M7350/base/services/surfaceflinger/SurfaceFlinger.cpp
2024-09-09 08:52:07 +00:00

3092 lines
97 KiB
C++
Executable File

/*
* Copyright (C) 2007 The Android Open Source Project
* Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <math.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <cutils/log.h>
#include <cutils/properties.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <binder/MemoryHeapBase.h>
#include <utils/String8.h>
#include <utils/String16.h>
#include <utils/StopWatch.h>
#include <ui/GraphicBufferAllocator.h>
#include <ui/GraphicLog.h>
#include <ui/PixelFormat.h>
#include <pixelflinger/pixelflinger.h>
#include <GLES/gl.h>
#include "clz.h"
#include "GLExtensions.h"
#include "Layer.h"
#include "LayerBlur.h"
#include "LayerBuffer.h"
#include "LayerDim.h"
#include "SurfaceFlinger.h"
#include "DisplayHardware/DisplayHardware.h"
/* ideally AID_GRAPHICS would be in a semi-public header
* or there would be a way to map a user/group name to its id
*/
#ifndef AID_GRAPHICS
#define AID_GRAPHICS 1003
#endif
#ifdef SF_BYPASS
#warning "using COMPOSITION_BYPASS"
#endif
#define DISPLAY_COUNT 1
namespace android {
// ---------------------------------------------------------------------------
SurfaceFlinger::SurfaceFlinger()
: BnSurfaceComposer(), Thread(false),
mTransactionFlags(0),
mTransactionCount(0),
mResizeTransationPending(false),
mLayersRemoved(false),
mBootTime(systemTime()),
mHardwareTest("android.permission.HARDWARE_TEST"),
mAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER"),
mReadFramebuffer("android.permission.READ_FRAME_BUFFER"),
mDump("android.permission.DUMP"),
mVisibleRegionsDirty(false),
mDeferReleaseConsole(false),
mFreezeDisplay(false),
mElectronBeamAnimationMode(0),
mFreezeCount(0),
mFreezeDisplayTime(0),
mOrientationChanged(false),
mDebugRegion(0),
mDebugBackground(0),
mDebugInSwapBuffers(0),
mLastSwapBufferTime(0),
mDebugInTransaction(0),
mLastTransactionTime(0),
mBootFinished(false),
mConsoleSignals(0),
mHDMIOutput(false),
mSecureFrameBuffer(0),
#if defined(TARGET_USES_OVERLAY)
mOverlayOpt(true),
#else
mOverlayOpt(false),
#endif
mLastCompCount(-1),
mFullScreen(false),
mOverlayUsed(false),
mOverlayUseChanged(false),
mIsLayerBufferPresent(false),
mOrigResSurfAbsent(true),
mBypassState(eBypassNotInUse),
mHDMIState(HDMIOUT_DISABLE)
{
init();
}
void SurfaceFlinger::init()
{
LOGI("SurfaceFlinger is starting");
// debugging stuff...
char value[PROPERTY_VALUE_MAX];
property_get("debug.sf.showupdates", value, "0");
mDebugRegion = atoi(value);
property_get("debug.sf.showbackground", value, "0");
mDebugBackground = atoi(value);
LOGI_IF(mDebugRegion, "showupdates enabled");
LOGI_IF(mDebugBackground, "showbackground enabled");
hw_module_t const* module;
if (hw_get_module(GRALLOC_HARDWARE_MODULE_ID, &module) == 0) {
mGrallocModule = (gralloc_module_t const *)module;
}
if (hw_get_module(COPYBIT_HARDWARE_MODULE_ID, &module) == 0) {
copybit_open(module, &mBlitEngine);
}
}
SurfaceFlinger::~SurfaceFlinger()
{
glDeleteTextures(1, &mWormholeTexName);
if (mBlitEngine) {
copybit_close(mBlitEngine);
}
}
overlay_control_device_t* SurfaceFlinger::getOverlayEngine() const
{
return graphicPlane(0).displayHardware().getOverlayEngine();
}
sp<IMemoryHeap> SurfaceFlinger::getCblk() const
{
return mServerHeap;
}
sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
{
sp<ISurfaceComposerClient> bclient;
sp<Client> client(new Client(this));
status_t err = client->initCheck();
if (err == NO_ERROR) {
bclient = client;
}
return bclient;
}
sp<ISurfaceComposerClient> SurfaceFlinger::createClientConnection()
{
sp<ISurfaceComposerClient> bclient;
sp<UserClient> client(new UserClient(this));
status_t err = client->initCheck();
if (err == NO_ERROR) {
bclient = client;
}
return bclient;
}
const GraphicPlane& SurfaceFlinger::graphicPlane(int dpy) const
{
LOGE_IF(uint32_t(dpy) >= DISPLAY_COUNT, "Invalid DisplayID %d", dpy);
const GraphicPlane& plane(mGraphicPlanes[dpy]);
return plane;
}
GraphicPlane& SurfaceFlinger::graphicPlane(int dpy)
{
return const_cast<GraphicPlane&>(
const_cast<SurfaceFlinger const *>(this)->graphicPlane(dpy));
}
void SurfaceFlinger::bootFinished()
{
const nsecs_t now = systemTime();
const nsecs_t duration = now - mBootTime;
LOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
mBootFinished = true;
property_set("ctl.stop", "bootanim");
}
void SurfaceFlinger::onFirstRef()
{
run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
// Wait for the main thread to be done with its initialization
mReadyToRunBarrier.wait();
}
static inline uint16_t pack565(int r, int g, int b) {
return (r<<11)|(g<<5)|b;
}
status_t SurfaceFlinger::readyToRun()
{
LOGI( "SurfaceFlinger's main thread ready to run. "
"Initializing graphics H/W...");
// we only support one display currently
int dpy = 0;
{
// initialize the main display
GraphicPlane& plane(graphicPlane(dpy));
DisplayHardware* const hw = new DisplayHardware(this, dpy);
plane.setDisplayHardware(hw);
}
// create the shared control-block
mServerHeap = new MemoryHeapBase(4096,
MemoryHeapBase::READ_ONLY, "SurfaceFlinger read-only heap");
LOGE_IF(mServerHeap==0, "can't create shared memory dealer");
mServerCblk = static_cast<surface_flinger_cblk_t*>(mServerHeap->getBase());
LOGE_IF(mServerCblk==0, "can't get to shared control block's address");
new(mServerCblk) surface_flinger_cblk_t;
// initialize primary screen
// (other display should be initialized in the same manner, but
// asynchronously, as they could come and go. None of this is supported
// yet).
const GraphicPlane& plane(graphicPlane(dpy));
const DisplayHardware& hw = plane.displayHardware();
const uint32_t w = hw.getWidth();
const uint32_t h = hw.getHeight();
const uint32_t f = hw.getFormat();
hw.makeCurrent();
// initialize the shared control block
mServerCblk->connected |= 1<<dpy;
display_cblk_t* dcblk = mServerCblk->displays + dpy;
memset(dcblk, 0, sizeof(display_cblk_t));
dcblk->w = plane.getWidth();
dcblk->h = plane.getHeight();
dcblk->format = f;
dcblk->orientation = ISurfaceComposer::eOrientationDefault;
dcblk->xdpi = hw.getDpiX();
dcblk->ydpi = hw.getDpiY();
dcblk->fps = hw.getRefreshRate();
dcblk->density = hw.getDensity();
// Initialize OpenGL|ES
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
glPixelStorei(GL_PACK_ALIGNMENT, 4);
glEnableClientState(GL_VERTEX_ARRAY);
glEnable(GL_SCISSOR_TEST);
glShadeModel(GL_FLAT);
glDisable(GL_DITHER);
glDisable(GL_CULL_FACE);
const uint16_t g0 = pack565(0x0F,0x1F,0x0F);
const uint16_t g1 = pack565(0x17,0x2f,0x17);
const uint16_t textureData[4] = { g0, g1, g1, g0 };
glGenTextures(1, &mWormholeTexName);
glBindTexture(GL_TEXTURE_2D, mWormholeTexName);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 2, 2, 0,
GL_RGB, GL_UNSIGNED_SHORT_5_6_5, textureData);
glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrthof(0, w, h, 0, 0, 1);
LayerDim::initDimmer(this, w, h);
mReadyToRunBarrier.open();
/*
* We're now ready to accept clients...
*/
// start boot animation
property_set("ctl.start", "bootanim");
return NO_ERROR;
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark Events Handler
#endif
void SurfaceFlinger::waitForEvent()
{
while (true) {
nsecs_t timeout = -1;
const nsecs_t freezeDisplayTimeout = ms2ns(5000);
if (UNLIKELY(isFrozen())) {
// wait 5 seconds
const nsecs_t now = systemTime();
if (mFreezeDisplayTime == 0) {
mFreezeDisplayTime = now;
}
nsecs_t waitTime = freezeDisplayTimeout - (now - mFreezeDisplayTime);
timeout = waitTime>0 ? waitTime : 0;
}
sp<MessageBase> msg = mEventQueue.waitMessage(timeout);
// see if we timed out
if (isFrozen()) {
const nsecs_t now = systemTime();
nsecs_t frozenTime = (now - mFreezeDisplayTime);
if (frozenTime >= freezeDisplayTimeout) {
// we timed out and are still frozen
LOGW("timeout expired mFreezeDisplay=%d, mFreezeCount=%d",
mFreezeDisplay, mFreezeCount);
mFreezeDisplayTime = 0;
mFreezeCount = 0;
mFreezeDisplay = false;
}
}
if (msg != 0) {
switch (msg->what) {
case MessageQueue::INVALIDATE:
// invalidate message, just return to the main loop
return;
}
}
}
}
void SurfaceFlinger::signalEvent() {
mEventQueue.invalidate();
}
void SurfaceFlinger::signal() const {
// this is the IPC call
const_cast<SurfaceFlinger*>(this)->signalEvent();
}
status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
nsecs_t reltime, uint32_t flags)
{
return mEventQueue.postMessage(msg, reltime, flags);
}
status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
nsecs_t reltime, uint32_t flags)
{
status_t res = mEventQueue.postMessage(msg, reltime, flags);
if (res == NO_ERROR) {
msg->wait();
}
return res;
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark Main loop
#endif
bool SurfaceFlinger::threadLoop()
{
waitForEvent();
Mutex::Autolock _l(mHDMIMutex);
// call Layer's destructor
handleDestroyLayers();
// check for transactions
if (UNLIKELY(mConsoleSignals)) {
handleConsoleEvents();
}
if (LIKELY(mTransactionCount == 0)) {
// if we're in a global transaction, don't do anything.
const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
uint32_t transactionFlags = peekTransactionFlags(mask);
if (LIKELY(transactionFlags)) {
handleTransaction(transactionFlags);
}
}
mFullScreen = false;
// post surfaces (if needed)
handlePageFlip();
const DisplayHardware& hw(graphicPlane(0).displayHardware());
if (LIKELY(hw.canDraw() && !isFrozen())) {
#ifdef SF_BYPASS
if (handleBypassLayer()) {
return true;
}
if (mBypassState == eBypassInUse) {
copyBypassBuffer();
mBypassState = eBypassClosePending;
closeBypass();
mBypassState = eBypassFree;
}
#endif
// repaint the framebuffer (if needed)
const int index = hw.getCurrentBufferIndex();
GraphicLog& logger(GraphicLog::getInstance());
logger.log(GraphicLog::SF_REPAINT, index);
handleRepaint();
// inform the h/w that we're done compositing
logger.log(GraphicLog::SF_COMPOSITION_COMPLETE, index);
if (!mFullScreen)
hw.compositionComplete();
// release the clients before we flip ('cause flip might block)
logger.log(GraphicLog::SF_UNLOCK_CLIENTS, index);
logger.log(GraphicLog::SF_SWAP_BUFFERS, index);
if (!mFullScreen) {
postFramebuffer();
// In case we cached mCachedVideoLayer, it means we kept while in
// composeSurface function and we need to call onQueueBuf when we
// are done with swap buffers.
