M7350/external/compat-wireless/drivers/net/wireless/ath/ath6kl/txrx.c
2024-09-09 08:52:07 +00:00

4313 lines
108 KiB
C

/*
* Copyright (c) 2004-2011 Atheros Communications Inc.
* Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#undef pr_fmt
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/printk.h>
#include "core.h"
#include "debug.h"
#include "htc-ops.h"
#include "epping.h"
/*
* tid - tid_mux0..tid_mux3
* aid - tid_mux4..tid_mux7
*/
#define ATH6KL_TID_MASK 0xf
#define ATH6KL_AID_SHIFT 4
extern unsigned int debug_quirks;
static void ath6kl_mcc_event_ctrl_timer_handler(unsigned long ptr);
/* Dont define if IPA conf. Manager is not present */
#ifdef CONFIG_ATH6KL_BAM2BAM
#define ATH6KL_IPA_HOLB_TIMER_VAL 0x7f
#define ATH6KL_BAM2BAM_IPV4_NAME_EXT "-ipv4"
#define ATH6KL_BAM2BAM_IPV6_NAME_EXT "-ipv6"
u32 un_ordered = 0;
u32 ordered = 0;
u32 flt_hdl_ipv6=0;
u32 flt_hdl_ipv4=0;
extern int ath6kl_usb_data_send_to_bam_pipe(int pipe_no, struct sk_buff *skb);
/* Strurue decl for SYSBAM pipes */
static struct usb_sysbam_pipe {
u32 clnt_hdl;
struct ipa_sys_connect_params ipa_params;
} sysbam_pipe[MAX_SYSBAM_PIPE];
/* SYS BAM Pipe, no connection index for this, this pipe is created between
the wlan driver and ipa driver for sending the AMPDU re-ordered packets to
IPA driver.
*/
static struct sysbam_inf {
u8 idx; /* not used in sysbam pipe */
enum ipa_client_type client;
}sysbam_info[MAX_SYSBAM_PIPE] = {
{0, IPA_CLIENT_A5_WLAN_AMPDU_PROD}
};
/* Enable / Disable SW_ROUTING based on MCC flag */
int ath6kl_ipa_enable_host_route_config (struct ath6kl_vif *vif, bool enable)
{
/*
* Invoke appropriate IPA-API to enable or disable sw routing between
* IPA System BAM to Host
*/
int status = 0;
struct ath6kl *ar = vif->ar;
struct ath6kl_vif *vif1;
spin_lock_bh(&ar->list_lock);
list_for_each_entry(vif1, &ar->vif_list, list) {
spin_unlock_bh(&ar->list_lock);
if (enable == true) {
/* Enable software routing in IPA */
ath6kl_dbg(ATH6KL_DBG_IPA_MSG, "MCC: IPA_EN SW ROUTING\n");
status = ath6kl_send_msg_ipa(vif1, SW_ROUTING_ENABLE,
vif1->ndev->dev_addr);
if (status)
ath6kl_err("Failed to send MCC enable msg to"
" IPA, status: %d\n", status);
} else {
/* Disable software routing in IPA */
ath6kl_dbg(ATH6KL_DBG_IPA_MSG, "MCC: IPA_DIS SW ROUTING\n");
status = ath6kl_send_msg_ipa(vif1, SW_ROUTING_DISABLE,
vif1->ndev->dev_addr);
if (status)
ath6kl_err("Failed to send MCC disable msg to"
" IPA, status: %d\n", status);
}
spin_lock_bh(&ar->list_lock);
}
spin_unlock_bh(&ar->list_lock);
return status;
}
/* Add the filter rule, after creating the BAM pipe, it is called by the
bamcm file , whilte creating the bam pipe*/
int ath6kl_ipa_add_flt_rule(struct ath6kl *ar, enum ipa_client_type client)
{
struct ipa_ioc_get_rt_tbl rt_lookup;
struct ipa_ioc_add_flt_rule *flt = NULL;
int ret = 0;
if (client != IPA_CLIENT_HSIC1_PROD)
return -EINVAL;
flt_hdl_ipv4 = 0;
flt_hdl_ipv6 = 0;
ath6kl_dbg(ATH6KL_DBG_IPA_MSG,
"IPA-CM: Creating flr rule for(HSIC1_PROD) client %d\n",
client);
flt = (struct ipa_ioc_add_flt_rule *)
kzalloc(sizeof(struct ipa_ioc_add_flt_rule) +
sizeof(struct ipa_flt_rule_add),
GFP_KERNEL);
if (flt == NULL) {
ath6kl_err("IPA-CM: Failed to create filter "
"rule for(HSIC1_PROD) client %d\n", client);
return -ENOMEM;
}
flt->commit = 1;
flt->ip = IPA_IP_v4;
flt->ep = client;
flt->global = 0;
flt->num_rules = 1;
/* Setting the Filter rule for Exception Packet */
flt->rules[0].rule.action = IPA_PASS_TO_EXCEPTION;
flt->rules[0].at_rear = 0;
memset(&rt_lookup, 0, sizeof(rt_lookup));
rt_lookup.ip = IPA_IP_v4;
strlcpy(rt_lookup.name, IPA_DFLT_RT_TBL_NAME,
sizeof(rt_lookup.name));
ret = ipa_get_rt_tbl(&rt_lookup);
if (ret) {
ath6kl_err("IPA-CM: Geting RT table failed for IPV4 :"
"client : %d, ret: %d\n", client, ret);
goto end;
}
flt->rules[0].rule.rt_tbl_hdl = rt_lookup.hdl;
/* 12th Byte, d0 bit is set for exception ,
* meta data offset is 11 */
flt->rules[0].rule.attrib.meta_data = 0x01000000;
flt->rules[0].rule.attrib.meta_data_mask = 0x01000000;
flt->rules[0].rule.attrib.attrib_mask = IPA_FLT_META_DATA;
ret = ipa_add_flt_rule(flt);
if (ret || flt->rules[0].status != 0) {
ath6kl_err("IPA-CM: Error in adding Flt for IPV4: %d "
"ret: %d, status: %d\n",
client, ret, flt->rules[0].status);
goto end;
}
/* Remember the handle, needed while clean up */
flt_hdl_ipv4 = flt->rules[0].flt_rule_hdl;
ret = ipa_commit_flt(IPA_IP_v4);
if (ret)
goto end;
if (ath6kl_debug_quirks(ar, ATH6KL_MODULE_IPA_WITH_IPV6)) {
flt->ip = IPA_IP_v6;
memset(&rt_lookup, 0, sizeof(rt_lookup));
rt_lookup.ip = IPA_IP_v6;
strlcpy(rt_lookup.name, IPA_DFLT_RT_TBL_NAME,
sizeof(rt_lookup.name));
ret = ipa_get_rt_tbl(&rt_lookup);
if (ret) {
ath6kl_err("IPA-CM: Get RT table failed for "
"IPV6: client : %d, %d\n",
client, ret);
goto end;
}
flt->rules[0].rule.rt_tbl_hdl = rt_lookup.hdl;
ret = ipa_add_flt_rule(flt);
if (ret || flt->rules[0].status < 0) {
ath6kl_err("IPA-CM: Error in adding Flt for IPV6"
" client: %d ret: %d, status: %d\n",
client, ret, flt->rules[0].status);
goto end;
}
/* Remember the handle, needed while clean up */
flt_hdl_ipv6 = flt->rules[0].flt_rule_hdl;
ret = ipa_commit_flt(IPA_IP_v6);
if (ret)
goto end;
}
end:
kfree(flt);
return ret;
}
EXPORT_SYMBOL(ath6kl_ipa_add_flt_rule);
#define ATH6KL_IPA_IP_MAX_TX_PROP 8
#define ATH6KL_IPA_TOS_MASK 0xE0
static struct {
uint8_t tos_value;
enum ipa_client_type dst_pipe;
} tx_prop_map [] = {
/* BK */
{1, IPA_CLIENT_HSIC2_CONS},
{2, IPA_CLIENT_HSIC2_CONS},
/* BE */
{0, IPA_CLIENT_HSIC1_CONS},
{3, IPA_CLIENT_HSIC1_CONS},
/* VI */
{4, IPA_CLIENT_HSIC3_CONS},
{5, IPA_CLIENT_HSIC3_CONS},
/* VO */
{6, IPA_CLIENT_HSIC4_CONS},
{7, IPA_CLIENT_HSIC4_CONS},
};
int ath6kl_ipa_register_interface(struct ath6kl *ar, u8 sta_ap,
const char *name, char* hdr_name_ip)
{
struct ipa_tx_intf tx_intf;
struct ipa_rx_intf rx_intf;
struct ipa_ioc_tx_intf_prop *tx_prop = NULL;
struct ipa_ioc_rx_intf_prop *rx_prop = NULL;
char ipv4_hdr_name[IPA_RESOURCE_NAME_MAX];
char ipv6_hdr_name[IPA_RESOURCE_NAME_MAX];
int i, j;
int ret = 0;
/* Allocate TX properties, 1 each for IPv4 & IPv6 */
tx_prop = kzalloc(sizeof(struct ipa_ioc_tx_intf_prop) *
ATH6KL_IPA_IP_MAX_TX_PROP * 2, GFP_KERNEL);
if (tx_prop == NULL) {
ath6kl_err("Failed to allocate memory for TX properties\n");
goto end;
}
/* Allocate RX properties, 1 each for IPv4 & IPv6 */
rx_prop = kzalloc(sizeof(struct ipa_ioc_rx_intf_prop) * 2, GFP_KERNEL);
if (rx_prop == NULL) {
ath6kl_err("Failed to allocate memory for RX properties\n");
goto end;
}
strlcpy(ipv4_hdr_name, hdr_name_ip, sizeof(ipv4_hdr_name));
strlcat(ipv4_hdr_name, ATH6KL_BAM2BAM_IPV4_NAME_EXT,
sizeof(ipv4_hdr_name));
strlcpy(ipv6_hdr_name, hdr_name_ip, sizeof(ipv6_hdr_name));
strlcat(ipv6_hdr_name, ATH6KL_BAM2BAM_IPV6_NAME_EXT,
sizeof(ipv6_hdr_name));
memset(&tx_intf, 0, sizeof(tx_intf));
memset(&rx_intf, 0, sizeof(rx_intf));
/*
TOS value: 1, 2 - > Maps to BK pipe [HSIC2_CONS]
TOS value: 0, 3 - > Maps to BE pipe [HSIC1_CONS]
TOS value: 4, 5 - > Maps to VI pipe [HSIC3_CONS]
TOS Value: 6, 7 - > Maps to VO pipe [HSIC4_CONS]
*/
/*
IP-TOS - 8bits
: DSCP(6-bits) ECN(2-bits)
: DSCP - P2 P1 P0 X X X
where (P2 P1 P0) form 802.1D
So shifting tos_value by 5 bits before passing to IPA. Also IPA
required mask to be set for 3 MSB bits.
*/
for (i = 0; i < ATH6KL_IPA_IP_MAX_TX_PROP; i++) {
tx_prop[i].ip = IPA_IP_v4;
tx_prop[i].attrib.attrib_mask = IPA_FLT_TOS_MASKED;
tx_prop[i].attrib.tos_value = tx_prop_map[i].tos_value << 5;
tx_prop[i].attrib.tos_mask = ATH6KL_IPA_TOS_MASK;
tx_prop[i].dst_pipe = tx_prop_map[i].dst_pipe;
strlcpy(tx_prop[i].hdr_name, ipv4_hdr_name,
IPA_RESOURCE_NAME_MAX);
tx_intf.num_props++;
/* Dont update if IPV6 is not enabled */
if (!ath6kl_debug_quirks(ar, ATH6KL_MODULE_IPA_WITH_IPV6))
continue;
j = i + ATH6KL_IPA_IP_MAX_TX_PROP;
tx_prop[j].ip = IPA_IP_v6;
tx_prop[j].attrib.attrib_mask = IPA_FLT_TOS_MASKED;
tx_prop[j].attrib.tos_value = tx_prop_map[i].tos_value << 5;
tx_prop[j].attrib.tos_mask = ATH6KL_IPA_TOS_MASK;
tx_prop[j].dst_pipe = tx_prop_map[i].dst_pipe;
strlcpy(tx_prop[j].hdr_name, ipv6_hdr_name,
IPA_RESOURCE_NAME_MAX);
tx_intf.num_props++;
}
/* Enable this for switching between WLAN or WAN */
rx_prop[0].ip = IPA_IP_v4;
rx_prop[0].attrib.attrib_mask = IPA_FLT_META_DATA;
/* 12th Byte, d2 bit is set for wlan or wan interface*/
if(sta_ap == 1) /* Means AP mode */
rx_prop[0].attrib.meta_data = 0x04000000;
else
rx_prop[0].attrib.meta_data = 0x00000000;
rx_prop[0].attrib.meta_data_mask = 0x04000000;
rx_prop[0].src_pipe = IPA_CLIENT_HSIC1_PROD;
rx_intf.num_props++;
if (ath6kl_debug_quirks(ar, ATH6KL_MODULE_IPA_WITH_IPV6)) {
/* Enable this for switching between WLAN or WAN */
rx_prop[1].ip = IPA_IP_v6;
rx_prop[1].attrib.attrib_mask = IPA_FLT_META_DATA;
/* 12th Byte, d2 bit is set for wlan or wan interface*/
if(sta_ap == 1) /* Means AP mode */
rx_prop[1].attrib.meta_data = 0x04000000;
else
rx_prop[1].attrib.meta_data = 0x00000000;
rx_prop[1].attrib.meta_data_mask = 0x04000000;
rx_prop[1].src_pipe = IPA_CLIENT_HSIC1_PROD;
rx_intf.num_props++;
}
/* If Rx is SW path, then no need to set Rx properties */
if (ath6kl_debug_quirks(ar, ATH6KL_MODULE_BAM_RX_SW_PATH))
rx_intf.num_props = 0;
tx_intf.prop = tx_prop;
rx_intf.prop = rx_prop;
/* Call the ipa api to register interface */
ret = ipa_register_intf(name, &tx_intf, &rx_intf);
end:
kfree(tx_prop);
kfree(rx_prop);
return ret;
}
EXPORT_SYMBOL(ath6kl_ipa_register_interface);
/* @brief
* add the specified headers to SW and optionally commit them to IPA HW
* @return
* 0 on success,
* error on failure
*/
int ath6kl_ipa_add_header_info(struct ath6kl *ar, u8 ap_sta, u8 device_id,
char* interface_name, u8 *mac_addr)
{
struct ipa_ioc_add_hdr *ipahdr = NULL;
int ret;
uint8_t hdr[ATH6KL_IPA_WLAN_HDR_LENGTH + 1]={
/* HTC Header - 6 bytes */
0x00, 0x00, /* Reserved */
/* length filled by IPA, after adding 32 with IP Payload
* length 32 will be set while intializing the hdr */
0x00, 0x00,
/* Reserved */
0x00, 0x00,
/* WMI header - 6 bytes*/
0x00, 0x00, 0x00, 0x00,
0x00, /* D0,D1 -> Device ID */
0x00,
/* 802.3 header - 14 bytes*/
/* Des. MAC to be filled by IPA */
0x00,0x03,0x7f,0xaa,0xbb,0xcc,
/* Src. MAC to be filled by IPA */
0x00,0x03,0x7f,0xdd,0xee,0xff,
0x00,0x00, /* length can be zero */
/* LLC SNAP header - 8 bytes */
0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00,
0x08, 0x00 /* type value(2 bytes) ,filled by wlan */
/* 0x0800 - IPV4, 0x86dd - IPV6 */
};
if(interface_name == NULL) {
ath6kl_dbg(ATH6KL_DBG_IPA_MSG,
"IPA-CM: Interface name is null and not defined\n");
return -EINVAL;
}
/* dynamically allocate the memory to add the hdrs */
ipahdr = (struct ipa_ioc_add_hdr *)
kzalloc(sizeof(struct ipa_ioc_add_hdr) +
sizeof(struct ipa_hdr_add), GFP_KERNEL);
if (ipahdr == NULL) {
ath6kl_dbg(ATH6KL_DBG_IPA_MSG,
"IPA-CM: Failed while creating hdr for interface %s\n",
interface_name);
return -ENOMEM;
}
ipahdr->commit = 0;
ipahdr->num_hdrs = 1;
/* Set the Source MAC */
memcpy (&hdr[12+6], mac_addr, 6);
/* Check the interface is AP OR STA mode, and set the Device ID */
hdr[6+4] |= (device_id & 0x3);
strcpy(ipahdr->hdr[0].name,interface_name);
/* Actual headers to be inserted */
memcpy(ipahdr->hdr[0].hdr, hdr, ATH6KL_IPA_WLAN_HDR_LENGTH);
ipahdr->hdr[0].hdr_len = ATH6KL_IPA_WLAN_HDR_LENGTH;
ipahdr->hdr[0].is_partial = ATH6KL_IPA_WLAN_HDR_PARTIAL;
ipahdr->hdr[0].hdr_hdl = 0; /* output param, no need to fill */
/* Call the ipa api to configure ep */
strlcpy(ipahdr->hdr[0].name, interface_name,
sizeof(ipahdr->hdr[0].name));
strlcat(ipahdr->hdr[0].name, ATH6KL_BAM2BAM_IPV4_NAME_EXT,
sizeof(ipahdr->hdr[0].name));
ret = ipa_add_hdr(ipahdr);
if(ret) {
ath6kl_err("IPA-CM: Failed adding IPv4 hdr for interface %s,"
" ret: %d\n", interface_name, ret);
goto end;
}
ath6kl_dbg(ATH6KL_DBG_IPA_MSG,
"IPA-CM: IPA Handle for header: %s : %x\n",
ipahdr->hdr[0].name, ipahdr->hdr[0].hdr_hdl);
if (ath6kl_debug_quirks(ar, ATH6KL_MODULE_IPA_WITH_IPV6)) {
strlcpy(ipahdr->hdr[0].name, interface_name,
sizeof(ipahdr->hdr[0].name));
strlcat(ipahdr->hdr[0].name, ATH6KL_BAM2BAM_IPV6_NAME_EXT,
sizeof(ipahdr->hdr[0].name));
/* Set the type to IPV6 in the header*/
/* 0x0800 - IPV4, 0x86dd - IPV6 */
ipahdr->hdr[0].hdr[32] = 0x86;
ipahdr->hdr[0].hdr[33] = 0xdd;
ret = ipa_add_hdr(ipahdr);
if(ret) {
ath6kl_err("IPA-CM: Failed adding IPv6 hdr for"
" interface %s, ret: %d\n",
interface_name, ret);
goto end;
}
ath6kl_dbg(ATH6KL_DBG_IPA_MSG,
"IPA Handle for header: %s : %x\n",
ipahdr->hdr[0].name, ipahdr->hdr[0].hdr_hdl);
}
/* Configure the TX and RX pipes filter rules */
ret = ath6kl_ipa_register_interface(ar, ap_sta, interface_name,
interface_name);
if(ret) {
ath6kl_dbg(ATH6KL_DBG_IPA_MSG,
"IPA-CM: Failed registering the interface for :%s,"
" ret: %d\n", interface_name, ret);
}
end:
kfree(ipahdr);
return ret;
}
EXPORT_SYMBOL(ath6kl_ipa_add_header_info);
int ath6kl_ipa_put_header_hdl(char *hdr_name, uint32_t *hdl)
{
int status;
/* Put and release hdr, and it is equivalent of deleting the header */
status = ipa_put_hdr(*hdl);
if (status) {
ath6kl_err("IPA-CM: Error in put the hdr Handle %x for hdr : "
"%s, status: %d\n", *hdl, hdr_name, status);
}
return status;
}
int ath6kl_ipacm_get_ep_config_info(u32 ipa_client, struct ipa_ep_cfg *ep_cfg)
{
if(!ep_cfg) {
ath6kl_dbg(ATH6KL_DBG_BAM2BAM,
"IPA-CM: ep_cfg : Null Value %s, %d\n",
__func__, __LINE__);
return -EINVAL;
}
// Fill the details for configuration of IPA end-point
if (ipa_client == IPA_CLIENT_A5_WLAN_AMPDU_PROD) {
ep_cfg->hdr.hdr_len = ATH6KL_IPA_WLAN_HDR_LENGTH;
/* Rx pipe */
// NAT configuration in IPA end-point
ep_cfg->nat.nat_en = IPA_BYPASS_NAT; // IPA_SRC_NAT;
/*
* 0: Metadata_Ofst value is invalid, i.e.,
* no metadata within header
* 1: Metadata_Ofst value is valid, i.e., metadata
* within header is in offset Metadata_Ofst
* Valid for Input Pipes only (IPA Consumer)
* (for output pipes, metadata already set within
* the header)
*/
ep_cfg->hdr.hdr_ofst_metadata_valid = 1;
/*!< Offset within header in which metadata resides
Size of metadata - 4bytes
Example - Stream ID/SSID/mux ID
Valid for Input Pipes only (IPA Consumer)
(for output pipes, metadata already set within the
header) */
ep_cfg->hdr.hdr_ofst_metadata = 11;
ep_cfg->hdr.hdr_additional_const_len = 0;
ep_cfg->hdr.hdr_ofst_pkt_size_valid = 0;
ep_cfg->hdr.hdr_ofst_pkt_size = 0;
} else if (ipa_client == IPA_CLIENT_HSIC1_PROD) {
// Hdr conf in IPA end-point(HTC(6)+WMI(6)+ 802.3 (22) )
ep_cfg->hdr.hdr_len = ATH6KL_IPA_WLAN_HDR_LENGTH;
/* Rx pipe */
// NAT configuration in IPA end-point
ep_cfg->nat.nat_en = IPA_BYPASS_NAT; // IPA_SRC_NAT;
/* 0: Metadata_Ofst value is invalid, i.e.,
* no metadata within header
* 1: Metadata_Ofst value is valid, i.e., metadata
* within header is in offset Metadata_Ofst
* Valid for Input Pipes only (IPA Consumer)
* (for output pipes, metadata already set within
* the header)
*/
ep_cfg->hdr.hdr_ofst_metadata_valid = 1;
/*!< Offset within header in which metadata resides
Size of metadata - 4bytes
Example - Stream ID/SSID/mux ID
Valid for Input Pipes only (IPA Consumer)
(for output pipes, metadata already set within the
header) */
/* 12th Byte, d0 set for excp, so offset should be 11 */
ep_cfg->hdr.hdr_ofst_metadata = 11;
ep_cfg->hdr.hdr_additional_const_len = 0;
ep_cfg->hdr.hdr_ofst_pkt_size_valid = 0;
ep_cfg->hdr.hdr_ofst_pkt_size = 0;
} else {
/* Header conf IPA end-point(HTC(6)+WMI(6)+802.3 (22) ) */
ep_cfg->hdr.hdr_len = ATH6KL_IPA_WLAN_HDR_LENGTH;
/* Tx pipe */
ep_cfg->nat.nat_en = IPA_BYPASS_NAT; // IPA_DST_NAT;
/* This is not valid for Tx Pipe */
ep_cfg->hdr.hdr_ofst_metadata_valid = 0;
ep_cfg->hdr.hdr_ofst_metadata = 0;
/*!< Defines the constant length that should be added
to the payload length in order for IPA to update
correctly the length field within the header
(valid only in case Hdr_Ofst_Pkt_Size_Valid=1)
Valid for Output Pipes (IPA Producer) */
ep_cfg->hdr.hdr_additional_const_len =
ATH6KL_IPA_TX_PKT_LEN_POS;
ep_cfg->hdr.hdr_ofst_pkt_size_valid = 1;
/*!< Offset within header in which packet size
reside. Upon Header Insertion, IPA will update this
field within the header with the packet length .
