M7350/kernel/include/trace/events/sched.h
2024-09-09 08:57:42 +00:00

1100 lines
28 KiB
C

#ifdef CONFIG_SCHED_QHMP
#include "qhmp_sched.h"
#else
#undef TRACE_SYSTEM
#define TRACE_SYSTEM sched
#if !defined(_TRACE_SCHED_H) || defined(TRACE_HEADER_MULTI_READ)
#define _TRACE_SCHED_H
#include <linux/sched.h>
#include <linux/tracepoint.h>
#include <linux/binfmts.h>
struct rq;
extern const char *task_event_names[];
/*
* Tracepoint for calling kthread_stop, performed to end a kthread:
*/
TRACE_EVENT(sched_kthread_stop,
TP_PROTO(struct task_struct *t),
TP_ARGS(t),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
),
TP_fast_assign(
memcpy(__entry->comm, t->comm, TASK_COMM_LEN);
__entry->pid = t->pid;
),
TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
);
/*
* Tracepoint for the return value of the kthread stopping:
*/
TRACE_EVENT(sched_kthread_stop_ret,
TP_PROTO(int ret),
TP_ARGS(ret),
TP_STRUCT__entry(
__field( int, ret )
),
TP_fast_assign(
__entry->ret = ret;
),
TP_printk("ret=%d", __entry->ret)
);
/*
* Tracepoint for task enqueue/dequeue:
*/
TRACE_EVENT(sched_enq_deq_task,
TP_PROTO(struct task_struct *p, bool enqueue, unsigned int cpus_allowed),
TP_ARGS(p, enqueue, cpus_allowed),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, prio )
__field( int, cpu )
__field( bool, enqueue )
__field(unsigned int, nr_running )
__field(unsigned long, cpu_load )
__field(unsigned int, rt_nr_running )
__field(unsigned int, cpus_allowed )
#ifdef CONFIG_SCHED_HMP
__field(unsigned int, demand )
#endif
),
TP_fast_assign(
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->prio = p->prio;
__entry->cpu = task_cpu(p);
__entry->enqueue = enqueue;
__entry->nr_running = task_rq(p)->nr_running;
__entry->cpu_load = task_rq(p)->cpu_load[0];
__entry->rt_nr_running = task_rq(p)->rt.rt_nr_running;
__entry->cpus_allowed = cpus_allowed;
#ifdef CONFIG_SCHED_HMP
__entry->demand = p->ravg.demand;
#endif
),
TP_printk("cpu=%d %s comm=%s pid=%d prio=%d nr_running=%u cpu_load=%lu rt_nr_running=%u affine=%x"
#ifdef CONFIG_SCHED_HMP
" demand=%u"
#endif
, __entry->cpu,
__entry->enqueue ? "enqueue" : "dequeue",
__entry->comm, __entry->pid,
__entry->prio, __entry->nr_running,
__entry->cpu_load, __entry->rt_nr_running, __entry->cpus_allowed
#ifdef CONFIG_SCHED_HMP
, __entry->demand
#endif
)
);
#ifdef CONFIG_SCHED_HMP
TRACE_EVENT(sched_task_load,
TP_PROTO(struct task_struct *p, bool boost, int reason,
bool sync, bool need_idle, bool fast_path, int best_cpu),
TP_ARGS(p, boost, reason, sync, need_idle, fast_path, best_cpu),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field(unsigned int, demand )
__field( bool, boost )
__field( int, reason )
__field( bool, sync )
__field( bool, need_idle )
__field( bool, fast_path )
__field( int, best_cpu )
__field( u64, latency )
),
TP_fast_assign(
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->demand = p->ravg.demand;