PostBufferSingleton::instance()->onQueueBuf();
if (mOverlayOpt && mOverlayUseChanged) {
closeOverlay();
mOverlayUseChanged = false;
freeBypassBuffers();
}
}
#ifdef SF_BYPASS
if (mBypassState == eBypassFree) {
freeBypassBuffers();
mBypassState = eBypassNotInUse;
}
#endif
logger.log(GraphicLog::SF_REPAINT_DONE, index);
} else {
if ((mOverlayOpt) && !(hw.canDraw())) {
closeOverlay();
const DisplayHardware& hw(graphicPlane(0).displayHardware());
if (mHDMIOutput)
hw.videoOverlayStarted(false);
}
#ifdef SF_BYPASS
if (hw.canDraw() && mBypassState == eBypassInUse) {
if (copyBypassBuffer() == NO_ERROR) {
freeBypassBuffers();
return true;
}
}
if (mBypassState == eBypassClosePending || !(hw.canDraw())) {
closeBypass();
freeBypassBuffers();
mBypassState = eBypassNotInUse;
return true;
}
#endif
usleep(16667); // 60 fps period
}
return true;
}
bool SurfaceFlinger::closeBypass()
{
#ifdef SF_BYPASS
const DisplayHardware& hw(graphicPlane(0).displayHardware());
if (hw.closeBypass() == NO_ERROR) {
return true;
}
#endif
return false;
}
status_t SurfaceFlinger::copyBypassBuffer()
{
#ifdef SF_BYPASS
const DisplayHardware& hw(graphicPlane(0).displayHardware());
if (mBypassState == eBypassInUse) {
return hw.copyBypassBuffer();
}
#endif
return NO_INIT;
}
bool SurfaceFlinger::handleBypassLayer()
{
#ifdef SF_BYPASS
if (mBypassState == eBypassClosePending || mBypassState == eBypassFree)
return false;
/*
* For now, disable HDMI through comp. bypass,
*/
bool hdmiOptionON = false;
switch (mHDMIState) {
case HDMIFB_OPEN:
case HDMIHPD_ON:
case HDMIOUT_ENABLE:
hdmiOptionON = true;
break;
case HDMIOUT_DISABLE:
case HDMIHPD_OFF:
hdmiOptionON = false;
break;
default:
break;
}
if (hdmiOptionON)
return false;
sp<Layer> bypassLayer(mBypassLayer.promote());
if (bypassLayer != 0) {
const DisplayHardware& hw(graphicPlane(0).displayHardware());
sp<GraphicBuffer> buffer(bypassLayer->getBypassBuffer());
if (buffer != 0 && hw.isOverlayUIEnabled() &&
!bypassLayer->getStereoscopic3DFormat()) {
bool isHPDON = hdmiOptionON;
status_t ret = hw.postBypassBuffer(buffer->handle, buffer->width,
buffer->height, buffer->format,
bypassLayer->getOrientation(), isHPDON);
if (ret == NO_ERROR) {
bypassLayer->setOverlayUsed(true);
bypassLayer->setBufferInUse();
mBypassState = eBypassInUse;
return true;
}
if (mBypassState != eBypassInUse)
closeBypass();
LOGE("comp. bypass failed.");
return false;
}
}
#endif
return false;
}
void SurfaceFlinger::postFramebuffer()
{
if (!mInvalidRegion.isEmpty()) {
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const nsecs_t now = systemTime();
const GraphicPlane& plane(graphicPlane(0));
const Transform& planeTransform(plane.transform());
mDebugInSwapBuffers = now;
//If orientation has changed, inform gralloc for HDMI mirroring
if(mOrientationChanged) {
mOrientationChanged = false;
hw.orientationChanged(planeTransform.getOrientation());
}
hw.flip(mInvalidRegion);
mLastSwapBufferTime = systemTime() - now;
mDebugInSwapBuffers = 0;
mInvalidRegion.clear();
}
}
void SurfaceFlinger::handleConsoleEvents()
{
// something to do with the console
const DisplayHardware& hw = graphicPlane(0).displayHardware();
int what = android_atomic_and(0, &mConsoleSignals);
if (what & eConsoleAcquired) {
hw.acquireScreen();
hw.enableHDMIOutput(mHDMIOutput);
if(!mOrigResSurfAbsent)
hw.startOrigResDisplay();
// this is a temporary work-around, eventually this should be called
// by the power-manager
SurfaceFlinger::turnElectronBeamOn(mElectronBeamAnimationMode);
}
if (mDeferReleaseConsole && hw.isScreenAcquired()) {
// We got the release signal before the acquire signal
mDeferReleaseConsole = false;
hw.releaseScreen();
hw.enableHDMIOutput(false);
if(!mOrigResSurfAbsent) {
hw.stopOrigResDisplay();
freeBypassBuffers();
}
}
if (what & eConsoleReleased) {
if (hw.isScreenAcquired()) {
hw.releaseScreen();
hw.enableHDMIOutput(false);
if(!mOrigResSurfAbsent) {
hw.stopOrigResDisplay();
freeBypassBuffers();
}
} else {
mDeferReleaseConsole = true;
}
}
mDirtyRegion.set(hw.bounds());
}
void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
{
Mutex::Autolock _l(mStateLock);
const nsecs_t now = systemTime();
mDebugInTransaction = now;
// Here we're guaranteed that some transaction flags are set
// so we can call handleTransactionLocked() unconditionally.
// We call getTransactionFlags(), which will also clear the flags,
// with mStateLock held to guarantee that mCurrentState won't change
// until the transaction is committed.
const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
transactionFlags = getTransactionFlags(mask);
handleTransactionLocked(transactionFlags);
mLastTransactionTime = systemTime() - now;
mDebugInTransaction = 0;
// here the transaction has been committed
}
void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
{
const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
const size_t count = currentLayers.size();
/*
* Traversal of the children
* (perform the transaction for each of them if needed)
*/
const bool layersNeedTransaction = transactionFlags & eTraversalNeeded;
if (layersNeedTransaction) {
for (size_t i=0 ; i<count ; i++) {
const sp<LayerBase>& layer = currentLayers[i];
uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
if (!trFlags) continue;
const uint32_t flags = layer->doTransaction(0);
if (flags & Layer::eVisibleRegion)
mVisibleRegionsDirty = true;
}
}
/*
* Perform our own transaction if needed
*/
if (transactionFlags & eTransactionNeeded) {
if (mCurrentState.orientation != mDrawingState.orientation) {
// the orientation has changed, recompute all visible regions
// and invalidate everything.
const int dpy = 0;
const int orientation = mCurrentState.orientation;
const uint32_t type = mCurrentState.orientationType;
GraphicPlane& plane(graphicPlane(dpy));
plane.setOrientation(orientation);
mOrientationChanged = true;
// update the shared control block
const DisplayHardware& hw(plane.displayHardware());
volatile display_cblk_t* dcblk = mServerCblk->displays + dpy;
dcblk->orientation = orientation;
dcblk->w = plane.getWidth();
dcblk->h = plane.getHeight();
mVisibleRegionsDirty = true;
mDirtyRegion.set(hw.bounds());
}
if (mCurrentState.freezeDisplay != mDrawingState.freezeDisplay) {
// freezing or unfreezing the display -> trigger animation if needed
mFreezeDisplay = mCurrentState.freezeDisplay;
if (mFreezeDisplay)
mFreezeDisplayTime = 0;
}
if (currentLayers.size() > mDrawingState.layersSortedByZ.size()) {
// layers have been added
mVisibleRegionsDirty = true;
}
// some layers might have been removed, so
// we need to update the regions they're exposing.
if (mLayersRemoved) {
mLayersRemoved = false;
mVisibleRegionsDirty = true;
const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
const size_t count = previousLayers.size();
for (size_t i=0 ; i<count ; i++) {
const sp<LayerBase>& layer(previousLayers[i]);
if (currentLayers.indexOf( layer ) < 0) {
// this layer is not visible anymore
mDirtyRegionRemovedLayer.orSelf(layer->visibleRegionScreen);
}
}
}
}
commitTransaction();
}
void SurfaceFlinger::destroyLayer(LayerBase const* layer)
{
Mutex::Autolock _l(mDestroyedLayerLock);
mDestroyedLayers.add(layer);
signalEvent();
}
void SurfaceFlinger::handleDestroyLayers()
{
Vector<LayerBase const *> destroyedLayers;
{ // scope for the lock
Mutex::Autolock _l(mDestroyedLayerLock);
destroyedLayers = mDestroyedLayers;
mDestroyedLayers.clear();
}
// call destructors without a lock held
const size_t count = destroyedLayers.size();
for (size_t i=0 ; i<count ; i++) {
//LOGD("destroying %s", destroyedLayers[i]->getName().string());
delete destroyedLayers[i];
}
}
sp<FreezeLock> SurfaceFlinger::getFreezeLock() const
{
return new FreezeLock(const_cast<SurfaceFlinger *>(this));
}
void SurfaceFlinger::computeVisibleRegions(
LayerVector& currentLayers, Region& dirtyRegion, Region& opaqueRegion)
{
const GraphicPlane& plane(graphicPlane(0));
const Transform& planeTransform(plane.transform());
const DisplayHardware& hw(plane.displayHardware());
const Region screenRegion(hw.bounds());
Region aboveOpaqueLayers;
Region aboveCoveredLayers;
Region dirty;
bool secureFrameBuffer = false;
size_t i = currentLayers.size();
while (i--) {
const sp<LayerBase>& layer = currentLayers[i];
layer->validateVisibility(planeTransform);
// start with the whole surface at its current location
const Layer::State& s(layer->drawingState());
/*
* opaqueRegion: area of a surface that is fully opaque.
*/
Region opaqueRegion;
/*
* visibleRegion: area of a surface that is visible on screen
* and not fully transparent. This is essentially the layer's
* footprint minus the opaque regions above it.
* Areas covered by a translucent surface are considered visible.
*/
Region visibleRegion;
/*
* coveredRegion: area of a surface that is covered by all
* visible regions above it (which includes the translucent areas).
