1481 lines
38 KiB
C
1481 lines
38 KiB
C
/* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 and
|
|
* only version 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "PDN %s: " fmt, __func__
|
|
|
|
#include <linux/err.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <linux/io.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/regulator/driver.h>
|
|
#include <linux/regulator/machine.h>
|
|
#include <linux/regulator/of_regulator.h>
|
|
#include <linux/regulator/krait-regulator.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <mach/msm_iomap.h>
|
|
|
|
#include "spm.h"
|
|
#include "pm.h"
|
|
|
|
/*
|
|
* supply
|
|
* from
|
|
* pmic
|
|
* gang
|
|
* |
|
|
* |________________________________
|
|
* | | |
|
|
* ___|___ | |
|
|
* | | | |
|
|
* | | / /
|
|
* | LDO | / /LDO BYP [6]
|
|
* | | / BHS[6] /(bypass is a weak BHS
|
|
* |_______| | | needs to be on when in
|
|
* | | | BHS mode)
|
|
* |________________|_______________|
|
|
* |
|
|
* ________|________
|
|
* | |
|
|
* | KRAIT |
|
|
* |_________________|
|
|
*/
|
|
|
|
#define PMIC_VOLTAGE_MIN 350000
|
|
#define PMIC_VOLTAGE_MAX 1355000
|
|
#define LV_RANGE_STEP 5000
|
|
|
|
#define CORE_VOLTAGE_BOOTUP 900000
|
|
|
|
#define KRAIT_LDO_VOLTAGE_MIN 465000
|
|
#define KRAIT_LDO_VOLTAGE_OFFSET 465000
|
|
#define KRAIT_LDO_STEP 5000
|
|
|
|
#define BHS_SETTLING_DELAY_US 1
|
|
#define LDO_SETTLING_DELAY_US 1
|
|
#define MDD_SETTLING_DELAY_US 5
|
|
|
|
#define _KRAIT_MASK(BITS, POS) (((u32)(1 << (BITS)) - 1) << POS)
|
|
#define KRAIT_MASK(LEFT_BIT_POS, RIGHT_BIT_POS) \
|
|
_KRAIT_MASK(LEFT_BIT_POS - RIGHT_BIT_POS + 1, RIGHT_BIT_POS)
|
|
|
|
#define APC_SECURE 0x00000000
|
|
#define CPU_PWR_CTL 0x00000004
|
|
#define APC_PWR_STATUS 0x00000008
|
|
#define APC_TEST_BUS_SEL 0x0000000C
|
|
#define CPU_TRGTD_DBG_RST 0x00000010
|
|
#define APC_PWR_GATE_CTL 0x00000014
|
|
#define APC_LDO_VREF_SET 0x00000018
|
|
#define APC_PWR_GATE_MODE 0x0000001C
|
|
#define APC_PWR_GATE_DLY 0x00000020
|
|
|
|
#define PWR_GATE_CONFIG 0x00000044
|
|
#define VERSION 0x00000FD0
|
|
|
|
/* MDD register group */
|
|
#define MDD_CONFIG_CTL 0x00000000
|
|
#define MDD_MODE 0x00000010
|
|
|
|
#define PHASE_SCALING_REF 4
|
|
|
|
/* bit definitions for phase scaling eFuses */
|
|
#define PHASE_SCALING_EFUSE_VERSION_POS 26
|
|
#define PHASE_SCALING_EFUSE_VERSION_MASK KRAIT_MASK(27, 26)
|
|
#define PHASE_SCALING_EFUSE_VERSION_SET 1
|
|
|
|
#define PHASE_SCALING_EFUSE_VALUE_POS 16
|
|
#define PHASE_SCALING_EFUSE_VALUE_MASK KRAIT_MASK(18, 16)
|
|
|
|
/* bit definitions for APC_PWR_GATE_CTL */
|
|
#define BHS_CNT_BIT_POS 24
|
|
#define BHS_CNT_MASK KRAIT_MASK(31, 24)
|
|
#define BHS_CNT_DEFAULT 64
|
|
|
|
#define CLK_SRC_SEL_BIT_POS 15
|
|
#define CLK_SRC_SEL_MASK KRAIT_MASK(15, 15)
|
|
#define CLK_SRC_DEFAULT 0
|
|
|
|
#define LDO_PWR_DWN_BIT_POS 16
|
|
#define LDO_PWR_DWN_MASK KRAIT_MASK(21, 16)
|
|
|
|
#define LDO_BYP_BIT_POS 8
|
|
#define LDO_BYP_MASK KRAIT_MASK(13, 8)
|
|
|
|
#define BHS_SEG_EN_BIT_POS 1
|
|
#define BHS_SEG_EN_MASK KRAIT_MASK(6, 1)
|
|
#define BHS_SEG_EN_DEFAULT 0x3F
|
|
|
|
#define BHS_EN_BIT_POS 0
|
|
#define BHS_EN_MASK KRAIT_MASK(0, 0)
|
|
|
|
/* bit definitions for APC_LDO_VREF_SET register */
|
|
#define VREF_RET_POS 8
|
|
#define VREF_RET_MASK KRAIT_MASK(14, 8)
|
|
|
|
#define VREF_LDO_BIT_POS 0
|
|
#define VREF_LDO_MASK KRAIT_MASK(6, 0)
|
|
|
|
#define LDO_HDROOM_MIN 50000
|
|
#define LDO_HDROOM_MAX 250000
|
|
|
|
#define LDO_UV_MIN 465000
|
|
#define LDO_UV_MAX 750000
|
|
|
|
#define LDO_TH_MIN 600000
|
|
#define LDO_TH_MAX 900000
|
|
|
|
#define LDO_DELTA_MIN 10000
|
|
#define LDO_DELTA_MAX 100000
|
|
|
|
#define MSM_L2_SAW_PHYS 0xf9012000
|
|
/**
|
|
* struct pmic_gang_vreg -
|
|
* @name: the string used to represent the gang
|
|
* @pmic_vmax_uV: the current pmic gang voltage
|
|
* @pmic_phase_count: the number of phases turned on in the gang
|
|
* @krait_power_vregs: a list of krait consumers this gang supplies to
|
|
* @krait_power_vregs_lock: lock to prevent simultaneous access to the list
|
|
* and its nodes. This needs to be taken by each
|
|
* regulator's callback functions to prevent
|
|
* simultaneous updates to the pmic's phase
|
|
* voltage.
|
|
* @apcs_gcc_base: virtual address of the APCS GCC registers
|
|
* @manage_phases: begin phase control
|
|
* @pfm_threshold: the sum of coefficients below which PFM can be
|
|
* enabled
|
|
* @efuse_phase_scaling_factor: Phase scaling factor read out of an eFuse. When
|
|
* calculating the appropriate phase count to use,
|
|
* coeff2 is multiplied by this factor and then
|
|
* divided by PHASE_SCALING_REF.
