
link) {
list_del(&recv_msg->link);
ipmi_free_recv_msg(recv_msg);
}
/*
* We couldn't allocate memory for the
* message, so requeue it for handling
* later.
*/
rv = 1;
goto out;
}
deliver_count++;
copy_event_into_recv_msg(recv_msg, msg);
recv_msg->user = user;
kref_get(&user->refcount);
list_add_tail(&(recv_msg->link), &msgs);
}
rcu_read_unlock();
if (deliver_count) {
/* Now deliver all the messages. */
list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
list_del(&recv_msg->link);
deliver_response(recv_msg);
}
} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
/*
* No one to receive the message, put it in queue if there's
* not already too many things in the queue.
*/
recv_msg = ipmi_alloc_recv_msg();
if (!recv_msg) {
/*
* We couldn't allocate memory for the
* message, so requeue it for handling
* later.
*/
rv = 1;
goto out;
}
copy_event_into_recv_msg(recv_msg, msg);
list_add_tail(&(recv_msg->link), &(intf->waiting_events));
intf->waiting_events_count++;
} else if (!intf->event_msg_printed) {
/*
* There's too many things in the queue, discard this
* message.
*/
printk(KERN_WARNING PFX "Event queue full, discarding"
" incoming events\n");
intf->event_msg_printed = 1;
}
out:
spin_unlock_irqrestore(&(intf->events_lock), flags);
return rv;
}
static int handle_bmc_rsp(ipmi_smi_t intf,
struct ipmi_smi_msg *msg)
{
struct ipmi_recv_msg *recv_msg;
struct ipmi_user *user;
recv_msg = (struct ipmi_recv_msg *) msg->user_data;
if (recv_msg == NULL) {
printk(KERN_WARNING
"IPMI message received with no owner. This\n"
"could be because of a malformed message, or\n"
"because of a hardware error. Contact your\n"
"hardware vender for assistance\n");
return 0;
}
user = recv_msg->user;
/* Make sure the user still exists. */
if (user && !user->valid) {
/* The user for the message went away, so give up. */
ipmi_inc_stat(intf, unhandled_local_responses);
ipmi_free_recv_msg(recv_msg);
} else {
struct ipmi_system_interface_addr *smi_addr;
ipmi_inc_stat(intf, handled_local_responses);
recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
recv_msg->msgid = msg->msgid;
smi_addr = ((struct ipmi_system_interface_addr *)
&(recv_msg->addr));
smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
smi_addr->channel = IPMI_BMC_CHANNEL;
smi_addr->lun = msg->rsp[0] & 3;
recv_msg->msg.netfn = msg->rsp[0] >> 2;
recv_msg->msg.cmd = msg->rsp[1];
memcpy(recv_msg->msg_data,
&(msg->rsp[2]),
msg->rsp_size - 2);
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg.data_len = msg->rsp_size - 2;
deliver_response(recv_msg);
}
return 0;
}
/*
* Handle a received message. Return 1 if the message should be requeued,
* 0 if the message should be freed, or -1 if the message should not
* be freed or requeued.
*/
static int handle_one_recv_msg(ipmi_smi_t intf,
struct ipmi_smi_msg *msg)
{
int requeue;
int chan;
#ifdef DEBUG_MSGING
int m;
printk("Recv:");
for (m = 0; m < msg->rsp_size; m++)
printk(" %2.2x", msg->rsp[m]);
printk("\n");
#endif
if (msg->rsp_size < 2) {
/* Message is too small to be correct. */
printk(KERN_WARNING PFX "BMC returned to small a message"
" for netfn %x cmd %x, got %d bytes\n",
(msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
/* Generate an error response for the message. */
msg->rsp[0] = msg->data[0] | (1 << 2);
msg->rsp[1] = msg->data[1];
msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
msg->rsp_size = 3;
} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
|| (msg->rsp[1] != msg->data[1])) {
/*
* The NetFN and Command in the response is not even
* marginally correct.
*/
printk(KERN_WARNING PFX "BMC returned incorrect response,"
" expected netfn %x cmd %x, got netfn %x cmd %x\n",
(msg->data[0] >> 2) | 1, msg->data[1],
msg->rsp[0] >> 2, msg->rsp[1]);
/* Generate an error response for the message. */
msg->rsp[0] = msg->data[0] | (1 << 2);
msg->rsp[1] = msg->data[1];
msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
msg->rsp_size = 3;
}
if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
&& (msg->rsp[1] == IPMI_SEND_MSG_CMD)
&& (msg->user_data != NULL)) {
/*
* It's a response to a response we sent. For this we
* deliver a send message response to the user.