Assumption is that header length field size is
constant and is 2Bytes
Valid for Output Pipes (IPA Producer) */
ep_cfg->hdr.hdr_ofst_pkt_size = 2;
}
ep_cfg->hdr.hdr_a5_mux = 0;
/* Mode setting type in IPA end-point */
ep_cfg->mode.mode = IPA_BASIC;
ep_cfg->mode.dst = ipa_client;
/* Aggregation configuration in IPA end-point */
ep_cfg->aggr.aggr_en = IPA_BYPASS_AGGR;
ep_cfg->aggr.aggr = IPA_MBIM_16;
ep_cfg->aggr.aggr_byte_limit = 0;
ep_cfg->aggr.aggr_time_limit = 0;
/* Route configuration in IPA end-point */
ep_cfg->route.rt_tbl_hdl = 0;
ep_cfg->route.rt_tbl_hdl = 0;
return 0;
}
EXPORT_SYMBOL(ath6kl_ipacm_get_ep_config_info);
int ath6kl_data_ipa_ampdu_tx_complete_cb(enum ath6kl_bam_tx_evt_type evt_type,
struct sk_buff *skb)
{
switch (evt_type) {
case AMPDU_FLUSH:
if (!skb || !skb->data)
goto fatal;
ath6kl_dbg(ATH6KL_DBG_OOO,
"ooo: AMPDU TX comp callback recv, "
"Freeing the skb\n");
dev_kfree_skb(skb);
break;
default:
ath6kl_err("ooo: Unknown event from sysbam tx_complete: %d\n",
evt_type);
break;
}
return 0;
fatal:
WARN_ON(1);
return -1;
}
/* Callback function to handle only SYS BAM Pipe Tx Complete */
void ath6kl_ipa_sysbam_tx_callback(void *priv, enum ipa_dp_evt_type evt,
unsigned long data)
{
u32 client;
struct sk_buff *skb;
/* typecast the skb buffer pointer */
skb = (struct sk_buff *) data;
client = *((enum ipa_client_type *)priv);
switch (evt) {
/* IPA sends data to WLAN class driver */
case IPA_RECEIVE:
ath6kl_err("BAM-CM: Received Data from SysBAM pipe\n");
dev_kfree_skb_any(skb);
break;
/* IPA sends Tx complete Event to WLAN */
case IPA_WRITE_DONE:
switch (client) {
/* AMPDU Flush completed by IPA and event received */
case IPA_CLIENT_A5_WLAN_AMPDU_PROD:
ath6kl_dbg(ATH6KL_DBG_OOO,
"BAM-CM: %s: sys pipe: %d, AMPDU "
"Tx complete event received\n",
__func__, client);
/* send to wlan class driver */
ath6kl_data_ipa_ampdu_tx_complete_cb(AMPDU_FLUSH
, skb);
break;
default:
ath6kl_err("BAM-CM: IPA sysbam pipe Tx complete\
callback received wrong context : %d\n",
client);
break;
}
break;
default:
ath6kl_err("BAM-CM: IPA sysbam pipe Tx comp callback\
received wrong event type : %d\n", evt);
break;
}
}
/* Disconnect all the Sys BAM pipes, in our case, only 1 pipe */
void ath6kl_disconnect_sysbam_pipes(struct ath6kl *ar)
{
int status,i;
/* If Rx SW path, then no need to create/delete sysbam pipe */
if (!!(debug_quirks & ATH6KL_MODULE_BAM_RX_SW_PATH))
return;
for (i = 0; i < MAX_SYSBAM_PIPE; i++) {
status = ipa_teardown_sys_pipe(sysbam_pipe[i].clnt_hdl);
if (status)
ath6kl_err("BAM-CM:Error in disconnect SYSBAM pipe"
" status: %d\n", status);
}
}
EXPORT_SYMBOL(ath6kl_disconnect_sysbam_pipes);
/* Create the SysBAM pipe */
int ath6kl_usb_create_sysbam_pipes(struct ath6kl *ar)
{
int status,i;
/* If Rx SW path, then no need to create/delete sysbam pipe */
if (!!(debug_quirks & ATH6KL_MODULE_BAM_RX_SW_PATH))
return 0;
/* The config is similar to the RX Bam pipe configuration */
for (i = 0; i < MAX_SYSBAM_PIPE; i++) {
sysbam_pipe[i].ipa_params.client = sysbam_info[i].client;
ath6kl_ipacm_get_ep_config_info(sysbam_pipe[i].ipa_params.client,
&(sysbam_pipe[i].ipa_params.ipa_ep_cfg));
sysbam_pipe[i].ipa_params.desc_fifo_sz = 0x400;
sysbam_pipe[i].ipa_params.priv=(void *)&(sysbam_info[i].client);
/* sysbam pipe callback evt handler same as bam pipe handler */
sysbam_pipe[i].ipa_params.notify= ath6kl_ipa_sysbam_tx_callback;
/* Create the SYS BAM pipe to send AMPDU re-ordered packets */
status = ipa_setup_sys_pipe(&(sysbam_pipe[i].ipa_params),
&(sysbam_pipe[i].clnt_hdl));
if (status) {
ath6kl_err("BAM-CM: Failed to create SYSBAM: %d pipe "
"status: %d\n",
sysbam_pipe[i].ipa_params.client,
status);
break;
}
ath6kl_dbg(ATH6KL_DBG_BAM2BAM,
"BAM-CM: Successfully created SYSBAM pipe "
"client: %d, Control handle: %d\n",
sysbam_info[i].client, sysbam_pipe[i].clnt_hdl);
}
return status;
}
EXPORT_SYMBOL(ath6kl_usb_create_sysbam_pipes);
/* Send data to the IPA HW via SYSBAM */
int ath6kl_usb_data_send_to_sysbam_pipe(struct ath6kl *ar, struct sk_buff *skb)
{
int status=0;
if ( (ath6kl_debug_quirks(ar, ATH6KL_MODULE_IPA_WITH_IPACM)) &&
!(ath6kl_debug_quirks(ar, ATH6KL_MODULE_BAM_AMPDU_TO_NETIF) &&
!(ath6kl_debug_quirks(ar, ATH6KL_MODULE_BAM_RX_SW_PATH)))) {
ath6kl_dbg(ATH6KL_DBG_OOO,
"BAM-CM: TX:(AMPDU_PROD)Sending reorderd pkt of size %d (dec)\n",
skb->len);
/* Add the Hdr (HTC+WMI+802.3+LLC SNAP = 34(wlan hdr len) back ,
as required by the AMPDU pipe, since the filter settings are
same as HSIC1_PROD pipe */
skb_push(skb, ATH6KL_IPA_WLAN_HDR_LENGTH);
/* WMI header Byte6: D0 : Exception bit (0-LTE/WAN, 1-Data to
* Host for re-ordering) */
/* Reset the exception bit, since the packets are orderded now,
* and not need to send to host */
skb->data[11] &= 0xfe; /* Reset the D0 bit */
status = ipa_tx_dp(IPA_CLIENT_A5_WLAN_AMPDU_PROD, skb, NULL);
if (status)
ath6kl_err("BAM-CM: Failed to send data over sysbam :%d"
"status: %d\n",
IPA_CLIENT_A5_WLAN_AMPDU_PROD, status);
return status;
}
/* Use netif to send re-ordered packets in absence of IPACM */
ath6kl_dbg(ATH6KL_DBG_OOO,
"BAM-CM: TX:(To Netif)Sending reordered pkt of size %d (dec)\n",
skb->len);
netif_rx_ni(skb);
return status;
}
void ath6kl_delete_ipa_header(uint32_t hdl)
{
int status;
int len;
struct ipa_ioc_del_hdr *ipahdr;
ath6kl_dbg(ATH6KL_DBG_IPA_MSG,
"IPA-CM: Deleting the IPA header handle : %x\n", hdl);
len = sizeof(struct ipa_ioc_del_hdr) + sizeof(struct ipa_hdr_del)*1;
ipahdr = (struct ipa_ioc_del_hdr *) kzalloc(len, GFP_KERNEL);
if (ipahdr == NULL) {
ath6kl_err("IPA-CM: Failed to allocate memory for hdr removal "
"for handle: %x\n", hdl);
return;
}
ipahdr->num_hdls = 1;
ipahdr->commit = 0;
ipahdr->hdl[0].hdl = hdl;
ipahdr->hdl[0].status = -1;
status = ipa_del_hdr(ipahdr);
if (status != 0) {
ath6kl_err("IPA-CM: Delete hdr from IPA Failed, return-status: "
"%d param-status: %d handle: %x\n",
status, ipahdr->hdl[0].status,
ipahdr->hdl[0].hdl);
kfree(ipahdr);
return;
}
kfree(ipahdr);
return;
}
void ath6kl_remove_ipa_header(char *name)
{
struct ipa_ioc_get_hdr hdrlookup;
int ret = 0;
memset(&hdrlookup, 0, sizeof(hdrlookup));
strlcpy(hdrlookup.name, name, sizeof(hdrlookup.name));
ret = ipa_get_hdr(&hdrlookup);
if (ret) {
ath6kl_info("IPA-CM: Header may have already been deleted for:"
" %s, ret: %d\n", name, ret);
return;
}
ath6kl_delete_ipa_header(hdrlookup.hdl);
ath6kl_dbg(ATH6KL_DBG_IPA_MSG,
"IPA-CM: Successfully removed the hdr:%s handle:%x\n",
name, hdrlookup.hdl);
return;
}
void ath6kl_remove_filter_rule(enum ipa_ip_type ip_type, uint32_t hdl)
{
int status;
struct ipa_ioc_del_flt_rule *fltdel;
if (ip_type == IPA_IP_v4)
ath6kl_dbg(ATH6KL_DBG_IPA_MSG,
"IPA-CM: Deleting the exception filter for IPV4...\n");
else
ath6kl_dbg(ATH6KL_DBG_IPA_MSG,
"IPA-CM: Deleting the exception filter for IPV6...\n");
fltdel = (struct ipa_ioc_del_flt_rule *)
kmalloc(sizeof(struct ipa_ioc_del_flt_rule) +
sizeof(struct ipa_flt_rule_del), GFP_KERNEL);
if (fltdel == NULL) {
ath6kl_err("IPA-CM: Failed in allocating memory for deleting "
"the Filter : Handle :%x \n", hdl);
return;
}
fltdel->hdl[0].hdl = hdl;
fltdel->num_hdls = 1;
fltdel->commit = 1;
fltdel->ip = ip_type;
fltdel->hdl[0].status = -1;
status = ipa_del_flt_rule(fltdel);
if (status || fltdel->hdl[0].status != 0) {
ath6kl_err("IPA-CM: Failed to delete exception filter for "
"Handle : %x status: %d, %d\n", hdl, status,
fltdel->hdl[0].status);
kfree(fltdel);
return;
}
kfree(fltdel);
return;
}
void ath6kl_remove_ipa_exception_filters(struct ath6kl *ar)
{
/* In Rx SW path, no need to create/delete the exception filter */
if (!!(debug_quirks & ATH6KL_MODULE_BAM_RX_SW_PATH))
return;
/* Remove the filters */
ath6kl_remove_filter_rule(IPA_IP_v4, flt_hdl_ipv4);
if (!!(debug_quirks & ATH6KL_MODULE_IPA_WITH_IPV6))
ath6kl_remove_filter_rule(IPA_IP_v6, flt_hdl_ipv6);
}
EXPORT_SYMBOL(ath6kl_remove_ipa_exception_filters);
void ath6kl_clean_ipa_headers(struct ath6kl *ar, char *name)
{
int status;
char name_ipa[IPA_RESOURCE_NAME_MAX];
if (!ath6kl_debug_quirks(ar, ATH6KL_MODULE_BAM2BAM))
return;
/* Remove the headers */
strlcpy(name_ipa, name, sizeof(name_ipa));
strlcat(name_ipa, ATH6KL_BAM2BAM_IPV4_NAME_EXT, sizeof(name_ipa));
ath6kl_remove_ipa_header(name_ipa);
if (ath6kl_debug_quirks(ar, ATH6KL_MODULE_IPA_WITH_IPV6)) {
strlcpy(name_ipa, name, sizeof(name_ipa));
strlcat(name_ipa, ATH6KL_BAM2BAM_IPV6_NAME_EXT,
sizeof(name_ipa));
ath6kl_remove_ipa_header(name_ipa);
}
/* unregister the interface with IPA */
status = ipa_deregister_intf(name);
if (status)
ath6kl_err("IPA-CM: Interface %s : deregister failed,"
" status: %d\n", name, status);
}
EXPORT_SYMBOL(ath6kl_clean_ipa_headers);
/* IPA calls this fn, once the message is processed */
static void ath6kl_ipa_msg_free_fn(void *buff, u32 len, u32 type)
{
ath6kl_dbg(ATH6KL_DBG_IPA_MSG,
"IPA-CM: Msg Callback msg type: %d, len: %d\n",
type, len);
kfree(buff);
}
#ifdef CONFIG_ATH6KL_DEBUG
/* Based on msm_ipa.h */
const char *ath6kl_ipa_event_name[IPA_WLAN_EVENT_MAX] = {
__stringify(WLAN_CLIENT_CONNECT),
__stringify(WLAN_CLIENT_DISCONNECT),
__stringify(WLAN_CLIENT_POWER_SAVE_MODE),
__stringify(WLAN_CLIENT_NORMAL_MODE),
__stringify(SW_ROUTING_ENABLE),
__stringify(SW_ROUTING_DISABLE),
__stringify(WLAN_AP_CONNECT),
__stringify(WLAN_AP_DISCONNECT),
__stringify(WLAN_STA_CONNECT),
__stringify(WLAN_STA_DISCONNECT),
};
#define ATH6KL_DBG_PRINT_IPA_EVENT(_mask, _iface_name, _type, _mac_addr) \
ath6kl_dbg(_mask, \
"IPA-CM: %s: %s event received, MAC Addr: %pM\n", \
_iface_name, ath6kl_ipa_event_name[_type], _mac_addr);
#else
#define ATH6KL_DBG_PRINT_IPA_EVENT(_mask, _iface_name, _type, _mac_addr)
#endif
int ath6kl_send_msg_ipa(struct ath6kl_vif *vif, enum ipa_wlan_event type,
u8 *mac_addr)
{
struct ipa_msg_meta meta;
struct ipa_wlan_msg *buff;
char iface_name[IPA_RESOURCE_NAME_MAX];
int status;
if (!ath6kl_debug_quirks(vif->ar, ATH6KL_MODULE_BAM2BAM))
return 0;
if (!ath6kl_debug_quirks(vif->ar, ATH6KL_MODULE_IPA_WITH_IPACM))
return 0;
if (type >= IPA_WLAN_EVENT_MAX) {
ath6kl_err("IPA-CM: Unknown IPA event type: %d\n", type);