|
|
*/
|
|
struct pmic_gang_vreg {
|
|
const char *name;
|
|
int pmic_vmax_uV;
|
|
int pmic_phase_count;
|
|
struct list_head krait_power_vregs;
|
|
struct mutex krait_power_vregs_lock;
|
|
bool pfm_mode;
|
|
int pmic_min_uV_for_retention;
|
|
bool retention_enabled;
|
|
bool use_phase_switching;
|
|
void __iomem *apcs_gcc_base;
|
|
bool manage_phases;
|
|
int pfm_threshold;
|
|
int efuse_phase_scaling_factor;
|
|
};
|
|
|
|
static struct pmic_gang_vreg *the_gang;
|
|
|
|
enum krait_supply_mode {
|
|
HS_MODE = REGULATOR_MODE_NORMAL,
|
|
LDO_MODE = REGULATOR_MODE_IDLE,
|
|
};
|
|
|
|
#define WAIT_FOR_LOAD 0x2
|
|
#define WAIT_FOR_VOLTAGE 0x1
|
|
|
|
struct krait_power_vreg {
|
|
struct list_head link;
|
|
struct regulator_desc desc;
|
|
struct regulator_dev *rdev;
|
|
const char *name;
|
|
struct pmic_gang_vreg *pvreg;
|
|
int uV;
|
|
int load;
|
|
enum krait_supply_mode mode;
|
|
void __iomem *reg_base;
|
|
void __iomem *mdd_base;
|
|
int ldo_default_uV;
|
|
int retention_uV;
|
|
int headroom_uV;
|
|
int ldo_threshold_uV;
|
|
int ldo_delta_uV;
|
|
int cpu_num;
|
|
int coeff1;
|
|
int coeff2;
|
|
bool online;
|
|
int online_at_probe;
|
|
};
|
|
|
|
DEFINE_PER_CPU(struct krait_power_vreg *, krait_vregs);
|
|
|
|
static u32 version;
|
|
|
|
static int use_efuse_phase_scaling_factor;
|
|
module_param_named(
|
|
use_phase_scaling_efuse, use_efuse_phase_scaling_factor, int,
|
|
S_IRUSR | S_IWUSR
|
|
);
|
|
|
|
static int is_between(int left, int right, int value)
|
|
{
|
|
if (left >= right && left >= value && value >= right)
|
|
return 1;
|
|
if (left <= right && left <= value && value <= right)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static void krait_masked_write(struct krait_power_vreg *kvreg,
|
|
int reg, uint32_t mask, uint32_t val)
|
|
{
|
|
uint32_t reg_val;
|
|
|
|
reg_val = readl_relaxed(kvreg->reg_base + reg);
|
|
reg_val &= ~mask;
|
|
reg_val |= (val & mask);
|
|
writel_relaxed(reg_val, kvreg->reg_base + reg);
|
|
|
|
/*
|
|
* Barrier to ensure that the reads and writes from
|
|
* other regulator regions (they are 1k apart) execute in
|
|
* order to the above write.
|
|
*/
|
|
mb();
|
|
}
|
|
|
|
static int get_krait_retention_ldo_uv(struct krait_power_vreg *kvreg)
|
|
{
|
|
uint32_t reg_val;
|
|
int uV;
|
|
|
|
reg_val = readl_relaxed(kvreg->reg_base + APC_LDO_VREF_SET);
|
|
reg_val &= VREF_RET_MASK;
|
|
reg_val >>= VREF_RET_POS;
|
|
|
|
if (reg_val == 0)
|
|
uV = 0;
|
|
else
|
|
uV = KRAIT_LDO_VOLTAGE_OFFSET + reg_val * KRAIT_LDO_STEP;
|
|
|
|
return uV;
|
|
}
|
|
|
|
static int get_krait_ldo_uv(struct krait_power_vreg *kvreg)
|
|
{
|
|
uint32_t reg_val;
|
|
int uV;
|
|
|
|
reg_val = readl_relaxed(kvreg->reg_base + APC_LDO_VREF_SET);
|
|
reg_val &= VREF_LDO_MASK;
|
|
reg_val >>= VREF_LDO_BIT_POS;
|
|
|
|
if (reg_val == 0)
|
|
uV = 0;
|
|
else
|
|
uV = KRAIT_LDO_VOLTAGE_OFFSET + reg_val * KRAIT_LDO_STEP;
|
|
|
|
return uV;
|
|
}
|
|
|
|
static int set_krait_retention_uv(struct krait_power_vreg *kvreg, int uV)
|
|
{
|
|
uint32_t reg_val;
|
|
|
|
reg_val = DIV_ROUND_UP(uV - KRAIT_LDO_VOLTAGE_OFFSET, KRAIT_LDO_STEP);
|
|
krait_masked_write(kvreg, APC_LDO_VREF_SET, VREF_RET_MASK,
|
|
reg_val << VREF_RET_POS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_krait_ldo_uv(struct krait_power_vreg *kvreg, int uV)
|
|
{
|
|
uint32_t reg_val;
|
|
|
|
reg_val = DIV_ROUND_UP(uV - KRAIT_LDO_VOLTAGE_OFFSET, KRAIT_LDO_STEP);
|
|
krait_masked_write(kvreg, APC_LDO_VREF_SET, VREF_LDO_MASK,
|
|
reg_val << VREF_LDO_BIT_POS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __krait_power_mdd_enable(struct krait_power_vreg *kvreg, bool on)
|
|
{
|
|
if (on) {
|
|
writel_relaxed(0x00000002, kvreg->mdd_base + MDD_MODE);
|
|
/* complete the above write before the delay */
|
|
mb();
|
|
udelay(MDD_SETTLING_DELAY_US);
|
|
} else {
|
|
writel_relaxed(0x00000000, kvreg->mdd_base + MDD_MODE);
|
|
/*
|
|
* complete the above write before other accesses
|
|
* to krait regulator
|
|
*/
|
|
mb();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define COEFF2_UV_THRESHOLD 850000
|
|
static int get_coeff2(int krait_uV, int phase_scaling_factor)
|
|
{
|
|
int coeff2 = 0;
|
|
int krait_mV = krait_uV / 1000;
|
|
|
|
if (krait_uV <= COEFF2_UV_THRESHOLD)
|
|
coeff2 = (612229 * krait_mV) / 1000 - 211258;
|
|
else
|
|
coeff2 = (892564 * krait_mV) / 1000 - 449543;
|
|
|
|
coeff2 = coeff2 * phase_scaling_factor / PHASE_SCALING_REF;
|
|
|
|
return coeff2;
|
|
}
|
|
|
|
static int get_coeff1(int actual_uV, int requested_uV, int load)
|
|
{
|
|
int ratio = actual_uV * 1000 / requested_uV;
|
|
int coeff1 = 330 * load + (load * 673 * ratio / 1000);
|
|
|
|
return coeff1;
|
|
}
|
|
|
|
static int get_coeff_total(struct krait_power_vreg *from)
|
|
{
|
|
int coeff_total = 0;
|
|
struct krait_power_vreg *kvreg;
|
|
struct pmic_gang_vreg *pvreg = from->pvreg;
|
|
int phase_scaling_factor = PHASE_SCALING_REF;
|
|
|
|
if (use_efuse_phase_scaling_factor)
|
|
phase_scaling_factor = pvreg->efuse_phase_scaling_factor;
|
|
|
|
list_for_each_entry(kvreg, &pvreg->krait_power_vregs, link) {
|
|
if (!kvreg->online)
|
|
continue;
|
|
|
|
if (kvreg->mode == LDO_MODE) {
|
|
kvreg->coeff1 =
|
|
get_coeff1(kvreg->uV - kvreg->ldo_delta_uV,