__entry->boost = boost;
__entry->reason = reason;
__entry->sync = sync;
__entry->need_idle = need_idle;
__entry->fast_path = fast_path;
__entry->best_cpu = best_cpu;
__entry->latency = p->state == TASK_WAKING ?
sched_ktime_clock() -
p->ravg.mark_start : 0;
),
TP_printk("%d (%s): demand=%u boost=%d reason=%d sync=%d need_idle=%d fast_path=%d best_cpu=%d latency=%llu",
__entry->pid, __entry->comm, __entry->demand,
__entry->boost, __entry->reason, __entry->sync,
__entry->need_idle, __entry->fast_path,
__entry->best_cpu, __entry->latency)
);
TRACE_EVENT(sched_set_preferred_cluster,
TP_PROTO(struct related_thread_group *grp, u64 total_demand),
TP_ARGS(grp, total_demand),
TP_STRUCT__entry(
__field( int, id )
__field( u64, demand )
__field( int, cluster_first_cpu )
),
TP_fast_assign(
__entry->id = grp->id;
__entry->demand = total_demand;
__entry->cluster_first_cpu = grp->preferred_cluster ?
cluster_first_cpu(grp->preferred_cluster)
: -1;
),
TP_printk("group_id %d total_demand %llu preferred_cluster_first_cpu %d",
__entry->id, __entry->demand,
__entry->cluster_first_cpu)
);
DECLARE_EVENT_CLASS(sched_cpu_load,
TP_PROTO(struct rq *rq, int idle, u64 irqload, unsigned int power_cost, int temp),
TP_ARGS(rq, idle, irqload, power_cost, temp),
TP_STRUCT__entry(
__field(unsigned int, cpu )
__field(unsigned int, idle )
__field(unsigned int, nr_running )
__field(unsigned int, nr_big_tasks )
__field(unsigned int, load_scale_factor )
__field(unsigned int, capacity )
__field( u64, cumulative_runnable_avg )
__field( u64, irqload )
__field(unsigned int, cur_freq )
__field(unsigned int, max_freq )
__field(unsigned int, power_cost )
__field( int, cstate )
__field( int, dstate )
__field( int, temp )
),
TP_fast_assign(
__entry->cpu = rq->cpu;
__entry->idle = idle;
__entry->nr_running = rq->nr_running;
__entry->nr_big_tasks = rq->hmp_stats.nr_big_tasks;
__entry->load_scale_factor = cpu_load_scale_factor(rq->cpu);
__entry->capacity = cpu_capacity(rq->cpu);
__entry->cumulative_runnable_avg = rq->hmp_stats.cumulative_runnable_avg;
__entry->irqload = irqload;
__entry->cur_freq = cpu_cur_freq(rq->cpu);
__entry->max_freq = cpu_max_freq(rq->cpu);
__entry->power_cost = power_cost;
__entry->cstate = rq->cstate;
__entry->dstate = rq->cluster->dstate;
__entry->temp = temp;
),
TP_printk("cpu %u idle %d nr_run %u nr_big %u lsf %u capacity %u cr_avg %llu irqload %llu fcur %u fmax %u power_cost %u cstate %d dstate %d temp %d",
__entry->cpu, __entry->idle, __entry->nr_running, __entry->nr_big_tasks,
__entry->load_scale_factor, __entry->capacity,
__entry->cumulative_runnable_avg, __entry->irqload, __entry->cur_freq,
__entry->max_freq, __entry->power_cost, __entry->cstate,
__entry->dstate, __entry->temp)
);
DEFINE_EVENT(sched_cpu_load, sched_cpu_load_wakeup,
TP_PROTO(struct rq *rq, int idle, u64 irqload, unsigned int power_cost, int temp),
TP_ARGS(rq, idle, irqload, power_cost, temp)
);
DEFINE_EVENT(sched_cpu_load, sched_cpu_load_lb,
TP_PROTO(struct rq *rq, int idle, u64 irqload, unsigned int power_cost, int temp),
TP_ARGS(rq, idle, irqload, power_cost, temp)
);
DEFINE_EVENT(sched_cpu_load, sched_cpu_load_cgroup,
TP_PROTO(struct rq *rq, int idle, u64 irqload, unsigned int power_cost, int temp),
TP_ARGS(rq, idle, irqload, power_cost, temp)
);
TRACE_EVENT(sched_set_boost,
TP_PROTO(int ref_count),
TP_ARGS(ref_count),
TP_STRUCT__entry(
__field(unsigned int, ref_count )
),
TP_fast_assign(
__entry->ref_count = ref_count;
),
TP_printk("ref_count=%d", __entry->ref_count)