*/
struct ipmi_recv_msg *recv_msg = msg->user_data;
requeue = 0;
if (msg->rsp_size < 2)
/* Message is too small to be correct. */
goto out;
chan = msg->data[2] & 0x0f;
if (chan >= IPMI_MAX_CHANNELS)
/* Invalid channel number */
goto out;
if (!recv_msg)
goto out;
/* Make sure the user still exists. */
if (!recv_msg->user || !recv_msg->user->valid)
goto out;
recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg.data_len = 1;
recv_msg->msg_data[0] = msg->rsp[2];
deliver_response(recv_msg);
} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
&& (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
/* It's from the receive queue. */
chan = msg->rsp[3] & 0xf;
if (chan >= IPMI_MAX_CHANNELS) {
/* Invalid channel number */
requeue = 0;
goto out;
}
/*
* We need to make sure the channels have been initialized.
* The channel_handler routine will set the "curr_channel"
* equal to or greater than IPMI_MAX_CHANNELS when all the
* channels for this interface have been initialized.
*/
if (intf->curr_channel < IPMI_MAX_CHANNELS) {
requeue = 0; /* Throw the message away */
goto out;
}
switch (intf->channels[chan].medium) {
case IPMI_CHANNEL_MEDIUM_IPMB:
if (msg->rsp[4] & 0x04) {
/*
* It's a response, so find the
* requesting message and send it up.
*/
requeue = handle_ipmb_get_msg_rsp(intf, msg);
} else {
/*
* It's a command to the SMS from some other
* entity. Handle that.
*/
requeue = handle_ipmb_get_msg_cmd(intf, msg);
}
break;
case IPMI_CHANNEL_MEDIUM_8023LAN:
case IPMI_CHANNEL_MEDIUM_ASYNC:
if (msg->rsp[6] & 0x04) {
/*
* It's a response, so find the
* requesting message and send it up.
*/
requeue = handle_lan_get_msg_rsp(intf, msg);
} else {
/*
* It's a command to the SMS from some other
* entity. Handle that.
*/
requeue = handle_lan_get_msg_cmd(intf, msg);
}
break;
default:
/* Check for OEM Channels. Clients had better
register for these commands. */
if ((intf->channels[chan].medium
>= IPMI_CHANNEL_MEDIUM_OEM_MIN)
&& (intf->channels[chan].medium
<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
requeue = handle_oem_get_msg_cmd(intf, msg);
} else {
/*
* We don't handle the channel type, so just
* free the message.
*/
requeue = 0;
}
}
} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
&& (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
/* It's an asyncronous event. */
requeue = handle_read_event_rsp(intf, msg);
} else {
/* It's a response from the local BMC. */
requeue = handle_bmc_rsp(intf, msg);
}
out:
return requeue;
}
/*
* If there are messages in the queue or pretimeouts, handle them.
*/
static void handle_new_recv_msgs(ipmi_smi_t intf)
{
struct ipmi_smi_msg *smi_msg;
unsigned long flags = 0;
int rv;
int run_to_completion = intf->run_to_completion;
/* See if any waiting messages need to be processed. */
if (!run_to_completion)
spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
while (!list_empty(&intf->waiting_msgs)) {
smi_msg = list_entry(intf->waiting_msgs.next,
struct ipmi_smi_msg, link);
list_del(&smi_msg->link);
if (!run_to_completion)
spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
rv = handle_one_recv_msg(intf, smi_msg);
if (!run_to_completion)
spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
if (rv == 0) {
/* Message handled */
ipmi_free_smi_msg(smi_msg);
} else if (rv < 0) {
/* Fatal error on the message, del but don't free. */
} else {
/*
* To preserve message order, quit if we
* can't handle a message.
*/
list_add(&smi_msg->link, &intf->waiting_msgs);
break;
}
}
if (!run_to_completion)
spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
/*
* If the pretimout count is non-zero, decrement one from it and
* deliver pretimeouts to all the users.