return -EINVAL;
}
if (WARN_ON(is_zero_ether_addr(mac_addr)))
return -EINVAL;
strlcpy(iface_name, vif->ndev->name, sizeof(iface_name));
ATH6KL_DBG_PRINT_IPA_EVENT(ATH6KL_DBG_IPA_MSG, iface_name, type,
mac_addr);
switch(type) {
case WLAN_AP_CONNECT:
ath6kl_dbg(ATH6KL_DBG_IPA_MSG,
"IPA-CM: AP mode Adding Partial hdr: %s, %pM\n",
vif->ndev->name, vif->ndev->dev_addr);
/* Add partial header with IPA for this interface */
ath6kl_ipa_add_header_info(vif->ar, 1, vif->fw_vif_idx,
vif->ndev->name, vif->ndev->dev_addr);
break;
case WLAN_AP_DISCONNECT:
ath6kl_clean_ipa_headers(vif->ar, vif->ndev->name);
break;
case WLAN_STA_CONNECT:
ath6kl_dbg(ATH6KL_DBG_IPA_MSG,
"IPA-CM: STA Connect adding partial hdr: %s, %pM\n",
vif->ndev->name, vif->ndev->dev_addr);
ath6kl_ipa_add_header_info(vif->ar, 0, vif->fw_vif_idx,
vif->ndev->name, vif->ndev->dev_addr);
break;
case WLAN_STA_DISCONNECT:
ath6kl_clean_ipa_headers(vif->ar, vif->ndev->name);
break;
case WLAN_CLIENT_POWER_SAVE_MODE:
case WLAN_CLIENT_NORMAL_MODE:
/* If MCC is enabled, then dont send PS events */
if(vif->ar->is_mcc_enabled == true)
return 0;
case SW_ROUTING_ENABLE:
case SW_ROUTING_DISABLE:
case WLAN_CLIENT_CONNECT:
case WLAN_CLIENT_DISCONNECT:
default:
/* Nothing to be done for these events */
break;
}
/* Fille the message len */
meta.msg_len = sizeof(struct ipa_wlan_msg);
/* Allocate memory for the msg, Ipa call the callback fn to free this */
buff = (struct ipa_wlan_msg *)kmalloc (meta.msg_len, GFP_KERNEL);
if (buff == NULL) {
ath6kl_err("IPA-CM: Failed to allocate memory for msg type:%d\n"
, type);
return -ENOMEM;
}
/* Fill the message type*/
meta.msg_type = type;
/* Fill the message */
strcpy(buff->name, iface_name); /* need to be changed later */
memcpy(buff->mac_addr, mac_addr, ETH_ALEN);
ath6kl_dbg(ATH6KL_DBG_IPA_MSG,
"IPA-CM: IPA send msg : Event ID : %d, interface name: %s \n",
meta.msg_type, buff->name);
status = ipa_send_msg(&meta, buff, ath6kl_ipa_msg_free_fn);
if(status) {
ath6kl_err ("IPA-CM: Failed to send msg for type: %d,"
" status: %d\n", type, status);
kfree(buff);
return status;
}
/*Note:
*buff memory will be free by the callback func: ath6kl_ipa_msg_free_fn
*/
return status;
}
#endif /* CONFIG_ATH6KL_BAM2BAM */
static inline u8 ath6kl_get_tid(u8 tid_mux)
{
return tid_mux & ATH6KL_TID_MASK;
}
static inline u8 ath6kl_get_aid(u8 tid_mux)
{
return tid_mux >> ATH6KL_AID_SHIFT;
}
static u8 ath6kl_ibss_map_epid(struct sk_buff *skb, struct net_device *dev,
u32 *map_no)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct ethhdr *eth_hdr;
u32 i, ep_map = -1;
u8 *datap;
*map_no = 0;
datap = skb->data;
eth_hdr = (struct ethhdr *) (datap + sizeof(struct wmi_data_hdr));
if (is_multicast_ether_addr(eth_hdr->h_dest))
return ENDPOINT_2;
for (i = 0; i < ar->node_num; i++) {
if (memcmp(eth_hdr->h_dest, ar->node_map[i].mac_addr,
ETH_ALEN) == 0) {
*map_no = i + 1;
ar->node_map[i].tx_pend++;
return ar->node_map[i].ep_id;
}
if ((ep_map == -1) && !ar->node_map[i].tx_pend)
ep_map = i;
}
if (ep_map == -1) {
ep_map = ar->node_num;
ar->node_num++;
if (ar->node_num > MAX_NODE_NUM)
return ENDPOINT_UNUSED;
}
memcpy(ar->node_map[ep_map].mac_addr, eth_hdr->h_dest, ETH_ALEN);
for (i = ENDPOINT_2; i <= ENDPOINT_5; i++) {
if (!ar->tx_pending[i]) {
ar->node_map[ep_map].ep_id = i;
break;
}
/*
* No free endpoint is available, start redistribution on
* the inuse endpoints.
*/
if (i == ENDPOINT_5) {
ar->node_map[ep_map].ep_id = ar->next_ep_id;
ar->next_ep_id++;
if (ar->next_ep_id > ENDPOINT_5)
ar->next_ep_id = ENDPOINT_2;
}
}
*map_no = ep_map + 1;
ar->node_map[ep_map].tx_pend++;
return ar->node_map[ep_map].ep_id;
}
static bool ath6kl_process_uapsdq(struct ath6kl_sta *conn,
struct ath6kl_vif *vif,
struct sk_buff *skb,
u32 *flags)
{
struct ath6kl *ar = vif->ar;
bool is_apsdq_empty = false;
struct ethhdr *datap = (struct ethhdr *) skb->data;
u8 up = 0, traffic_class, *ip_hdr;
u16 ether_type;
struct ath6kl_llc_snap_hdr *llc_hdr;
struct sk_buff *skb_to_drop = NULL;
if (conn->sta_flags & STA_PS_APSD_TRIGGER) {
/*
* This tx is because of a uAPSD trigger, determine
* more and EOSP bit. Set EOSP if queue is empty
* or sufficient frames are delivered for this trigger.
*/
spin_lock_bh(&conn->psq_lock);
if (!skb_queue_empty(&conn->apsdq))
*flags |= WMI_DATA_HDR_FLAGS_MORE;
else if (conn->sta_flags & STA_PS_APSD_EOSP)
*flags |= WMI_DATA_HDR_FLAGS_EOSP;
*flags |= WMI_DATA_HDR_FLAGS_UAPSD;
spin_unlock_bh(&conn->psq_lock);
return false;
} else if (!conn->apsd_info)
return false;
if (test_bit(WMM_ENABLED, &vif->flags)) {
ether_type = be16_to_cpu(datap->h_proto);
if (is_ethertype(ether_type)) {
/* packet is in DIX format */
ip_hdr = (u8 *)(datap + 1);
} else {
/* packet is in 802.3 format */
llc_hdr = (struct ath6kl_llc_snap_hdr *)
(datap + 1);
ether_type = be16_to_cpu(llc_hdr->eth_type);
ip_hdr = (u8 *)(llc_hdr + 1);
}
if (ether_type == IP_ETHERTYPE)
up = ath6kl_wmi_determine_user_priority(
ip_hdr, 0);
}
traffic_class = ath6kl_wmi_get_traffic_class(up);
if ((conn->apsd_info & (1 << traffic_class)) == 0)
return false;
/* Queue the frames if the STA is sleeping */
spin_lock_bh(&conn->psq_lock);
if (skb_queue_len(&conn->apsdq) >= ar->tx_psq_threshold) {
ath6kl_dbg(ATH6KL_DBG_WLAN_TX, "TX APSD queue is full\n");
skb_to_drop = skb_dequeue(&conn->apsdq);
}
is_apsdq_empty = skb_queue_empty(&conn->apsdq);
skb_queue_tail(&conn->apsdq, skb);
spin_unlock_bh(&conn->psq_lock);
/*
* If this is the first pkt getting queued
* for this STA, update the PVB for this STA
*/
if (is_apsdq_empty) {
ath6kl_wmi_set_apsd_bfrd_traf(ar->wmi,
vif->fw_vif_idx,
conn->aid, 1, 0);
}
*flags |= WMI_DATA_HDR_FLAGS_UAPSD;
if (skb_to_drop != NULL) {
dev_kfree_skb(skb_to_drop);
vif->net_stats.tx_dropped++;
vif->net_stats.tx_aborted_errors++;
}
return true;
}
static bool ath6kl_process_psq(struct ath6kl_sta *conn,
struct ath6kl_vif *vif,
struct sk_buff *skb,
u32 *flags)
{
bool is_psq_empty = false;
struct ath6kl *ar = vif->ar;
struct sk_buff *skb_to_drop = NULL;
if (conn->sta_flags & STA_PS_POLLED) {
spin_lock_bh(&conn->psq_lock);
if (!skb_queue_empty(&conn->psq))
*flags |= WMI_DATA_HDR_FLAGS_MORE;
spin_unlock_bh(&conn->psq_lock);
return false;
}
/* Queue the frames if the STA is sleeping */
spin_lock_bh(&conn->psq_lock);
if (skb_queue_len(&conn->psq) >= ar->tx_psq_threshold) {
ath6kl_dbg(ATH6KL_DBG_WLAN_TX, "TX PS queue is full\n");
skb_to_drop = skb_dequeue(&conn->psq);
}
is_psq_empty = skb_queue_empty(&conn->psq);
skb_queue_tail(&conn->psq, skb);
spin_unlock_bh(&conn->psq_lock);
/*
* If this is the first pkt getting queued
* for this STA, update the PVB for this
* STA.
*/
if (is_psq_empty)
ath6kl_wmi_set_pvb_cmd(ar->wmi,
vif->fw_vif_idx,
conn->aid, 1);
if (skb_to_drop != NULL) {
dev_kfree_skb(skb_to_drop);
vif->net_stats.tx_dropped++;
vif->net_stats.tx_aborted_errors++;
}
return true;
}
static bool ath6kl_powersave_ap(struct ath6kl_vif *vif, struct sk_buff *skb,
u32 *flags)
{
struct ethhdr *datap = (struct ethhdr *) skb->data;
struct ath6kl_sta *conn = NULL;
bool ps_queued = false;
struct ath6kl *ar = vif->ar;
struct sk_buff *skb_to_drop = NULL;
if (is_multicast_ether_addr(datap->h_dest)) {
u8 ctr = 0;
bool q_mcast = false;
for (ctr = 0; ctr < NUM_CONN; ctr++) {
if (ar->sta_list[ctr].sta_flags & STA_PS_SLEEP) {
q_mcast = true;
break;
}
}
if (q_mcast) {
/*
* If this transmit is not because of a Dtim Expiry
* q it.
*/
if (!test_bit(DTIM_EXPIRED, &vif->flags)) {
bool is_mcastq_empty = false;
spin_lock_bh(&ar->mcastpsq_lock);
if (skb_queue_len(&ar->mcastpsq) >=
ar->tx_psq_threshold) {
ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
"TX Mcast PS queue is full\n");
skb_to_drop =
skb_dequeue(&ar->mcastpsq);
}
is_mcastq_empty =
skb_queue_empty(&ar->mcastpsq);
skb_queue_tail(&ar->mcastpsq, skb);
spin_unlock_bh(&ar->mcastpsq_lock);
/*
* If this is the first Mcast pkt getting
* queued indicate to the target to set the
* BitmapControl LSB of the TIM IE.
*/
if (is_mcastq_empty)
ath6kl_wmi_set_pvb_cmd(ar->wmi,
vif->fw_vif_idx,
MCAST_AID, 1);
ps_queued = true;
if (skb_to_drop != NULL) {
dev_kfree_skb(skb_to_drop);
vif->net_stats.tx_dropped++;
vif->net_stats.tx_aborted_errors++;
}
} else {
/*
* This transmit is because of Dtim expiry.
* Determine if MoreData bit has to be set.
*/
spin_lock_bh(&ar->mcastpsq_lock);
if (!skb_queue_empty(&ar->mcastpsq))
*flags |= WMI_DATA_HDR_FLAGS_MORE;
spin_unlock_bh(&ar->mcastpsq_lock);
}
}
} else {
conn = ath6kl_find_sta(vif, datap->h_dest, false);
if (!conn) {
dev_kfree_skb(skb);
/* Inform the caller that the skb is consumed */
return true;
}
if (conn->sta_flags & STA_PS_SLEEP) {
ps_queued = ath6kl_process_uapsdq(conn,
vif, skb, flags);
if (!(*flags & WMI_DATA_HDR_FLAGS_UAPSD))
ps_queued = ath6kl_process_psq(conn,
vif, skb, flags);
}
}
return ps_queued;
}
/* Tx functions */
int ath6kl_control_tx(void *devt, struct sk_buff *skb,
enum htc_endpoint_id eid)
{
struct ath6kl *ar = devt;
int status = 0;
struct ath6kl_cookie *cookie = NULL;
struct ath6kl_vif *vif;
if (ar->fw_recovery->state == ATH6KL_FW_RECOVERY_INPROGRESS) {
dev_kfree_skb(skb);
return -EACCES;
}
spin_lock_bh(&ar->lock);
ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
"%s: skb=0x%p, len=0x%x eid =%d\n", __func__,
skb, skb->len, eid);
if (test_bit(WMI_CTRL_EP_FULL, &ar->flag) && (eid == ar->ctrl_ep)) {
/*
* Control endpoint is full, don't allocate resources, we
* are just going to drop this packet.
*/
cookie = NULL;
ath6kl_err("wmi ctrl ep full, dropping pkt : 0x%p, len:%d\n",
skb, skb->len);
} else {
vif = ath6kl_get_vif_by_index(ar, 0);
cookie = ath6kl_alloc_cookie(ar, vif, eid);
}
if (cookie == NULL) {
spin_unlock_bh(&ar->lock);
status = -ENOMEM;
goto fail_ctrl_tx;
}
ar->tx_pending[eid]++;
if (eid != ar->ctrl_ep)
ar->total_tx_data_pend++;
spin_unlock_bh(&ar->lock);
cookie->skb = skb;
cookie->map_no = 0;
set_htc_pkt_info(&cookie->htc_pkt, cookie, skb->data, skb->len,
eid, ATH6KL_CONTROL_PKT_TAG);
cookie->htc_pkt.skb = skb;
/*
* This interface is asynchronous, if there is an error, cleanup
* will happen in the TX completion callback.