);
TRACE_EVENT(sched_update_task_ravg,
TP_PROTO(struct task_struct *p, struct rq *rq, enum task_event evt,
u64 wallclock, u64 irqtime),
TP_ARGS(p, rq, evt, wallclock, irqtime),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( pid_t, cur_pid )
__field(unsigned int, cur_freq )
__field( u64, wallclock )
__field( u64, mark_start )
__field( u64, delta_m )
__field( u64, win_start )
__field( u64, delta )
__field( u64, irqtime )
__field(enum task_event, evt )
__field(unsigned int, demand )
__field(unsigned int, sum )
__field( int, cpu )
#ifdef CONFIG_SCHED_FREQ_INPUT
__field( u64, cs )
__field( u64, ps )
__field( u32, curr_window )
__field( u32, prev_window )
__field( u64, nt_cs )
__field( u64, nt_ps )
__field( u32, active_windows )
#endif
),
TP_fast_assign(
__entry->wallclock = wallclock;
__entry->win_start = rq->window_start;
__entry->delta = (wallclock - rq->window_start);
__entry->evt = evt;
__entry->cpu = rq->cpu;
__entry->cur_pid = rq->curr->pid;
__entry->cur_freq = cpu_cur_freq(rq->cpu);
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->mark_start = p->ravg.mark_start;
__entry->delta_m = (wallclock - p->ravg.mark_start);
__entry->demand = p->ravg.demand;
__entry->sum = p->ravg.sum;
__entry->irqtime = irqtime;
#ifdef CONFIG_SCHED_FREQ_INPUT
__entry->cs = rq->curr_runnable_sum;
__entry->ps = rq->prev_runnable_sum;
__entry->curr_window = p->ravg.curr_window;
__entry->prev_window = p->ravg.prev_window;
__entry->nt_cs = rq->nt_curr_runnable_sum;
__entry->nt_ps = rq->nt_prev_runnable_sum;
__entry->active_windows = p->ravg.active_windows;
#endif
),
TP_printk("wc %llu ws %llu delta %llu event %s cpu %d cur_freq %u cur_pid %d task %d (%s) ms %llu delta %llu demand %u sum %u irqtime %llu"
#ifdef CONFIG_SCHED_FREQ_INPUT
" cs %llu ps %llu cur_window %u prev_window %u nt_cs %llu nt_ps %llu active_wins %u"
#endif
, __entry->wallclock, __entry->win_start, __entry->delta,
task_event_names[__entry->evt], __entry->cpu,
__entry->cur_freq, __entry->cur_pid,
__entry->pid, __entry->comm, __entry->mark_start,
__entry->delta_m, __entry->demand,
__entry->sum, __entry->irqtime
#ifdef CONFIG_SCHED_FREQ_INPUT
, __entry->cs, __entry->ps, __entry->curr_window,
__entry->prev_window,
__entry->nt_cs, __entry->nt_ps,
__entry->active_windows
#endif
)
);
TRACE_EVENT(sched_update_history,
TP_PROTO(struct rq *rq, struct task_struct *p, u32 runtime, int samples,
enum task_event evt),
TP_ARGS(rq, p, runtime, samples, evt),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field(unsigned int, runtime )
__field( int, samples )
__field(enum task_event, evt )
__field(unsigned int, demand )
__array( u32, hist, RAVG_HIST_SIZE_MAX)
__field(unsigned int, nr_big_tasks )
__field( int, cpu )
),
TP_fast_assign(
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->runtime = runtime;
__entry->samples = samples;
__entry->evt = evt;
__entry->demand = p->ravg.demand;
memcpy(__entry->hist, p->ravg.sum_history,
RAVG_HIST_SIZE_MAX * sizeof(u32));
__entry->nr_big_tasks = rq->hmp_stats.nr_big_tasks;
__entry->cpu = rq->cpu;
),
TP_printk("%d (%s): runtime %u samples %d event %s demand %u (hist: %u %u %u %u %u) cpu %d nr_big %u",
__entry->pid, __entry->comm,
__entry->runtime, __entry->samples,
task_event_names[__entry->evt],
__entry->demand, __entry->hist[0],
__entry->hist[1], __entry->hist[2], __entry->hist[3],
__entry->hist[4], __entry->cpu, __entry->nr_big_tasks)
);
TRACE_EVENT(sched_reset_all_window_stats,
TP_PROTO(u64 window_start, u64 window_size, u64 time_taken,