*/
Region coveredRegion;
// handle hidden surfaces by setting the visible region to empty
if (LIKELY(!(s.flags & ISurfaceComposer::eLayerHidden) && s.alpha)) {
const bool translucent = layer->needsBlending();
const Rect bounds(layer->visibleBounds());
visibleRegion.set(bounds);
visibleRegion.andSelf(screenRegion);
if (!visibleRegion.isEmpty()) {
// Remove the transparent area from the visible region
if (translucent) {
visibleRegion.subtractSelf(layer->transparentRegionScreen);
}
// compute the opaque region
const int32_t layerOrientation = layer->getOrientation();
if (s.alpha==255 && !translucent &&
((layerOrientation & Transform::ROT_INVALID) == false)) {
// the opaque region is the layer's footprint
opaqueRegion = visibleRegion;
}
}
}
// Clip the covered region to the visible region
coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
// Update aboveCoveredLayers for next (lower) layer
aboveCoveredLayers.orSelf(visibleRegion);
// subtract the opaque region covered by the layers above us
visibleRegion.subtractSelf(aboveOpaqueLayers);
// compute this layer's dirty region
if (layer->contentDirty) {
// we need to invalidate the whole region
dirty = visibleRegion;
// as well, as the old visible region
dirty.orSelf(layer->visibleRegionScreen);
layer->contentDirty = false;
layer->setNothingToUpdate(false);
} else {
/* compute the exposed region:
* the exposed region consists of two components:
* 1) what's VISIBLE now and was COVERED before
* 2) what's EXPOSED now less what was EXPOSED before
*
* note that (1) is conservative, we start with the whole
* visible region but only keep what used to be covered by
* something -- which mean it may have been exposed.
*
* (2) handles areas that were not covered by anything but got
* exposed because of a resize.
*/
const Region newExposed = visibleRegion - coveredRegion;
const Region oldVisibleRegion = layer->visibleRegionScreen;
const Region oldCoveredRegion = layer->coveredRegionScreen;
const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
}
dirty.subtractSelf(aboveOpaqueLayers);
// accumulate to the screen dirty region
dirtyRegion.orSelf(dirty);
// Update aboveOpaqueLayers for next (lower) layer
aboveOpaqueLayers.orSelf(opaqueRegion);
// Store the visible region is screen space
layer->setVisibleRegion(visibleRegion);
layer->setCoveredRegion(coveredRegion);
// If a secure layer is partially visible, lock-down the screen!
if (layer->isSecure() && !visibleRegion.isEmpty()) {
secureFrameBuffer = true;
}
}
// invalidate the areas where a layer was removed
dirtyRegion.orSelf(mDirtyRegionRemovedLayer);
mDirtyRegionRemovedLayer.clear();
mSecureFrameBuffer = secureFrameBuffer;
opaqueRegion = aboveOpaqueLayers;
}
void SurfaceFlinger::commitTransaction()
{
mDrawingState = mCurrentState;
mResizeTransationPending = false;
mTransactionCV.broadcast();
}
void SurfaceFlinger::setBypassLayer(const sp<LayerBase>& layer)
{
// if this layer is already the bypass layer, do nothing
sp<Layer> cur(mBypassLayer.promote());
if (mBypassLayer == layer)
return;
// clear the current bypass layer
mBypassLayer.clear();
if (cur != 0) {
cur->setBypass(false);
cur.clear();
}
// set new bypass layer
if (layer != 0) {
if (layer->setBypass(true)) {
mBypassLayer = static_cast<Layer*>(layer.get());
}
}
}
void SurfaceFlinger::handlePageFlip()
{
bool visibleRegions = mVisibleRegionsDirty;
LayerVector& currentLayers = const_cast<LayerVector&>(
mDrawingState.layersSortedByZ);
visibleRegions |= lockPageFlip(currentLayers);
const DisplayHardware& hw = graphicPlane(0).displayHardware();
const Region screenRegion(hw.bounds());
if (visibleRegions) {
Region opaqueRegion;
computeVisibleRegions(currentLayers, mDirtyRegion, opaqueRegion);
/*
* rebuild the visible layer list
*/
mVisibleLayersSortedByZ.clear();
const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
size_t count = currentLayers.size();
mVisibleLayersSortedByZ.setCapacity(count);
for (size_t i=0 ; i<count ; i++) {
if (!currentLayers[i]->visibleRegionScreen.isEmpty())
mVisibleLayersSortedByZ.add(currentLayers[i]);
}
#ifdef SF_BYPASS
sp<LayerBase> bypassLayer;
const size_t numVisibleLayers = mVisibleLayersSortedByZ.size();
if (numVisibleLayers == 1) {
const sp<LayerBase>& candidate(mVisibleLayersSortedByZ[0]);
const Region& visibleRegion(candidate->visibleRegionScreen);
const Region reminder(screenRegion.subtract(visibleRegion));
if (reminder.isEmpty()) {
// fullscreen candidate!
bypassLayer = candidate;
}
}
setBypassLayer(bypassLayer);
#endif
mWormholeRegion = screenRegion.subtract(opaqueRegion);
mVisibleRegionsDirty = false;
}
unlockPageFlip(currentLayers);
mDirtyRegion.andSelf(screenRegion);
}
bool SurfaceFlinger::lockPageFlip(const LayerVector& currentLayers)
{
bool recomputeVisibleRegions = false;
size_t count = currentLayers.size();
sp<LayerBase> const* layers = currentLayers.array();
for (size_t i=0 ; i<count ; i++) {
const sp<LayerBase>& layer(layers[i]);
layer->lockPageFlip(recomputeVisibleRegions);
}
return recomputeVisibleRegions;
}
void SurfaceFlinger::unlockPageFlip(const LayerVector& currentLayers)
{
const GraphicPlane& plane(graphicPlane(0));
const Transform& planeTransform(plane.transform());
size_t count = currentLayers.size();
sp<LayerBase> const* layers = currentLayers.array();
for (size_t i=0 ; i<count ; i++) {
const sp<LayerBase>& layer(layers[i]);
layer->unlockPageFlip(planeTransform, mDirtyRegion);
}
}
void SurfaceFlinger::handleRepaint()
{
// compute the invalid region
mInvalidRegion.orSelf(mDirtyRegion);
// Skip this check for original resolution and layerbuffer surfaces, since MDP is
// used for display and we want to ensure UI updates.
if (mInvalidRegion.isEmpty() && mOrigResSurfAbsent && !mIsLayerBufferPresent) {
// nothing to do
return;
}
if (UNLIKELY(mDebugRegion)) {
debugFlashRegions();
}
// set the frame buffer
const DisplayHardware& hw(graphicPlane(0).displayHardware());
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
uint32_t flags = hw.getFlags();
//Enter block only if original resolution surface absent.
//If present, ensures that the entire region is marked dirty.
if ((flags & DisplayHardware::SWAP_RECTANGLE &&
!mIsLayerBufferPresent && mOrigResSurfAbsent) ||
(flags & DisplayHardware::BUFFER_PRESERVED))
{
// we can redraw only what's dirty, but since SWAP_RECTANGLE only
// takes a rectangle, we must make sure to update that whole
// rectangle in that case
if (flags & DisplayHardware::SWAP_RECTANGLE) {
// TODO: we really should be able to pass a region to
// SWAP_RECTANGLE so that we don't have to redraw all this.
mDirtyRegion.set(mInvalidRegion.bounds());
} else {
// in the BUFFER_PRESERVED case, obviously, we can update only
// what's needed and nothing more.
// NOTE: this is NOT a common case, as preserving the backbuffer
// is costly and usually involves copying the whole update back.
}
} else {
if (flags & DisplayHardware::PARTIAL_UPDATES) {
// We need to redraw the rectangle that will be updated
// (pushed to the framebuffer).
// This is needed because PARTIAL_UPDATES only takes one
// rectangle instead of a region (see DisplayHardware::flip())
mDirtyRegion.set(mInvalidRegion.bounds());
} else {
// we need to redraw everything (the whole screen)
mDirtyRegion.set(hw.bounds());
mInvalidRegion = mDirtyRegion;
}
}
// compose all surfaces
composeSurfaces(mDirtyRegion);
// clear the dirty regions
mDirtyRegion.clear();
}
void SurfaceFlinger::freeBypassBuffers()
{
#ifdef SF_BYPASS
const LayerVector& drawingLayers(mDrawingState.layersSortedByZ);
const size_t count = drawingLayers.size();
sp<LayerBase> const* const layers = drawingLayers.array();
for (size_t i=0 ; i<count ; ++i) {
const sp<LayerBase>& layer(layers[i]);
layer->freeBypassBuffers();
}
#endif
}
void SurfaceFlinger::composeSurfaces(const Region& dirty)
{
const Vector< sp<LayerBase> >& layers(mVisibleLayersSortedByZ);
const size_t count = layers.size();
int compCount = 0, layerBufferCount = 0, layerBufferIndex = -1;
int layersNotUpdatingCount = 0, drawLayerIndex = -1;
bool compositionStateChanged = false;
Region layerBufferClip;
bool canUseOverlayToDraw = (getOverlayEngine() != NULL);
bool overlayLayersPresent = false;
int s3dLayerCount = 0;
int origResLayerCount = 0;
PostBufferSingleton::instance()->clearBufferLayerList();
#if defined(TARGET_USES_OVERLAY)
//set up flags for composition
for (size_t i = 0; ((i < count) &&
(compCount <= 1 || layerBufferCount <= 1 || s3dLayerCount <= 1)); ++i) {
const sp<LayerBase>& layer = layers[i];
const Region& visibleRegion(layer->visibleRegionScreen);
if (!visibleRegion.isEmpty()) {
const Region clip(dirty.intersect(visibleRegion));
if (!clip.isEmpty()) {
compCount++;
if(layer->isNothingToUpdate()) {
layersNotUpdatingCount++;
}
if (layer->getLayerInitFlags() & ePushBuffers) {
layerBufferCount++;
layerBufferIndex = i;
layerBufferClip = clip;
}
if (layer->getStereoscopic3DFormat()) {
s3dLayerCount++;
}
if(UNLIKELY(layer->getUseOriginalSurfaceResolution())) {
++origResLayerCount;
}
}
}
}
#endif
PostBufferSingleton::instance()->setPolicy(layerBufferCount);
mIsLayerBufferPresent = (layerBufferCount == 1) ? true: false;
mOrigResSurfAbsent = (0 == origResLayerCount);
//try to use fullscreen overlay mode
if (canUseOverlayToDraw && mOverlayOpt && layerBufferCount == 1
&& !mOrientationChanged) {
// change in layers or orientation -> no fullscreen
if (compCount != mLastCompCount) {
compositionStateChanged = true;
mLastCompCount = compCount;
}
/* the overlay layer will not show up as an updating layer.
If the other (n-1) layers have not changed, use fullscreen */
if(((compCount == 1) || (compCount - 1 == layersNotUpdatingCount))
&& !compositionStateChanged){
const sp<LayerBase>& layer = layers[layerBufferIndex];
status_t err = NO_ERROR;
if ((err = layer->drawWithOverlay(layerBufferClip, mHDMIOutput))
== NO_ERROR) {
mFullScreen = true;
mOverlayUsed = true;
layer->setBufferInUse();
return;
}
}
} else {
mLastCompCount = -1;
}
if (UNLIKELY(!mWormholeRegion.isEmpty())) {
// should never happen unless the window manager has a bug
// draw something...
drawWormhole();
}
//reset all flags before iterating through the layers
if (mOverlayUsed && !s3dLayerCount && !origResLayerCount
&& layerBufferCount != 1) {
mOverlayUsed = false;
mOverlayUseChanged = true;
}
overlayLayersPresent = s3dLayerCount > 0 || origResLayerCount > 0
|| layerBufferCount == 1;
PostBufferSingleton::instance()->addPushBufferLayers(layers);
//iterate over all layers for composition
for (size_t i=0 ; i<count ; ++i) {
const sp<LayerBase>& layer(layers[i]);
const Region clip(dirty.intersect(layer->visibleRegionScreen));
if (!clip.isEmpty()) {
/* Use overlay for 3D, pushBuffers and origRes surfaces.