*/
if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
ipmi_user_t user;
rcu_read_lock();
list_for_each_entry_rcu(user, &intf->users, link) {
if (user->handler->ipmi_watchdog_pretimeout)
user->handler->ipmi_watchdog_pretimeout(
user->handler_data);
}
rcu_read_unlock();
}
}
static void smi_recv_tasklet(unsigned long val)
{
handle_new_recv_msgs((ipmi_smi_t) val);
}
/* Handle a new message from the lower layer. */
void ipmi_smi_msg_received(ipmi_smi_t intf,
struct ipmi_smi_msg *msg)
{
unsigned long flags = 0; /* keep us warning-free. */
int run_to_completion;
if ((msg->data_size >= 2)
&& (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
&& (msg->data[1] == IPMI_SEND_MSG_CMD)
&& (msg->user_data == NULL)) {
/*
* This is the local response to a command send, start
* the timer for these. The user_data will not be
* NULL if this is a response send, and we will let
* response sends just go through.
*/
/*
* Check for errors, if we get certain errors (ones
* that mean basically we can try again later), we
* ignore them and start the timer. Otherwise we
* report the error immediately.
*/
if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
&& (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
&& (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
&& (msg->rsp[2] != IPMI_BUS_ERR)
&& (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
int chan = msg->rsp[3] & 0xf;
/* Got an error sending the message, handle it. */
if (chan >= IPMI_MAX_CHANNELS)
; /* This shouldn't happen */
else if ((intf->channels[chan].medium
== IPMI_CHANNEL_MEDIUM_8023LAN)
|| (intf->channels[chan].medium
== IPMI_CHANNEL_MEDIUM_ASYNC))
ipmi_inc_stat(intf, sent_lan_command_errs);
else
ipmi_inc_stat(intf, sent_ipmb_command_errs);
intf_err_seq(intf, msg->msgid, msg->rsp[2]);
} else
/* The message was sent, start the timer. */
intf_start_seq_timer(intf, msg->msgid);
ipmi_free_smi_msg(msg);
goto out;
}
/*
* To preserve message order, if the list is not empty, we
* tack this message onto the end of the list.
*/
run_to_completion = intf->run_to_completion;
if (!run_to_completion)
spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
list_add_tail(&msg->link, &intf->waiting_msgs);
if (!run_to_completion)
spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
tasklet_schedule(&intf->recv_tasklet);
out:
return;
}
EXPORT_SYMBOL(ipmi_smi_msg_received);
void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
{
atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
tasklet_schedule(&intf->recv_tasklet);
}
EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
static struct ipmi_smi_msg *
smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
unsigned char seq, long seqid)
{
struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
if (!smi_msg)
/*
* If we can't allocate the message, then just return, we
* get 4 retries, so this should be ok.
*/
return NULL;
memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
smi_msg->data_size = recv_msg->msg.data_len;
smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
#ifdef DEBUG_MSGING
{
int m;
printk("Resend: ");
for (m = 0; m < smi_msg->data_size; m++)
printk(" %2.2x", smi_msg->data[m]);
printk("\n");
}
#endif
return smi_msg;
}
static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
struct list_head *timeouts, long timeout_period,
int slot, unsigned long *flags)
{
struct ipmi_recv_msg *msg;
struct ipmi_smi_handlers *handlers;
if (intf->intf_num == -1)
return;
if (!ent->inuse)
return;
ent->timeout -= timeout_period;
if (ent->timeout > 0)
return;
if (ent->retries_left == 0) {
/* The message has used all its retries. */
ent->inuse = 0;
msg = ent->recv_msg;
list_add_tail(&msg->link, timeouts);
if (ent->broadcast)
ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
else if (is_lan_addr(&ent->recv_msg->addr))
ipmi_inc_stat(intf, timed_out_lan_commands);
else
ipmi_inc_stat(intf, timed_out_ipmb_commands);
} else {
struct ipmi_smi_msg *smi_msg;
/* More retries, send again. */
/*
* Start with the max timer, set to normal timer after
* the message is sent.
*/
ent->timeout = MAX_MSG_TIMEOUT;
ent->retries_left--;
smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
ent->seqid);
if (!smi_msg) {
if (is_lan_addr(&ent->recv_msg->addr))
ipmi_inc_stat(intf,
dropped_rexmit_lan_commands);
else
ipmi_inc_stat(intf,
dropped_rexmit_ipmb_commands);
return;
}
spin_unlock_irqrestore(&intf->seq_lock, *flags);
/*
* Send the new message. We send with a zero
* priority. It timed out, I doubt time is that
* critical now, and high priority messages are really
* only for messages to the local MC, which don't get
* resent.
