M7350/kernel/drivers/net/wireless/ath/ath10k/pci.c
2024-09-09 08:57:42 +00:00

2570 lines
62 KiB
C

/*
* Copyright (c) 2005-2011 Atheros Communications Inc.
* Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/bitops.h>
#include "core.h"
#include "debug.h"
#include "targaddrs.h"
#include "bmi.h"
#include "hif.h"
#include "htc.h"
#include "ce.h"
#include "pci.h"
enum ath10k_pci_irq_mode {
ATH10K_PCI_IRQ_AUTO = 0,
ATH10K_PCI_IRQ_LEGACY = 1,
ATH10K_PCI_IRQ_MSI = 2,
};
enum ath10k_pci_reset_mode {
ATH10K_PCI_RESET_AUTO = 0,
ATH10K_PCI_RESET_WARM_ONLY = 1,
};
static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
/* how long wait to wait for target to initialise, in ms */
#define ATH10K_PCI_TARGET_WAIT 3000
#define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
#define QCA988X_2_0_DEVICE_ID (0x003c)
static const struct pci_device_id ath10k_pci_id_table[] = {
{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
{0}
};
static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
static int ath10k_pci_cold_reset(struct ath10k *ar);
static int ath10k_pci_warm_reset(struct ath10k *ar);
static int ath10k_pci_wait_for_target_init(struct ath10k *ar);
static int ath10k_pci_init_irq(struct ath10k *ar);
static int ath10k_pci_deinit_irq(struct ath10k *ar);
static int ath10k_pci_request_irq(struct ath10k *ar);
static void ath10k_pci_free_irq(struct ath10k *ar);
static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
struct ath10k_ce_pipe *rx_pipe,
struct bmi_xfer *xfer);
static const struct ce_attr host_ce_config_wlan[] = {
/* CE0: host->target HTC control and raw streams */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 16,
.src_sz_max = 256,
.dest_nentries = 0,
},
/* CE1: target->host HTT + HTC control */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 512,
.dest_nentries = 512,
},
/* CE2: target->host WMI */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 2048,
.dest_nentries = 32,
},
/* CE3: host->target WMI */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 32,
.src_sz_max = 2048,
.dest_nentries = 0,
},
/* CE4: host->target HTT */
{
.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
.src_sz_max = 256,
.dest_nentries = 0,
},
/* CE5: unused */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 0,
.dest_nentries = 0,
},
/* CE6: target autonomous hif_memcpy */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 0,
.dest_nentries = 0,
},
/* CE7: ce_diag, the Diagnostic Window */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 2,
.src_sz_max = DIAG_TRANSFER_LIMIT,
.dest_nentries = 2,
},
};
/* Target firmware's Copy Engine configuration. */
static const struct ce_pipe_config target_ce_config_wlan[] = {
/* CE0: host->target HTC control and raw streams */
{
.pipenum = __cpu_to_le32(0),
.pipedir = __cpu_to_le32(PIPEDIR_OUT),
.nentries = __cpu_to_le32(32),
.nbytes_max = __cpu_to_le32(256),
.flags = __cpu_to_le32(CE_ATTR_FLAGS),
.reserved = __cpu_to_le32(0),
},
/* CE1: target->host HTT + HTC control */
{
.pipenum = __cpu_to_le32(1),
.pipedir = __cpu_to_le32(PIPEDIR_IN),
.nentries = __cpu_to_le32(32),
.nbytes_max = __cpu_to_le32(512),
.flags = __cpu_to_le32(CE_ATTR_FLAGS),
.reserved = __cpu_to_le32(0),
},
/* CE2: target->host WMI */
{
.pipenum = __cpu_to_le32(2),
.pipedir = __cpu_to_le32(PIPEDIR_IN),
.nentries = __cpu_to_le32(32),
.nbytes_max = __cpu_to_le32(2048),
.flags = __cpu_to_le32(CE_ATTR_FLAGS),
.reserved = __cpu_to_le32(0),
},
/* CE3: host->target WMI */
{
.pipenum = __cpu_to_le32(3),
.pipedir = __cpu_to_le32(PIPEDIR_OUT),
.nentries = __cpu_to_le32(32),
.nbytes_max = __cpu_to_le32(2048),
.flags = __cpu_to_le32(CE_ATTR_FLAGS),
.reserved = __cpu_to_le32(0),
},
/* CE4: host->target HTT */
{
.pipenum = __cpu_to_le32(4),
.pipedir = __cpu_to_le32(PIPEDIR_OUT),
.nentries = __cpu_to_le32(256),
.nbytes_max = __cpu_to_le32(256),
.flags = __cpu_to_le32(CE_ATTR_FLAGS),
.reserved = __cpu_to_le32(0),
},
/* NB: 50% of src nentries, since tx has 2 frags */
/* CE5: unused */
{
.pipenum = __cpu_to_le32(5),
.pipedir = __cpu_to_le32(PIPEDIR_OUT),
.nentries = __cpu_to_le32(32),
.nbytes_max = __cpu_to_le32(2048),
.flags = __cpu_to_le32(CE_ATTR_FLAGS),
.reserved = __cpu_to_le32(0),
},
/* CE6: Reserved for target autonomous hif_memcpy */
{
.pipenum = __cpu_to_le32(6),
.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
.nentries = __cpu_to_le32(32),
.nbytes_max = __cpu_to_le32(4096),
.flags = __cpu_to_le32(CE_ATTR_FLAGS),
.reserved = __cpu_to_le32(0),
},
/* CE7 used only by Host */
};
/*
* Map from service/endpoint to Copy Engine.