For pushBuffers, if overlay fails, fall back to default composition. */
if (canUseOverlayToDraw && overlayLayersPresent) {
if (layer->getStereoscopic3DFormat() ||
layer->getUseOriginalSurfaceResolution()) {
layer->drawWithOverlay(clip, mHDMIOutput, false);
mOverlayUsed = true;
} else if (layer->getLayerInitFlags() & ePushBuffers) {
if (layer->drawWithOverlay(clip, mHDMIOutput, false)
!= NO_ERROR) {
layer->draw(clip);
}
else
mOverlayUsed = true;
} else // use default composition for other layers
layer->draw(clip);
} else //use default composition for all layers
layer->draw(clip);
}
}
}
void SurfaceFlinger::debugFlashRegions()
{
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const uint32_t flags = hw.getFlags();
if (!((flags & DisplayHardware::SWAP_RECTANGLE) ||
(flags & DisplayHardware::BUFFER_PRESERVED))) {
const Region repaint((flags & DisplayHardware::PARTIAL_UPDATES) ?
mDirtyRegion.bounds() : hw.bounds());
composeSurfaces(repaint);
}
TextureManager::deactivateTextures();
glDisable(GL_BLEND);
glDisable(GL_DITHER);
glDisable(GL_SCISSOR_TEST);
static int toggle = 0;
toggle = 1 - toggle;
if (toggle) {
glColor4f(1, 0, 1, 1);
} else {
glColor4f(1, 1, 0, 1);
}
Region::const_iterator it = mDirtyRegion.begin();
Region::const_iterator const end = mDirtyRegion.end();
while (it != end) {
const Rect& r = *it++;
GLfloat vertices[][2] = {
{ r.left, r.top },
{ r.left, r.bottom },
{ r.right, r.bottom },
{ r.right, r.top }
};
glVertexPointer(2, GL_FLOAT, 0, vertices);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
if (mInvalidRegion.isEmpty()) {
mDirtyRegion.dump("mDirtyRegion");
mInvalidRegion.dump("mInvalidRegion");
}
hw.flip(mInvalidRegion);
if (mDebugRegion > 1)
usleep(mDebugRegion * 1000);
glEnable(GL_SCISSOR_TEST);
//mDirtyRegion.dump("mDirtyRegion");
}
void SurfaceFlinger::drawWormhole() const
{
const Region region(mWormholeRegion.intersect(mDirtyRegion));
if (region.isEmpty())
return;
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const int32_t width = hw.getWidth();
const int32_t height = hw.getHeight();
glDisable(GL_BLEND);
glDisable(GL_DITHER);
if (LIKELY(!mDebugBackground)) {
glClearColor(0,0,0,0);
Region::const_iterator it = region.begin();
Region::const_iterator const end = region.end();
while (it != end) {
const Rect& r = *it++;
const GLint sy = height - (r.top + r.height());
glScissor(r.left, sy, r.width(), r.height());
glClear(GL_COLOR_BUFFER_BIT);
}
} else {
const GLshort vertices[][2] = { { 0, 0 }, { width, 0 },
{ width, height }, { 0, height } };
const GLshort tcoords[][2] = { { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 } };
glVertexPointer(2, GL_SHORT, 0, vertices);
glTexCoordPointer(2, GL_SHORT, 0, tcoords);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
#if defined(GL_OES_EGL_image_external)
if (GLExtensions::getInstance().haveTextureExternal()) {
glDisable(GL_TEXTURE_EXTERNAL_OES);
}
#endif
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, mWormholeTexName);
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glScalef(width*(1.0f/32.0f), height*(1.0f/32.0f), 1);
Region::const_iterator it = region.begin();
Region::const_iterator const end = region.end();
while (it != end) {
const Rect& r = *it++;
const GLint sy = height - (r.top + r.height());
glScissor(r.left, sy, r.width(), r.height());
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
}
void SurfaceFlinger::debugShowFPS() const
{
static int mFrameCount;
static int mLastFrameCount = 0;
static nsecs_t mLastFpsTime = 0;
static float mFps = 0;
mFrameCount++;
nsecs_t now = systemTime();
nsecs_t diff = now - mLastFpsTime;
if (diff > ms2ns(250)) {
mFps = ((mFrameCount - mLastFrameCount) * float(s2ns(1))) / diff;
mLastFpsTime = now;
mLastFrameCount = mFrameCount;
}
// XXX: mFPS has the value we want
}
status_t SurfaceFlinger::addLayer(const sp<LayerBase>& layer)
{
Mutex::Autolock _l(mStateLock);
addLayer_l(layer);
setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
return NO_ERROR;
}
status_t SurfaceFlinger::addLayer_l(const sp<LayerBase>& layer)
{
ssize_t i = mCurrentState.layersSortedByZ.add(layer);
return (i < 0) ? status_t(i) : status_t(NO_ERROR);
}
ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
const sp<LayerBaseClient>& lbc)
{
// attach this layer to the client
size_t name = client->attachLayer(lbc);
Mutex::Autolock _l(mStateLock);
// add this layer to the current state list
addLayer_l(lbc);
return ssize_t(name);
}
status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
{
status_t err = NAME_NOT_FOUND;
Mutex::Autolock _l(mStateLock);
if (layer != 0) {
err = purgatorizeLayer_l(layer);
if (err == NO_ERROR)
setTransactionFlags(eTransactionNeeded);
}
return err;
}
status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
{
sp<LayerBaseClient> lbc(layerBase->getLayerBaseClient());
if (lbc != 0) {
if(!lbc->isSurface()) {
LOGV("LayerBaseClient does not hold a valid surface anymore. "
"Ignoring remove request lbc=%p layermap size=%d",
lbc.get(), mLayerMap.size());
}else {
mLayerMap.removeItem( lbc->getSurface()->asBinder() );
}
}
ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
if (index >= 0) {
mLayersRemoved = true;
return NO_ERROR;
}
return status_t(index);
}
status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
{
// remove the layer from the main list (through a transaction).
status_t err = removeLayer_l(layerBase);
layerBase->onRemoved();
// it's possible that we don't find a layer, because it might
// have been destroyed already -- this is not technically an error
// from the user because there is a race between Client::destroySurface(),
// ~Client() and ~ISurface().
return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
}
status_t SurfaceFlinger::invalidateLayerVisibility(const sp<LayerBase>& layer)
{
layer->forceVisibilityTransaction();
setTransactionFlags(eTraversalNeeded);
return NO_ERROR;
}
uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
{
return android_atomic_release_load(&mTransactionFlags);
}
uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
{
return android_atomic_and(~flags, &mTransactionFlags) & flags;
}
uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
{
uint32_t old = android_atomic_or(flags, &mTransactionFlags);
if ((old & flags)==0) { // wake the server up
signalEvent();
}
return old;
}
void SurfaceFlinger::openGlobalTransaction()
{
android_atomic_inc(&mTransactionCount);
}
void SurfaceFlinger::closeGlobalTransaction()
{
if (android_atomic_dec(&mTransactionCount) == 1) {
signalEvent();
// if there is a transaction with a resize, wait for it to
// take effect before returning.
Mutex::Autolock _l(mStateLock);
while (mResizeTransationPending) {
status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
if (CC_UNLIKELY(err != NO_ERROR)) {
// just in case something goes wrong in SF, return to the
// called after a few seconds.
LOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
mResizeTransationPending = false;
break;
}
}
}
}
status_t SurfaceFlinger::freezeDisplay(DisplayID dpy, uint32_t flags)
{
if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
return BAD_VALUE;
Mutex::Autolock _l(mStateLock);
mCurrentState.freezeDisplay = 1;
setTransactionFlags(eTransactionNeeded);
// flags is intended to communicate some sort of animation behavior
// (for instance fading)
return NO_ERROR;
}
status_t SurfaceFlinger::unfreezeDisplay(DisplayID dpy, uint32_t flags)
{
if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
return BAD_VALUE;
Mutex::Autolock _l(mStateLock);
mCurrentState.freezeDisplay = 0;
setTransactionFlags(eTransactionNeeded);
// flags is intended to communicate some sort of animation behavior
// (for instance fading)
return NO_ERROR;
}
int SurfaceFlinger::setOrientation(DisplayID dpy,
int orientation, uint32_t flags)
{
if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
return BAD_VALUE;
Mutex::Autolock _l(mStateLock);
if (mCurrentState.orientation != orientation) {
if (uint32_t(orientation)<=eOrientation270 || orientation==42) {
mCurrentState.orientationType = flags;
mCurrentState.orientation = orientation;
setTransactionFlags(eTransactionNeeded);
mTransactionCV.wait(mStateLock);
} else {
orientation = BAD_VALUE;
}
}
return orientation;
}
void SurfaceFlinger::enableHDMIOutput(int enable)
{
#if defined(TARGET_USES_OVERLAY)
const DisplayHardware& hw(graphicPlane(0).displayHardware());
mHDMIState = static_cast<hdmi_state_t> (enable);
{
Mutex::Autolock _l(mHDMIMutex);
switch(enable) {
case HDMIFB_OPEN:
case HDMIHPD_ON:
case HDMIHPD_OFF:
break;
case HDMIOUT_ENABLE:
case HDMIOUT_DISABLE:
{
mHDMIOutput = enable;
hw.enableHDMIOutput(enable);
}
}
}
signalEvent();
#endif
}
void SurfaceFlinger::setActionSafeWidthRatio(float asWidthRatio){
#if defined(TARGET_USES_OVERLAY)
overlay::ActionSafe::setWidthRatio(asWidthRatio);
#endif
}
void SurfaceFlinger::setActionSafeHeightRatio(float asHeightRatio){
#if defined(TARGET_USES_OVERLAY)
overlay::ActionSafe::setHeightRatio(asHeightRatio);
#endif
}
sp<ISurface> SurfaceFlinger::createSurface(const sp<Client>& client, int pid,
const String8& name, ISurfaceComposerClient::surface_data_t* params,
DisplayID d, uint32_t w, uint32_t h, PixelFormat format,
uint32_t flags)
{
sp<LayerBaseClient> layer;
sp<LayerBaseClient::Surface> surfaceHandle;
if (int32_t(w|h) < 0) {
LOGE("createSurface() failed, w or h is negative (w=%d, h=%d)",
int(w), int(h));
return surfaceHandle;
}
//LOGD("createSurface for pid %d (%d x %d)", pid, w, h);
sp<Layer> normalLayer;
switch (flags & eFXSurfaceMask) {
case eFXSurfaceNormal:
if (UNLIKELY(flags & ePushBuffers)) {
layer = createPushBuffersSurface(client, d, w, h, flags);
} else {
normalLayer = createNormalSurface(client, d, w, h, flags, format);
layer = normalLayer;
}
break;
case eFXSurfaceBlur:
layer = createBlurSurface(client, d, w, h, flags);
break;
case eFXSurfaceDim:
layer = createDimSurface(client, d, w, h, flags);
break;
}
if (layer != 0) {
layer->initStates(w, h, flags);
layer->setName(name);
ssize_t token = addClientLayer(client, layer);
surfaceHandle = layer->getSurface();
if (surfaceHandle != 0) {
params->token = token;
params->identity = surfaceHandle->getIdentity();
params->width = w;
params->height = h;
params->format = format;
if (normalLayer != 0) {
Mutex::Autolock _l(mStateLock);
mLayerMap.add(surfaceHandle->asBinder(), normalLayer);
}
}
setTransactionFlags(eTransactionNeeded);
}
return surfaceHandle;
}
sp<Layer> SurfaceFlinger::createNormalSurface(
const sp<Client>& client, DisplayID display,
uint32_t w, uint32_t h, uint32_t flags,
PixelFormat& format)
{
// initialize the surfaces
switch (format) { // TODO: take h/w into account
case PIXEL_FORMAT_TRANSPARENT:
case PIXEL_FORMAT_TRANSLUCENT:
format = PIXEL_FORMAT_RGBA_8888;
break;
case PIXEL_FORMAT_OPAQUE:
#ifdef USE_16BPPSURFACE_FOR_OPAQUE
format = PIXEL_FORMAT_RGB_565;
#else /* USE_16BPPSURFACE_FOR_OPAQUE */
#ifdef NO_RGBX_8888
format = PIXEL_FORMAT_RGB_565;
#else
format = PIXEL_FORMAT_RGBX_8888;
#endif
#endif /* USE_16BPPSURFACE_FOR_OPAQUE */
break;
}
#ifdef NO_RGBX_8888
if (format == PIXEL_FORMAT_RGBX_8888)
format = PIXEL_FORMAT_RGBA_8888;
#endif
sp<Layer> layer = new Layer(this, display, client);
status_t err = layer->setBuffers(w, h, format, flags);
if (LIKELY(err != NO_ERROR)) {
LOGE("createNormalSurfaceLocked() failed (%s)", strerror(-err));
layer.clear();
}
return layer;
}
sp<LayerBlur> SurfaceFlinger::createBlurSurface(
const sp<Client>& client, DisplayID display,
uint32_t w, uint32_t h, uint32_t flags)
{
sp<LayerBlur> layer = new LayerBlur(this, display, client);
layer->initStates(w, h, flags);
return layer;
}
sp<LayerDim> SurfaceFlinger::createDimSurface(
const sp<Client>& client, DisplayID display,
uint32_t w, uint32_t h, uint32_t flags)
{
sp<LayerDim> layer = new LayerDim(this, display, client);
layer->initStates(w, h, flags);
return layer;
}
sp<LayerBuffer> SurfaceFlinger::createPushBuffersSurface(
const sp<Client>& client, DisplayID display,
uint32_t w, uint32_t h, uint32_t flags)
{
sp<LayerBuffer> layer = new LayerBuffer(this, display, client);
layer->initStates(w, h, flags);
return layer;
}
status_t SurfaceFlinger::removeSurface(const sp<Client>& client, SurfaceID sid)
{
/*
* called by the window manager, when a surface should be marked for
* destruction.