int reason, unsigned int old_val, unsigned int new_val),
TP_ARGS(window_start, window_size, time_taken,
reason, old_val, new_val),
TP_STRUCT__entry(
__field( u64, window_start )
__field( u64, window_size )
__field( u64, time_taken )
__field( int, reason )
__field(unsigned int, old_val )
__field(unsigned int, new_val )
),
TP_fast_assign(
__entry->window_start = window_start;
__entry->window_size = window_size;
__entry->time_taken = time_taken;
__entry->reason = reason;
__entry->old_val = old_val;
__entry->new_val = new_val;
),
TP_printk("time_taken %llu window_start %llu window_size %llu reason %s old_val %u new_val %u",
__entry->time_taken, __entry->window_start,
__entry->window_size,
sched_window_reset_reasons[__entry->reason],
__entry->old_val, __entry->new_val)
);
#ifdef CONFIG_SCHED_FREQ_INPUT
TRACE_EVENT(sched_migration_update_sum,
TP_PROTO(struct rq *rq, struct task_struct *p),
TP_ARGS(rq, p),
TP_STRUCT__entry(
__field(int, cpu )
__field(int, pid )
__field( u64, cs )
__field( u64, ps )
__field( s64, nt_cs )
__field( s64, nt_ps )
),
TP_fast_assign(
__entry->cpu = cpu_of(rq);
__entry->cs = rq->curr_runnable_sum;
__entry->ps = rq->prev_runnable_sum;
__entry->nt_cs = (s64)rq->nt_curr_runnable_sum;
__entry->nt_ps = (s64)rq->nt_prev_runnable_sum;
__entry->pid = p->pid;
),
TP_printk("cpu %d: cs %llu ps %llu nt_cs %lld nt_ps %lld pid %d",
__entry->cpu, __entry->cs, __entry->ps,
__entry->nt_cs, __entry->nt_ps, __entry->pid)
);
TRACE_EVENT(sched_get_busy,
TP_PROTO(int cpu, u64 load, u64 nload, int early),
TP_ARGS(cpu, load, nload, early),
TP_STRUCT__entry(
__field( int, cpu )
__field( u64, load )
__field( u64, nload )
__field( int, early )
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->load = load;
__entry->nload = nload;
__entry->early = early;
),
TP_printk("cpu %d load %lld new_task_load %lld early %d",
__entry->cpu, __entry->load, __entry->nload, __entry->early)
);
TRACE_EVENT(sched_freq_alert,
TP_PROTO(int cpu, u64 old_load, u64 new_load),
TP_ARGS(cpu, old_load, new_load),
TP_STRUCT__entry(
__field( int, cpu )
__field( u64, old_load )
__field( u64, new_load )
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->old_load = old_load;
__entry->new_load = new_load;
),
TP_printk("cpu %d old_load=%llu new_load=%llu",
__entry->cpu, __entry->old_load, __entry->new_load)
);
#endif /* CONFIG_SCHED_FREQ_INPUT */
#endif /* CONFIG_SCHED_HMP */
/*
* Tracepoint for waking up a task:
*/
DECLARE_EVENT_CLASS(sched_wakeup_template,
TP_PROTO(struct task_struct *p, int success),
TP_ARGS(__perf_task(p), success),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, prio )
__field( int, success )
__field( int, target_cpu )
),
TP_fast_assign(
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->prio = p->prio;
__entry->success = success;
__entry->target_cpu = task_cpu(p);
),
TP_printk("comm=%s pid=%d prio=%d success=%d target_cpu=%03d",
__entry->comm, __entry->pid, __entry->prio,
__entry->success, __entry->target_cpu)
);
DEFINE_EVENT(sched_wakeup_template, sched_wakeup,
TP_PROTO(struct task_struct *p, int success),
TP_ARGS(p, success));
/*
* Tracepoint for waking up a new task:
*/
DEFINE_EVENT(sched_wakeup_template, sched_wakeup_new,
TP_PROTO(struct task_struct *p, int success),
TP_ARGS(p, success));
#ifdef CREATE_TRACE_POINTS
static inline long __trace_sched_switch_state(struct task_struct *p)
{
long state = p->state;
#ifdef CONFIG_PREEMPT
/*
* For all intents and purposes a preempted task is a running task.