* This table is derived from the CE_PCI TABLE, above.
* It is passed to the Target at startup for use by firmware.
*/
static const struct service_to_pipe target_service_to_ce_map_wlan[] = {
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(3),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(3),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(3),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(3),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(3),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(0),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(1),
},
{ /* not used */
__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(0),
},
{ /* not used */
__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(1),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(4),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(1),
},
/* (Additions here) */
{ /* must be last */
__cpu_to_le32(0),
__cpu_to_le32(0),
__cpu_to_le32(0),
},
};
static bool ath10k_pci_irq_pending(struct ath10k *ar)
{
u32 cause;
/* Check if the shared legacy irq is for us */
cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
PCIE_INTR_CAUSE_ADDRESS);
if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
return true;
return false;
}
static void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
{
/* IMPORTANT: INTR_CLR register has to be set after
* INTR_ENABLE is set to 0, otherwise interrupt can not be
* really cleared. */
ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
0);
ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
/* IMPORTANT: this extra read transaction is required to
* flush the posted write buffer. */
(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
PCIE_INTR_ENABLE_ADDRESS);
}
static void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
{
ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
PCIE_INTR_ENABLE_ADDRESS,
PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
/* IMPORTANT: this extra read transaction is required to
* flush the posted write buffer. */
(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
PCIE_INTR_ENABLE_ADDRESS);
}
static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
if (ar_pci->num_msi_intrs > 1)
return "msi-x";
if (ar_pci->num_msi_intrs == 1)
return "msi";
return "legacy";
}
static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
{
struct ath10k *ar = pipe->hif_ce_state;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
struct sk_buff *skb;
dma_addr_t paddr;
int ret;
lockdep_assert_held(&ar_pci->ce_lock);
skb = dev_alloc_skb(pipe->buf_sz);
if (!skb)
return -ENOMEM;
WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
paddr = dma_map_single(ar->dev, skb->data,
skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(ar->dev, paddr))) {
ath10k_warn(ar, "failed to dma map pci rx buf\n");
dev_kfree_skb_any(skb);
return -EIO;
}
ATH10K_SKB_CB(skb)->paddr = paddr;
ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
if (ret) {
ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
dev_kfree_skb_any(skb);
return ret;
}
return 0;
}
static void __ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
{
struct ath10k *ar = pipe->hif_ce_state;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
int ret, num;
lockdep_assert_held(&ar_pci->ce_lock);
if (pipe->buf_sz == 0)
return;
if (!ce_pipe->dest_ring)
return;
num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
while (num--) {
ret = __ath10k_pci_rx_post_buf(pipe);
if (ret) {
ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
mod_timer(&ar_pci->rx_post_retry, jiffies +
ATH10K_PCI_RX_POST_RETRY_MS);
break;
}
}
}
static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
{
struct ath10k *ar = pipe->hif_ce_state;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
spin_lock_bh(&ar_pci->ce_lock);
__ath10k_pci_rx_post_pipe(pipe);
spin_unlock_bh(&ar_pci->ce_lock);
}
static void ath10k_pci_rx_post(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int i;
spin_lock_bh(&ar_pci->ce_lock);
for (i = 0; i < CE_COUNT; i++)
__ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
spin_unlock_bh(&ar_pci->ce_lock);
}
static void ath10k_pci_rx_replenish_retry(unsigned long ptr)
{
struct ath10k *ar = (void *)ptr;
ath10k_pci_rx_post(ar);
}
/*
* Diagnostic read/write access is provided for startup/config/debug usage.
* Caller must guarantee proper alignment, when applicable, and single user
* at any moment.
*/
static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
int nbytes)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret = 0;
u32 buf;
unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
unsigned int id;
unsigned int flags;
struct ath10k_ce_pipe *ce_diag;
/* Host buffer address in CE space */
u32 ce_data;
dma_addr_t ce_data_base = 0;
void *data_buf = NULL;
int i;
ce_diag = ar_pci->ce_diag;
/*
* Allocate a temporary bounce buffer to hold caller's data
* to be DMA'ed from Target. This guarantees
* 1) 4-byte alignment
* 2) Buffer in DMA-able space
*/
orig_nbytes = nbytes;
data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
orig_nbytes,
&ce_data_base,
GFP_ATOMIC);
if (!data_buf) {
ret = -ENOMEM;
goto done;
}
memset(data_buf, 0, orig_nbytes);
remaining_bytes = orig_nbytes;
ce_data = ce_data_base;
while (remaining_bytes) {
nbytes = min_t(unsigned int, remaining_bytes,
DIAG_TRANSFER_LIMIT);
ret = ath10k_ce_rx_post_buf(ce_diag, NULL, ce_data);
if (ret != 0)
goto done;
/* Request CE to send from Target(!) address to Host buffer */
/*
* The address supplied by the caller is in the
* Target CPU virtual address space.