*
* The surface is removed from the current and drawing lists, but placed
* in the purgatory queue, so it's not destroyed right-away (we need
* to wait for all client's references to go away first).
*/
status_t err = NAME_NOT_FOUND;
Mutex::Autolock _l(mStateLock);
sp<LayerBaseClient> layer = client->getLayerUser(sid);
if (layer != 0) {
err = purgatorizeLayer_l(layer);
if (err == NO_ERROR) {
setTransactionFlags(eTransactionNeeded);
}
}
return err;
}
status_t SurfaceFlinger::destroySurface(const wp<LayerBaseClient>& layer)
{
// called by ~ISurface() when all references are gone
status_t err = NO_ERROR;
sp<LayerBaseClient> l(layer.promote());
if (l != NULL) {
Mutex::Autolock _l(mStateLock);
err = removeLayer_l(l);
LOGE_IF(err<0 && err != NAME_NOT_FOUND,
"error removing layer=%p (%s)", l.get(), strerror(-err));
}
return err;
}
status_t SurfaceFlinger::setClientState(
const sp<Client>& client,
int32_t count,
const layer_state_t* states)
{
Mutex::Autolock _l(mStateLock);
uint32_t flags = 0;
for (int i=0 ; i<count ; i++) {
const layer_state_t& s(states[i]);
sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
if (layer != 0) {
const uint32_t what = s.what;
if (what & ePositionChanged) {
if (layer->setPosition(s.x, s.y))
flags |= eTraversalNeeded;
}
if (what & eLayerChanged) {
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
if (layer->setLayer(s.z)) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
if (what & eSizeChanged) {
if (layer->setSize(s.w, s.h)) {
flags |= eTraversalNeeded;
mResizeTransationPending = true;
}
}
if (what & eVisualParamChanged) {
layer->setVisualParam(s.visualParamType, s.visualParamValue);
}
if (what & eAlphaChanged) {
if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
flags |= eTraversalNeeded;
}
if (what & eMatrixChanged) {
if (layer->setMatrix(s.matrix))
flags |= eTraversalNeeded;
}
if (what & eTransparentRegionChanged) {
if (layer->setTransparentRegionHint(s.transparentRegion))
flags |= eTraversalNeeded;
}
if (what & eVisibilityChanged) {
if (layer->setFlags(s.flags, s.mask))
flags |= eTraversalNeeded;
}
}
}
if (flags) {
setTransactionFlags(flags);
}
return NO_ERROR;
}
void SurfaceFlinger::screenReleased(int dpy)
{
// this may be called by a signal handler, we can't do too much in here
android_atomic_or(eConsoleReleased, &mConsoleSignals);
signalEvent();
}
void SurfaceFlinger::screenAcquired(int dpy)
{
// this may be called by a signal handler, we can't do too much in here
android_atomic_or(eConsoleAcquired, &mConsoleSignals);
signalEvent();
}
status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
{
const size_t SIZE = 1024;
char buffer[SIZE];
String8 result;
if (!mDump.checkCalling()) {
snprintf(buffer, SIZE, "Permission Denial: "
"can't dump SurfaceFlinger from pid=%d, uid=%d\n",
IPCThreadState::self()->getCallingPid(),
IPCThreadState::self()->getCallingUid());
result.append(buffer);
} else {
// figure out if we're stuck somewhere
const nsecs_t now = systemTime();
const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
const nsecs_t inTransaction(mDebugInTransaction);
nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
// Try to get the main lock, but don't insist if we can't
// (this would indicate SF is stuck, but we want to be able to
// print something in dumpsys).
int retry = 3;
while (mStateLock.tryLock()<0 && --retry>=0) {
usleep(1000000);
}
const bool locked(retry >= 0);
if (!locked) {
snprintf(buffer, SIZE,
"SurfaceFlinger appears to be unresponsive, "
"dumping anyways (no locks held)\n");
result.append(buffer);
}
const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
const size_t count = currentLayers.size();
for (size_t i=0 ; i<count ; i++) {
const sp<LayerBase>& layer(currentLayers[i]);
layer->dump(result, buffer, SIZE);
const Layer::State& s(layer->drawingState());
s.transparentRegion.dump(result, "transparentRegion");
layer->transparentRegionScreen.dump(result, "transparentRegionScreen");
layer->visibleRegionScreen.dump(result, "visibleRegionScreen");
}
mWormholeRegion.dump(result, "WormholeRegion");
const DisplayHardware& hw(graphicPlane(0).displayHardware());
snprintf(buffer, SIZE,
" display frozen: %s, freezeCount=%d, orientation=%d, bypass=%p, canDraw=%d\n",
mFreezeDisplay?"yes":"no", mFreezeCount,
mCurrentState.orientation, mBypassLayer.unsafe_get(), hw.canDraw());
result.append(buffer);
snprintf(buffer, SIZE,
" last eglSwapBuffers() time: %f us\n"
" last transaction time : %f us\n",
mLastSwapBufferTime/1000.0, mLastTransactionTime/1000.0);
result.append(buffer);
if (inSwapBuffersDuration || !locked) {
snprintf(buffer, SIZE, " eglSwapBuffers time: %f us\n",
inSwapBuffersDuration/1000.0);
result.append(buffer);
}
if (inTransactionDuration || !locked) {
snprintf(buffer, SIZE, " transaction time: %f us\n",
inTransactionDuration/1000.0);
result.append(buffer);
}
const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
alloc.dump(result);
if (locked) {
mStateLock.unlock();
}
}
write(fd, result.string(), result.size());
return NO_ERROR;
}
status_t SurfaceFlinger::onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
switch (code) {
case CREATE_CONNECTION:
case OPEN_GLOBAL_TRANSACTION:
case CLOSE_GLOBAL_TRANSACTION:
case SET_ORIENTATION:
case FREEZE_DISPLAY:
case UNFREEZE_DISPLAY:
case BOOT_FINISHED:
case TURN_ELECTRON_BEAM_OFF:
case TURN_ELECTRON_BEAM_ON:
{
// codes that require permission check
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS) && !mAccessSurfaceFlinger.check(pid, uid)) {
LOGE("Permission Denial: "
"can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
break;
}
case CAPTURE_SCREEN:
{
// codes that require permission check
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS) && !mReadFramebuffer.check(pid, uid)) {
LOGE("Permission Denial: "
"can't read framebuffer pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
break;
}
}
status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
CHECK_INTERFACE(ISurfaceComposer, data, reply);
if (UNLIKELY(!mHardwareTest.checkCalling())) {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
LOGE("Permission Denial: "
"can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
int n;
switch (code) {
case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
return NO_ERROR;
case 1002: // SHOW_UPDATES
n = data.readInt32();
mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
return NO_ERROR;
case 1003: // SHOW_BACKGROUND
n = data.readInt32();
mDebugBackground = n ? 1 : 0;
return NO_ERROR;
case 1004:{ // repaint everything
Mutex::Autolock _l(mStateLock);
const DisplayHardware& hw(graphicPlane(0).displayHardware());
mDirtyRegion.set(hw.bounds()); // careful that's not thread-safe
signalEvent();
return NO_ERROR;
}
case 1005:{ // force transaction
setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
return NO_ERROR;
}
case 1006:{ // enable/disable GraphicLog
int enabled = data.readInt32();
GraphicLog::getInstance().setEnabled(enabled);
return NO_ERROR;
}
case 1007: // set mFreezeCount
mFreezeCount = data.readInt32();
mFreezeDisplayTime = 0;
return NO_ERROR;
case 1010: // interrogate.