*/
handlers = intf->handlers;
if (handlers) {
if (is_lan_addr(&ent->recv_msg->addr))
ipmi_inc_stat(intf,
retransmitted_lan_commands);
else
ipmi_inc_stat(intf,
retransmitted_ipmb_commands);
intf->handlers->sender(intf->send_info,
smi_msg, 0);
} else
ipmi_free_smi_msg(smi_msg);
spin_lock_irqsave(&intf->seq_lock, *flags);
}
}
static void ipmi_timeout_handler(long timeout_period)
{
ipmi_smi_t intf;
struct list_head timeouts;
struct ipmi_recv_msg *msg, *msg2;
unsigned long flags;
int i;
rcu_read_lock();
list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
tasklet_schedule(&intf->recv_tasklet);
/*
* Go through the seq table and find any messages that
* have timed out, putting them in the timeouts
* list.
*/
INIT_LIST_HEAD(&timeouts);
spin_lock_irqsave(&intf->seq_lock, flags);
for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
check_msg_timeout(intf, &(intf->seq_table[i]),
&timeouts, timeout_period, i,
&flags);
spin_unlock_irqrestore(&intf->seq_lock, flags);
list_for_each_entry_safe(msg, msg2, &timeouts, link)
deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
/*
* Maintenance mode handling. Check the timeout
* optimistically before we claim the lock. It may
* mean a timeout gets missed occasionally, but that
* only means the timeout gets extended by one period
* in that case. No big deal, and it avoids the lock
* most of the time.
*/
if (intf->auto_maintenance_timeout > 0) {
spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
if (intf->auto_maintenance_timeout > 0) {
intf->auto_maintenance_timeout
-= timeout_period;
if (!intf->maintenance_mode
&& (intf->auto_maintenance_timeout <= 0)) {
intf->maintenance_mode_enable = 0;
maintenance_mode_update(intf);
}
}
spin_unlock_irqrestore(&intf->maintenance_mode_lock,
flags);
}
}
rcu_read_unlock();
}
static void ipmi_request_event(void)
{
ipmi_smi_t intf;
struct ipmi_smi_handlers *handlers;
rcu_read_lock();
/*
* Called from the timer, no need to check if handlers is
* valid.
*/
list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
/* No event requests when in maintenance mode. */
if (intf->maintenance_mode_enable)
continue;
handlers = intf->handlers;
if (handlers)
handlers->request_events(intf->send_info);
}
rcu_read_unlock();
}
static struct timer_list ipmi_timer;
/* Call every ~1000 ms. */
#define IPMI_TIMEOUT_TIME 1000
/* How many jiffies does it take to get to the timeout time. */
#define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
/*
* Request events from the queue every second (this is the number of
* IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
* future, IPMI will add a way to know immediately if an event is in
* the queue and this silliness can go away.
*/
#define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
static atomic_t stop_operation;
static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
static void ipmi_timeout(unsigned long data)
{
if (atomic_read(&stop_operation))
return;
ticks_to_req_ev--;
if (ticks_to_req_ev == 0) {
ipmi_request_event();
ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
}
ipmi_timeout_handler(IPMI_TIMEOUT_TIME);
mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
}
static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
/* FIXME - convert these to slabs. */
static void free_smi_msg(struct ipmi_smi_msg *msg)
{
atomic_dec(&smi_msg_inuse_count);
kfree(msg);
}
struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
{
struct ipmi_smi_msg *rv;
rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
if (rv) {
rv->done = free_smi_msg;
rv->user_data = NULL;
atomic_inc(&smi_msg_inuse_count);
}
return rv;
}
EXPORT_SYMBOL(ipmi_alloc_smi_msg);
static void free_recv_msg(struct ipmi_recv_msg *msg)
{
atomic_dec(&recv_msg_inuse_count);
kfree(msg);
}
static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
{
struct ipmi_recv_msg *rv;
rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
if (rv) {
rv->user = NULL;
rv->done = free_recv_msg;
atomic_inc(&recv_msg_inuse_count);
}
return rv;
}
void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
{
if (msg->user)
kref_put(&msg->user->refcount, free_user);
msg->done(msg);
}
EXPORT_SYMBOL(ipmi_free_recv_msg);
#ifdef CONFIG_IPMI_PANIC_EVENT
static atomic_t panic_done_count = ATOMIC_INIT(0);
static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
{
atomic_dec(&panic_done_count);
}
static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
{
atomic_dec(&panic_done_count);
}
/*
* Inside a panic, send a message and wait for a response.