*/
ath6kl_htc_tx(ar->htc_target, &cookie->htc_pkt);
return 0;
fail_ctrl_tx:
ath6kl_err("ath6kl_control_tx failed !: %d", status);
dev_kfree_skb(skb);
return status;
}
void ath6kl_mcc_flowctrl_conn_list_cleanup(struct ath6kl *ar)
{
int i;
struct ath6kl_fw_conn_list *pcon;
struct htc_packet *packet, *tmp_pkt;
struct list_head container;
INIT_LIST_HEAD(&container);
for (i = 0; i < NUM_CONN; i++) {
pcon = &ar->mcc_flowctrl_ctx->fw_conn_list[i];
spin_lock_bh(&ar->lock);
if (!list_empty(&pcon->re_queue)) {
list_for_each_entry_safe(packet, tmp_pkt, &pcon->re_queue,
list) {
list_del(&packet->list);
packet->status = 0;
list_add_tail(&packet->list, &container);
}
}
if (!list_empty(&pcon->conn_queue)) {
list_for_each_entry_safe(packet, tmp_pkt, &pcon->conn_queue,
list) {
list_del(&packet->list);
packet->status = 0;
list_add_tail(&packet->list, &container);
}
}
spin_unlock_bh(&ar->lock);
}
ath6kl_tx_complete(ar->htc_target, &container);
}
int ath6kl_data_tx(struct sk_buff *skb, struct net_device *dev)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct ath6kl_cookie *cookie = NULL;
enum htc_endpoint_id eid = ENDPOINT_UNUSED;
struct ath6kl_vif *vif = netdev_priv(dev);
u32 map_no = 0;
u16 htc_tag = ATH6KL_DATA_PKT_TAG;
u8 ac = 99 ; /* initialize to unmapped ac */
bool chk_adhoc_ps_mapping = false;
int ret;
struct wmi_tx_meta_v2 meta_v2;
void *meta;
u8 csum_start = 0, csum_dest = 0, csum = skb->ip_summed;
u8 meta_ver = 0;
u32 flags = 0;
ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
"%s: skb=0x%p, data=0x%p, len=0x%x\n", __func__,
skb, skb->data, skb->len);
if(skb_cloned(skb)) {
skb = skb_unshare(skb, GFP_ATOMIC);
if(skb == NULL) {
ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
"skb cannot be shared\n");
goto fail_tx;
}
}
/* If target is not associated */
if (!test_bit(CONNECTED, &vif->flags) &&
!test_bit(TESTMODE_EPPING, &ar->flag))
goto fail_tx;
if (!test_bit(WMI_READY, &ar->flag) &&
!test_bit(TESTMODE_EPPING, &ar->flag))
goto fail_tx;
/* AP mode Power saving processing */
if (vif->nw_type == AP_NETWORK) {
if (ath6kl_powersave_ap(vif, skb, &flags))
return 0;
}
if (test_bit(WMI_ENABLED, &ar->flag)) {
if ((dev->features & NETIF_F_IP_CSUM) &&
(csum == CHECKSUM_PARTIAL)) {
csum_start = skb->csum_start -
(skb_network_header(skb) - skb->head) +
sizeof(struct ath6kl_llc_snap_hdr);
csum_dest = skb->csum_offset + csum_start;
}
if (skb_headroom(skb) < dev->needed_headroom) {
struct sk_buff *tmp_skb = skb;
skb = skb_realloc_headroom(skb, dev->needed_headroom);
kfree_skb(tmp_skb);
if (skb == NULL) {
vif->net_stats.tx_dropped++;
return 0;
}
}
if (ath6kl_wmi_dix_2_dot3(ar->wmi, skb)) {
ath6kl_err("ath6kl_wmi_dix_2_dot3 failed\n");
goto fail_tx;
}
if ((dev->features & NETIF_F_IP_CSUM) &&
(csum == CHECKSUM_PARTIAL)) {
meta_v2.csum_start = csum_start;
meta_v2.csum_dest = csum_dest;
/* instruct target to calculate checksum */
meta_v2.csum_flags = WMI_META_V2_FLAG_CSUM_OFFLOAD;
meta_ver = WMI_META_VERSION_2;
meta = &meta_v2;
} else {
meta_ver = 0;
meta = NULL;
}
ret = ath6kl_wmi_data_hdr_add(ar->wmi, skb,
DATA_MSGTYPE, flags, 0,
meta_ver,
meta, vif->fw_vif_idx);
if (ret) {
ath6kl_warn("failed to add wmi data header:%d\n"
, ret);
goto fail_tx;
}
if ((vif->nw_type == ADHOC_NETWORK) &&
ar->ibss_ps_enable && test_bit(CONNECTED, &vif->flags))
chk_adhoc_ps_mapping = true;
else {
/* get the stream mapping */
ret = ath6kl_wmi_implicit_create_pstream(ar->wmi,
vif->fw_vif_idx, skb,
0, test_bit(WMM_ENABLED, &vif->flags), &ac);
if (ret)
goto fail_tx;
}
} else if (test_bit(TESTMODE_EPPING, &ar->flag)) {
struct epping_header *epping_hdr;
epping_hdr = (struct epping_header *)skb->data;
if (IS_EPPING_PACKET(epping_hdr)) {
ac = epping_hdr->stream_no_h;
/* some EPPING packets cannot be dropped no matter what
* access class it was sent on. Change the packet tag
* to guarantee it will not get dropped */
if (IS_EPING_PACKET_NO_DROP(epping_hdr)) {
htc_tag = ATH6KL_CONTROL_PKT_TAG;
}
if (ac == HCI_TRANSPORT_STREAM_NUM) {
goto fail_tx;
} else {
/* The payload of the frame is 32-bit aligned
* and thus the addition of the HTC header will
* mis-align the start of the HTC frame,
* the padding will be stripped off in the
* target */
if (EPPING_ALIGNMENT_PAD > 0) {
skb_push(skb, EPPING_ALIGNMENT_PAD);
}
}
} else {
/* In loopback mode, drop non-loopback packet */
goto fail_tx;
}
} else
goto fail_tx;
spin_lock_bh(&ar->lock);
if (chk_adhoc_ps_mapping)
eid = ath6kl_ibss_map_epid(skb, dev, &map_no);
else
eid = ar->ac2ep_map[ac];
if (eid == 0 || eid == ENDPOINT_UNUSED) {
if ((ac == WMM_NUM_AC) && test_bit(TESTMODE_EPPING, &ar->flag)){
/* for epping testing, the last AC maps to the control
* endpoint */
eid = ar->ctrl_ep;
} else {
ath6kl_err("eid %d is not mapped!\n", eid);
spin_unlock_bh(&ar->lock);
goto fail_tx;
}
}
if (eid <= ENDPOINT_UNUSED || eid >= ENDPOINT_MAX) {
ath6kl_err("Invalid eid %d!\n", eid);
goto fail_tx;
}
/* allocate resource for this packet */
cookie = ath6kl_alloc_cookie(ar, vif, eid);
if (!cookie) {
spin_unlock_bh(&ar->lock);
goto fail_tx;
}
/* update counts while the lock is held */
ar->tx_pending[eid]++;
ar->total_tx_data_pend++;
spin_unlock_bh(&ar->lock);
if (!IS_ALIGNED((unsigned long) skb->data - HTC_HDR_LENGTH, 4) &&
skb_cloned(skb)) {
/*
* We will touch (move the buffer data to align it. Since the
* skb buffer is cloned and not only the header is changed, we
* have to copy it to allow the changes. Since we are copying
* the data here, we may as well align it by reserving suitable
* headroom to avoid the memmove in ath6kl_htc_tx_buf_align().
*/
struct sk_buff *nskb;
nskb = skb_copy_expand(skb, HTC_HDR_LENGTH, 0, GFP_ATOMIC);
if (nskb == NULL)
goto fail_skbexp;
kfree_skb(skb);
skb = nskb;
}
cookie->skb = skb;
cookie->map_no = map_no;
set_htc_pkt_info(&cookie->htc_pkt, cookie, skb->data, skb->len,
eid, htc_tag);
cookie->htc_pkt.skb = skb;
ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, __func__, "tx ",
skb->data, skb->len);
/* MCC Flowctrl */
if ((ar->is_mcc_enabled == true) &&
(ath6kl_debug_quirks(ar, ATH6KL_MODULE_MCC_FLOWCTRL))) {
enum htc_send_queue_result queue_result;
u8 conn_id = ath6kl_mcc_flowctrl_get_conn_id(vif, skb);
if (conn_id >= NUM_CONN)
goto fail_skbexp;
cookie->htc_pkt.connid = conn_id;
cookie->htc_pkt.recycle_count = 0;
queue_result = ath6kl_mcc_flowctrl_tx_schedule_pkt(ar, (void *)cookie);
if (queue_result == HTC_SEND_QUEUE_OK) { /* Queue it */
ar->mcc_flowctrl_ctx->fw_conn_list[conn_id].mcc_stats.sche_tx_queued += 1;
return 0;
} else if (queue_result == HTC_SEND_QUEUE_DROP) {
/* Error, drop it. */
ar->mcc_flowctrl_ctx->fw_conn_list[conn_id].mcc_stats.tx_sched_dropped += 1;
goto fail_skbexp;
}
}
/*
* HTC interface is asynchronous, if this fails, cleanup will
* happen in the ath6kl_tx_complete callback.
*/
ath6kl_htc_tx(ar->htc_target, &cookie->htc_pkt);
return 0;
fail_skbexp:
/* Release the cookie */
ath6kl_free_cookie(ar, vif, cookie);
fail_tx:
dev_kfree_skb(skb);
vif->net_stats.tx_dropped++;
vif->net_stats.tx_aborted_errors++;
return 0;
}
/* indicate tx activity or inactivity on a WMI stream */
void ath6kl_indicate_tx_activity(void *devt, u8 traffic_class, bool active)
{
struct ath6kl *ar = devt;
enum htc_endpoint_id eid;
int i;
eid = ar->ac2ep_map[traffic_class];
if (!test_bit(WMI_ENABLED, &ar->flag))
goto notify_htc;
spin_lock_bh(&ar->lock);
ar->ac_stream_active[traffic_class] = active;
if (active) {
/*
* Keep track of the active stream with the highest
* priority.
*/
if (ar->ac_stream_pri_map[traffic_class] >
ar->hiac_stream_active_pri)
/* set the new highest active priority */
ar->hiac_stream_active_pri =
ar->ac_stream_pri_map[traffic_class];
} else {
/*
* We may have to search for the next active stream
* that is the highest priority.
*/
if (ar->hiac_stream_active_pri ==
ar->ac_stream_pri_map[traffic_class]) {
/*
* The highest priority stream just went inactive
* reset and search for the "next" highest "active"
* priority stream.
*/
ar->hiac_stream_active_pri = 0;
for (i = 0; i < WMM_NUM_AC; i++) {
if (ar->ac_stream_active[i] &&
(ar->ac_stream_pri_map[i] >
ar->hiac_stream_active_pri))
/*
* Set the new highest active
* priority.
*/
ar->hiac_stream_active_pri =
ar->ac_stream_pri_map[i];
}
}
}
spin_unlock_bh(&ar->lock);
notify_htc:
/* notify HTC, this may cause credit distribution changes */
ath6kl_htc_activity_changed(ar->htc_target, eid, active);
}
enum htc_send_full_action ath6kl_tx_queue_full(struct htc_target *target,
struct htc_packet *packet)
{
struct ath6kl *ar = target->dev->ar;
struct ath6kl_vif *vif;
enum htc_endpoint_id endpoint = packet->endpoint;
enum htc_send_full_action action = HTC_SEND_FULL_KEEP;
if (test_bit(TESTMODE_EPPING, &ar->flag)) {
int ac;
if (packet->info.tx.tag == ATH6KL_CONTROL_PKT_TAG) {
/* don't drop special control packets */
return HTC_SEND_FULL_KEEP;
}
ac = ar->ep2ac_map[endpoint];
/* for endpoint ping testing drop Best Effort and Background
* if any of the higher priority traffic is active */
if ((ar->ac_stream_active[WMM_AC_VO] ||
ar->ac_stream_active[WMM_AC_BE])
&& ((ac == WMM_AC_BE) || (ac == WMM_AC_BK))) {
return HTC_SEND_FULL_DROP;
} else {
spin_lock_bh(&ar->list_lock);
list_for_each_entry(vif, &ar->vif_list, list) {
spin_unlock_bh(&ar->list_lock);
/* keep but stop the netqueues */
spin_lock_bh(&vif->if_lock);
set_bit(NETQ_STOPPED, &vif->flags);
spin_unlock_bh(&vif->if_lock);
netif_stop_queue(vif->ndev);
}
return HTC_SEND_FULL_KEEP;
}
}
if (endpoint == ar->ctrl_ep) {
/*
* Under normal WMI if this is getting full, then something
* is running rampant the host should not be exhausting the
* WMI queue with too many commands the only exception to
* this is during testing using endpointping.
*/
set_bit(WMI_CTRL_EP_FULL, &ar->flag);
ath6kl_err("wmi ctrl ep is full\n");
ath6kl_recovery_err_notify(ar, ATH6KL_FW_EP_FULL);
return action;
}
if (packet->info.tx.tag == ATH6KL_CONTROL_PKT_TAG)
return action;
/*
* The last MAX_HI_COOKIE_NUM "batch" of cookies are reserved for
* the highest active stream.
*/
if (ar->ac_stream_pri_map[ar->ep2ac_map[endpoint]] <
ar->hiac_stream_active_pri &&
ar->cookie_count <=
target->endpoint[endpoint].tx_drop_packet_threshold)
/*
* Give preference to the highest priority stream by
* dropping the packets which overflowed.
*/
action = HTC_SEND_FULL_DROP;
/* FIXME: Locking */
spin_lock_bh(&ar->list_lock);
list_for_each_entry(vif, &ar->vif_list, list) {
spin_unlock_bh(&ar->list_lock);
if (vif->nw_type == ADHOC_NETWORK ||
action != HTC_SEND_FULL_DROP) {
if ((!test_bit(NETQ_STOPPED, &vif->flags)) &&
(vif->cookie_used > NETIF_STOP_THOLD)) {
set_bit(NETQ_STOPPED, &vif->flags);
netif_stop_queue(vif->ndev);
}
}
spin_lock_bh(&ar->list_lock);
}
spin_unlock_bh(&ar->list_lock);
return action;
}
/* TODO this needs to be looked at */
static void ath6kl_tx_clear_node_map(struct ath6kl_vif *vif,
enum htc_endpoint_id eid, u32 map_no)
{
struct ath6kl *ar = vif->ar;
u32 i;
if (vif->nw_type != ADHOC_NETWORK)
return;
if (!ar->ibss_ps_enable)
return;
if (eid == ar->ctrl_ep)
return;
if (map_no == 0)
return;
map_no--;
ar->node_map[map_no].tx_pend--;
if (ar->node_map[map_no].tx_pend)
return;
if (map_no != (ar->node_num - 1))
return;
for (i = ar->node_num; i > 0; i--) {
if (ar->node_map[i - 1].tx_pend)
break;
memset(&ar->node_map[i - 1], 0,
sizeof(struct ath6kl_node_mapping));
ar->node_num--;
}
}
void ath6kl_tx_complete(struct htc_target *target,
struct list_head *packet_queue)
{
struct ath6kl *ar = target->dev->ar;
struct sk_buff_head skb_queue;
struct htc_packet *packet;
struct sk_buff *skb;
struct ath6kl_cookie *ath6kl_cookie;
u32 map_no = 0;
int status;
enum htc_endpoint_id eid;
bool wake_event = false;
bool flushing[ATH6KL_VIF_MAX] = {false};
u8 if_idx;
struct ath6kl_vif *vif = NULL;
u16 tag;
skb_queue_head_init(&skb_queue);
/* lock the driver as we update internal state */
spin_lock_bh(&ar->lock);
/* reap completed packets */
while (!list_empty(packet_queue)) {
packet = list_first_entry(packet_queue, struct htc_packet,
list);
list_del(&packet->list);
ath6kl_cookie = (struct ath6kl_cookie *)packet->pkt_cntxt;
if (!ath6kl_cookie)
goto fatal;
status = packet->status;
skb = ath6kl_cookie->skb;
eid = packet->endpoint;
map_no = ath6kl_cookie->map_no;
tag = packet->info.tx.tag;
if (!skb || !skb->data)
goto fatal;
__skb_queue_tail(&skb_queue, skb);
if (!status && (packet->act_len != skb->len))
goto fatal;
if (eid <= ENDPOINT_UNUSED || eid >= ENDPOINT_MAX)
goto fatal;
ar->tx_pending[eid]--;
if (!test_bit(TESTMODE_EPPING, &ar->flag)) {
if (eid != ar->ctrl_ep)
ar->total_tx_data_pend--;
if (eid == ar->ctrl_ep) {
if (test_bit(WMI_CTRL_EP_FULL, &ar->flag))
clear_bit(WMI_CTRL_EP_FULL, &ar->flag);
if (ar->tx_pending[eid] == 0)
wake_event = true;
}
if (eid == ar->ctrl_ep) {
if_idx = wmi_cmd_hdr_get_if_idx(
(struct wmi_cmd_hdr *) packet->buf);
} else {
if_idx = wmi_data_hdr_get_if_idx(
(struct wmi_data_hdr *) packet->buf);
}
} else {
/* The epping packet is not coming from wmi, skip the index
* retrival, epping assume using the first if_idx anyway
*/
if_idx = 0;
}
vif = ath6kl_get_vif_by_index(ar, if_idx);
if (!vif || if_idx >= ATH6KL_VIF_MAX) {
ath6kl_free_cookie(ar, vif, ath6kl_cookie);
continue;
}
if (status) {
if (status == -ECANCELED)
/* a packet was flushed */
flushing[if_idx] = true;
if (status != -ENOSPC && status != -ECANCELED) {
if (status == -ENOMEM) {
if(!(vif->net_stats.tx_errors %
ATH6KL_DBGPRNT_FREQ)) {
ath6kl_warn("tx complete error"
": -ENOMEM\n");
}
}
else {
ath6kl_warn("tx complete error: %d\n",
status);
}
}
vif->net_stats.tx_errors++;
ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
"%s: skb=0x%p data=0x%p len=0x%x eid=%d %s\n",
__func__, skb, packet->buf, packet->act_len,
eid, "error!");
} else {
ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
"%s: skb=0x%p data=0x%p len=0x%x eid=%d %s\n",
__func__, skb, packet->buf, packet->act_len,
eid, "OK");
flushing[if_idx] = false;
vif->net_stats.tx_packets++;
vif->net_stats.tx_bytes += skb->len;
}
ath6kl_tx_clear_node_map(vif, eid, map_no);
if (eid == ar->ctrl_ep || tag == ATH6KL_CONTROL_PKT_TAG)
vif = ath6kl_get_vif_by_index(ar, 0);
ath6kl_free_cookie(ar, vif, ath6kl_cookie);
#ifdef ATH6KL_IF_NEEDED_LATER
if (test_bit(NETQ_STOPPED, &vif->flags))
clear_bit(NETQ_STOPPED, &vif->flags);
#endif
}
spin_unlock_bh(&ar->lock);
__skb_queue_purge(&skb_queue);
/* FIXME: Locking */
spin_lock_bh(&ar->list_lock);
list_for_each_entry(vif, &ar->vif_list, list) {
if ((test_bit(CONNECTED, &vif->flags) ||
test_bit(TESTMODE_EPPING, &ar->flag)) &&
!flushing[vif->fw_vif_idx]) {
spin_unlock_bh(&ar->list_lock);
if ((vif->intra_bss_data_cnt > 0) ||
(vif->cookie_used < NETIF_WAKE_THOLD)) {
if (test_bit(NETQ_STOPPED, &vif->flags)) {
clear_bit(NETQ_STOPPED, &vif->flags);
netif_wake_queue(vif->ndev);
}
}
if (vif->intra_bss_data_cnt > 0)
vif->intra_bss_data_cnt--;
spin_lock_bh(&ar->list_lock);
}
}
spin_unlock_bh(&ar->list_lock);
if (wake_event)
wake_up(&ar->event_wq);
return;
fatal:
WARN_ON(1);
spin_unlock_bh(&ar->lock);
return;
}
void ath6kl_tx_data_cleanup(struct ath6kl *ar)
{
int i;
/* flush all the data (non-control) streams */
for (i = 0; i < WMM_NUM_AC; i++)
ath6kl_htc_flush_txep(ar->htc_target, ar->ac2ep_map[i],
ATH6KL_DATA_PKT_TAG);
ath6kl_mcc_flowctrl_conn_list_cleanup(ar);
}
#ifdef CONFIG_ATH6KL_BAM2BAM
static void ath6kl_deliver_ampdu_frames_to_ipa(struct ath6kl *ar,
struct net_device *dev, struct sk_buff *skb)
{
int status;
struct ath6kl_vif *vif = netdev_priv(dev);
struct ethhdr *datap = NULL;
struct sk_buff *skb1 = NULL;
struct ath6kl_sta *conn = NULL;
if (!skb)
return;
datap = (struct ethhdr *) skb->data;
if (vif->nw_type == AP_NETWORK) {
if (datap)
conn = ath6kl_find_sta(vif, datap->h_dest,
ar->inter_bss);
/*
* Search for a connected STA with dstMac
* as the Mac address. If found send the
* frame to it on the air else send the
* frame up the stack.