reply->writeInt32(0);
reply->writeInt32(0);
reply->writeInt32(mDebugRegion);
reply->writeInt32(mDebugBackground);
return NO_ERROR;
case 1013: {
Mutex::Autolock _l(mStateLock);
const DisplayHardware& hw(graphicPlane(0).displayHardware());
reply->writeInt32(hw.getPageFlipCount());
}
return NO_ERROR;
}
}
return err;
}
// ---------------------------------------------------------------------------
status_t SurfaceFlinger::renderScreenToTextureLocked(DisplayID dpy,
GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
{
if (!GLExtensions::getInstance().haveFramebufferObject())
return INVALID_OPERATION;
// get screen geometry
const DisplayHardware& hw(graphicPlane(dpy).displayHardware());
const uint32_t hw_w = hw.getWidth();
const uint32_t hw_h = hw.getHeight();
GLfloat u = 1;
GLfloat v = 1;
// make sure to clear all GL error flags
while ( glGetError() != GL_NO_ERROR ) ;
// create a FBO
GLuint name, tname;
glGenTextures(1, &tname);
glBindTexture(GL_TEXTURE_2D, tname);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
if (glGetError() != GL_NO_ERROR) {
while ( glGetError() != GL_NO_ERROR ) ;
GLint tw = (2 << (31 - clz(hw_w)));
GLint th = (2 << (31 - clz(hw_h)));
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
u = GLfloat(hw_w) / tw;
v = GLfloat(hw_h) / th;
}
glGenFramebuffersOES(1, &name);
glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
// redraw the screen entirely...
glClearColor(0,0,0,1);
glClear(GL_COLOR_BUFFER_BIT);
const Vector< sp<LayerBase> >& layers(mVisibleLayersSortedByZ);
const size_t count = layers.size();
for (size_t i=0 ; i<count ; ++i) {
const sp<LayerBase>& layer(layers[i]);
layer->drawForSreenShot();
}
// back to main framebuffer
glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
glDisable(GL_SCISSOR_TEST);
glDeleteFramebuffersOES(1, &name);
*textureName = tname;
*uOut = u;
*vOut = v;
return NO_ERROR;
}
void SurfaceFlinger::closeOverlay() const
{
#if defined(TARGET_USES_OVERLAY)
const DisplayHardware& hw(graphicPlane(0).displayHardware());
overlay::Overlay* temp = hw.getOverlayObject();
temp->closeChannel();
#endif
}
status_t SurfaceFlinger::createEGLImage(DisplayID dpy, Image* image,
sp<IMemoryHeap>* heap, uint32_t hw_w, uint32_t hw_h)
{
uint32_t width,height;
PixelFormat fmt;
status_t result;
result = captureScreenImplLocked(dpy, heap, &width, &height, &fmt, hw_w, hw_h);
if (result != NO_ERROR) {
LOGW("ERROR: captureScreenImplLocked failed");
return result;
}
TextureManager textureManager;
native_handle_t *hnd = new native_handle_t;
//Heap is allocated for the aligned width and height.
//So we need to align them before creating gralloc handle
width = (width + 31) & ~31;
height = (height + 31) & ~31;
uint32_t size = width * height * 4;
mGrallocModule->perform(mGrallocModule,
GRALLOC_MODULE_PERFORM_CREATE_HANDLE_FROM_BUFFER,
(*heap)->getHeapID(), size,0,
(*heap)->getBase(), &hnd, GRALLOC_USAGE_PRIVATE_2);
sp<GraphicBuffer> tempGraphicBuffer = new GraphicBuffer(width, height, fmt,
GraphicBuffer::USAGE_HW_TEXTURE,width, hnd, false);
result = tempGraphicBuffer->initCheck();
if(result != NO_ERROR) {
LOGE("ERROR: GraphicBuffer creation failed");
return result;
}
EGLDisplay dpy1(graphicPlane(0).getEGLDisplay());
result = textureManager.initEglImage(image, dpy1, tempGraphicBuffer);
if(result != NO_ERROR) {
LOGE("ERROR: EGLImage creation failed");
return result;
}
// make sure to clear all GL error flags
while ( glGetError() != GL_NO_ERROR ) ;
glClearColor(0,0,0,1);
glClear(GL_COLOR_BUFFER_BIT);
glDisable(GL_SCISSOR_TEST);
return NO_ERROR;
}
// ---------------------------------------------------------------------------
status_t SurfaceFlinger::electronBeamOffAnimationImplLocked()
{
status_t result = PERMISSION_DENIED;
const DisplayHardware& hw(graphicPlane(0).displayHardware());
if (!(hw.getFlags() & DisplayHardware::C2D_COMPOSITION) &&
!GLExtensions::getInstance().haveFramebufferObject())
{
return INVALID_OPERATION;
}
// get screen geometry
const uint32_t hw_w = hw.getWidth();
const uint32_t hw_h = hw.getHeight();
const Region screenBounds(hw.bounds());
GLfloat u, v;
GLuint tname;
Texture texture;
sp<IMemoryHeap> heap;
if(!(hw.getFlags() & DisplayHardware::C2D_COMPOSITION)) {
result = renderScreenToTextureLocked(0, &tname, &u, &v);
if (result != NO_ERROR) {
LOGE("ERROR: renderScreenToTextureLocked failed");
return result;
}
} else {
result = createEGLImage(0, &texture, &heap, hw_w, hw_h);
if(result != NO_ERROR) {
LOGE("ERROR: createEGLInitImage failed");
return result;
}
tname = texture.name;
u = 1.0;
v = 1.0;
}
GLfloat vtx[8];
GLfloat texCoords[4][2] = { {0,v}, {0,0}, {u,0}, {u,v} };
if((hw.getFlags() & DisplayHardware::C2D_COMPOSITION)) {
texCoords[0][1] = 0;
texCoords[1][1] = v;
texCoords[2][1] = v;
texCoords[3][1] = 0;
}
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, tname);
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glVertexPointer(2, GL_FLOAT, 0, vtx);
class s_curve_interpolator {
const float nbFrames, s, v;
public:
s_curve_interpolator(int nbFrames, float s)
: nbFrames(1.0f / (nbFrames-1)), s(s),
v(1.0f + expf(-s + 0.5f*s)) {
}
float operator()(int f) {
const float x = f * nbFrames;
return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
}
};
class v_stretch {
const GLfloat hw_w, hw_h;
public:
v_stretch(uint32_t hw_w, uint32_t hw_h)
: hw_w(hw_w), hw_h(hw_h) {
}
void operator()(GLfloat* vtx, float v) {
const GLfloat w = hw_w + (hw_w * v);
const GLfloat h = hw_h - (hw_h * v);
const GLfloat x = (hw_w - w) * 0.5f;
const GLfloat y = (hw_h - h) * 0.5f;
vtx[0] = x; vtx[1] = y;
vtx[2] = x; vtx[3] = y + h;
vtx[4] = x + w; vtx[5] = y + h;
vtx[6] = x + w; vtx[7] = y;
}
};
class h_stretch {
const GLfloat hw_w, hw_h;
public:
h_stretch(uint32_t hw_w, uint32_t hw_h)
: hw_w(hw_w), hw_h(hw_h) {
}
void operator()(GLfloat* vtx, float v) {
const GLfloat w = hw_w - (hw_w * v);
const GLfloat h = 1.0f;
const GLfloat x = (hw_w - w) * 0.5f;
const GLfloat y = (hw_h - h) * 0.5f;
vtx[0] = x; vtx[1] = y;
vtx[2] = x; vtx[3] = y + h;
vtx[4] = x + w; vtx[5] = y + h;
vtx[6] = x + w; vtx[7] = y;
}
};
// the full animation is 24 frames
const int nbFrames = 12;
s_curve_interpolator itr(nbFrames, 7.5f);
s_curve_interpolator itg(nbFrames, 8.0f);
s_curve_interpolator itb(nbFrames, 8.5f);
v_stretch vverts(hw_w, hw_h);
glEnable(GL_BLEND);
if(!(hw.getFlags() & DisplayHardware::C2D_COMPOSITION)) {
glBlendFunc(GL_ONE, GL_ONE);
} else {
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
}
for (int i=0 ; i<nbFrames ; i++) {
float x, y, w, h;
const float vr = itr(i);
const float vg = itg(i);
const float vb = itb(i);
// clear screen
glColorMask(1,1,1,1);
glClear(GL_COLOR_BUFFER_BIT);
glEnable(GL_TEXTURE_2D);
// draw the red plane
vverts(vtx, vr);
glColorMask(1,0,0,1);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
// draw the green plane
vverts(vtx, vg);
glColorMask(0,1,0,1);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
// draw the blue plane
vverts(vtx, vb);
glColorMask(0,0,1,1);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
// draw the white highlight (we use the last vertices)
if(!(hw.getFlags() & DisplayHardware::C2D_COMPOSITION))
glDisable(GL_TEXTURE_2D);
glColorMask(1,1,1,1);
glColor4f(vg, vg, vg, 1);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
hw.flip(screenBounds);
}
h_stretch hverts(hw_w, hw_h);
glDisable(GL_BLEND);
glDisable(GL_TEXTURE_2D);
glColorMask(1,1,1,1);
for (int i=0 ; i<nbFrames ; i++) {
const float v = itg(i);
hverts(vtx, v);
glClear(GL_COLOR_BUFFER_BIT);
glColor4f(1-v, 1-v, 1-v, 1);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
hw.flip(screenBounds);
}
if((hw.getFlags() & DisplayHardware::C2D_COMPOSITION)) {
if (texture.image != EGL_NO_IMAGE_KHR) {
EGLDisplay egl_dpy(graphicPlane(0).getEGLDisplay());
eglDestroyImageKHR(egl_dpy, texture.image);
}
}
glColorMask(1,1,1,1);
glEnable(GL_SCISSOR_TEST);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDeleteTextures(1, &tname);
return NO_ERROR;
}
status_t SurfaceFlinger::electronBeamOnAnimationImplLocked()
{
status_t result = PERMISSION_DENIED;
if (!GLExtensions::getInstance().haveFramebufferObject())
return INVALID_OPERATION;
// get screen geometry
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const uint32_t hw_w = hw.getWidth();
const uint32_t hw_h = hw.getHeight();
const Region screenBounds(hw.bounds());
GLfloat u, v;
GLuint tname;
result = renderScreenToTextureLocked(0, &tname, &u, &v);
if (result != NO_ERROR) {
return result;
}
// back to main framebuffer
glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
glDisable(GL_SCISSOR_TEST);
GLfloat vtx[8];
const GLfloat texCoords[4][2] = { {0,v}, {0,0}, {u,0}, {u,v} };
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, tname);
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glVertexPointer(2, GL_FLOAT, 0, vtx);
class s_curve_interpolator {
const float nbFrames, s, v;
public:
s_curve_interpolator(int nbFrames, float s)
: nbFrames(1.0f / (nbFrames-1)), s(s),