*/
static void ipmi_panic_request_and_wait(ipmi_smi_t intf,
struct ipmi_addr *addr,
struct kernel_ipmi_msg *msg)
{
struct ipmi_smi_msg smi_msg;
struct ipmi_recv_msg recv_msg;
int rv;
smi_msg.done = dummy_smi_done_handler;
recv_msg.done = dummy_recv_done_handler;
atomic_add(2, &panic_done_count);
rv = i_ipmi_request(NULL,
intf,
addr,
0,
msg,
intf,
&smi_msg,
&recv_msg,
0,
intf->channels[0].address,
intf->channels[0].lun,
0, 1); /* Don't retry, and don't wait. */
if (rv)
atomic_sub(2, &panic_done_count);
while (atomic_read(&panic_done_count) != 0)
ipmi_poll(intf);
}
#ifdef CONFIG_IPMI_PANIC_STRING
static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
{
if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
&& (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
&& (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
&& (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
/* A get event receiver command, save it. */
intf->event_receiver = msg->msg.data[1];
intf->event_receiver_lun = msg->msg.data[2] & 0x3;
}
}
static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
{
if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
&& (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
&& (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
&& (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
/*
* A get device id command, save if we are an event
* receiver or generator.
*/
intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
}
}
#endif
static void send_panic_events(char *str)
{
struct kernel_ipmi_msg msg;
ipmi_smi_t intf;
unsigned char data[16];
struct ipmi_system_interface_addr *si;
struct ipmi_addr addr;
si = (struct ipmi_system_interface_addr *) &addr;
si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
si->channel = IPMI_BMC_CHANNEL;
si->lun = 0;
/* Fill in an event telling that we have failed. */
msg.netfn = 0x04; /* Sensor or Event. */
msg.cmd = 2; /* Platform event command. */
msg.data = data;
msg.data_len = 8;
data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
data[1] = 0x03; /* This is for IPMI 1.0. */
data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
/*
* Put a few breadcrumbs in. Hopefully later we can add more things
* to make the panic events more useful.
*/
if (str) {
data[3] = str[0];
data[6] = str[1];
data[7] = str[2];
}
/* For every registered interface, send the event. */
list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
if (!intf->handlers)
/* Interface is not ready. */
continue;
intf->run_to_completion = 1;
/* Send the event announcing the panic. */
intf->handlers->set_run_to_completion(intf->send_info, 1);
ipmi_panic_request_and_wait(intf, &addr, &msg);
}
#ifdef CONFIG_IPMI_PANIC_STRING
/*
* On every interface, dump a bunch of OEM event holding the
* string.
*/
if (!str)
return;
/* For every registered interface, send the event. */
list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
char *p = str;
struct ipmi_ipmb_addr *ipmb;
int j;
if (intf->intf_num == -1)
/* Interface was not ready yet. */
continue;
/*
* intf_num is used as an marker to tell if the
* interface is valid. Thus we need a read barrier to
* make sure data fetched before checking intf_num
* won't be used.
*/
smp_rmb();
/*
* First job here is to figure out where to send the
* OEM events. There's no way in IPMI to send OEM
* events using an event send command, so we have to
* find the SEL to put them in and stick them in
* there.
*/
/* Get capabilities from the get device id. */
intf->local_sel_device = 0;
intf->local_event_generator = 0;
intf->event_receiver = 0;
/* Request the device info from the local MC. */
msg.netfn = IPMI_NETFN_APP_REQUEST;
msg.cmd = IPMI_GET_DEVICE_ID_CMD;
msg.data = NULL;
msg.data_len = 0;
intf->null_user_handler = device_id_fetcher;
ipmi_panic_request_and_wait(intf, &addr, &msg);
if (intf->local_event_generator) {
/* Request the event receiver from the local MC. */
msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
msg.data = NULL;
msg.data_len = 0;
intf->null_user_handler = event_receiver_fetcher;
ipmi_panic_request_and_wait(intf, &addr, &msg);
}
intf->null_user_handler = NULL;
/*
* Validate the event receiver. The low bit must not
* be 1 (it must be a valid IPMB address), it cannot
* be zero, and it must not be my address.