*/
if (preempt_count() & PREEMPT_ACTIVE)
state = TASK_RUNNING | TASK_STATE_MAX;
#endif
return state;
}
#endif
/*
* Tracepoint for task switches, performed by the scheduler:
*/
TRACE_EVENT(sched_switch,
TP_PROTO(struct task_struct *prev,
struct task_struct *next),
TP_ARGS(prev, next),
TP_STRUCT__entry(
__array( char, prev_comm, TASK_COMM_LEN )
__field( pid_t, prev_pid )
__field( int, prev_prio )
__field( long, prev_state )
__array( char, next_comm, TASK_COMM_LEN )
__field( pid_t, next_pid )
__field( int, next_prio )
),
TP_fast_assign(
memcpy(__entry->next_comm, next->comm, TASK_COMM_LEN);
__entry->prev_pid = prev->pid;
__entry->prev_prio = prev->prio;
__entry->prev_state = __trace_sched_switch_state(prev);
memcpy(__entry->prev_comm, prev->comm, TASK_COMM_LEN);
__entry->next_pid = next->pid;
__entry->next_prio = next->prio;
),
TP_printk("prev_comm=%s prev_pid=%d prev_prio=%d prev_state=%s%s ==> next_comm=%s next_pid=%d next_prio=%d",
__entry->prev_comm, __entry->prev_pid, __entry->prev_prio,
__entry->prev_state & (TASK_STATE_MAX-1) ?
__print_flags(__entry->prev_state & (TASK_STATE_MAX-1), "|",
{ 1, "S"} , { 2, "D" }, { 4, "T" }, { 8, "t" },
{ 16, "Z" }, { 32, "X" }, { 64, "x" },
{ 128, "K" }, { 256, "W" }, { 512, "P" }) : "R",
__entry->prev_state & TASK_STATE_MAX ? "+" : "",
__entry->next_comm, __entry->next_pid, __entry->next_prio)
);
/*
* Tracepoint for a task being migrated:
*/
TRACE_EVENT(sched_migrate_task,
TP_PROTO(struct task_struct *p, int dest_cpu,
unsigned int load),
TP_ARGS(p, dest_cpu, load),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, prio )
__field(unsigned int, load )
__field( int, orig_cpu )
__field( int, dest_cpu )
),
TP_fast_assign(
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->prio = p->prio;
__entry->load = load;
__entry->orig_cpu = task_cpu(p);
__entry->dest_cpu = dest_cpu;
),
TP_printk("comm=%s pid=%d prio=%d load=%d orig_cpu=%d dest_cpu=%d",
__entry->comm, __entry->pid, __entry->prio, __entry->load,
__entry->orig_cpu, __entry->dest_cpu)
);
/*
* Tracepoint for load balancing:
*/
#if NR_CPUS > 32
#error "Unsupported NR_CPUS for lb tracepoint."