v(1.0f + expf(-s + 0.5f*s)) {
}
float operator()(int f) {
const float x = f * nbFrames;
return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
}
};
class v_stretch {
const GLfloat hw_w, hw_h;
public:
v_stretch(uint32_t hw_w, uint32_t hw_h)
: hw_w(hw_w), hw_h(hw_h) {
}
void operator()(GLfloat* vtx, float v) {
const GLfloat w = hw_w + (hw_w * v);
const GLfloat h = hw_h - (hw_h * v);
const GLfloat x = (hw_w - w) * 0.5f;
const GLfloat y = (hw_h - h) * 0.5f;
vtx[0] = x; vtx[1] = y;
vtx[2] = x; vtx[3] = y + h;
vtx[4] = x + w; vtx[5] = y + h;
vtx[6] = x + w; vtx[7] = y;
}
};
class h_stretch {
const GLfloat hw_w, hw_h;
public:
h_stretch(uint32_t hw_w, uint32_t hw_h)
: hw_w(hw_w), hw_h(hw_h) {
}
void operator()(GLfloat* vtx, float v) {
const GLfloat w = hw_w - (hw_w * v);
const GLfloat h = 1.0f;
const GLfloat x = (hw_w - w) * 0.5f;
const GLfloat y = (hw_h - h) * 0.5f;
vtx[0] = x; vtx[1] = y;
vtx[2] = x; vtx[3] = y + h;
vtx[4] = x + w; vtx[5] = y + h;
vtx[6] = x + w; vtx[7] = y;
}
};
// the full animation is 12 frames
int nbFrames = 8;
s_curve_interpolator itr(nbFrames, 7.5f);
s_curve_interpolator itg(nbFrames, 8.0f);
s_curve_interpolator itb(nbFrames, 8.5f);
h_stretch hverts(hw_w, hw_h);
glDisable(GL_BLEND);
glDisable(GL_TEXTURE_2D);
glColorMask(1,1,1,1);
for (int i=nbFrames-1 ; i>=0 ; i--) {
const float v = itg(i);
hverts(vtx, v);
glClear(GL_COLOR_BUFFER_BIT);
glColor4f(1-v, 1-v, 1-v, 1);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
hw.flip(screenBounds);
}
nbFrames = 4;
v_stretch vverts(hw_w, hw_h);
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);
for (int i=nbFrames-1 ; i>=0 ; i--) {
float x, y, w, h;
const float vr = itr(i);
const float vg = itg(i);
const float vb = itb(i);
// clear screen
glColorMask(1,1,1,1);
glClear(GL_COLOR_BUFFER_BIT);
glEnable(GL_TEXTURE_2D);
// draw the red plane
vverts(vtx, vr);
glColorMask(1,0,0,1);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
// draw the green plane
vverts(vtx, vg);
glColorMask(0,1,0,1);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
// draw the blue plane
vverts(vtx, vb);
glColorMask(0,0,1,1);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
hw.flip(screenBounds);
}
glColorMask(1,1,1,1);
glEnable(GL_SCISSOR_TEST);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDeleteTextures(1, &tname);
return NO_ERROR;
}
// ---------------------------------------------------------------------------
status_t SurfaceFlinger::turnElectronBeamOffImplLocked(int32_t mode)
{
DisplayHardware& hw(graphicPlane(0).editDisplayHardware());
if (!hw.canDraw()) {
// we're already off
return NO_ERROR;
}
if (mode & ISurfaceComposer::eElectronBeamAnimationOff) {
electronBeamOffAnimationImplLocked();
}
// always clear the whole screen at the end of the animation
glClearColor(0,0,0,1);
glDisable(GL_SCISSOR_TEST);
glClear(GL_COLOR_BUFFER_BIT);
glEnable(GL_SCISSOR_TEST);
hw.flip( Region(hw.bounds()) );
hw.setCanDraw(false);
return NO_ERROR;
}
status_t SurfaceFlinger::turnElectronBeamOff(int32_t mode)
{
class MessageTurnElectronBeamOff : public MessageBase {
SurfaceFlinger* flinger;
int32_t mode;
status_t result;
public:
MessageTurnElectronBeamOff(SurfaceFlinger* flinger, int32_t mode)
: flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
}
status_t getResult() const {
return result;
}
virtual bool handler() {
Mutex::Autolock _l(flinger->mStateLock);
result = flinger->turnElectronBeamOffImplLocked(mode);
return true;
}
};
sp<MessageBase> msg = new MessageTurnElectronBeamOff(this, mode);
status_t res = postMessageSync(msg);
if (res == NO_ERROR) {
res = static_cast<MessageTurnElectronBeamOff*>( msg.get() )->getResult();
// work-around: when the power-manager calls us we activate the
// animation. eventually, the "on" animation will be called
// by the power-manager itself
mElectronBeamAnimationMode = mode;
}
return res;
}
// ---------------------------------------------------------------------------
status_t SurfaceFlinger::turnElectronBeamOnImplLocked(int32_t mode)
{
DisplayHardware& hw(graphicPlane(0).editDisplayHardware());
if (hw.canDraw()) {
// we're already on
return NO_ERROR;
}
if (mode & ISurfaceComposer::eElectronBeamAnimationOn) {
electronBeamOnAnimationImplLocked();
}
hw.setCanDraw(true);
// make sure to redraw the whole screen when the animation is done
mDirtyRegion.set(hw.bounds());
signalEvent();
return NO_ERROR;
}
status_t SurfaceFlinger::turnElectronBeamOn(int32_t mode)
{
class MessageTurnElectronBeamOn : public MessageBase {
SurfaceFlinger* flinger;
int32_t mode;
status_t result;
public:
MessageTurnElectronBeamOn(SurfaceFlinger* flinger, int32_t mode)
: flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
}
status_t getResult() const {
return result;
}
virtual bool handler() {
Mutex::Autolock _l(flinger->mStateLock);
result = flinger->turnElectronBeamOnImplLocked(mode);
return true;
}
};
postMessageAsync( new MessageTurnElectronBeamOn(this, mode) );
return NO_ERROR;
}
// ---------------------------------------------------------------------------
status_t SurfaceFlinger::captureScreenImplLocked(DisplayID dpy,
sp<IMemoryHeap>* heap,
uint32_t* w, uint32_t* h, PixelFormat* f,
uint32_t sw, uint32_t sh)
{
status_t result = PERMISSION_DENIED;
// only one display supported for now
if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
return BAD_VALUE;
// get screen geometry
const DisplayHardware& hw(graphicPlane(dpy).displayHardware());
const uint32_t hw_w = hw.getWidth();
const uint32_t hw_h = hw.getHeight();
if ((sw > hw_w) || (sh > hw_h))
return BAD_VALUE;
// allocate shared memory large enough to hold the
// screen capture
int flags = (hw.getFlags() & DisplayHardware::C2D_COMPOSITION) ?
MemoryHeapBase::MAP_LOCKED_MAP_POPULATE:0;
sw = (!sw) ? hw_w : sw;
sh = (!sh) ? hw_h : sh;
//Align width and height to 32bit before calculating the size - c2d requirement
int aligned_sw = (sw + 31)& ~31;
int aligned_sh = (sh + 31)& ~31;
const size_t size = aligned_sw * aligned_sh * 4;
sp<MemoryHeapBase> base(
new MemoryHeapBase(size, flags, "screen-capture") );
void* ptr = base->getBase();
// Use copybit for screen capture in case of c2d composition
if (hw.getFlags() & DisplayHardware::C2D_COMPOSITION) {
copybit_image_t src;
copybit_rect_t src_rect;
src_rect.l = 0;
src_rect.t = 0;
native_handle_t* handle;
int orientation = 0;
if (mBypassState == eBypassInUse) {
sp<Layer> bypassLayer(mBypassLayer.promote());
if (bypassLayer != 0) {
sp<GraphicBuffer> buffer(bypassLayer->getBypassBuffer());
if (buffer == 0) {
LOGE("SurfaceFlinger::captureScreenImplLocked Invalid Bypass buffer");
return BAD_VALUE;
}
handle = (native_handle_t *)buffer->handle;
orientation = bypassLayer->getOrientation();
src.w = ((buffer->width + 31) &~31);
src.h = buffer->height;
src.format = buffer->format;
src.base = (void *)0;
src.handle = handle;
src_rect.r = buffer->width;
src_rect.b = buffer->height;
}
} else {
handle = hw.getCurrentFBHandle();
src.w = ((hw_w + 31) &~31);
src.h = hw_h;
src.format = hw.getFormat();
src.base = (void *)0;
src.handle = handle;
src_rect.r = hw_w;
src_rect.b = hw_h;
}
native_handle_t *hnd = new native_handle_t;
// Create a gralloc buffer and set its flag as ashmem
mGrallocModule->perform(mGrallocModule,
GRALLOC_MODULE_PERFORM_CREATE_HANDLE_FROM_BUFFER,
base->getHeapID(), size,
0, base->getBase(),
&hnd, GRALLOC_USAGE_PRIVATE_2);
// Copybit dst
copybit_image_t dst;
dst.w = sw;
dst.h = sh;
dst.format = hw.getFormat();
dst.base = ptr;
dst.handle = hnd;
copybit_rect_t dst_rect;
dst_rect.l = 0;
dst_rect.t = 0;
dst_rect.r = dst.w;
dst_rect.b = dst.h;
// Copybit region
region_iterator clip(Region(Rect(dst.w, dst.h)));
mBlitEngine->set_parameter(mBlitEngine, COPYBIT_TRANSFORM, orientation);
mBlitEngine->set_parameter(mBlitEngine, COPYBIT_PLANE_ALPHA, 0xFF);
result = mBlitEngine->stretch(mBlitEngine, &dst, &src, &dst_rect, &src_rect, &clip);
if (result == NO_ERROR) {
//if requested width is different from aligned width
//remove padded bits before returning the buffer
if (sw != aligned_sw) {
size_t size = sw * sh * 4;
sp<MemoryHeapBase> retbuf(new
MemoryHeapBase(size, flags, "screen-capture-buffer"));
void* dstptr = retbuf->getBase();
for(uint32_t i = 0; i < sh; i++) {
memcpy(dstptr, ptr, sw*4);
dstptr += sw*4;
ptr += aligned_sw * 4;
};
base = retbuf;
}
*w = dst.w;
}
} else {
if (!GLExtensions::getInstance().haveFramebufferObject())
return INVALID_OPERATION;
// make sure to clear all GL error flags
while ( glGetError() != GL_NO_ERROR ) ;
// create a FBO
GLuint name, tname;
glGenRenderbuffersOES(1, &tname);
glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
glGenFramebuffersOES(1, &name);
glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
// invert everything, b/c glReadPixel() below will invert the FB
glViewport(0, 0, sw, sh);
glScissor(0, 0, sw, sh);
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
glOrthof(0, hw_w, 0, hw_h, 0, 1);
glMatrixMode(GL_MODELVIEW);
// redraw the screen entirely...