|
|
kvreg->uV, kvreg->load);
|
|
kvreg->coeff2 =
|
|
get_coeff2(kvreg->uV - kvreg->ldo_delta_uV,
|
|
phase_scaling_factor);
|
|
} else {
|
|
kvreg->coeff1 =
|
|
get_coeff1(pvreg->pmic_vmax_uV,
|
|
kvreg->uV, kvreg->load);
|
|
kvreg->coeff2 = get_coeff2(pvreg->pmic_vmax_uV,
|
|
phase_scaling_factor);
|
|
}
|
|
coeff_total += kvreg->coeff1 + kvreg->coeff2;
|
|
}
|
|
|
|
return coeff_total;
|
|
}
|
|
|
|
static int set_pmic_gang_phases(struct pmic_gang_vreg *pvreg, int phase_count)
|
|
{
|
|
pr_debug("programming phase_count = %d\n", phase_count);
|
|
if (pvreg->use_phase_switching)
|
|
/*
|
|
* note the PMIC sets the phase count to one more than
|
|
* the value in the register - hence subtract 1 from it
|
|
*/
|
|
return msm_spm_apcs_set_phase(phase_count - 1);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static int num_online(struct pmic_gang_vreg *pvreg)
|
|
{
|
|
int online_total = 0;
|
|
struct krait_power_vreg *kvreg;
|
|
|
|
list_for_each_entry(kvreg, &pvreg->krait_power_vregs, link) {
|
|
if (kvreg->online)
|
|
online_total++;
|
|
}
|
|
return online_total;
|
|
}
|
|
|
|
static int get_total_load(struct krait_power_vreg *from)
|
|
{
|
|
int load_total = 0;
|
|
struct krait_power_vreg *kvreg;
|
|
struct pmic_gang_vreg *pvreg = from->pvreg;
|
|
|
|
list_for_each_entry(kvreg, &pvreg->krait_power_vregs, link) {
|
|
if (!kvreg->online)
|
|
continue;
|
|
load_total += kvreg->load;
|
|
}
|
|
|
|
return load_total;
|
|
}
|
|
|
|
static bool enable_phase_management(struct pmic_gang_vreg *pvreg)
|
|
{
|
|
struct krait_power_vreg *kvreg;
|
|
|
|
list_for_each_entry(kvreg, &pvreg->krait_power_vregs, link) {
|
|
pr_debug("%s online_at_probe:0x%x\n", kvreg->name,
|
|
kvreg->online_at_probe);
|
|
if (kvreg->online_at_probe)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#define PMIC_FTS_MODE_PFM 0x00
|
|
#define PMIC_FTS_MODE_PWM 0x80
|
|
#define ONE_PHASE_COEFF 1000000
|
|
#define TWO_PHASE_COEFF 2000000
|
|
|
|
#define PWM_SETTLING_TIME_US 50
|
|
#define PHASE_SETTLING_TIME_US 50
|
|
static unsigned int pmic_gang_set_phases(struct krait_power_vreg *from,
|
|
int coeff_total)
|
|
{
|
|
struct pmic_gang_vreg *pvreg = from->pvreg;
|
|
int phase_count;
|
|
int rc = 0;
|
|
int n_online = num_online(pvreg);
|
|
int load_total;
|
|
|
|
load_total = get_total_load(from);
|
|
|
|
if (pvreg->manage_phases == false) {
|
|
if (enable_phase_management(pvreg))
|
|
pvreg->manage_phases = true;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* First check if the coeff is low for PFM mode */
|
|
if (load_total <= pvreg->pfm_threshold && n_online == 1) {
|
|
if (!pvreg->pfm_mode) {
|
|
rc = msm_spm_enable_fts_lpm(PMIC_FTS_MODE_PFM);
|
|
if (rc) {
|
|
pr_err("%s PFM en failed load_t %d rc = %d\n",
|
|
from->name, load_total, rc);
|
|
return rc;
|
|
} else {
|
|
pvreg->pfm_mode = true;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* coeff is high switch to PWM mode before changing phases */
|
|
if (pvreg->pfm_mode) {
|
|
rc = msm_spm_enable_fts_lpm(PMIC_FTS_MODE_PWM);
|
|
if (rc) {
|
|
pr_err("%s PFM exit failed load %d rc = %d\n",
|
|
from->name, coeff_total, rc);
|
|
return rc;
|
|
} else {
|
|
pvreg->pfm_mode = false;
|
|
udelay(PWM_SETTLING_TIME_US);
|
|
}
|
|
}
|
|
|
|
/* calculate phases */
|
|
if (coeff_total < ONE_PHASE_COEFF)
|
|
phase_count = 1;
|
|
else if (coeff_total < TWO_PHASE_COEFF)
|
|
phase_count = 2;
|
|
else
|
|
phase_count = 4;
|
|
|
|
/* don't increase the phase count higher than number of online cpus */
|
|
if (phase_count > n_online)
|
|
phase_count = n_online;
|
|
|
|
if (phase_count != pvreg->pmic_phase_count) {
|
|
rc = set_pmic_gang_phases(pvreg, phase_count);
|
|
if (rc < 0) {
|
|
pr_err("%s failed set phase %d rc = %d\n",
|
|
from->name, phase_count, rc);
|
|
return rc;
|
|
}
|
|
|
|
/* complete the writes before the delay */
|
|
mb();
|
|
|
|
/*
|
|
* delay until the phases are settled when
|
|
* the count is raised
|
|
*/
|
|
if (phase_count > pvreg->pmic_phase_count)
|
|
udelay(PHASE_SETTLING_TIME_US);
|
|
|
|
pvreg->pmic_phase_count = phase_count;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static unsigned int _get_optimum_mode(struct regulator_dev *rdev,
|
|
int input_uV, int output_uV, int load)
|
|
{
|
|
struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev);
|
|
int coeff_total;
|
|
int rc;
|
|
|
|
kvreg->online_at_probe &= ~WAIT_FOR_LOAD;
|
|
coeff_total = get_coeff_total(kvreg);
|
|
|
|
rc = pmic_gang_set_phases(kvreg, coeff_total);
|
|
if (rc < 0) {
|
|
dev_err(&rdev->dev, "%s failed set mode %d rc = %d\n",
|
|
kvreg->name, coeff_total, rc);
|
|
}
|
|
|
|
return kvreg->mode;
|
|
}
|
|
|
|
static unsigned int krait_power_get_optimum_mode(struct regulator_dev *rdev,
|
|
int input_uV, int output_uV, int load_uA)
|
|
{
|
|
struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev);
|
|
struct pmic_gang_vreg *pvreg = kvreg->pvreg;
|
|
int rc;
|
|
|
|
mutex_lock(&pvreg->krait_power_vregs_lock);
|
|
kvreg->load = load_uA;
|
|
if (!kvreg->online) {
|
|
mutex_unlock(&pvreg->krait_power_vregs_lock);
|
|
return kvreg->mode;
|
|
}
|
|
|
|
rc = _get_optimum_mode(rdev, input_uV, output_uV, load_uA);
|
|