*/
if (((intf->event_receiver & 1) == 0)
&& (intf->event_receiver != 0)
&& (intf->event_receiver != intf->channels[0].address)) {
/*
* The event receiver is valid, send an IPMB
* message.
*/
ipmb = (struct ipmi_ipmb_addr *) &addr;
ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
ipmb->channel = 0; /* FIXME - is this right? */
ipmb->lun = intf->event_receiver_lun;
ipmb->slave_addr = intf->event_receiver;
} else if (intf->local_sel_device) {
/*
* The event receiver was not valid (or was
* me), but I am an SEL device, just dump it
* in my SEL.
*/
si = (struct ipmi_system_interface_addr *) &addr;
si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
si->channel = IPMI_BMC_CHANNEL;
si->lun = 0;
} else
continue; /* No where to send the event. */
msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
msg.data = data;
msg.data_len = 16;
j = 0;
while (*p) {
int size = strlen(p);
if (size > 11)
size = 11;
data[0] = 0;
data[1] = 0;
data[2] = 0xf0; /* OEM event without timestamp. */
data[3] = intf->channels[0].address;
data[4] = j++; /* sequence # */
/*
* Always give 11 bytes, so strncpy will fill
* it with zeroes for me.
*/
strncpy(data+5, p, 11);
p += size;
ipmi_panic_request_and_wait(intf, &addr, &msg);
}
}
#endif /* CONFIG_IPMI_PANIC_STRING */
}
#endif /* CONFIG_IPMI_PANIC_EVENT */
static int has_panicked;
static int panic_event(struct notifier_block *this,
unsigned long event,
void *ptr)
{
ipmi_smi_t intf;
if (has_panicked)
return NOTIFY_DONE;
has_panicked = 1;
/* For every registered interface, set it to run to completion. */
list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
if (!intf->handlers)
/* Interface is not ready. */
continue;
intf->run_to_completion = 1;
intf->handlers->set_run_to_completion(intf->send_info, 1);
}
#ifdef CONFIG_IPMI_PANIC_EVENT
send_panic_events(ptr);
#endif
return NOTIFY_DONE;
}
static struct notifier_block panic_block = {
.notifier_call = panic_event,
.next = NULL,
.priority = 200 /* priority: INT_MAX >= x >= 0 */
};
static int ipmi_init_msghandler(void)
{
int rv;
if (initialized)
return 0;
rv = driver_register(&ipmidriver.driver);
if (rv) {
printk(KERN_ERR PFX "Could not register IPMI driver\n");
return rv;
}
printk(KERN_INFO "ipmi message handler version "
IPMI_DRIVER_VERSION "\n");
#ifdef CONFIG_PROC_FS
proc_ipmi_root = proc_mkdir("ipmi", NULL);
if (!proc_ipmi_root) {
printk(KERN_ERR PFX "Unable to create IPMI proc dir");
return -ENOMEM;
}
#endif /* CONFIG_PROC_FS */
setup_timer(&ipmi_timer, ipmi_timeout, 0);
mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
initialized = 1;
return 0;
}
static int __init ipmi_init_msghandler_mod(void)
{
ipmi_init_msghandler();
return 0;
}
static void __exit cleanup_ipmi(void)
{
int count;
if (!initialized)
return;
atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
/*
* This can't be called if any interfaces exist, so no worry
* about shutting down the interfaces.
*/
/*
* Tell the timer to stop, then wait for it to stop. This
* avoids problems with race conditions removing the timer
* here.
*/
atomic_inc(&stop_operation);
del_timer_sync(&ipmi_timer);
#ifdef CONFIG_PROC_FS
remove_proc_entry(proc_ipmi_root->name, NULL);
#endif /* CONFIG_PROC_FS */
driver_unregister(&ipmidriver.driver);
initialized = 0;
/* Check for buffer leaks. */
count = atomic_read(&smi_msg_inuse_count);
if (count != 0)
printk(KERN_WARNING PFX "SMI message count %d at exit\n",
count);
count = atomic_read(&recv_msg_inuse_count);
if (count != 0)
printk(KERN_WARNING PFX "recv message count %d at exit\n",
count);
}
module_exit(cleanup_ipmi);
module_init(ipmi_init_msghandler_mod);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
" interface.");
MODULE_VERSION(IPMI_DRIVER_VERSION);