89 lines
2.9 KiB
Java
89 lines
2.9 KiB
Java
/*
|
|
* Copyright (C) 2008-2009 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
package android.gesture;
|
|
|
|
import java.util.ArrayList;
|
|
import java.util.Collections;
|
|
import java.util.Comparator;
|
|
import java.util.TreeMap;
|
|
|
|
/**
|
|
* An implementation of an instance-based learner
|
|
*/
|
|
|
|
class InstanceLearner extends Learner {
|
|
private static final Comparator<Prediction> sComparator = new Comparator<Prediction>() {
|
|
public int compare(Prediction object1, Prediction object2) {
|
|
double score1 = object1.score;
|
|
double score2 = object2.score;
|
|
if (score1 > score2) {
|
|
return -1;
|
|
} else if (score1 < score2) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
};
|
|
|
|
@Override
|
|
ArrayList<Prediction> classify(int sequenceType, int orientationType, float[] vector) {
|
|
ArrayList<Prediction> predictions = new ArrayList<Prediction>();
|
|
ArrayList<Instance> instances = getInstances();
|
|
int count = instances.size();
|
|
TreeMap<String, Double> label2score = new TreeMap<String, Double>();
|
|
for (int i = 0; i < count; i++) {
|
|
Instance sample = instances.get(i);
|
|
if (sample.vector.length != vector.length) {
|
|
continue;
|
|
}
|
|
double distance;
|
|
if (sequenceType == GestureStore.SEQUENCE_SENSITIVE) {
|
|
distance = GestureUtils.minimumCosineDistance(sample.vector, vector, orientationType);
|
|
} else {
|
|
distance = GestureUtils.squaredEuclideanDistance(sample.vector, vector);
|
|
}
|
|
double weight;
|
|
if (distance == 0) {
|
|
weight = Double.MAX_VALUE;
|
|
} else {
|
|
weight = 1 / distance;
|
|
}
|
|
Double score = label2score.get(sample.label);
|
|
if (score == null || weight > score) {
|
|
label2score.put(sample.label, weight);
|
|
}
|
|
}
|
|
|
|
// double sum = 0;
|
|
for (String name : label2score.keySet()) {
|
|
double score = label2score.get(name);
|
|
// sum += score;
|
|
predictions.add(new Prediction(name, score));
|
|
}
|
|
|
|
// normalize
|
|
// for (Prediction prediction : predictions) {
|
|
// prediction.score /= sum;
|
|
// }
|
|
|
|
Collections.sort(predictions, sComparator);
|
|
|
|
return predictions;
|
|
}
|
|
}
|