mutex_unlock(&pvreg->krait_power_vregs_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int krait_power_set_mode(struct regulator_dev *rdev, unsigned int mode)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int krait_power_get_mode(struct regulator_dev *rdev)
|
|
{
|
|
struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev);
|
|
|
|
return kvreg->mode;
|
|
}
|
|
|
|
static int switch_to_using_hs(struct krait_power_vreg *kvreg)
|
|
{
|
|
if (kvreg->mode == HS_MODE)
|
|
return 0;
|
|
/* enable bhs */
|
|
krait_masked_write(kvreg, APC_PWR_GATE_CTL, BHS_EN_MASK, BHS_EN_MASK);
|
|
/* complete the above write before the delay */
|
|
mb();
|
|
/* wait for the bhs to settle */
|
|
udelay(BHS_SETTLING_DELAY_US);
|
|
|
|
/* Turn on BHS segments */
|
|
krait_masked_write(kvreg, APC_PWR_GATE_CTL,
|
|
BHS_SEG_EN_MASK, BHS_SEG_EN_DEFAULT << BHS_SEG_EN_BIT_POS);
|
|
|
|
/* complete the above write before the delay */
|
|
mb();
|
|
|
|
/*
|
|
* wait for the bhs to settle - note that
|
|
* after the voltage has settled both BHS and LDO are supplying power
|
|
* to the krait. This avoids glitches during switching
|
|
*/
|
|
udelay(BHS_SETTLING_DELAY_US);
|
|
|
|
/*
|
|
* enable ldo bypass - the krait is powered still by LDO since
|
|
* LDO is enabled
|
|
*/
|
|
krait_masked_write(kvreg, APC_PWR_GATE_CTL, LDO_BYP_MASK, LDO_BYP_MASK);
|
|
|
|
/* disable ldo - only the BHS provides voltage to the cpu after this */
|
|
krait_masked_write(kvreg, APC_PWR_GATE_CTL,
|
|
LDO_PWR_DWN_MASK, LDO_PWR_DWN_MASK);
|
|
|
|
kvreg->mode = HS_MODE;
|
|
pr_debug("%s using BHS\n", kvreg->name);
|
|
return 0;
|
|
}
|
|
|
|
static int switch_to_using_ldo(struct krait_power_vreg *kvreg)
|
|
{
|
|
if (kvreg->mode == LDO_MODE
|
|
&& get_krait_ldo_uv(kvreg) == kvreg->uV - kvreg->ldo_delta_uV)
|
|
return 0;
|
|
|
|
/*
|
|
* if the krait is in ldo mode and a voltage change is requested on the
|
|
* ldo switch to using hs before changing ldo voltage
|
|
*/
|
|
if (kvreg->mode == LDO_MODE)
|
|
switch_to_using_hs(kvreg);
|
|
|
|
set_krait_ldo_uv(kvreg, kvreg->uV - kvreg->ldo_delta_uV);
|
|
|
|
/*
|
|
* enable ldo - note that both LDO and BHS are are supplying voltage to
|
|
* the cpu after this. This avoids glitches during switching from BHS
|
|
* to LDO.
|
|
*/
|
|
krait_masked_write(kvreg, APC_PWR_GATE_CTL, LDO_PWR_DWN_MASK, 0);
|
|
|
|
/* complete the writes before the delay */
|
|
mb();
|
|
|
|
/* wait for the ldo to settle */
|
|
udelay(LDO_SETTLING_DELAY_US);
|
|
|
|
/*
|
|
* disable BHS and disable LDO bypass seperate from enabling
|
|
* the LDO above.
|
|
*/
|
|
krait_masked_write(kvreg, APC_PWR_GATE_CTL,
|
|
BHS_EN_MASK | LDO_BYP_MASK, 0);
|
|
krait_masked_write(kvreg, APC_PWR_GATE_CTL, BHS_SEG_EN_MASK, 0);
|
|
|
|
kvreg->mode = LDO_MODE;
|
|
pr_debug("%s using LDO\n", kvreg->name);
|
|
return 0;
|
|
}
|
|
|
|
static int set_pmic_gang_voltage(struct pmic_gang_vreg *pvreg, int uV)
|
|
{
|
|
int setpoint;
|
|
int rc;
|
|
|
|
if (pvreg->pmic_vmax_uV == uV)
|
|
return 0;
|
|
|
|
pr_debug("%d\n", uV);
|
|
|
|
if (uV < PMIC_VOLTAGE_MIN) {
|
|
pr_err("requested %d < %d, restricting it to %d\n",
|
|
uV, PMIC_VOLTAGE_MIN, PMIC_VOLTAGE_MIN);
|
|
uV = PMIC_VOLTAGE_MIN;
|
|
}
|
|
if (uV > PMIC_VOLTAGE_MAX) {
|
|
pr_err("requested %d > %d, restricting it to %d\n",
|
|
uV, PMIC_VOLTAGE_MAX, PMIC_VOLTAGE_MAX);
|
|
uV = PMIC_VOLTAGE_MAX;
|
|
}
|
|
|
|
if (uV < pvreg->pmic_min_uV_for_retention) {
|
|
if (pvreg->retention_enabled) {
|
|
pr_debug("Disabling Retention pmic = %duV, pmic_min_uV_for_retention = %duV",
|
|
uV, pvreg->pmic_min_uV_for_retention);
|
|
msm_pm_enable_retention(false);
|
|
pvreg->retention_enabled = false;
|
|
}
|
|
} else {
|
|
if (!pvreg->retention_enabled) {
|
|
pr_debug("Enabling Retention pmic = %duV, pmic_min_uV_for_retention = %duV",
|
|
uV, pvreg->pmic_min_uV_for_retention);
|
|
msm_pm_enable_retention(true);
|
|
pvreg->retention_enabled = true;
|
|
}
|
|
}
|
|
|
|
setpoint = DIV_ROUND_UP(uV, LV_RANGE_STEP);
|
|
|
|
rc = msm_spm_apcs_set_vdd(setpoint);
|
|
if (rc < 0)
|
|
pr_err("could not set %duV setpt = 0x%x rc = %d\n",
|
|
uV, setpoint, rc);
|
|
else
|
|
pvreg->pmic_vmax_uV = uV;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int configure_ldo_or_hs_all(struct krait_power_vreg *from, int vmax)
|
|
{
|
|
struct pmic_gang_vreg *pvreg = from->pvreg;
|
|
struct krait_power_vreg *kvreg;
|
|
int rc = 0;
|
|
|
|
list_for_each_entry(kvreg, &pvreg->krait_power_vregs, link) {
|
|
if (!kvreg->online)
|
|
continue;
|
|
if (kvreg->uV <= kvreg->ldo_threshold_uV
|
|
&& kvreg->uV - kvreg->ldo_delta_uV + kvreg->headroom_uV
|
|
<= vmax) {
|
|
rc = switch_to_using_ldo(kvreg);
|
|
if (rc < 0) {
|
|
pr_err("could not switch %s to ldo rc = %d\n",
|
|
kvreg->name, rc);
|
|
return rc;
|
|
}
|
|
} else {
|
|
rc = switch_to_using_hs(kvreg);
|
|
if (rc < 0) {
|
|
pr_err("could not switch %s to hs rc = %d\n",
|
|
kvreg->name, rc);
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
#define SLEW_RATE 2994
|
|
static int krait_voltage_increase(struct krait_power_vreg *from,
|
|
int vmax)
|
|
{
|
|
struct pmic_gang_vreg *pvreg = from->pvreg;
|
|
int rc = 0;
|
|
int settling_us;
|
|
|
|
/*
|
|
* since krait voltage is increasing set the gang voltage
|
|
* prior to changing ldo/hs states of the requesting krait