glClearColor(0,0,0,1);
glClear(GL_COLOR_BUFFER_BIT);
const Vector< sp<LayerBase> >& layers(mVisibleLayersSortedByZ);
const size_t count = layers.size();
for (size_t i=0 ; i<count ; ++i) {
const sp<LayerBase>& layer(layers[i]);
bool isBlurSurface = false;
// for blur surfaces, invalidate the cache and read from the FBO
if (layer->getLayerInitFlags() & eFXSurfaceBlur)
isBlurSurface = true;
if (isBlurSurface)
layer->doTransaction(0);
layer->drawForSreenShot();
//refresh the cache again to read from the FB next time
if (isBlurSurface)
layer->doTransaction(0);
}
// XXX: this is needed on tegra
glScissor(0, 0, sw, sh);
// check for errors and return screen capture
if (glGetError() != GL_NO_ERROR) {
// error while rendering
result = INVALID_OPERATION;
} else {
if (ptr) {
// capture the screen with glReadPixels()
glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
if (glGetError() == GL_NO_ERROR) {
result = NO_ERROR;
}
} else {
result = NO_MEMORY;
}
}
glEnable(GL_SCISSOR_TEST);
glViewport(0, 0, hw_w, hw_h);
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
} else {
result = BAD_VALUE;
}
// release FBO resources
glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
glDeleteRenderbuffersOES(1, &tname);
glDeleteFramebuffersOES(1, &name);
if (result == NO_ERROR) {
*w = sw;
}
}
if (result == NO_ERROR) {
*heap = base;
*h = sh;
*f = PIXEL_FORMAT_RGBA_8888;
result = NO_ERROR;
}
hw.compositionComplete();
return result;
}
status_t SurfaceFlinger::captureScreen(DisplayID dpy,
sp<IMemoryHeap>* heap,
uint32_t* width, uint32_t* height, PixelFormat* format,
uint32_t sw, uint32_t sh)
{
// only one display supported for now
if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
return BAD_VALUE;
const DisplayHardware& hw(graphicPlane(0).displayHardware());
if (!(hw.getFlags() & DisplayHardware::C2D_COMPOSITION) &&
!GLExtensions::getInstance().haveFramebufferObject())
return INVALID_OPERATION;
class MessageCaptureScreen : public MessageBase {
SurfaceFlinger* flinger;
DisplayID dpy;
sp<IMemoryHeap>* heap;
uint32_t* w;
uint32_t* h;
PixelFormat* f;
uint32_t sw;
uint32_t sh;
status_t result;
public:
MessageCaptureScreen(SurfaceFlinger* flinger, DisplayID dpy,
sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
uint32_t sw, uint32_t sh)
: flinger(flinger), dpy(dpy),
heap(heap), w(w), h(h), f(f), sw(sw), sh(sh), result(PERMISSION_DENIED)
{
}
status_t getResult() const {
return result;
}
virtual bool handler() {
Mutex::Autolock _l(flinger->mStateLock);
// if we have secure windows, never allow the screen capture
if (flinger->mSecureFrameBuffer)
return true;
result = flinger->captureScreenImplLocked(dpy,
heap, w, h, f, sw, sh);
return true;
}
};
sp<MessageBase> msg = new MessageCaptureScreen(this,
dpy, heap, width, height, format, sw, sh);
status_t res = postMessageSync(msg);
if (res == NO_ERROR) {
res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
}
return res;
}
// ---------------------------------------------------------------------------
sp<Layer> SurfaceFlinger::getLayer(const sp<ISurface>& sur) const
{
sp<Layer> result;
Mutex::Autolock _l(mStateLock);
result = mLayerMap.valueFor( sur->asBinder() ).promote();
return result;
}
// ---------------------------------------------------------------------------
Client::Client(const sp<SurfaceFlinger>& flinger)
: mFlinger(flinger), mNameGenerator(1)
{
}
Client::~Client()
{
const size_t count = mLayers.size();
for (size_t i=0 ; i<count ; i++) {
sp<LayerBaseClient> layer(mLayers.valueAt(i).promote());
if (layer != 0) {
mFlinger->removeLayer(layer);
}
}
}
status_t Client::initCheck() const {
return NO_ERROR;
}
size_t Client::attachLayer(const sp<LayerBaseClient>& layer)
{
Mutex::Autolock _l(mLock);
size_t name = mNameGenerator++;
mLayers.add(name, layer);
return name;
}
void Client::detachLayer(const LayerBaseClient* layer)
{
Mutex::Autolock _l(mLock);
// we do a linear search here, because this doesn't happen often
const size_t count = mLayers.size();
for (size_t i=0 ; i<count ; i++) {
if (mLayers.valueAt(i) == layer) {
mLayers.removeItemsAt(i, 1);
break;
}
}
}
sp<LayerBaseClient> Client::getLayerUser(int32_t i) const
{
Mutex::Autolock _l(mLock);
sp<LayerBaseClient> lbc;
wp<LayerBaseClient> layer(mLayers.valueFor(i));
if (layer != 0) {
lbc = layer.promote();
LOGE_IF(lbc==0, "getLayerUser(name=%d) is dead", int(i));
}
return lbc;
}
sp<IMemoryHeap> Client::getControlBlock() const {
return 0;
}
ssize_t Client::getTokenForSurface(const sp<ISurface>& sur) const {
return -1;
}
sp<ISurface> Client::createSurface(
ISurfaceComposerClient::surface_data_t* params, int pid,
const String8& name,
DisplayID display, uint32_t w, uint32_t h, PixelFormat format,
uint32_t flags)
{
return mFlinger->createSurface(this, pid, name, params,
display, w, h, format, flags);
}
status_t Client::destroySurface(SurfaceID sid) {
return mFlinger->removeSurface(this, sid);
}
status_t Client::setState(int32_t count, const layer_state_t* states) {
return mFlinger->setClientState(this, count, states);
}
// ---------------------------------------------------------------------------
UserClient::UserClient(const sp<SurfaceFlinger>& flinger)
: ctrlblk(0), mBitmap(0), mFlinger(flinger)
{
const int pgsize = getpagesize();
const int cblksize = ((sizeof(SharedClient)+(pgsize-1))&~(pgsize-1));
mCblkHeap = new MemoryHeapBase(cblksize, 0,
"SurfaceFlinger Client control-block");
ctrlblk = static_cast<SharedClient *>(mCblkHeap->getBase());
if (ctrlblk) { // construct the shared structure in-place.
new(ctrlblk) SharedClient;
}
}
UserClient::~UserClient()
{
if (ctrlblk) {
ctrlblk->~SharedClient(); // destroy our shared-structure.
}
/*
* When a UserClient dies, it's unclear what to do exactly.
* We could go ahead and destroy all surfaces linked to that client
* however, it wouldn't be fair to the main Client
* (usually the the window-manager), which might want to re-target
* the layer to another UserClient.
* I think the best is to do nothing, or not much; in most cases the
* WM itself will go ahead and clean things up when it detects a client of
* his has died.
* The remaining question is what to display? currently we keep
* just keep the current buffer.
*/
}
status_t UserClient::initCheck() const {
return ctrlblk == 0 ? NO_INIT : NO_ERROR;
}
void UserClient::detachLayer(const Layer* layer)
{
int32_t name = layer->getToken();
if (name >= 0) {
int32_t mask = 1LU<<name;
if ((android_atomic_and(~mask, &mBitmap) & mask) == 0) {
LOGW("token %d wasn't marked as used %08x", name, int(mBitmap));
}
}
}
sp<IMemoryHeap> UserClient::getControlBlock() const {
return mCblkHeap;
}
ssize_t UserClient::getTokenForSurface(const sp<ISurface>& sur) const
{
int32_t name = NAME_NOT_FOUND;
sp<Layer> layer(mFlinger->getLayer(sur));
if (layer == 0) return name;
// if this layer already has a token, just return it
name = layer->getToken();
if ((name >= 0) && (layer->getClient() == this))
return name;
name = 0;
do {
int32_t mask = 1LU<<name;
if ((android_atomic_or(mask, &mBitmap) & mask) == 0) {
// we found and locked that name
status_t err = layer->setToken(
const_cast<UserClient*>(this), ctrlblk, name);
if (err != NO_ERROR) {
// free the name
android_atomic_and(~mask, &mBitmap);
name = err;
}
break;
}
if (++name >= SharedBufferStack::NUM_LAYERS_MAX)
name = NO_MEMORY;
} while(name >= 0);
//LOGD("getTokenForSurface(%p) => %d (client=%p, bitmap=%08lx)",
// sur->asBinder().get(), name, this, mBitmap);
return name;
}
sp<ISurface> UserClient::createSurface(
ISurfaceComposerClient::surface_data_t* params, int pid,
const String8& name,
DisplayID display, uint32_t w, uint32_t h, PixelFormat format,
uint32_t flags) {
return 0;
}
status_t UserClient::destroySurface(SurfaceID sid) {
return INVALID_OPERATION;
}
status_t UserClient::setState(int32_t count, const layer_state_t* states) {
return INVALID_OPERATION;
}
// ---------------------------------------------------------------------------
GraphicPlane::GraphicPlane()
: mHw(0)
{
}
GraphicPlane::~GraphicPlane() {
delete mHw;
}
bool GraphicPlane::initialized() const {
return mHw ? true : false;
}
int GraphicPlane::getWidth() const {
return mWidth;
}
int GraphicPlane::getHeight() const {
return mHeight;
}
void GraphicPlane::setDisplayHardware(DisplayHardware *hw)
{
mHw = hw;
// initialize the display orientation transform.
// it's a constant that should come from the display driver.
int displayOrientation = ISurfaceComposer::eOrientationDefault;
char property[PROPERTY_VALUE_MAX];
if (property_get("ro.sf.hwrotation", property, NULL) > 0) {
//displayOrientation
switch (atoi(property)) {
case 90:
displayOrientation = ISurfaceComposer::eOrientation90;
break;
case 270:
displayOrientation = ISurfaceComposer::eOrientation270;
break;
}
}
const float w = hw->getWidth();
const float h = hw->getHeight();
GraphicPlane::orientationToTransfrom(displayOrientation, w, h,
&mDisplayTransform);
if (displayOrientation & ISurfaceComposer::eOrientationSwapMask) {
mDisplayWidth = h;
mDisplayHeight = w;
} else {
mDisplayWidth = w;
mDisplayHeight = h;
}
setOrientation(ISurfaceComposer::eOrientationDefault);
}
status_t GraphicPlane::orientationToTransfrom(
int orientation, int w, int h, Transform* tr)
{
uint32_t flags = 0;
switch (orientation) {
case ISurfaceComposer::eOrientationDefault:
flags = Transform::ROT_0;
break;
case ISurfaceComposer::eOrientation90:
flags = Transform::ROT_90;
break;
case ISurfaceComposer::eOrientation180:
flags = Transform::ROT_180;
break;
case ISurfaceComposer::eOrientation270:
flags = Transform::ROT_270;
break;
default:
return BAD_VALUE;
}
tr->set(flags, w, h);
return NO_ERROR;
}
status_t GraphicPlane::setOrientation(int orientation)
{
// If the rotation can be handled in hardware, this is where
// the magic should happen.
const DisplayHardware& hw(displayHardware());
const float w = mDisplayWidth;
const float h = mDisplayHeight;
mWidth = int(w);
mHeight = int(h);
Transform orientationTransform;
GraphicPlane::orientationToTransfrom(orientation, w, h,
&orientationTransform);
if (orientation & ISurfaceComposer::eOrientationSwapMask) {
mWidth = int(h);
mHeight = int(w);
}
mOrientation = orientation;
mGlobalTransform = mDisplayTransform * orientationTransform;
return NO_ERROR;
}
const DisplayHardware& GraphicPlane::displayHardware() const {
return *mHw;
}
DisplayHardware& GraphicPlane::editDisplayHardware() {
return *mHw;
}
const Transform& GraphicPlane::transform() const {
return mGlobalTransform;
}
EGLDisplay GraphicPlane::getEGLDisplay() const {
return mHw->getEGLDisplay();
}
EGLContext GraphicPlane::getEGLContext() const {
return mHw->getEGLContext();
}
// ---------------------------------------------------------------------------
}; // namespace android