*/
if (conn) {
if (vif->intra_bss) {
skb1 = skb;
skb = NULL;
} else {
if(vif == conn->vif) {
dev_kfree_skb(skb);
skb = NULL;
} else {
skb1 = skb;
skb = NULL;
}
}
} else if (!is_broadcast_ether_addr(datap->h_dest) &&
!is_multicast_ether_addr(datap->h_dest) &&
(NULL != ath6kl_find_sta(vif, datap->h_dest,
true))) {
dev_kfree_skb(skb);
skb = NULL;
}
if (skb1 && conn) {
if (vif->intra_bss_data_cnt < vif->cookie_used)
vif->intra_bss_data_cnt++;
ath6kl_data_tx(skb1, conn->vif->ndev);
}
if (skb == NULL)
/* nothing to deliver up the stack */
return;
}
skb->dev = dev;
if (!(skb->dev->flags & IFF_UP)) {
dev_kfree_skb(skb);
return;
}
skb->protocol = eth_type_trans(skb, skb->dev);
status = ath6kl_usb_data_send_to_sysbam_pipe(ar, skb);
if (status) {
ath6kl_dbg(ATH6KL_DBG_OOO,
"BAM-CM: Failed to send data over sysbam pipe %s\n",
__func__);
}
}
#endif
/* Rx functions */
static void ath6kl_deliver_frames_to_nw_stack(struct net_device *dev,
struct sk_buff *skb)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct ath6kl_vif *vif = netdev_priv(dev);
struct ethhdr *datap = NULL;
struct sk_buff *skb1 = NULL;
struct ath6kl_sta *conn = NULL;
if (!skb)
return;
datap = (struct ethhdr *) skb->data;
if (vif->nw_type == AP_NETWORK) {
if (datap)
conn = ath6kl_find_sta(vif, datap->h_dest,
ar->inter_bss);
/*
* Search for a connected STA with dstMac
* as the Mac address. If found send the
* frame to it on the air else send the
* frame up the stack.
*/
if (conn) {
if (vif->intra_bss) {
skb1 = skb;
skb = NULL;
} else {
if(vif == conn->vif) {
dev_kfree_skb(skb);
skb = NULL;
} else {
skb1 = skb;
skb = NULL;
}
}
} else if (!is_broadcast_ether_addr(datap->h_dest) &&
!is_multicast_ether_addr(datap->h_dest) &&
(NULL != ath6kl_find_sta(vif, datap->h_dest,
true))) {
dev_kfree_skb(skb);
skb = NULL;
}
if (skb1 && conn && conn->vif) {
if (vif->intra_bss_data_cnt < vif->cookie_used)
vif->intra_bss_data_cnt++;
ath6kl_data_tx(skb1, conn->vif->ndev);
}
if (skb == NULL)
/* nothing to deliver up the stack */
return;
}
skb->dev = dev;
if (!(skb->dev->flags & IFF_UP)) {
dev_kfree_skb(skb);
return;
}
skb->protocol = eth_type_trans(skb, skb->dev);
netif_rx_ni(skb);
}
static void ath6kl_alloc_netbufs(struct sk_buff_head *q, u16 num)
{
struct sk_buff *skb;
while (num) {
skb = ath6kl_buf_alloc(ATH6KL_BUFFER_SIZE);
if (!skb) {
ath6kl_err("netbuf allocation failed\n");
return;
}
skb_queue_tail(q, skb);
num--;
}
}
void ath6kl_rx_refill(struct htc_target *target, enum htc_endpoint_id endpoint)
{
struct ath6kl *ar = target->dev->ar;
struct sk_buff *skb;
int rx_buf;
int n_buf_refill;
struct htc_packet *packet;
struct list_head queue;
n_buf_refill = ATH6KL_MAX_RX_BUFFERS -
ath6kl_htc_get_rxbuf_num(ar->htc_target, endpoint);
if (n_buf_refill <= 0)
return;
INIT_LIST_HEAD(&queue);
ath6kl_dbg(ATH6KL_DBG_WLAN_RX,
"%s: providing htc with %d buffers at eid=%d\n",
__func__, n_buf_refill, endpoint);
for (rx_buf = 0; rx_buf < n_buf_refill; rx_buf++) {
skb = ath6kl_buf_alloc(ATH6KL_BUFFER_SIZE);
if (!skb)
break;
packet = (struct htc_packet *) skb->head;
if (!IS_ALIGNED((unsigned long) skb->data, 4)) {
size_t len = skb_headlen(skb);
skb->data = PTR_ALIGN(skb->data - 4, 4);
skb_set_tail_pointer(skb, len);
}
set_htc_rxpkt_info(packet, skb, skb->data,
ATH6KL_BUFFER_SIZE, endpoint);
packet->skb = skb;
list_add_tail(&packet->list, &queue);
}
if (!list_empty(&queue))
ath6kl_htc_add_rxbuf_multiple(ar->htc_target, &queue);
}
void ath6kl_refill_amsdu_rxbufs(struct ath6kl *ar, int count)
{
struct htc_packet *packet;
struct sk_buff *skb;
while (count) {
skb = ath6kl_buf_alloc(ATH6KL_AMSDU_BUFFER_SIZE);
if (!skb)
return;
packet = (struct htc_packet *) skb->head;
if (!IS_ALIGNED((unsigned long) skb->data, 4)) {
size_t len = skb_headlen(skb);
skb->data = PTR_ALIGN(skb->data - 4, 4);
skb_set_tail_pointer(skb, len);
}
set_htc_rxpkt_info(packet, skb, skb->data,
ATH6KL_AMSDU_BUFFER_SIZE, 0);
packet->skb = skb;
spin_lock_bh(&ar->lock);
list_add_tail(&packet->list, &ar->amsdu_rx_buffer_queue);
spin_unlock_bh(&ar->lock);
count--;
}
}
/*
* Callback to allocate a receive buffer for a pending packet. We use a
* pre-allocated list of buffers of maximum AMSDU size (4K).
*/
struct htc_packet *ath6kl_alloc_amsdu_rxbuf(struct htc_target *target,
enum htc_endpoint_id endpoint,
int len)
{
struct ath6kl *ar = target->dev->ar;
struct htc_packet *packet = NULL;
struct list_head *pkt_pos;
int refill_cnt = 0, depth = 0;
ath6kl_dbg(ATH6KL_DBG_WLAN_RX, "%s: eid=%d, len:%d\n",
__func__, endpoint, len);
if ((len <= ATH6KL_BUFFER_SIZE) ||
(len > ATH6KL_AMSDU_BUFFER_SIZE))
return NULL;
spin_lock_bh(&ar->lock);
if (list_empty(&ar->amsdu_rx_buffer_queue)) {
spin_unlock_bh(&ar->lock);
refill_cnt = ATH6KL_MAX_AMSDU_RX_BUFFERS;
goto refill_buf;
}
packet = list_first_entry(&ar->amsdu_rx_buffer_queue,
struct htc_packet, list);
list_del(&packet->list);
list_for_each(pkt_pos, &ar->amsdu_rx_buffer_queue)
depth++;
refill_cnt = ATH6KL_MAX_AMSDU_RX_BUFFERS - depth;
spin_unlock_bh(&ar->lock);
/* set actual endpoint ID */
packet->endpoint = endpoint;
refill_buf:
if (refill_cnt >= ATH6KL_AMSDU_REFILL_THRESHOLD)
ath6kl_refill_amsdu_rxbufs(ar, refill_cnt);
return packet;
}
static struct sk_buff *ath6kl_aggr_get_free_skb(struct aggr_info *p_aggr)
{
struct sk_buff *skb = NULL;
if (skb_queue_len(&p_aggr->rx_amsdu_freeq) <
(AGGR_NUM_OF_FREE_NETBUFS >> 2))
ath6kl_alloc_netbufs(&p_aggr->rx_amsdu_freeq,
AGGR_NUM_OF_FREE_NETBUFS);
skb = skb_dequeue(&p_aggr->rx_amsdu_freeq);
return skb;
}
static void aggr_slice_amsdu(struct aggr_info *p_aggr,
struct rxtid *rxtid, struct sk_buff *skb)
{
struct sk_buff *new_skb;
struct ethhdr *hdr;
u16 frame_8023_len, payload_8023_len, mac_hdr_len, amsdu_len;
u8 *framep;
mac_hdr_len = sizeof(struct ethhdr);
framep = skb->data + mac_hdr_len;
amsdu_len = skb->len - mac_hdr_len;
while (amsdu_len > mac_hdr_len) {
hdr = (struct ethhdr *) framep;
payload_8023_len = ntohs(hdr->h_proto);
if (payload_8023_len < MIN_MSDU_SUBFRAME_PAYLOAD_LEN ||
payload_8023_len > MAX_MSDU_SUBFRAME_PAYLOAD_LEN) {
ath6kl_err("802.3 AMSDU bound check failed. len %d\n",
payload_8023_len);
break;
}
frame_8023_len = payload_8023_len + mac_hdr_len;
new_skb = ath6kl_aggr_get_free_skb(p_aggr);
if (!new_skb) {
ath6kl_err("no buffer available\n");
break;
}
memcpy(new_skb->data, framep, frame_8023_len);
skb_put(new_skb, frame_8023_len);
if (ath6kl_wmi_dot3_2_dix(new_skb)) {
ath6kl_err("dot3_2_dix error\n");
dev_kfree_skb(new_skb);
break;
}
skb_queue_tail(&rxtid->q, new_skb);
/* Is this the last subframe within this aggregate ? */
if ((amsdu_len - frame_8023_len) == 0)
break;
/* Add the length of A-MSDU subframe padding bytes -
* Round to nearest word.
*/
frame_8023_len = ALIGN(frame_8023_len, 4);
framep += frame_8023_len;
amsdu_len -= frame_8023_len;
}
dev_kfree_skb(skb);
}
#ifdef CONFIG_ATH6KL_BAM2BAM
static void aggr_deque_frms_bam2bam(struct aggr_info_conn *agg_conn, u8 tid,
u16 seq_no, u8 order)
{
struct sk_buff *skb;
struct rxtid *rxtid;
struct skb_hold_q *node;
u16 idx, idx_end, seq_end, i, j, ext_end;
struct rxtid_stats *stats;
bool is_update = false;
rxtid = &agg_conn->rx_tid[tid];
stats = &agg_conn->stat[tid];
if (!rxtid->aggr) {
return;
}
spin_lock_bh(&rxtid->lock);
if (order == 1) {
idx = AGGR_WIN_IDX(seq_no, rxtid->hold_q_sz);
rxtid->seq_next = seq_no;
ath6kl_dbg(ATH6KL_DBG_OOO,
"ooo:flush seq_no with order 1= %d\n", seq_no);
} else {
idx = AGGR_WIN_IDX(rxtid->seq_next, rxtid->hold_q_sz);
ath6kl_dbg(ATH6KL_DBG_OOO,
"ooo:flush seq_no = %d\n", seq_no);
}
/*
* idx_end is typically the last possible frame in the window,
* but changes to 'the' seq_no, when BAR comes. If seq_no
* is non-zero, we will go up to that and stop.
* Note: last seq no in current window will occupy the same
* index position as index that is just previous to start.
* An imp point : if win_sz is 7, for seq_no space of 4095,
* then, there would be holes when sequence wrap around occurs.
* Target should judiciously choose the win_sz, based on
* this condition. For 4095, (TID_WINDOW_SZ = 2 x win_sz
* 2, 4, 8, 16 win_sz works fine).
* We must deque from "idx" to "idx_end", including both.
*/
if (!order || order == 2) {
seq_end = rxtid->seq_next;
} else {
seq_end = seq_no;
}
idx_end = AGGR_WIN_IDX(seq_end, rxtid->hold_q_sz);
do {
ext_end = (rxtid->seq_next + rxtid->hold_q_sz - 1) &
ATH6KL_MAX_SEQ_NO;
node = &rxtid->hold_q[idx];
if (((order == 1) && (!node->skb))
|| ((order == 2) && ((ext_end >= seq_no) && (!node->skb))))
break;
if (node->skb) {
if (node->is_amsdu)
aggr_slice_amsdu(agg_conn->aggr_info, rxtid,
node->skb);
else
skb_queue_tail(&rxtid->q, node->skb);
node->skb = NULL;
ath6kl_dbg(ATH6KL_DBG_OOO,
"ooo:Data removed = %d\n", rxtid->seq_next);
} else
stats->num_hole++;
rxtid->seq_next = ATH6KL_NEXT_SEQ_NO(rxtid->seq_next);
idx = AGGR_WIN_IDX(rxtid->seq_next, rxtid->hold_q_sz);
} while (idx != idx_end);
spin_unlock_bh(&rxtid->lock);
stats->num_delivered += skb_queue_len(&rxtid->q);
while ((skb = skb_dequeue(&rxtid->q)))
ath6kl_deliver_ampdu_frames_to_ipa(agg_conn->vif->ar,
agg_conn->dev, skb);
spin_lock_bh(&rxtid->lock);
if (!order) {
rxtid->seq_next = 0;
} else if (order == 1){
idx_end = idx;
do {
node = &rxtid->hold_q[idx];
if (node->skb) {
ath6kl_dbg(ATH6KL_DBG_OOO,
"ooo:Now seq_next = %d\n",
rxtid->seq_next);
is_update = true;
break;
}
rxtid->seq_next = ATH6KL_NEXT_SEQ_NO(rxtid->seq_next);
idx = AGGR_WIN_IDX(rxtid->seq_next, rxtid->hold_q_sz);
} while (idx != idx_end);
if (!is_update)
rxtid->seq_next = 0;
}
spin_unlock_bh(&rxtid->lock);
if (agg_conn->timer_scheduled) {
agg_conn->timer_scheduled = false;
for (i = 0; i < NUM_OF_TIDS; i++) {
rxtid = &agg_conn->rx_tid[i];
if (rxtid->aggr && rxtid->hold_q) {
spin_lock_bh(&rxtid->lock);
for (j = 0; j < rxtid->hold_q_sz; j++) {
if (rxtid->hold_q[j].skb) {
agg_conn->timer_scheduled = true;
rxtid->timer_mon = true;
break;
}
}
spin_unlock_bh(&rxtid->lock);
if (j >= rxtid->hold_q_sz) {
rxtid->timer_mon = false;
ath6kl_dbg(ATH6KL_DBG_OOO,
"ooo:No hole is present and timer is stopped\n");
}
}
}
if (agg_conn->timer_scheduled) {
mod_timer(&agg_conn->timer,
jiffies + msecs_to_jiffies(AGGR_RX_TIMEOUT));
} else {
del_timer(&agg_conn->timer);
}
}
}
static bool aggr_process_recv_frm_bam2bam(struct aggr_info_conn *agg_conn,
u8 tid,
u16 seq_no,
bool is_amsdu, struct sk_buff *frame)
{
struct sk_buff *skb;
struct rxtid *rxtid;
struct rxtid_stats *stats;
struct skb_hold_q *node;
u16 idx;
bool is_queued = false;
rxtid = &agg_conn->rx_tid[tid];
stats = &agg_conn->stat[tid];
stats->num_into_aggr++;
if (!rxtid->aggr) {
if (is_amsdu) {
aggr_slice_amsdu(agg_conn->aggr_info, rxtid, frame);
is_queued = true;
stats->num_amsdu++;
while ((skb = skb_dequeue(&rxtid->q)))
ath6kl_deliver_frames_to_nw_stack(agg_conn->dev,
skb);
}
return is_queued;
}
/* Set the seq next to current incoming seq no if
1. There are no frames in hold q for this tid/aid pair
2. The incoming seq no is before the current seq next
sequence number
*/
if ((rxtid->timer_mon) || (rxtid->seq_next)) {
if ((((rxtid->seq_next > seq_no) && ((seq_no + rxtid->hold_q_sz -1)
> rxtid->seq_next )) || (((rxtid->seq_next < seq_no) &&
(rxtid->seq_next + rxtid->hold_q_sz -1) < seq_no))))
rxtid->seq_next = seq_no;
} else {
rxtid->seq_next = seq_no;
}
idx = AGGR_WIN_IDX(seq_no, rxtid->hold_q_sz);
node = &rxtid->hold_q[idx];
spin_lock_bh(&rxtid->lock);
ath6kl_dbg(ATH6KL_DBG_OOO,
"ooo:frame %d is in idx = %d\n",seq_no, idx);
/*
* Is the cur frame duplicate or something beyond our window(hold_q
* -> which is 2x, already)?
*
* 1. Duplicate is easy - drop incoming frame.
* 2. Not falling in current sliding window.
* 2a. is the frame_seq_no preceding current tid_seq_no?
* -> drop the frame. perhaps sender did not get our ACK.
* this is taken care of above.
* 2b. is the frame_seq_no beyond window(st, TID_WINDOW_SZ);
* -> Taken care of it above, by moving window forward.
*/
if (node->skb) {
dev_kfree_skb(node->skb);
stats->num_dups++;
}
node->skb = frame;
is_queued = true;
stats->num_mpdu++;
node->is_amsdu = is_amsdu;
node->seq_no = seq_no;
spin_unlock_bh(&rxtid->lock);
if (agg_conn->timer_scheduled) {
ath6kl_dbg(ATH6KL_DBG_OOO,
"ooo:timer is already scheduled \n");
return is_queued;
}
spin_lock_bh(&rxtid->lock);
for (idx = 0 ; idx < rxtid->hold_q_sz; idx++) {
if (rxtid->hold_q[idx].skb) {
/*
* There is a frame in the queue and no
* timer so start a timer to ensure that
* the frame doesn't remain stuck
* forever.