|
|
*/
|
|
rc = set_pmic_gang_voltage(pvreg, vmax);
|
|
if (rc < 0) {
|
|
dev_err(&from->rdev->dev, "%s failed set voltage %d rc = %d\n",
|
|
pvreg->name, vmax, rc);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/* complete the above writes before the delay */
|
|
mb();
|
|
|
|
/* delay until the voltage is settled when it is raised */
|
|
settling_us = DIV_ROUND_UP(vmax - pvreg->pmic_vmax_uV, SLEW_RATE);
|
|
udelay(settling_us);
|
|
|
|
rc = configure_ldo_or_hs_all(from, vmax);
|
|
if (rc < 0) {
|
|
dev_err(&from->rdev->dev, "%s failed ldo/hs conf %d rc = %d\n",
|
|
pvreg->name, vmax, rc);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int krait_voltage_decrease(struct krait_power_vreg *from,
|
|
int vmax)
|
|
{
|
|
struct pmic_gang_vreg *pvreg = from->pvreg;
|
|
int rc = 0;
|
|
|
|
/*
|
|
* since krait voltage is decreasing ldos might get out of their
|
|
* operating range. Hence configure such kraits to be in hs mode prior
|
|
* to setting the pmic gang voltage
|
|
*/
|
|
rc = configure_ldo_or_hs_all(from, vmax);
|
|
if (rc < 0) {
|
|
dev_err(&from->rdev->dev, "%s failed ldo/hs conf %d rc = %d\n",
|
|
pvreg->name, vmax, rc);
|
|
return rc;
|
|
}
|
|
|
|
rc = set_pmic_gang_voltage(pvreg, vmax);
|
|
if (rc < 0) {
|
|
dev_err(&from->rdev->dev, "%s failed set voltage %d rc = %d\n",
|
|
pvreg->name, vmax, rc);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int krait_power_get_voltage(struct regulator_dev *rdev)
|
|
{
|
|
struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev);
|
|
|
|
return kvreg->uV;
|
|
}
|
|
|
|
static int get_vmax(struct pmic_gang_vreg *pvreg)
|
|
{
|
|
int vmax = 0;
|
|
int v;
|
|
struct krait_power_vreg *kvreg;
|
|
|
|
list_for_each_entry(kvreg, &pvreg->krait_power_vregs, link) {
|
|
if (!kvreg->online)
|
|
continue;
|
|
|
|
v = kvreg->uV;
|
|
|
|
if (vmax < v)
|
|
vmax = v;
|
|
}
|
|
|
|
return vmax;
|
|
}
|
|
|
|
#define ROUND_UP_VOLTAGE(v, res) (DIV_ROUND_UP(v, res) * res)
|
|
static int _set_voltage(struct regulator_dev *rdev,
|
|
int orig_krait_uV, int requested_uV)
|
|
{
|
|
struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev);
|
|
struct pmic_gang_vreg *pvreg = kvreg->pvreg;
|
|
int rc;
|
|
int vmax;
|
|
int coeff_total;
|
|
|
|
pr_debug("%s: %d to %d\n", kvreg->name, orig_krait_uV, requested_uV);
|
|
/*
|
|
* Assign the voltage before updating the gang voltage as we iterate
|
|
* over all the core voltages and choose HS or LDO for each of them
|
|
*/
|
|
kvreg->uV = requested_uV;
|
|
|
|
vmax = get_vmax(pvreg);
|
|
|
|
/* round up the pmic voltage as per its resolution */
|
|
vmax = ROUND_UP_VOLTAGE(vmax, LV_RANGE_STEP);
|
|
|
|
if (requested_uV > orig_krait_uV)
|
|
rc = krait_voltage_increase(kvreg, vmax);
|
|
else
|
|
rc = krait_voltage_decrease(kvreg, vmax);
|
|
|
|
if (rc < 0) {
|
|
dev_err(&rdev->dev, "%s failed to set %duV from %duV rc = %d\n",
|
|
kvreg->name, requested_uV, orig_krait_uV, rc);
|
|
}
|
|
|
|
kvreg->online_at_probe &= ~WAIT_FOR_VOLTAGE;
|
|
coeff_total = get_coeff_total(kvreg);
|
|
/* adjust the phases since coeff2 would have changed */
|
|
rc = pmic_gang_set_phases(kvreg, coeff_total);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int krait_power_set_voltage(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV, unsigned *selector)
|
|
{
|
|
struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev);
|
|
struct pmic_gang_vreg *pvreg = kvreg->pvreg;
|
|
int rc;
|
|
|
|
/*
|
|
* if the voltage requested is below LDO_THRESHOLD this cpu could
|
|
* switch to LDO mode. Hence round the voltage as per the LDO
|
|
* resolution
|
|
*/
|
|
if (min_uV < kvreg->ldo_threshold_uV) {
|
|
if (min_uV < KRAIT_LDO_VOLTAGE_MIN)
|
|
min_uV = KRAIT_LDO_VOLTAGE_MIN;
|
|
min_uV = ROUND_UP_VOLTAGE(min_uV, KRAIT_LDO_STEP);
|
|
}
|
|
|
|
mutex_lock(&pvreg->krait_power_vregs_lock);
|
|
if (!kvreg->online) {
|
|
kvreg->uV = min_uV;
|
|
mutex_unlock(&pvreg->krait_power_vregs_lock);
|
|
return 0;
|
|
}
|
|
|
|
rc = _set_voltage(rdev, kvreg->uV, min_uV);
|
|
mutex_unlock(&pvreg->krait_power_vregs_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int krait_power_is_enabled(struct regulator_dev *rdev)
|
|
{
|
|
struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev);
|
|
|
|
return kvreg->online;
|
|
}
|
|
|
|
static int krait_power_enable(struct regulator_dev *rdev)
|
|
{
|
|
struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev);
|
|
struct pmic_gang_vreg *pvreg = kvreg->pvreg;
|
|
int rc;
|
|
|
|
mutex_lock(&pvreg->krait_power_vregs_lock);
|
|
__krait_power_mdd_enable(kvreg, true);
|
|
kvreg->online = true;
|
|
rc = _get_optimum_mode(rdev, kvreg->uV, kvreg->uV, kvreg->load);
|
|
if (rc < 0)
|
|
goto en_err;
|
|
/*
|
|
* since the core is being enabled, behave as if it is increasing
|
|
* the core voltage
|
|
*/
|
|
rc = _set_voltage(rdev, 0, kvreg->uV);
|
|
en_err:
|
|
mutex_unlock(&pvreg->krait_power_vregs_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int krait_power_disable(struct regulator_dev *rdev)
|
|
{
|
|
struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev);
|
|
struct pmic_gang_vreg *pvreg = kvreg->pvreg;
|
|
int rc;
|
|
|
|
mutex_lock(&pvreg->krait_power_vregs_lock);
|
|