#endif
TRACE_EVENT(sched_load_balance,
TP_PROTO(int cpu, enum cpu_idle_type idle, int balance,
unsigned long group_mask, int busiest_nr_running,
unsigned long imbalance, unsigned int env_flags, int ld_moved,
unsigned int balance_interval),
TP_ARGS(cpu, idle, balance, group_mask, busiest_nr_running,
imbalance, env_flags, ld_moved, balance_interval),
TP_STRUCT__entry(
__field( int, cpu)
__field( enum cpu_idle_type, idle)
__field( int, balance)
__field( unsigned long, group_mask)
__field( int, busiest_nr_running)
__field( unsigned long, imbalance)
__field( unsigned int, env_flags)
__field( int, ld_moved)
__field( unsigned int, balance_interval)
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->idle = idle;
__entry->balance = balance;
__entry->group_mask = group_mask;
__entry->busiest_nr_running = busiest_nr_running;
__entry->imbalance = imbalance;
__entry->env_flags = env_flags;
__entry->ld_moved = ld_moved;
__entry->balance_interval = balance_interval;
),
TP_printk("cpu=%d state=%s balance=%d group=%#lx busy_nr=%d imbalance=%ld flags=%#x ld_moved=%d bal_int=%d",
__entry->cpu,
__entry->idle == CPU_IDLE ? "idle" :
(__entry->idle == CPU_NEWLY_IDLE ? "newly_idle" : "busy"),
__entry->balance,
__entry->group_mask, __entry->busiest_nr_running,
__entry->imbalance, __entry->env_flags, __entry->ld_moved,
__entry->balance_interval)
);
/*
* Tracepoint for a CPU going offline/online:
*/
TRACE_EVENT(sched_cpu_hotplug,
TP_PROTO(int affected_cpu, int error, int status),
TP_ARGS(affected_cpu, error, status),
TP_STRUCT__entry(
__field( int, affected_cpu )
__field( int, error )
__field( int, status )
),
TP_fast_assign(
__entry->affected_cpu = affected_cpu;
__entry->error = error;
__entry->status = status;
),
TP_printk("cpu %d %s error=%d", __entry->affected_cpu,
__entry->status ? "online" : "offline", __entry->error)
);
DECLARE_EVENT_CLASS(sched_process_template,
TP_PROTO(struct task_struct *p),
TP_ARGS(p),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, prio )
),
TP_fast_assign(
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->prio = p->prio;
),
TP_printk("comm=%s pid=%d prio=%d",
__entry->comm, __entry->pid, __entry->prio)
);
/*
* Tracepoint for freeing a task:
*/
DEFINE_EVENT(sched_process_template, sched_process_free,
TP_PROTO(struct task_struct *p),
TP_ARGS(p));
/*
* Tracepoint for a task exiting:
*/
DEFINE_EVENT(sched_process_template, sched_process_exit,
TP_PROTO(struct task_struct *p),
TP_ARGS(p));
/*
* Tracepoint for waiting on task to unschedule:
*/
DEFINE_EVENT(sched_process_template, sched_wait_task,
TP_PROTO(struct task_struct *p),
TP_ARGS(p));
/*
* Tracepoint for a waiting task:
*/
TRACE_EVENT(sched_process_wait,
TP_PROTO(struct pid *pid),
TP_ARGS(pid),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, prio )
),
TP_fast_assign(
memcpy(__entry->comm, current->comm, TASK_COMM_LEN);
__entry->pid = pid_nr(pid);
__entry->prio = current->prio;
),
TP_printk("comm=%s pid=%d prio=%d",
__entry->comm, __entry->pid, __entry->prio)
);
/*
* Tracepoint for do_fork:
*/
TRACE_EVENT(sched_process_fork,
TP_PROTO(struct task_struct *parent, struct task_struct *child),
TP_ARGS(parent, child),
TP_STRUCT__entry(
__array( char, parent_comm, TASK_COMM_LEN )
__field( pid_t, parent_pid )
__array( char, child_comm, TASK_COMM_LEN )
__field( pid_t, child_pid )
),
TP_fast_assign(
memcpy(__entry->parent_comm, parent->comm, TASK_COMM_LEN);
__entry->parent_pid = parent->pid;
memcpy(__entry->child_comm, child->comm, TASK_COMM_LEN);
__entry->child_pid = child->pid;
),
TP_printk("comm=%s pid=%d child_comm=%s child_pid=%d",
__entry->parent_comm, __entry->parent_pid,
__entry->child_comm, __entry->child_pid)
);
/*
* Tracepoint for exec:
*/
TRACE_EVENT(sched_process_exec,
TP_PROTO(struct task_struct *p, pid_t old_pid,
struct linux_binprm *bprm),
TP_ARGS(p, old_pid, bprm),
TP_STRUCT__entry(
__string( filename, bprm->filename )
__field( pid_t, pid )
__field( pid_t, old_pid )
),
TP_fast_assign(
__assign_str(filename, bprm->filename);
__entry->pid = p->pid;
__entry->old_pid = old_pid;
),
TP_printk("filename=%s pid=%d old_pid=%d", __get_str(filename),
__entry->pid, __entry->old_pid)
);
/*
* XXX the below sched_stat tracepoints only apply to SCHED_OTHER/BATCH/IDLE
* adding sched_stat support to SCHED_FIFO/RR would be welcome.