*/
ath6kl_dbg(ATH6KL_DBG_OOO,
"ooo:start the timer\n");
agg_conn->timer_scheduled = true;
mod_timer(&agg_conn->timer,
(jiffies + (HZ * AGGR_RX_TIMEOUT) / 1000));
rxtid->timer_mon = true;
break;
}
}
spin_unlock_bh(&rxtid->lock);
return is_queued;
}
static void aggr_process_amsdu_bam2bam(struct aggr_info_conn *agg_conn,
u8 tid, struct sk_buff *frame)
{
struct sk_buff *skb;
struct rxtid *rxtid;
rxtid = &agg_conn->rx_tid[tid];
aggr_slice_amsdu(agg_conn->aggr_info, rxtid, frame);
while ((skb = skb_dequeue(&rxtid->q)))
ath6kl_deliver_frames_to_nw_stack(agg_conn->dev,
skb);
}
#endif /* CONFIG_ATH6KL_BAM2BAM */
static void aggr_deque_frms(struct aggr_info_conn *agg_conn, u8 tid,
u16 seq_no, u8 order)
{
struct sk_buff *skb;
struct rxtid *rxtid;
struct skb_hold_q *node;
u16 idx, idx_end, seq_end;
struct rxtid_stats *stats;
rxtid = &agg_conn->rx_tid[tid];
stats = &agg_conn->stat[tid];
spin_lock_bh(&rxtid->lock);
idx = AGGR_WIN_IDX(rxtid->seq_next, rxtid->hold_q_sz);
/*
* idx_end is typically the last possible frame in the window,
* but changes to 'the' seq_no, when BAR comes. If seq_no
* is non-zero, we will go up to that and stop.
* Note: last seq no in current window will occupy the same
* index position as index that is just previous to start.
* An imp point : if win_sz is 7, for seq_no space of 4095,
* then, there would be holes when sequence wrap around occurs.
* Target should judiciously choose the win_sz, based on
* this condition. For 4095, (TID_WINDOW_SZ = 2 x win_sz
* 2, 4, 8, 16 win_sz works fine).
* We must deque from "idx" to "idx_end", including both.
*/
seq_end = seq_no ? seq_no : rxtid->seq_next;
idx_end = AGGR_WIN_IDX(seq_end, rxtid->hold_q_sz);
do {
node = &rxtid->hold_q[idx];
if ((order == 1) && (!node->skb))
break;
if (node->skb) {
if (node->is_amsdu)
aggr_slice_amsdu(agg_conn->aggr_info, rxtid,
node->skb);
else
skb_queue_tail(&rxtid->q, node->skb);
node->skb = NULL;
} else
stats->num_hole++;
rxtid->seq_next = ATH6KL_NEXT_SEQ_NO(rxtid->seq_next);
idx = AGGR_WIN_IDX(rxtid->seq_next, rxtid->hold_q_sz);
} while (idx != idx_end);
spin_unlock_bh(&rxtid->lock);
stats->num_delivered += skb_queue_len(&rxtid->q);
while ((skb = skb_dequeue(&rxtid->q)))
ath6kl_deliver_frames_to_nw_stack(agg_conn->dev, skb);
}
static bool aggr_process_recv_frm(struct aggr_info_conn *agg_conn, u8 tid,
u16 seq_no,
bool is_amsdu, struct sk_buff *frame)
{
struct rxtid *rxtid;
struct rxtid_stats *stats;
struct sk_buff *skb;
struct skb_hold_q *node;
u16 idx, st, cur, end;
bool is_queued = false;
u16 extended_end;
rxtid = &agg_conn->rx_tid[tid];
stats = &agg_conn->stat[tid];
stats->num_into_aggr++;
if (!rxtid->aggr) {
if (is_amsdu) {
aggr_slice_amsdu(agg_conn->aggr_info, rxtid, frame);
is_queued = true;
stats->num_amsdu++;
while ((skb = skb_dequeue(&rxtid->q)))
ath6kl_deliver_frames_to_nw_stack(agg_conn->dev,
skb);
}
return is_queued;
}
/* Check the incoming sequence no, if it's in the window */
st = rxtid->seq_next;
cur = seq_no;
end = (st + rxtid->hold_q_sz-1) & ATH6KL_MAX_SEQ_NO;
if (((st < end) && (cur < st || cur > end)) ||
((st > end) && (cur > end) && (cur < st))) {
extended_end = (end + rxtid->hold_q_sz - 1) &
ATH6KL_MAX_SEQ_NO;
if (((end < extended_end) &&
(cur < end || cur > extended_end)) ||
((end > extended_end) && (cur > extended_end) &&
(cur < end))) {
aggr_deque_frms(agg_conn, tid, 0, 0);
spin_lock_bh(&rxtid->lock);
if (cur >= rxtid->hold_q_sz - 1)
rxtid->seq_next = cur - (rxtid->hold_q_sz - 1);
else
rxtid->seq_next = ATH6KL_MAX_SEQ_NO -
(rxtid->hold_q_sz - 2 - cur);
spin_unlock_bh(&rxtid->lock);
} else {
/*
* Dequeue only those frames that are outside the
* new shifted window.
*/
if (cur >= rxtid->hold_q_sz - 1)
st = cur - (rxtid->hold_q_sz - 1);
else
st = ATH6KL_MAX_SEQ_NO -
(rxtid->hold_q_sz - 2 - cur);
aggr_deque_frms(agg_conn, tid, st, 0);
}
stats->num_oow++;
}
idx = AGGR_WIN_IDX(seq_no, rxtid->hold_q_sz);
node = &rxtid->hold_q[idx];
spin_lock_bh(&rxtid->lock);
/*
* Is the cur frame duplicate or something beyond our window(hold_q
* -> which is 2x, already)?
*
* 1. Duplicate is easy - drop incoming frame.
* 2. Not falling in current sliding window.
* 2a. is the frame_seq_no preceding current tid_seq_no?
* -> drop the frame. perhaps sender did not get our ACK.
* this is taken care of above.
* 2b. is the frame_seq_no beyond window(st, TID_WINDOW_SZ);
* -> Taken care of it above, by moving window forward.
*/
dev_kfree_skb(node->skb);
stats->num_dups++;
node->skb = frame;
is_queued = true;
node->is_amsdu = is_amsdu;
node->seq_no = seq_no;
if (node->is_amsdu)
stats->num_amsdu++;
else
stats->num_mpdu++;
spin_unlock_bh(&rxtid->lock);
aggr_deque_frms(agg_conn, tid, 0, 1);
if (agg_conn->timer_scheduled)
return is_queued;
spin_lock_bh(&rxtid->lock);
for (idx = 0 ; idx < rxtid->hold_q_sz; idx++) {
if (rxtid->hold_q[idx].skb) {
/*
* There is a frame in the queue and no
* timer so start a timer to ensure that
* the frame doesn't remain stuck
* forever.
*/
agg_conn->timer_scheduled = true;
mod_timer(&agg_conn->timer,
(jiffies + (HZ * AGGR_RX_TIMEOUT) / 1000));
rxtid->timer_mon = true;
break;
}
}
spin_unlock_bh(&rxtid->lock);
return is_queued;
}
static void ath6kl_uapsd_trigger_frame_rx(struct ath6kl_vif *vif,
struct ath6kl_sta *conn)
{
struct ath6kl *ar = vif->ar;
bool is_apsdq_empty, is_apsdq_empty_at_start;
u32 num_frames_to_deliver, flags;
struct sk_buff *skb = NULL;
/*
* If the APSD q for this STA is not empty, dequeue and
* send a pkt from the head of the q. Also update the
* More data bit in the WMI_DATA_HDR if there are
* more pkts for this STA in the APSD q.
* If there are no more pkts for this STA,
* update the APSD bitmap for this STA.
*/
num_frames_to_deliver = (conn->apsd_info >> ATH6KL_APSD_NUM_OF_AC) &
ATH6KL_APSD_FRAME_MASK;
/*
* Number of frames to send in a service period is
* indicated by the station
* in the QOS_INFO of the association request
* If it is zero, send all frames
*/
if (!num_frames_to_deliver)
num_frames_to_deliver = ATH6KL_APSD_ALL_FRAME;
spin_lock_bh(&conn->psq_lock);
is_apsdq_empty = skb_queue_empty(&conn->apsdq);
spin_unlock_bh(&conn->psq_lock);
is_apsdq_empty_at_start = is_apsdq_empty;
while ((!is_apsdq_empty) && (num_frames_to_deliver)) {
spin_lock_bh(&conn->psq_lock);
skb = skb_dequeue(&conn->apsdq);
is_apsdq_empty = skb_queue_empty(&conn->apsdq);
spin_unlock_bh(&conn->psq_lock);
/*
* Set the STA flag to Trigger delivery,
* so that the frame will go out
*/
conn->sta_flags |= STA_PS_APSD_TRIGGER;
num_frames_to_deliver--;
/* Last frame in the service period, set EOSP or queue empty */
if ((is_apsdq_empty) || (!num_frames_to_deliver))
conn->sta_flags |= STA_PS_APSD_EOSP;
if (skb)
ath6kl_data_tx(skb, vif->ndev);
conn->sta_flags &= ~(STA_PS_APSD_TRIGGER);
conn->sta_flags &= ~(STA_PS_APSD_EOSP);
}
if (is_apsdq_empty) {
if (is_apsdq_empty_at_start)
flags = WMI_AP_APSD_NO_DELIVERY_FRAMES;
else
flags = 0;
ath6kl_wmi_set_apsd_bfrd_traf(ar->wmi,
vif->fw_vif_idx,
conn->aid, 0, flags);
}
return;
}
void ath6kl_rx(struct htc_target *target, struct htc_packet *packet)
{
struct ath6kl *ar = target->dev->ar;
struct sk_buff *skb = packet->pkt_cntxt;
struct wmi_rx_meta_v2 *meta;
struct wmi_data_hdr *dhdr;
int min_hdr_len;
u8 meta_type, dot11_hdr = 0;
u8 pad_before_data_start = 0;
int status = packet->status;
enum htc_endpoint_id ept = packet->endpoint;
bool is_amsdu, prev_ps, ps_state = false;
bool trig_state = false;
struct ath6kl_sta *conn = NULL;
struct sk_buff *skb1 = NULL;
struct ethhdr *datap = NULL;
struct ath6kl_vif *vif;
struct aggr_info_conn *aggr_conn;
u16 seq_no, offset;
u8 tid, if_idx;
#ifdef CONFIG_ATH6KL_BAM2BAM
bool is_flush = 0, is_out_of_order = 0;
bool is_partial_flush = 0, is_flush_all = 0;
#endif
ath6kl_dbg(ATH6KL_DBG_WLAN_RX,
"%s: ar=0x%p eid=%d, skb=0x%p, data=0x%p, len=0x%x status:%d",
__func__, ar, ept, skb, packet->buf,
packet->act_len, status);
if (status || !(skb->data + HTC_HDR_LENGTH)) {
dev_kfree_skb(skb);
return;
}
skb_put(skb, packet->act_len + HTC_HDR_LENGTH);
skb_pull(skb, HTC_HDR_LENGTH);
ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, __func__, "rx ",
skb->data, skb->len);
if (!test_bit(TESTMODE_EPPING, &ar->flag)) {
if (ept == ar->ctrl_ep) {
if (test_bit(WMI_ENABLED, &ar->flag)) {
ath6kl_check_wow_status(ar);
ath6kl_wmi_control_rx(ar->wmi, skb);
return;
}
if_idx =
wmi_cmd_hdr_get_if_idx((struct wmi_cmd_hdr *) skb->data);
} else {
if_idx =
wmi_data_hdr_get_if_idx((struct wmi_data_hdr *) skb->data);
}
} else {
/* The epping packet is not coming from wmi, skip the index
* retrival, epping assume using the first if_idx anyway
*/
if_idx = 0;
}
vif = ath6kl_get_vif_by_index(ar, if_idx);
if (!vif) {
dev_kfree_skb(skb);
return;
}
/*
* Take lock to protect buffer counts and adaptive power throughput
* state.
*/
spin_lock_bh(&vif->if_lock);
vif->net_stats.rx_packets++;
vif->net_stats.rx_bytes += packet->act_len;
spin_unlock_bh(&vif->if_lock);
skb->dev = vif->ndev;
if (!test_bit(WMI_ENABLED, &ar->flag)) {
if (EPPING_ALIGNMENT_PAD > 0)
skb_pull(skb, EPPING_ALIGNMENT_PAD);
ath6kl_deliver_frames_to_nw_stack(vif->ndev, skb);
return;
}
ath6kl_check_wow_status(ar);
min_hdr_len = sizeof(struct ethhdr) + sizeof(struct wmi_data_hdr) +
sizeof(struct ath6kl_llc_snap_hdr);
dhdr = (struct wmi_data_hdr *) skb->data;
/*
* In the case of AP mode we may receive NULL data frames
* that do not have LLC hdr. They are 16 bytes in size.
* Allow these frames in the AP mode.
*/
if (vif->nw_type != AP_NETWORK &&
((packet->act_len < min_hdr_len) ||
(packet->act_len > WMI_MAX_AMSDU_RX_DATA_FRAME_LENGTH))) {
ath6kl_info("frame len is too short or too long\n");
vif->net_stats.rx_errors++;
vif->net_stats.rx_length_errors++;
dev_kfree_skb(skb);
return;
}
/* Get the Power save state of the STA */
if (vif->nw_type == AP_NETWORK) {
meta_type = wmi_data_hdr_get_meta(dhdr);
ps_state = !!((dhdr->info >> WMI_DATA_HDR_PS_SHIFT) &
WMI_DATA_HDR_PS_MASK);
offset = sizeof(struct wmi_data_hdr);
trig_state = !!(le16_to_cpu(dhdr->info3) & WMI_DATA_HDR_TRIG);
switch (meta_type) {
case 0:
break;
case WMI_META_VERSION_1:
offset += sizeof(struct wmi_rx_meta_v1);
break;
case WMI_META_VERSION_2:
offset += sizeof(struct wmi_rx_meta_v2);
break;
default:
break;
}
datap = (struct ethhdr *) (skb->data + offset);
conn = ath6kl_find_sta(vif, datap->h_source, false);
if (!conn) {
dev_kfree_skb(skb);
return;
}
/*
* If there is a change in PS state of the STA,
* take appropriate steps:
*
* 1. If Sleep-->Awake, flush the psq for the STA
* Clear the PVB for the STA.
* 2. If Awake-->Sleep, Starting queueing frames
* the STA.
*/
prev_ps = !!(conn->sta_flags & STA_PS_SLEEP);
if (ps_state)
conn->sta_flags |= STA_PS_SLEEP;
else
conn->sta_flags &= ~STA_PS_SLEEP;
/* Accept trigger only when the station is in sleep */
if ((conn->sta_flags & STA_PS_SLEEP) && trig_state)
ath6kl_uapsd_trigger_frame_rx(vif, conn);
if (prev_ps ^ !!(conn->sta_flags & STA_PS_SLEEP)) {
#ifdef CONFIG_ATH6KL_BAM2BAM
if (ps_state)
{
ath6kl_send_msg_ipa(vif,
WLAN_CLIENT_POWER_SAVE_MODE,
datap->h_source);
} else {
ath6kl_send_msg_ipa(vif,
WLAN_CLIENT_NORMAL_MODE,
datap->h_source);
}
#endif
if (!(conn->sta_flags & STA_PS_SLEEP)) {
struct sk_buff *skbuff = NULL;
bool is_apsdq_empty;
struct ath6kl_mgmt_buff *mgmt;
u8 idx;
spin_lock_bh(&conn->psq_lock);
while (conn->mgmt_psq_len > 0) {
mgmt = list_first_entry(
&conn->mgmt_psq,
struct ath6kl_mgmt_buff,
list);
list_del(&mgmt->list);
conn->mgmt_psq_len--;
spin_unlock_bh(&conn->psq_lock);
idx = vif->fw_vif_idx;
ath6kl_wmi_send_mgmt_cmd(ar->wmi,
idx,
mgmt->id,
mgmt->freq,
mgmt->wait,
mgmt->buf,
mgmt->len,
mgmt->no_cck);
kfree(mgmt);
spin_lock_bh(&conn->psq_lock);
}
conn->mgmt_psq_len = 0;
while ((skbuff = skb_dequeue(&conn->psq))) {
spin_unlock_bh(&conn->psq_lock);
ath6kl_data_tx(skbuff, vif->ndev);
spin_lock_bh(&conn->psq_lock);
}
is_apsdq_empty = skb_queue_empty(&conn->apsdq);
while ((skbuff = skb_dequeue(&conn->apsdq))) {
spin_unlock_bh(&conn->psq_lock);
ath6kl_data_tx(skbuff, vif->ndev);
spin_lock_bh(&conn->psq_lock);
}
spin_unlock_bh(&conn->psq_lock);
if (!is_apsdq_empty)
ath6kl_wmi_set_apsd_bfrd_traf(
ar->wmi,
vif->fw_vif_idx,
conn->aid, 0, 0);
/* Clear the PVB for this STA */
ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx,
conn->aid, 0);
}
}
/* drop NULL data frames here */
if ((packet->act_len < min_hdr_len) ||
(packet->act_len >
WMI_MAX_AMSDU_RX_DATA_FRAME_LENGTH)) {
dev_kfree_skb(skb);
return;
}
}
is_amsdu = wmi_data_hdr_is_amsdu(dhdr) ? true : false;
tid = wmi_data_hdr_get_up(dhdr);
seq_no = wmi_data_hdr_get_seqno(dhdr);
meta_type = wmi_data_hdr_get_meta(dhdr);
dot11_hdr = wmi_data_hdr_get_dot11(dhdr);
#ifdef CONFIG_ATH6KL_BAM2BAM
if (ath6kl_debug_quirks(vif->ar, ATH6KL_MODULE_BAM2BAM))
{
is_out_of_order = wmi_data_hdr_is_out_of_order(dhdr);
is_flush = wmi_data_hdr_is_ampdu_flush(dhdr);
is_partial_flush = wmi_data_hdr_is_ampdu_partial_flush(dhdr);
is_flush_all = wmi_data_hdr_is_ampdu_flush_all(dhdr);
}
#endif
/* Padding is done only for 1_3 HW VERSION */
if (ar->version.target_ver == AR6004_HW_1_3_VERSION) {
pad_before_data_start =
(le16_to_cpu(dhdr->info3) >> WMI_DATA_HDR_PAD_BEFORE_DATA_SHIFT)
& WMI_DATA_HDR_PAD_BEFORE_DATA_MASK;
}
skb_pull(skb, sizeof(struct wmi_data_hdr));
switch (meta_type) {
case WMI_META_VERSION_1:
skb_pull(skb, sizeof(struct wmi_rx_meta_v1));
break;
case WMI_META_VERSION_2:
meta = (struct wmi_rx_meta_v2 *) skb->data;
if (meta->csum_flags & 0x1) {
skb->ip_summed = CHECKSUM_COMPLETE;
skb->csum = (__force __wsum) meta->csum;
}
skb_pull(skb, sizeof(struct wmi_rx_meta_v2));
break;
default:
break;
}
skb_pull(skb, pad_before_data_start);
if (dot11_hdr)
status = ath6kl_wmi_dot11_hdr_remove(ar->wmi, skb);
else if (!is_amsdu)
status = ath6kl_wmi_dot3_2_dix(skb);
if (status) {
/*
* Drop frames that could not be processed (lack of
* memory, etc.)