kvreg->online = false;
|
|
|
|
rc = _get_optimum_mode(rdev, kvreg->uV, kvreg->uV, kvreg->load);
|
|
if (rc < 0)
|
|
goto dis_err;
|
|
|
|
rc = _set_voltage(rdev, kvreg->uV, kvreg->uV);
|
|
__krait_power_mdd_enable(kvreg, false);
|
|
dis_err:
|
|
mutex_unlock(&pvreg->krait_power_vregs_lock);
|
|
return rc;
|
|
}
|
|
|
|
static struct regulator_ops krait_power_ops = {
|
|
.get_voltage = krait_power_get_voltage,
|
|
.set_voltage = krait_power_set_voltage,
|
|
.get_optimum_mode = krait_power_get_optimum_mode,
|
|
.set_mode = krait_power_set_mode,
|
|
.get_mode = krait_power_get_mode,
|
|
.enable = krait_power_enable,
|
|
.disable = krait_power_disable,
|
|
.is_enabled = krait_power_is_enabled,
|
|
};
|
|
|
|
static struct dentry *dent;
|
|
static int get_retention_dbg_uV(void *data, u64 *val)
|
|
{
|
|
struct pmic_gang_vreg *pvreg = data;
|
|
struct krait_power_vreg *kvreg;
|
|
|
|
mutex_lock(&pvreg->krait_power_vregs_lock);
|
|
if (!list_empty(&pvreg->krait_power_vregs)) {
|
|
/* return the retention voltage on just the first cpu */
|
|
kvreg = list_entry((&pvreg->krait_power_vregs)->next,
|
|
typeof(*kvreg), link);
|
|
*val = get_krait_retention_ldo_uv(kvreg);
|
|
}
|
|
mutex_unlock(&pvreg->krait_power_vregs_lock);
|
|
return 0;
|
|
}
|
|
|
|
static int set_retention_dbg_uV(void *data, u64 val)
|
|
{
|
|
struct pmic_gang_vreg *pvreg = data;
|
|
struct krait_power_vreg *kvreg;
|
|
int retention_uV = val;
|
|
|
|
if (!is_between(LDO_UV_MIN, LDO_UV_MAX, retention_uV))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&pvreg->krait_power_vregs_lock);
|
|
list_for_each_entry(kvreg, &pvreg->krait_power_vregs, link) {
|
|
kvreg->retention_uV = retention_uV;
|
|
set_krait_retention_uv(kvreg, retention_uV);
|
|
}
|
|
mutex_unlock(&pvreg->krait_power_vregs_lock);
|
|
return 0;
|
|
}
|
|
DEFINE_SIMPLE_ATTRIBUTE(retention_fops,
|
|
get_retention_dbg_uV, set_retention_dbg_uV, "%llu\n");
|
|
|
|
#define CPU_PWR_CTL_ONLINE_MASK 0x80
|
|
static void kvreg_hw_init(struct krait_power_vreg *kvreg)
|
|
{
|
|
int online;
|
|
/*
|
|
* bhs_cnt value sets the ramp-up time from power collapse,
|
|
* initialize the ramp up time
|
|
*/
|
|
set_krait_retention_uv(kvreg, kvreg->retention_uV);
|
|
set_krait_ldo_uv(kvreg, kvreg->ldo_default_uV);
|
|
|
|
/* setup the bandgap that configures the reference to the LDO */
|
|
writel_relaxed(0x00000190, kvreg->mdd_base + MDD_CONFIG_CTL);
|
|
/* Enable MDD */
|
|
writel_relaxed(0x00000002, kvreg->mdd_base + MDD_MODE);
|
|
mb();
|
|
online = CPU_PWR_CTL_ONLINE_MASK
|
|
& readl_relaxed(kvreg->reg_base + CPU_PWR_CTL);
|
|
kvreg->online_at_probe
|
|
= online ? (WAIT_FOR_LOAD | WAIT_FOR_VOLTAGE) : 0x0;
|
|
}
|
|
|
|
static void glb_init(void __iomem *apcs_gcc_base)
|
|
{
|
|
/* configure bi-modal switch */
|
|
writel_relaxed(0x0008736E, apcs_gcc_base + PWR_GATE_CONFIG);
|
|
/* read kpss version */
|
|
version = readl_relaxed(apcs_gcc_base + VERSION);
|
|
pr_debug("version= 0x%x\n", version);
|
|
}
|
|
|
|
static int __devinit krait_power_probe(struct platform_device *pdev)
|
|
{
|
|
struct krait_power_vreg *kvreg;
|
|
struct resource *res, *res_mdd;
|
|
struct regulator_init_data *init_data = pdev->dev.platform_data;
|
|
int rc = 0;
|
|
int headroom_uV, retention_uV, ldo_default_uV, ldo_threshold_uV;
|
|
int ldo_delta_uV;
|
|
int cpu_num;
|
|
|
|
if (pdev->dev.of_node) {
|
|
/* Get init_data from device tree. */
|
|
init_data = of_get_regulator_init_data(&pdev->dev,
|
|
pdev->dev.of_node);
|
|
init_data->constraints.valid_ops_mask
|
|
|= REGULATOR_CHANGE_VOLTAGE | REGULATOR_CHANGE_DRMS
|
|
| REGULATOR_CHANGE_MODE;
|
|
init_data->constraints.valid_modes_mask
|
|
|= REGULATOR_MODE_NORMAL | REGULATOR_MODE_IDLE
|
|
| REGULATOR_MODE_FAST;
|
|
init_data->constraints.input_uV = init_data->constraints.max_uV;
|
|
rc = of_property_read_u32(pdev->dev.of_node,
|
|
"qcom,headroom-voltage",
|
|
&headroom_uV);
|
|
if (rc < 0) {
|
|
pr_err("headroom-voltage missing rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
if (!is_between(LDO_HDROOM_MIN, LDO_HDROOM_MAX, headroom_uV)) {
|
|
pr_err("bad headroom-voltage = %d specified\n",
|
|
headroom_uV);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rc = of_property_read_u32(pdev->dev.of_node,
|
|
"qcom,retention-voltage",
|
|
&retention_uV);
|
|
if (rc < 0) {
|
|
pr_err("retention-voltage missing rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
if (!is_between(LDO_UV_MIN, LDO_UV_MAX, retention_uV)) {
|
|
pr_err("bad retention-voltage = %d specified\n",
|
|
retention_uV);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rc = of_property_read_u32(pdev->dev.of_node,
|
|
"qcom,ldo-default-voltage",
|
|
&ldo_default_uV);
|
|
if (rc < 0) {
|
|
pr_err("ldo-default-voltage missing rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
if (!is_between(LDO_UV_MIN, LDO_UV_MAX, ldo_default_uV)) {
|
|
pr_err("bad ldo-default-voltage = %d specified\n",
|
|
ldo_default_uV);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rc = of_property_read_u32(pdev->dev.of_node,
|
|
"qcom,ldo-threshold-voltage",
|
|
&ldo_threshold_uV);
|
|
if (rc < 0) {
|
|
pr_err("ldo-threshold-voltage missing rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