*/
DECLARE_EVENT_CLASS(sched_stat_template,
TP_PROTO(struct task_struct *tsk, u64 delay),
TP_ARGS(__perf_task(tsk), __perf_count(delay)),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( u64, delay )
),
TP_fast_assign(
memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
__entry->pid = tsk->pid;
__entry->delay = delay;
),
TP_printk("comm=%s pid=%d delay=%Lu [ns]",
__entry->comm, __entry->pid,
(unsigned long long)__entry->delay)
);
/*
* Tracepoint for accounting wait time (time the task is runnable
* but not actually running due to scheduler contention).
*/
DEFINE_EVENT(sched_stat_template, sched_stat_wait,
TP_PROTO(struct task_struct *tsk, u64 delay),
TP_ARGS(tsk, delay));
/*
* Tracepoint for accounting sleep time (time the task is not runnable,
* including iowait, see below).
*/
DEFINE_EVENT(sched_stat_template, sched_stat_sleep,
TP_PROTO(struct task_struct *tsk, u64 delay),
TP_ARGS(tsk, delay));
/*
* Tracepoint for accounting iowait time (time the task is not runnable
* due to waiting on IO to complete).
*/
DEFINE_EVENT(sched_stat_template, sched_stat_iowait,
TP_PROTO(struct task_struct *tsk, u64 delay),
TP_ARGS(tsk, delay));
/*
* Tracepoint for accounting blocked time (time the task is in uninterruptible).
*/
DEFINE_EVENT(sched_stat_template, sched_stat_blocked,
TP_PROTO(struct task_struct *tsk, u64 delay),
TP_ARGS(tsk, delay));
/*
* Tracepoint for accounting runtime (time the task is executing
* on a CPU).
*/
DECLARE_EVENT_CLASS(sched_stat_runtime,
TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime),
TP_ARGS(tsk, __perf_count(runtime), vruntime),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( u64, runtime )
__field( u64, vruntime )
),
TP_fast_assign(
memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
__entry->pid = tsk->pid;
__entry->runtime = runtime;
__entry->vruntime = vruntime;
),
TP_printk("comm=%s pid=%d runtime=%Lu [ns] vruntime=%Lu [ns]",
__entry->comm, __entry->pid,
(unsigned long long)__entry->runtime,
(unsigned long long)__entry->vruntime)
);
DEFINE_EVENT(sched_stat_runtime, sched_stat_runtime,
TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime),
TP_ARGS(tsk, runtime, vruntime));
/*
* Tracepoint for showing priority inheritance modifying a tasks
* priority.