*/
dev_kfree_skb(skb);
return;
}
if (!(vif->ndev->flags & IFF_UP)) {
dev_kfree_skb(skb);
return;
}
if (vif->nw_type == AP_NETWORK) {
datap = (struct ethhdr *) skb->data;
if (is_multicast_ether_addr(datap->h_dest)) {
/*
* Bcast/Mcast frames should be sent to the
* OS stack as well as over the air.
*/
skb1 = skb_copy(skb, GFP_ATOMIC);
if (skb1)
ath6kl_data_tx(skb1, conn->vif->ndev);
}
}
datap = (struct ethhdr *) skb->data;
if (!((is_multicast_ether_addr(datap->h_dest)) &&
(vif->nw_type == INFRA_NETWORK))) {
if (vif->nw_type == AP_NETWORK) {
conn = ath6kl_find_sta(vif, datap->h_source, false);
if (!conn)
return;
aggr_conn = conn->aggr_conn;
} else
aggr_conn = vif->aggr_cntxt->aggr_conn;
#ifdef CONFIG_ATH6KL_BAM2BAM
if (ath6kl_debug_quirks(vif->ar, ATH6KL_MODULE_BAM2BAM) &&
!ath6kl_debug_quirks(vif->ar,
ATH6KL_MODULE_BAM_RX_SW_PATH)) {
if (!is_out_of_order && is_amsdu) {
aggr_process_amsdu_bam2bam(aggr_conn, tid,
skb);
return;
}
if (is_flush_all)
aggr_deque_frms_bam2bam(aggr_conn, tid, 0, 0);
if (is_partial_flush)
aggr_deque_frms_bam2bam(aggr_conn, tid, seq_no , 2);
if (is_out_of_order &&
aggr_process_recv_frm_bam2bam(aggr_conn, tid, seq_no,
is_amsdu, skb)) {
/* Counter */
un_ordered++;
aggr_conn->vif = vif;
if (is_flush)
aggr_deque_frms_bam2bam(aggr_conn, tid,
seq_no, 1);
/* aggregation code will handle the skb */
return;
}
}
else
{
if (aggr_process_recv_frm(aggr_conn, tid, seq_no,
is_amsdu, skb)) {
/* aggregation code will handle the skb */
return;
}
}
#else
/* Non BAM2BAM path */
if (aggr_process_recv_frm(aggr_conn, tid, seq_no,
is_amsdu, skb)) {
/* aggregation code will handle the skb */
return;
}
#endif
} else if (!is_broadcast_ether_addr(datap->h_dest))
vif->net_stats.multicast++;
#ifdef CONFIG_ATH6KL_BAM2BAM
if (ath6kl_debug_quirks(vif->ar, ATH6KL_MODULE_BAM2BAM))
{
ordered++;
}
#endif
ath6kl_deliver_frames_to_nw_stack(vif->ndev, skb);
}
static void aggr_timeout(unsigned long arg)
{
u8 i, j;
struct aggr_info_conn *aggr_conn = (struct aggr_info_conn *) arg;
struct rxtid *rxtid;
struct rxtid_stats *stats;
for (i = 0; i < NUM_OF_TIDS; i++) {
rxtid = &aggr_conn->rx_tid[i];
stats = &aggr_conn->stat[i];
if (!rxtid->aggr || !rxtid->timer_mon)
continue;
stats->num_timeouts++;
ath6kl_dbg(ATH6KL_DBG_AGGR,
"aggr timeout (st %d end %d)\n",
rxtid->seq_next,
((rxtid->seq_next + rxtid->hold_q_sz-1) &
ATH6KL_MAX_SEQ_NO));
#ifdef CONFIG_ATH6KL_BAM2BAM
if (ath6kl_debug_quirks(aggr_conn->vif->ar,
ATH6KL_MODULE_BAM2BAM) &&
!ath6kl_debug_quirks(aggr_conn->vif->ar,
ATH6KL_MODULE_BAM_RX_SW_PATH))
aggr_deque_frms_bam2bam(aggr_conn, i, 0, 0);
else {
/* This path for non BAM2BAM path during run time */
aggr_deque_frms(aggr_conn, i, 0, 0);
}
#else
/* This path for non BAM2BAM path during compile time */
aggr_deque_frms(aggr_conn, i, 0, 0);
#endif
}
aggr_conn->timer_scheduled = false;
for (i = 0; i < NUM_OF_TIDS; i++) {
rxtid = &aggr_conn->rx_tid[i];
if (rxtid->aggr && rxtid->hold_q) {
spin_lock_bh(&rxtid->lock);
for (j = 0; j < rxtid->hold_q_sz; j++) {
if (rxtid->hold_q[j].skb) {
aggr_conn->timer_scheduled = true;
rxtid->timer_mon = true;
break;
}
}
spin_unlock_bh(&rxtid->lock);
if (j >= rxtid->hold_q_sz)
rxtid->timer_mon = false;
}
}
if (aggr_conn->timer_scheduled)
mod_timer(&aggr_conn->timer,
jiffies + msecs_to_jiffies(AGGR_RX_TIMEOUT));
}
static void aggr_delete_tid_state(struct aggr_info_conn *aggr_conn, u8 tid)
{
struct rxtid *rxtid;
struct rxtid_stats *stats;
if (!aggr_conn || tid >= NUM_OF_TIDS)
return;
rxtid = &aggr_conn->rx_tid[tid];
stats = &aggr_conn->stat[tid];
if (rxtid->aggr)
{
#ifdef CONFIG_ATH6KL_BAM2BAM
if (ath6kl_debug_quirks(aggr_conn->vif->ar,
ATH6KL_MODULE_BAM2BAM) &&
!ath6kl_debug_quirks(aggr_conn->vif->ar,
ATH6KL_MODULE_BAM_RX_SW_PATH))
aggr_deque_frms_bam2bam(aggr_conn, tid, 0, 0);
else
{
/* This path for non BAM2BAM path during run time */
aggr_deque_frms(aggr_conn, tid, 0, 0);
}
#else
/* This path for non BAM2BAM path during compile time */
aggr_deque_frms(aggr_conn, tid, 0, 0);
#endif
}
rxtid->aggr = false;
rxtid->timer_mon = false;
rxtid->win_sz = 0;
rxtid->seq_next = 0;
rxtid->hold_q_sz = 0;
kfree(rxtid->hold_q);
rxtid->hold_q = NULL;
memset(stats, 0, sizeof(struct rxtid_stats));
}
void aggr_recv_addba_req_evt(struct ath6kl_vif *vif, u8 tid_mux, u16 seq_no,
u8 win_sz)
{
struct ath6kl_sta *sta;
struct aggr_info_conn *aggr_conn = NULL;
struct rxtid *rxtid;
struct rxtid_stats *stats;
u16 hold_q_size;
u8 tid, aid;
if (vif->nw_type == AP_NETWORK) {
aid = ath6kl_get_aid(tid_mux);
sta = ath6kl_find_sta_by_aid(vif, aid);
if (sta)
aggr_conn = sta->aggr_conn;
} else
aggr_conn = vif->aggr_cntxt->aggr_conn;
if (!aggr_conn)
return;
tid = ath6kl_get_tid(tid_mux);
if (tid >= NUM_OF_TIDS)
return;
rxtid = &aggr_conn->rx_tid[tid];
stats = &aggr_conn->stat[tid];
if (win_sz < AGGR_WIN_SZ_MIN || win_sz > AGGR_WIN_SZ_MAX)
ath6kl_dbg(ATH6KL_DBG_WLAN_RX, "%s: win_sz %d, tid %d\n",
__func__, win_sz, tid);
#ifdef CONFIG_ATH6KL_BAM2BAM
aggr_conn->vif = vif;
#endif
if (rxtid->aggr)
aggr_delete_tid_state(aggr_conn, tid);
rxtid->seq_next = seq_no;
hold_q_size = TID_WINDOW_SZ(win_sz) * sizeof(struct skb_hold_q);
rxtid->hold_q = kzalloc(hold_q_size, GFP_KERNEL);
if (!rxtid->hold_q)
return;
rxtid->win_sz = win_sz;
rxtid->hold_q_sz = TID_WINDOW_SZ(win_sz);
if (!skb_queue_empty(&rxtid->q))
return;
rxtid->aggr = true;
}
void aggr_conn_init(struct ath6kl_vif *vif, struct aggr_info *aggr_info,
struct aggr_info_conn *aggr_conn)
{
struct rxtid *rxtid;
u8 i;
aggr_conn->aggr_sz = AGGR_SZ_DEFAULT;
aggr_conn->dev = vif->ndev;
#ifdef CONFIG_ATH6KL_BAM2BAM
aggr_conn->vif = vif;
#endif
init_timer(&aggr_conn->timer);
aggr_conn->timer.function = aggr_timeout;
aggr_conn->timer.data = (unsigned long) aggr_conn;
aggr_conn->aggr_info = aggr_info;
aggr_conn->timer_scheduled = false;
for (i = 0; i < NUM_OF_TIDS; i++) {
rxtid = &aggr_conn->rx_tid[i];
rxtid->aggr = false;
rxtid->timer_mon = false;
skb_queue_head_init(&rxtid->q);
spin_lock_init(&rxtid->lock);
}
}
struct aggr_info *aggr_init(struct ath6kl_vif *vif)
{
struct aggr_info *p_aggr = NULL;
p_aggr = kzalloc(sizeof(struct aggr_info), GFP_KERNEL);
if (!p_aggr) {
ath6kl_err("failed to alloc memory for aggr_node\n");
return NULL;
}
p_aggr->aggr_conn = kzalloc(sizeof(struct aggr_info_conn), GFP_KERNEL);
if (!p_aggr->aggr_conn) {
ath6kl_err("failed to alloc memory for conn spec aggr info\n");
kfree(p_aggr);
return NULL;
}
aggr_conn_init(vif, p_aggr, p_aggr->aggr_conn);
skb_queue_head_init(&p_aggr->rx_amsdu_freeq);
ath6kl_alloc_netbufs(&p_aggr->rx_amsdu_freeq, AGGR_NUM_OF_FREE_NETBUFS);
return p_aggr;
}
void aggr_recv_delba_req_evt(struct ath6kl_vif *vif, u8 tid_mux)
{
struct ath6kl_sta *sta;
struct rxtid *rxtid;
struct aggr_info_conn *aggr_conn = NULL;
u8 tid, aid;
if (vif->nw_type == AP_NETWORK) {
aid = ath6kl_get_aid(tid_mux);
sta = ath6kl_find_sta_by_aid(vif, aid);
if (sta)
aggr_conn = sta->aggr_conn;
} else
aggr_conn = vif->aggr_cntxt->aggr_conn;
if (!aggr_conn)
return;
tid = ath6kl_get_tid(tid_mux);
if (tid >= NUM_OF_TIDS)
return;
rxtid = &aggr_conn->rx_tid[tid];
#ifdef CONFIG_ATH6KL_BAM2BAM
aggr_conn->vif = vif;
#endif
if (rxtid->aggr)
aggr_delete_tid_state(aggr_conn, tid);
}
void aggr_reset_state(struct aggr_info_conn *aggr_conn)
{
u8 tid;
if (!aggr_conn)
return;
if (aggr_conn->timer_scheduled) {
del_timer(&aggr_conn->timer);
aggr_conn->timer_scheduled = false;
}
for (tid = 0; tid < NUM_OF_TIDS; tid++)
aggr_delete_tid_state(aggr_conn, tid);
}
/* clean up our amsdu buffer list */
void ath6kl_cleanup_amsdu_rxbufs(struct ath6kl *ar)
{
struct htc_packet *packet, *tmp_pkt;
spin_lock_bh(&ar->lock);
if (list_empty(&ar->amsdu_rx_buffer_queue)) {
spin_unlock_bh(&ar->lock);
return;
}
list_for_each_entry_safe(packet, tmp_pkt, &ar->amsdu_rx_buffer_queue,
list) {
list_del(&packet->list);
spin_unlock_bh(&ar->lock);
dev_kfree_skb(packet->pkt_cntxt);
spin_lock_bh(&ar->lock);
}
spin_unlock_bh(&ar->lock);
}
void aggr_module_destroy(struct aggr_info *aggr_info)
{
if (!aggr_info)
return;
aggr_reset_state(aggr_info->aggr_conn);
skb_queue_purge(&aggr_info->rx_amsdu_freeq);
kfree(aggr_info->aggr_conn);
kfree(aggr_info);
}
struct
ath6kl_mcc_flowctrl *ath6kl_mcc_flowctrl_conn_list_init(struct ath6kl *ar)
{
struct ath6kl_mcc_flowctrl *mcc_flowctrl;
struct ath6kl_fw_conn_list *fw_conn;
int i;
mcc_flowctrl = kzalloc(sizeof(struct ath6kl_mcc_flowctrl), GFP_KERNEL);
if (!mcc_flowctrl) {
ath6kl_err("failed to alloc memory for mcc_flowctrl\n");
return NULL;
}
mcc_flowctrl->ar = ar;
spin_lock_init(&mcc_flowctrl->mcc_flowctrl_lock);
mcc_flowctrl->mcc_events_resumed = 0;
setup_timer(&mcc_flowctrl->mcc_event_ctrl_timer,
ath6kl_mcc_event_ctrl_timer_handler, (unsigned long) ar);
for (i = 0; i < NUM_CONN; i++) {
fw_conn = &mcc_flowctrl->fw_conn_list[i];
INIT_LIST_HEAD(&fw_conn->conn_queue);
INIT_LIST_HEAD(&fw_conn->re_queue);
fw_conn->connect_status = 0;
fw_conn->previous_can_send = true;
fw_conn->conn_id = ATH6KL_MCC_FLOWCTRL_NULL_CONNID;
memset(fw_conn->mac_addr, 0, ETH_ALEN);
}
ath6kl_dbg(ATH6KL_DBG_FLOWCTRL,
"mcc_flowctrl init (ar %p) NUM_CONN %d\n",
ar,
NUM_CONN);
return mcc_flowctrl;
}
void ath6kl_mcc_flowctrl_conn_list_deinit(struct ath6kl *ar)
{
struct ath6kl_mcc_flowctrl *mcc_flowctrl = ar->mcc_flowctrl_ctx;
del_timer(&mcc_flowctrl->mcc_event_ctrl_timer);
if (mcc_flowctrl) {
/*
* It's better to check whether any conn_queue/re_queue
* need to reclaim.
*/
kfree(mcc_flowctrl);
}
ar->mcc_flowctrl_ctx = NULL;
ath6kl_dbg(ATH6KL_DBG_FLOWCTRL,
"mcc_flowctrl deinit (ar %p)\n",
ar);
return;
}
/* Check if this connId is off-channel
* return 0 - the connId is off-channel
* 1 - the device is in connId channel, so tx can be sent
*/
static bool ath6kl_check_can_send(struct ath6kl_mcc_flowctrl *mcc_flowctrl,
u8 conn_id)
{
struct ath6kl_fw_conn_list *fw_conn;
bool can_send = false;
fw_conn = &mcc_flowctrl->fw_conn_list[conn_id];
do {
if (fw_conn->ocs)
break;
if (!mcc_flowctrl->mcc_events_resumed)
break;
can_send = true;
} while(false);
return can_send;
}
void ath6kl_mcc_flowctrl_tx_schedule(struct ath6kl *ar, u8 is_ch_chg)
{
struct ath6kl_mcc_flowctrl *mcc_flowctrl = ar->mcc_flowctrl_ctx;
struct ath6kl_fw_conn_list *fw_conn;
struct htc_packet *packet, *tmp_pkt;
int i, tx, re_tx;
WARN_ON(!mcc_flowctrl);
for (i = 0; i < NUM_CONN; i++) {
fw_conn = &mcc_flowctrl->fw_conn_list[i];
spin_lock_bh(&mcc_flowctrl->mcc_flowctrl_lock);
/* Bypass this fw_conn if it not yet used. */
if (fw_conn->conn_id == ATH6KL_MCC_FLOWCTRL_NULL_CONNID) {
spin_unlock_bh(&mcc_flowctrl->mcc_flowctrl_lock);
continue;
}
tx = re_tx = 0;
if (ath6kl_check_can_send(mcc_flowctrl, i)) {
if (!list_empty(&fw_conn->re_queue)) {
list_for_each_entry_safe(packet, tmp_pkt,
&fw_conn->re_queue, list) {
list_del(&packet->list);
if (packet->endpoint >= ENDPOINT_MAX)
continue;
re_tx++;
ath6kl_htc_tx(ar->htc_target, packet);
}
}
if (!list_empty(&fw_conn->conn_queue)) {
list_for_each_entry_safe(packet, tmp_pkt,
&fw_conn->conn_queue, list) {
list_del(&packet->list);
if (packet->endpoint >= ENDPOINT_MAX)
continue;
tx++;
ath6kl_htc_tx(ar->htc_target, packet);
}
}
}
spin_unlock_bh(&mcc_flowctrl->mcc_flowctrl_lock);
ath6kl_dbg(ATH6KL_DBG_FLOWCTRL,
"mcc_flowctrl schedule(ar %p)connId %d tx%d re_tx%d\n",
ar, i, tx, re_tx);
}
return;
}
/* Check if this packet needs to be held(cached) in host.