if (!is_between(LDO_TH_MIN, LDO_TH_MAX, ldo_threshold_uV)) {
|
|
pr_err("bad ldo-threshold-voltage = %d specified\n",
|
|
ldo_threshold_uV);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rc = of_property_read_u32(pdev->dev.of_node,
|
|
"qcom,ldo-delta-voltage",
|
|
&ldo_delta_uV);
|
|
if (rc < 0) {
|
|
pr_err("ldo-delta-voltage missing rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
if (!is_between(LDO_DELTA_MIN, LDO_DELTA_MAX, ldo_delta_uV)) {
|
|
pr_err("bad ldo-delta-voltage = %d specified\n",
|
|
ldo_delta_uV);
|
|
return -EINVAL;
|
|
}
|
|
rc = of_property_read_u32(pdev->dev.of_node,
|
|
"qcom,cpu-num",
|
|
&cpu_num);
|
|
if (cpu_num > num_possible_cpus()) {
|
|
pr_err("bad cpu-num= %d specified\n", cpu_num);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (!init_data) {
|
|
dev_err(&pdev->dev, "init data required.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!init_data->constraints.name) {
|
|
dev_err(&pdev->dev,
|
|
"regulator name must be specified in constraints.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "acs");
|
|
if (!res) {
|
|
dev_err(&pdev->dev, "missing physical register addresses\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
res_mdd = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mdd");
|
|
if (!res_mdd) {
|
|
dev_err(&pdev->dev, "missing mdd register addresses\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
kvreg = devm_kzalloc(&pdev->dev,
|
|
sizeof(struct krait_power_vreg), GFP_KERNEL);
|
|
if (!kvreg) {
|
|
dev_err(&pdev->dev, "kzalloc failed.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
kvreg->reg_base = devm_ioremap(&pdev->dev,
|
|
res->start, resource_size(res));
|
|
|
|
kvreg->mdd_base = devm_ioremap(&pdev->dev,
|
|
res_mdd->start, resource_size(res));
|
|
|
|
kvreg->pvreg = the_gang;
|
|
kvreg->name = init_data->constraints.name;
|
|
kvreg->desc.name = kvreg->name;
|
|
kvreg->desc.ops = &krait_power_ops;
|
|
kvreg->desc.type = REGULATOR_VOLTAGE;
|
|
kvreg->desc.owner = THIS_MODULE;
|
|
kvreg->uV = CORE_VOLTAGE_BOOTUP;
|
|
kvreg->mode = HS_MODE;
|
|
kvreg->desc.ops = &krait_power_ops;
|
|
kvreg->headroom_uV = headroom_uV;
|
|
kvreg->retention_uV = retention_uV;
|
|
kvreg->ldo_default_uV = ldo_default_uV;
|
|
kvreg->ldo_threshold_uV = ldo_threshold_uV;
|
|
kvreg->ldo_delta_uV = ldo_delta_uV;
|
|
kvreg->cpu_num = cpu_num;
|
|
|
|
platform_set_drvdata(pdev, kvreg);
|
|
|
|
mutex_lock(&the_gang->krait_power_vregs_lock);
|
|
the_gang->pmic_min_uV_for_retention
|
|
= min(the_gang->pmic_min_uV_for_retention,
|
|
kvreg->retention_uV + kvreg->headroom_uV);
|
|
list_add_tail(&kvreg->link, &the_gang->krait_power_vregs);
|
|
mutex_unlock(&the_gang->krait_power_vregs_lock);
|
|
|
|
kvreg->rdev = regulator_register(&kvreg->desc, &pdev->dev, init_data,
|
|
kvreg, pdev->dev.of_node);
|
|
if (IS_ERR(kvreg->rdev)) {
|
|
rc = PTR_ERR(kvreg->rdev);
|
|
pr_err("regulator_register failed, rc=%d.\n", rc);
|
|
goto out;
|
|
}
|
|
|
|
kvreg_hw_init(kvreg);
|
|
per_cpu(krait_vregs, cpu_num) = kvreg;
|
|
dev_dbg(&pdev->dev, "id=%d, name=%s\n", pdev->id, kvreg->name);
|
|
|
|
return 0;
|
|
out:
|
|
mutex_lock(&the_gang->krait_power_vregs_lock);
|
|
list_del(&kvreg->link);
|
|
mutex_unlock(&the_gang->krait_power_vregs_lock);
|
|
|
|
platform_set_drvdata(pdev, NULL);
|
|
return rc;
|
|
}
|
|
|
|
static int __devexit krait_power_remove(struct platform_device *pdev)
|
|
{
|
|
struct krait_power_vreg *kvreg = platform_get_drvdata(pdev);
|
|
struct pmic_gang_vreg *pvreg = kvreg->pvreg;
|
|
|
|
mutex_lock(&pvreg->krait_power_vregs_lock);
|
|
list_del(&kvreg->link);
|
|
mutex_unlock(&pvreg->krait_power_vregs_lock);
|
|
|
|
regulator_unregister(kvreg->rdev);
|
|
platform_set_drvdata(pdev, NULL);
|
|
return 0;
|
|
}
|
|
|
|
static struct of_device_id krait_power_match_table[] = {
|
|
{ .compatible = "qcom,krait-regulator", },
|
|
{}
|
|
};
|
|
|
|
static struct platform_driver krait_power_driver = {
|
|
.probe = krait_power_probe,
|
|
.remove = __devexit_p(krait_power_remove),
|
|
.driver = {
|
|
.name = KRAIT_REGULATOR_DRIVER_NAME,
|
|
.of_match_table = krait_power_match_table,
|
|
.owner = THIS_MODULE,
|
|
},
|
|
};
|
|
|
|
static struct of_device_id krait_pdn_match_table[] = {
|
|
{ .compatible = "qcom,krait-pdn", },
|
|
{}
|
|
};
|
|
|
|
static int boot_cpu_mdd_off(void)
|
|
{
|
|
struct krait_power_vreg *kvreg = per_cpu(krait_vregs, 0);
|
|
|
|
__krait_power_mdd_enable(kvreg, false);
|
|
return 0;
|
|
}
|
|
|
|
static void boot_cpu_mdd_on(void)
|
|
{
|
|
struct krait_power_vreg *kvreg = per_cpu(krait_vregs, 0);
|
|
|
|
__krait_power_mdd_enable(kvreg, true);
|
|
}
|
|
|
|
static struct syscore_ops boot_cpu_mdd_ops = {
|
|
.suspend = boot_cpu_mdd_off,
|
|
.resume = boot_cpu_mdd_on,
|
|
};
|
|
|
|
static int __devinit krait_pdn_phase_scaling_init(struct pmic_gang_vreg *pvreg,
|
|
struct platform_device *pdev)
|
|
{
|
|
struct resource *res;
|
|
void __iomem *efuse;
|
|
u32 efuse_data, efuse_version;
|
|
bool scaling_factor_valid, use_efuse;
|
|
|
|
use_efuse = of_property_read_bool(pdev->dev.of_node,
|
|
"qcom,use-phase-scaling-factor");
|
|
/*
|
|
* Allow usage of the eFuse phase scaling factor if it is enabled in
|
|
* either device tree or by module parameter.