*/
TRACE_EVENT(sched_pi_setprio,
TP_PROTO(struct task_struct *tsk, int newprio),
TP_ARGS(tsk, newprio),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, oldprio )
__field( int, newprio )
),
TP_fast_assign(
memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
__entry->pid = tsk->pid;
__entry->oldprio = tsk->prio;
__entry->newprio = newprio;
),
TP_printk("comm=%s pid=%d oldprio=%d newprio=%d",
__entry->comm, __entry->pid,
__entry->oldprio, __entry->newprio)
);
#ifdef CONFIG_DETECT_HUNG_TASK
TRACE_EVENT(sched_process_hang,
TP_PROTO(struct task_struct *tsk),
TP_ARGS(tsk),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
),
TP_fast_assign(
memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
__entry->pid = tsk->pid;
),
TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
);
#endif /* CONFIG_DETECT_HUNG_TASK */
DECLARE_EVENT_CLASS(sched_move_task_template,
TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu),
TP_ARGS(tsk, src_cpu, dst_cpu),
TP_STRUCT__entry(
__field( pid_t, pid )
__field( pid_t, tgid )
__field( pid_t, ngid )
__field( int, src_cpu )
__field( int, src_nid )
__field( int, dst_cpu )
__field( int, dst_nid )
),
TP_fast_assign(
__entry->pid = task_pid_nr(tsk);
__entry->tgid = task_tgid_nr(tsk);
__entry->ngid = task_numa_group_id(tsk);
__entry->src_cpu = src_cpu;
__entry->src_nid = cpu_to_node(src_cpu);
__entry->dst_cpu = dst_cpu;
__entry->dst_nid = cpu_to_node(dst_cpu);
),
TP_printk("pid=%d tgid=%d ngid=%d src_cpu=%d src_nid=%d dst_cpu=%d dst_nid=%d",
__entry->pid, __entry->tgid, __entry->ngid,
__entry->src_cpu, __entry->src_nid,
__entry->dst_cpu, __entry->dst_nid)
);
/*
* Tracks migration of tasks from one runqueue to another. Can be used to
* detect if automatic NUMA balancing is bouncing between nodes
*/
DEFINE_EVENT(sched_move_task_template, sched_move_numa,
TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu),
TP_ARGS(tsk, src_cpu, dst_cpu)
);
DEFINE_EVENT(sched_move_task_template, sched_stick_numa,
TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu),
TP_ARGS(tsk, src_cpu, dst_cpu)
);
TRACE_EVENT(sched_swap_numa,
TP_PROTO(struct task_struct *src_tsk, int src_cpu,
struct task_struct *dst_tsk, int dst_cpu),
TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu),
TP_STRUCT__entry(
__field( pid_t, src_pid )
__field( pid_t, src_tgid )
__field( pid_t, src_ngid )
__field( int, src_cpu )
__field( int, src_nid )
__field( pid_t, dst_pid )
__field( pid_t, dst_tgid )
__field( pid_t, dst_ngid )
__field( int, dst_cpu )
__field( int, dst_nid )
),
TP_fast_assign(
__entry->src_pid = task_pid_nr(src_tsk);
__entry->src_tgid = task_tgid_nr(src_tsk);
__entry->src_ngid = task_numa_group_id(src_tsk);
__entry->src_cpu = src_cpu;
__entry->src_nid = cpu_to_node(src_cpu);
__entry->dst_pid = task_pid_nr(dst_tsk);
__entry->dst_tgid = task_tgid_nr(dst_tsk);
__entry->dst_ngid = task_numa_group_id(dst_tsk);
__entry->dst_cpu = dst_cpu;
__entry->dst_nid = cpu_to_node(dst_cpu);
),
TP_printk("src_pid=%d src_tgid=%d src_ngid=%d src_cpu=%d src_nid=%d dst_pid=%d dst_tgid=%d dst_ngid=%d dst_cpu=%d dst_nid=%d",
__entry->src_pid, __entry->src_tgid, __entry->src_ngid,
__entry->src_cpu, __entry->src_nid,
__entry->dst_pid, __entry->dst_tgid, __entry->dst_ngid,
__entry->dst_cpu, __entry->dst_nid)
);
/*
* Tracepoint for waking a polling cpu without an IPI.
*/
TRACE_EVENT(sched_wake_idle_without_ipi,
TP_PROTO(int cpu),
TP_ARGS(cpu),
TP_STRUCT__entry(
__field( int, cpu )
),
TP_fast_assign(
__entry->cpu = cpu;
),
TP_printk("cpu=%d", __entry->cpu)
);
TRACE_EVENT(sched_get_nr_running_avg,
TP_PROTO(int avg, int big_avg, int iowait_avg),
TP_ARGS(avg, big_avg, iowait_avg),
TP_STRUCT__entry(
__field( int, avg )
__field( int, big_avg )
__field( int, iowait_avg )
),
TP_fast_assign(
__entry->avg = avg;
__entry->big_avg = big_avg;
__entry->iowait_avg = iowait_avg;
),
TP_printk("avg=%d big_avg=%d iowait_avg=%d",
__entry->avg, __entry->big_avg, __entry->iowait_avg)
);
#endif /* _TRACE_SCHED_H */
/* This part must be outside protection */
#include <trace/define_trace.h>
#endif /* CONFIG_SCHED_QHMP */