* If not, send the packets that were cached earlier for this conn
*
* for home channel packet : netif -> ep txq -> fw
* for off channel packet : netif -> conn queue -> channel switch event ->
* conn queue -> ep txq
* for tx epq packets that are not drained : channel switch event -> eq txq
* -> conn queue
*/
enum htc_send_queue_result ath6kl_mcc_flowctrl_tx_schedule_pkt(struct ath6kl *ar,
void *pkt)
{
struct ath6kl_mcc_flowctrl *mcc_flowctrl = ar->mcc_flowctrl_ctx;
struct ath6kl_fw_conn_list *fw_conn;
struct ath6kl_cookie *cookie = (struct ath6kl_cookie *)pkt;
int conn_id = cookie->htc_pkt.connid;
enum htc_send_queue_result ret = HTC_SEND_QUEUE_OK;
struct ath6kl_vif *vif = NULL;
WARN_ON(!mcc_flowctrl);
if (conn_id == ATH6KL_MCC_FLOWCTRL_NULL_CONNID) {
ath6kl_err("mcc_flowctrl tx schedule packet fail, NULL connId,"
"just send??\n");
/* Just send it */
return HTC_SEND_QUEUE_SENT;
}
mod_timer(&mcc_flowctrl->mcc_event_ctrl_timer,
jiffies + msecs_to_jiffies(MCC_STOP_EVENT_TIMER_INTVL));
if (!mcc_flowctrl->mcc_events_resumed) {
ath6kl_wmi_set_mcc_event_mode_cmd(ar->wmi,
MCC_START_EVENT);
mcc_flowctrl->mcc_events_resumed = 1;
}
fw_conn = &mcc_flowctrl->fw_conn_list[conn_id];
vif = fw_conn->vif;
/* irrespective of channel, keep consuming only in multiples of
* this count
*/
if(((MAX_OFFCH_HOLD_COOKIE_NUM) < vif->cookie_used) &&
(!test_bit(NETQ_STOPPED, &vif->flags))) {
set_bit(NETQ_STOPPED, &vif->flags);
netif_stop_queue(vif->ndev);
}
spin_lock_bh(&mcc_flowctrl->mcc_flowctrl_lock);
fw_conn = &mcc_flowctrl->fw_conn_list[conn_id];
if (!ath6kl_check_can_send(mcc_flowctrl, conn_id)) {
spin_unlock_bh(&mcc_flowctrl->mcc_flowctrl_lock);
list_add_tail(&cookie->htc_pkt.list, &fw_conn->conn_queue);
goto result;
} else {
/* send thr packet through */
ret = HTC_SEND_QUEUE_SENT;
}
spin_unlock_bh(&mcc_flowctrl->mcc_flowctrl_lock);
result:
ath6kl_dbg(ATH6KL_DBG_FLOWCTRL,
"mcc_flowctrl schedule pkt (ar %p) %s\n",
ar,
((ret == HTC_SEND_QUEUE_OK) ? "queue" : "send"));
return ret;
}
/* channel switch event -> ep txq -> conn queue
* if packets are cycled between eq txq and conn queue for more than
* ATH6KL_MCC_FLOWCTRL_RECYCLE_LIMIT times, drop the pkt
*/
void ath6kl_mcc_flowctrl_state_change(struct ath6kl *ar)
{
struct ath6kl_mcc_flowctrl *mcc_flowctrl = ar->mcc_flowctrl_ctx;
struct ath6kl_fw_conn_list *fw_conn;
struct htc_packet *packet, *tmp_pkt;
struct htc_endpoint *endpoint;
struct list_head *tx_queue, container;
int i, eid, re_tx, drop_tx;
WARN_ON(!mcc_flowctrl);
INIT_LIST_HEAD(&container);
for (i = 0; i < NUM_CONN; i++) {
re_tx = drop_tx = 0;
fw_conn = &mcc_flowctrl->fw_conn_list[i];
if (!ath6kl_check_can_send(mcc_flowctrl, i) &&
fw_conn->previous_can_send) {
spin_lock_bh(&mcc_flowctrl->mcc_flowctrl_lock);
spin_lock_bh(&ar->htc_target->tx_lock);
for (eid = ENDPOINT_2; eid <= ENDPOINT_5; eid++) {
endpoint = &ar->htc_target->endpoint[eid];
tx_queue = &endpoint->txq;
if (list_empty(tx_queue))
continue;
list_for_each_entry_safe(packet, tmp_pkt,
tx_queue, list) {
if (packet->connid != i)
continue;
list_del(&packet->list);
if (packet->recycle_count >
ATH6KL_MCC_FLOWCTRL_RECYCLE_LIMIT) {
packet->status = 0;
list_add_tail(&packet->list,
&container);
drop_tx++;
} else {
packet->recycle_count++;
list_add_tail(&packet->list,
&fw_conn->re_queue);
re_tx++;
}
}
}
spin_unlock_bh(&ar->htc_target->tx_lock);
spin_unlock_bh(&mcc_flowctrl->mcc_flowctrl_lock);
}
fw_conn->previous_can_send = ath6kl_check_can_send(mcc_flowctrl, i);
fw_conn->mcc_stats.sche_re_tx += re_tx;
fw_conn->mcc_stats.recycle_drop_count += drop_tx;
ath6kl_dbg(ATH6KL_DBG_FLOWCTRL, "mcc_flowctrl state_change"
" (conn %pM) re_tx %d drop_tx %d \n",
fw_conn->mac_addr, re_tx, drop_tx);
}
ath6kl_tx_complete(ar->htc_target, &container);
return;
}
/* Update the bit-map for each conn, as sent in flowctrl event from FW
* This flag needs to be checked for all Tx
*/
void ath6kl_mcc_flowctrl_state_update(struct ath6kl *ar,
u8 num_conn,
u8 ac_map[],
u8 ac_queue_depth[])
{
struct ath6kl_mcc_flowctrl *mcc_flowctrl = ar->mcc_flowctrl_ctx;
struct ath6kl_fw_conn_list *fw_conn;
int i;
WARN_ON(!mcc_flowctrl);
spin_lock_bh(&mcc_flowctrl->mcc_flowctrl_lock);
for (i = 0; i < NUM_CONN; i++) {
fw_conn = &mcc_flowctrl->fw_conn_list[i];
fw_conn->connect_status = ac_map[i];
}
spin_unlock_bh(&mcc_flowctrl->mcc_flowctrl_lock);
ath6kl_dbg(ATH6KL_DBG_FLOWCTRL,
"mcc_flowctrl state_update(ar %p)ac_map %02x %02x %02x %02x\n",
ar, ac_map[0], ac_map[1], ac_map[2], ac_map[3]);
return;
}
/* Find conn based on the mac address.
* If this packet doesnt have any of the matching mac, assume doing
* transmit of this packet is fine
*/
void ath6kl_mcc_flowctrl_set_conn_id(struct ath6kl_vif *vif,
u8 mac_addr[],
u8 conn_id)
{
struct ath6kl *ar = vif->ar;
struct ath6kl_mcc_flowctrl *mcc_flowctrl = ar->mcc_flowctrl_ctx;
struct ath6kl_fw_conn_list *fw_conn;
WARN_ON(!mcc_flowctrl);
/* Here using "connection" based concept.
* For STA/AP mode, set mac address as STA/AP-Client's.
* For AP node, set mac address as AP's.
* For AP's client, set mac address as client's.
*
* Mac address is a "hint" used to find the connection id when TX.
* Host driver need to
* 1.Call this API w/ NULL mac address if DISCONNECT event.
* 2.Recycle the conn_queue/re_queue.
* 3.Reset the flowctrl status.
*/
fw_conn = &mcc_flowctrl->fw_conn_list[conn_id];
spin_lock_bh(&mcc_flowctrl->mcc_flowctrl_lock);
if (mac_addr) {
fw_conn->conn_id = conn_id;
memcpy(fw_conn->mac_addr, mac_addr, ETH_ALEN);
fw_conn->vif = vif;
} else {
fw_conn->conn_id = ATH6KL_MCC_FLOWCTRL_NULL_CONNID;
memset(fw_conn->mac_addr, 0, ETH_ALEN);
memset(&fw_conn->mcc_stats, 0, sizeof(struct ath6kl_mcc_stats));
fw_conn->vif = NULL;
}
spin_unlock_bh(&mcc_flowctrl->mcc_flowctrl_lock);
ath6kl_dbg(ATH6KL_DBG_FLOWCTRL,
"mcc_flowctrl set conn_id (ar %p) mode %d connId %d"
"mac_addr %pM\n",
ar, vif->nw_type, conn_id,
mac_addr);
return;
}
u8 ath6kl_mcc_flowctrl_get_conn_id(struct ath6kl_vif *vif,
struct sk_buff *skb)
{
struct ath6kl *ar = vif->ar;
struct ath6kl_mcc_flowctrl *mcc_flowctrl = ar->mcc_flowctrl_ctx;
struct ath6kl_fw_conn_list *fw_conn;
struct ethhdr *ethhdr;
u8 *hint;
u8 conn_id = ATH6KL_MCC_FLOWCTRL_NULL_CONNID;
int i;
if (!mcc_flowctrl) {
return conn_id;
}
ethhdr = (struct ethhdr *)(skb->data + sizeof(struct wmi_data_hdr));
if (vif->nw_type != AP_NETWORK) {
hint = ethhdr->h_source;
} else {
if (is_multicast_ether_addr(ethhdr->h_dest))
hint = ethhdr->h_source;
else
hint = ethhdr->h_dest;
}
fw_conn = &mcc_flowctrl->fw_conn_list[0];
spin_lock_bh(&mcc_flowctrl->mcc_flowctrl_lock);
for (i = 0; i < NUM_CONN; i++, fw_conn++) {
if (fw_conn->conn_id == ATH6KL_MCC_FLOWCTRL_NULL_CONNID)
continue;
if (memcmp(fw_conn->mac_addr, hint, ETH_ALEN) == 0) {
conn_id = fw_conn->conn_id;
break;
}
}
spin_unlock_bh(&mcc_flowctrl->mcc_flowctrl_lock);
ath6kl_dbg(ATH6KL_DBG_FLOWCTRL,
"mcc_flowctrl get conn_id (ar %p) connId %d"
"hint %pM\n",
ar,
conn_id,
hint);
return conn_id;
}
#ifdef CONFIG_ATH6KL_BAM2BAM
void ath6kl_aggr_deque_bam2bam(struct ath6kl_vif *vif, u16 seq_no,u8 tid,
u8 aid)
{
struct ath6kl_sta *sta;
struct aggr_info_conn *aggr_conn = NULL;
struct rxtid *rxtid;
if (vif->nw_type == AP_NETWORK) {
sta = ath6kl_find_sta_by_aid(vif, aid);
if (sta)
aggr_conn = sta->aggr_conn;
} else {
aggr_conn = vif->aggr_cntxt->aggr_conn;
}
if (!aggr_conn)
return;
if (tid >= NUM_OF_TIDS)
return;
rxtid = &aggr_conn->rx_tid[tid];
if (!rxtid->aggr)
return;
ath6kl_dbg(ATH6KL_DBG_OOO,
"ooo: Control Packet from Rx-non bam2bam Event pipe...\n");
aggr_conn->vif = vif;
if (seq_no > ATH6KL_MAX_SEQ_NO) {
if (ath6kl_debug_quirks(vif->ar, ATH6KL_MODULE_BAM2BAM)) {
aggr_deque_frms_bam2bam(aggr_conn, tid, 0, 0);
}
} else {
if (ath6kl_debug_quirks(vif->ar, ATH6KL_MODULE_BAM2BAM)) {
aggr_deque_frms_bam2bam(aggr_conn, tid, seq_no, 2);
}
}
}
int ath6kl_send_dummy_data(struct ath6kl_vif *vif, u8 ac_category)
{
struct ath6kl *ar = vif->ar;
struct ath6kl_cookie *cookie = NULL;
enum htc_endpoint_id eid = ENDPOINT_UNUSED;
u16 htc_tag = ATH6KL_DATA_PKT_TAG;
struct sk_buff *skb = NULL;
int ret = 0;
struct wmi_data_hdr *data_hdr;
if(ar->cookie_count < (MAX_DEF_COOKIE_NUM/3))
return -ENOMEM;
if (WARN_ON_ONCE(ar->state != ATH6KL_STATE_ON))
return -EINVAL;
if (!test_bit(WMI_READY, &ar->flag))
return -EINVAL;
skb = ath6kl_buf_alloc(0);
if (skb == NULL)
return -ENOMEM;
ret = ath6kl_wmi_data_hdr_add(ar->wmi, skb,
DATA_MSGTYPE, 0, 0,
0,
NULL, vif->fw_vif_idx);
if (ret) {
ath6kl_warn("failed to add wmi data header:%d\n"
, ret);
goto dfail_tx;
}
data_hdr = (struct wmi_data_hdr *)skb->data;
data_hdr->info3 |=
cpu_to_le16(WMI_DATA_HDR_DUMMY_DATA_BIT_MASK <<
WMI_DATA_HDR_DUMMY_DATA_BIT_SHIFT);
spin_lock_bh(&ar->lock);
eid = ac_category;
if (eid == 0 || eid == ENDPOINT_UNUSED) {
ath6kl_err("eid %d is not mapped!\n", eid);
spin_unlock_bh(&ar->lock);
ret = -EINVAL;
goto dfail_tx;
}
/* allocate resource for this packet */
cookie = ath6kl_alloc_cookie(ar, vif, eid);
if (!cookie) {
spin_unlock_bh(&ar->lock);
ret = -ENOMEM;
goto dfail_tx;
}
/* update counts while the lock is held */
ar->tx_pending[eid]++;
ar->total_tx_data_pend++;
spin_unlock_bh(&ar->lock);
if (!IS_ALIGNED((unsigned long) skb->data - HTC_HDR_LENGTH, 4) &&
skb_cloned(skb)) {
/*
* We will touch (move the buffer data to align it. Since the
* skb buffer is cloned and not only the header is changed, we
* have to copy it to allow the changes. Since we are copying
* the data here, we may as well align it by reserving suitable
* headroom to avoid the memmove in ath6kl_htc_tx_buf_align().
*/
struct sk_buff *nskb;
nskb = skb_copy_expand(skb, HTC_HDR_LENGTH, 0, GFP_ATOMIC);
if (nskb == NULL)
goto dfail_skbexp;
kfree_skb(skb);
skb = nskb;
}
cookie->skb = skb;
cookie->map_no = 0;
set_htc_pkt_info(&cookie->htc_pkt, cookie, skb->data, skb->len,
eid, htc_tag);
cookie->htc_pkt.skb = skb;
ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, __func__, "dummy tx ",
skb->data, skb->len);
/*
* HTC interface is asynchronous, if this fails, cleanup will
* happen in the ath6kl_tx_complete callback.
*/
ath6kl_htc_tx(ar->htc_target, &cookie->htc_pkt);
return 0;
dfail_skbexp:
/* Release the cookie */
ath6kl_free_cookie(ar, vif, cookie);
dfail_tx:
if (skb)
dev_kfree_skb(skb);
return ret;
}
void ath6kl_client_power_save(struct ath6kl_vif *vif, u8 power_save, u8 aid)
{
struct ath6kl_sta *conn;
struct ath6kl *ar = vif->ar;
ath6kl_dbg(ATH6KL_DBG_BAM2BAM,
"IPA-CM: Power save event is successfully received\n");
if (vif->nw_type == AP_NETWORK) {
conn = ath6kl_find_sta_by_aid(vif, aid);
if(!conn)
return;
} else {
return;
}
if (power_save ^ !!(conn->sta_flags & STA_PS_SLEEP)) {
if (power_save)
{
conn->sta_flags |= STA_PS_SLEEP;
ath6kl_send_msg_ipa(vif, WLAN_CLIENT_POWER_SAVE_MODE,
conn->mac);
} else {
conn->sta_flags &= ~STA_PS_SLEEP;
ath6kl_send_msg_ipa(vif, WLAN_CLIENT_NORMAL_MODE,
conn->mac);
}
}
if (!(conn->sta_flags & STA_PS_SLEEP)) {
struct sk_buff *skbuff = NULL;
bool is_apsdq_empty;
struct ath6kl_mgmt_buff *mgmt;
u8 idx;
spin_lock_bh(&conn->psq_lock);
while (conn->mgmt_psq_len > 0) {
mgmt = list_first_entry(
&conn->mgmt_psq,
struct ath6kl_mgmt_buff,
list);
list_del(&mgmt->list);
conn->mgmt_psq_len--;
spin_unlock_bh(&conn->psq_lock);
idx = vif->fw_vif_idx;
ath6kl_wmi_send_mgmt_cmd(ar->wmi,
idx,
mgmt->id,
mgmt->freq,
mgmt->wait,
mgmt->buf,
mgmt->len,
mgmt->no_cck);
kfree(mgmt);
spin_lock_bh(&conn->psq_lock);
}
conn->mgmt_psq_len = 0;
while ((skbuff = skb_dequeue(&conn->psq))) {
spin_unlock_bh(&conn->psq_lock);
ath6kl_data_tx(skbuff, vif->ndev);
spin_lock_bh(&conn->psq_lock);
}
is_apsdq_empty = skb_queue_empty(&conn->apsdq);
while ((skbuff = skb_dequeue(&conn->apsdq))) {
spin_unlock_bh(&conn->psq_lock);
ath6kl_data_tx(skbuff, vif->ndev);
spin_lock_bh(&conn->psq_lock);
}
spin_unlock_bh(&conn->psq_lock);
if (!is_apsdq_empty)
ath6kl_wmi_set_apsd_bfrd_traf(
ar->wmi,
vif->fw_vif_idx,
conn->aid, 0, 0);
/* Clear the PVB for this STA */
ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx,
conn->aid, 0);
}
}
void ath6kl_allow_packet_drop(struct ath6kl_vif *vif, u8 enable_drop)
{
struct ipa_ep_cfg_holb ipa_ep_cfg;
ath6kl_dbg(ATH6KL_DBG_BAM2BAM,
"IPA-CM: IPA HOLB event is successfully received\n");
if (enable_drop)
ipa_ep_cfg.en = true;
else
ipa_ep_cfg.en = false;
ipa_ep_cfg.tmr_val = ATH6KL_IPA_HOLB_TIMER_VAL;
ipa_cfg_ep_holb_by_client(IPA_CLIENT_HSIC1_CONS, &ipa_ep_cfg);
ipa_cfg_ep_holb_by_client(IPA_CLIENT_HSIC2_CONS, &ipa_ep_cfg);
ipa_cfg_ep_holb_by_client(IPA_CLIENT_HSIC3_CONS, &ipa_ep_cfg);
ipa_cfg_ep_holb_by_client(IPA_CLIENT_HSIC4_CONS, &ipa_ep_cfg);
}
#endif
static void ath6kl_mcc_event_ctrl_timer_handler(unsigned long ptr)
{
struct ath6kl *ar = (struct ath6kl *)ptr;
struct ath6kl_mcc_flowctrl *mcc_flowctrl = ar->mcc_flowctrl_ctx;
ath6kl_wmi_set_mcc_event_mode_cmd(ar->wmi, MCC_STOP_EVENT);
mcc_flowctrl->mcc_events_resumed = 0;
return;
}