|
|
*/
|
|
use_efuse_phase_scaling_factor = use_efuse_phase_scaling_factor
|
|
|| use_efuse;
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
|
|
"phase-scaling-efuse");
|
|
if (!res || !res->start) {
|
|
pr_err("phase scaling eFuse address is missing\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
efuse = ioremap(res->start, 8);
|
|
if (!efuse) {
|
|
pr_err("could not map phase scaling eFuse address\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
efuse_data = readl_relaxed(efuse);
|
|
efuse_version = readl_relaxed(efuse + 4);
|
|
|
|
iounmap(efuse);
|
|
|
|
scaling_factor_valid
|
|
= ((efuse_version & PHASE_SCALING_EFUSE_VERSION_MASK) >>
|
|
PHASE_SCALING_EFUSE_VERSION_POS)
|
|
== PHASE_SCALING_EFUSE_VERSION_SET;
|
|
|
|
if (scaling_factor_valid)
|
|
pvreg->efuse_phase_scaling_factor
|
|
= ((efuse_data & PHASE_SCALING_EFUSE_VALUE_MASK)
|
|
>> PHASE_SCALING_EFUSE_VALUE_POS) + 1;
|
|
else
|
|
pvreg->efuse_phase_scaling_factor = PHASE_SCALING_REF;
|
|
|
|
pr_info("eFuse phase scaling factor = %d/%d%s\n",
|
|
pvreg->efuse_phase_scaling_factor, PHASE_SCALING_REF,
|
|
scaling_factor_valid ? "" : " (eFuse not blown)");
|
|
pr_info("initial phase scaling factor = %d/%d%s\n",
|
|
use_efuse_phase_scaling_factor
|
|
? pvreg->efuse_phase_scaling_factor : PHASE_SCALING_REF,
|
|
PHASE_SCALING_REF,
|
|
use_efuse_phase_scaling_factor ? "" : " (ignoring eFuse)");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __devinit krait_pdn_probe(struct platform_device *pdev)
|
|
{
|
|
int rc;
|
|
bool use_phase_switching = false;
|
|
int pfm_threshold;
|
|
struct device *dev = &pdev->dev;
|
|
struct device_node *node = dev->of_node;
|
|
struct pmic_gang_vreg *pvreg;
|
|
struct resource *res;
|
|
|
|
if (!dev->of_node) {
|
|
dev_err(dev, "device tree information missing\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
use_phase_switching = of_property_read_bool(node,
|
|
"qcom,use-phase-switching");
|
|
|
|
rc = of_property_read_u32(node, "qcom,pfm-threshold", &pfm_threshold);
|
|
if (rc < 0) {
|
|
dev_err(dev, "pfm-threshold missing rc=%d, pfm disabled\n", rc);
|
|
return -EINVAL;
|
|
}
|
|
|
|
pvreg = devm_kzalloc(&pdev->dev,
|
|
sizeof(struct pmic_gang_vreg), GFP_KERNEL);
|
|
if (!pvreg) {
|
|
pr_err("kzalloc failed.\n");
|
|
return 0;
|
|
}
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "apcs_gcc");
|
|
if (!res) {
|
|
dev_err(&pdev->dev, "missing apcs gcc base addresses\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
pvreg->apcs_gcc_base = devm_ioremap(&pdev->dev, res->start,
|
|
resource_size(res));
|
|
|
|
if (pvreg->apcs_gcc_base == NULL)
|
|
return -ENOMEM;
|
|
|
|
rc = krait_pdn_phase_scaling_init(pvreg, pdev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
pvreg->name = "pmic_gang";
|
|
pvreg->pmic_vmax_uV = PMIC_VOLTAGE_MIN;
|
|
pvreg->pmic_phase_count = -EINVAL;
|
|
pvreg->retention_enabled = true;
|
|
pvreg->pmic_min_uV_for_retention = INT_MAX;
|
|
pvreg->use_phase_switching = use_phase_switching;
|
|
pvreg->pfm_threshold = pfm_threshold;
|
|
|
|
mutex_init(&pvreg->krait_power_vregs_lock);
|
|
INIT_LIST_HEAD(&pvreg->krait_power_vregs);
|
|
the_gang = pvreg;
|
|
|
|
pr_debug("name=%s inited\n", pvreg->name);
|
|
|
|
/* global initializtion */
|
|
glb_init(pvreg->apcs_gcc_base);
|
|
|
|
rc = of_platform_populate(node, NULL, NULL, dev);
|
|
if (rc) {
|
|
dev_err(dev, "failed to add child nodes, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
dent = debugfs_create_dir(KRAIT_REGULATOR_DRIVER_NAME, NULL);
|
|
debugfs_create_file("retention_uV",
|
|
0644, dent, the_gang, &retention_fops);
|
|
register_syscore_ops(&boot_cpu_mdd_ops);
|
|
return 0;
|
|
}
|
|
|
|
static int __devexit krait_pdn_remove(struct platform_device *pdev)
|
|
{
|
|
the_gang = NULL;
|
|
debugfs_remove_recursive(dent);
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver krait_pdn_driver = {
|
|
.probe = krait_pdn_probe,
|
|
.remove = __devexit_p(krait_pdn_remove),
|
|
.driver = {
|
|
.name = KRAIT_PDN_DRIVER_NAME,
|
|
.of_match_table = krait_pdn_match_table,
|
|
.owner = THIS_MODULE,
|
|
},
|
|
};
|
|
|
|
int __init krait_power_init(void)
|
|
{
|
|
int rc = platform_driver_register(&krait_power_driver);
|
|
if (rc) {
|
|
pr_err("failed to add %s driver rc = %d\n",
|
|
KRAIT_REGULATOR_DRIVER_NAME, rc);
|
|
return rc;
|
|
}
|
|
return platform_driver_register(&krait_pdn_driver);
|
|
}
|
|
|
|
static void __exit krait_power_exit(void)
|
|
{
|
|
platform_driver_unregister(&krait_power_driver);
|
|
platform_driver_unregister(&krait_pdn_driver);
|
|
}
|
|
module_exit(krait_power_exit);
|
|
|
|
void secondary_cpu_hs_init(void *base_ptr)
|
|
{
|
|
uint32_t reg_val;
|
|
void *l2_saw_base;
|
|
|
|
/* Turn on the BHS, turn off LDO Bypass and power down LDO */
|
|
reg_val = BHS_CNT_DEFAULT << BHS_CNT_BIT_POS
|
|
| LDO_PWR_DWN_MASK
|
|
| CLK_SRC_DEFAULT << CLK_SRC_SEL_BIT_POS
|
|
| BHS_EN_MASK;
|
|
writel_relaxed(reg_val, base_ptr + APC_PWR_GATE_CTL);
|
|
|
|
/* complete the above write before the delay */
|
|
mb();
|
|
/* wait for the bhs to settle */
|
|
udelay(BHS_SETTLING_DELAY_US);
|
|
|
|
/* Turn on BHS segments */
|
|
reg_val |= BHS_SEG_EN_DEFAULT << BHS_SEG_EN_BIT_POS;
|
|
writel_relaxed(reg_val, base_ptr + APC_PWR_GATE_CTL);
|
|
|
|
/* complete the above write before the delay */
|
|
mb();
|
|
/* wait for the bhs to settle */
|
|
udelay(BHS_SETTLING_DELAY_US);
|
|
|
|
/* Finally turn on the bypass so that BHS supplies power */
|
|
reg_val |= LDO_BYP_MASK;
|
|
writel_relaxed(reg_val, base_ptr + APC_PWR_GATE_CTL);
|
|
|
|
if (the_gang && the_gang->manage_phases)
|
|
return;
|
|
|
|
/*
|
|
* If the driver has not yet started to manage phases then enable
|
|
* max phases.
|
|
*/
|
|
l2_saw_base = ioremap_nocache(MSM_L2_SAW_PHYS, SZ_4K);
|
|
if (!l2_saw_base) {
|
|
__WARN();
|
|
return;
|
|
}
|
|
writel_relaxed(0x10003, l2_saw_base + 0x1c);
|
|
mb();
|
|
udelay(PHASE_SETTLING_TIME_US);
|
|
|
|
iounmap(l2_saw_base);
|
|
}
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_DESCRIPTION("KRAIT POWER regulator driver");
|
|
MODULE_ALIAS("platform:"KRAIT_REGULATOR_DRIVER_NAME);
|