*
* In order to use this address with the diagnostic CE,
* convert it from Target CPU virtual address space
* to CE address space
*/
address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem,
address);
ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0,
0);
if (ret)
goto done;
i = 0;
while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
&completed_nbytes,
&id) != 0) {
mdelay(1);
if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
ret = -EBUSY;
goto done;
}
}
if (nbytes != completed_nbytes) {
ret = -EIO;
goto done;
}
if (buf != (u32)address) {
ret = -EIO;
goto done;
}
i = 0;
while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
&completed_nbytes,
&id, &flags) != 0) {
mdelay(1);
if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
ret = -EBUSY;
goto done;
}
}
if (nbytes != completed_nbytes) {
ret = -EIO;
goto done;
}
if (buf != ce_data) {
ret = -EIO;
goto done;
}
remaining_bytes -= nbytes;
address += nbytes;
ce_data += nbytes;
}
done:
if (ret == 0)
memcpy(data, data_buf, orig_nbytes);
else
ath10k_warn(ar, "failed to read diag value at 0x%x: %d\n",
address, ret);
if (data_buf)
dma_free_coherent(ar->dev, orig_nbytes, data_buf,
ce_data_base);
return ret;
}
static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
{
__le32 val = 0;
int ret;
ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
*value = __le32_to_cpu(val);
return ret;
}
static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
u32 src, u32 len)
{
u32 host_addr, addr;
int ret;
host_addr = host_interest_item_address(src);
ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
if (ret != 0) {
ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
src, ret);
return ret;
}
ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
if (ret != 0) {
ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
addr, len, ret);
return ret;
}
return 0;
}
#define ath10k_pci_diag_read_hi(ar, dest, src, len) \
__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
const void *data, int nbytes)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret = 0;
u32 buf;
unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
unsigned int id;
unsigned int flags;
struct ath10k_ce_pipe *ce_diag;
void *data_buf = NULL;
u32 ce_data; /* Host buffer address in CE space */
dma_addr_t ce_data_base = 0;
int i;
ce_diag = ar_pci->ce_diag;
/*
* Allocate a temporary bounce buffer to hold caller's data
* to be DMA'ed to Target. This guarantees
* 1) 4-byte alignment
* 2) Buffer in DMA-able space
*/
orig_nbytes = nbytes;
data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
orig_nbytes,
&ce_data_base,
GFP_ATOMIC);
if (!data_buf) {
ret = -ENOMEM;
goto done;
}
/* Copy caller's data to allocated DMA buf */
memcpy(data_buf, data, orig_nbytes);
/*
* The address supplied by the caller is in the
* Target CPU virtual address space.
*
* In order to use this address with the diagnostic CE,
* convert it from
* Target CPU virtual address space
* to
* CE address space
*/
address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address);
remaining_bytes = orig_nbytes;
ce_data = ce_data_base;
while (remaining_bytes) {
/* FIXME: check cast */
nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
/* Set up to receive directly into Target(!) address */
ret = ath10k_ce_rx_post_buf(ce_diag, NULL, address);
if (ret != 0)
goto done;
/*
* Request CE to send caller-supplied data that
* was copied to bounce buffer to Target(!) address.
*/
ret = ath10k_ce_send(ce_diag, NULL, (u32)ce_data,
nbytes, 0, 0);
if (ret != 0)
goto done;
i = 0;
while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
&completed_nbytes,
&id) != 0) {
mdelay(1);
if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
ret = -EBUSY;
goto done;
}
}
if (nbytes != completed_nbytes) {
ret = -EIO;
goto done;
}
if (buf != ce_data) {
ret = -EIO;
goto done;
}
i = 0;
while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
&completed_nbytes,
&id, &flags) != 0) {
mdelay(1);
if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
ret = -EBUSY;
goto done;
}
}
if (nbytes != completed_nbytes) {
ret = -EIO;
goto done;
}
if (buf != address) {
ret = -EIO;
goto done;
}
remaining_bytes -= nbytes;
address += nbytes;
ce_data += nbytes;
}
done:
if (data_buf) {
dma_free_coherent(ar->dev, orig_nbytes, data_buf,
ce_data_base);
}
if (ret != 0)
ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
address, ret);
return ret;
}
static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
{
__le32 val = __cpu_to_le32(value);
return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
}
static bool ath10k_pci_is_awake(struct ath10k *ar)
{
u32 val = ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS);
return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
}
static int ath10k_pci_wake_wait(struct ath10k *ar)
{
int tot_delay = 0;
int curr_delay = 5;
while (tot_delay < PCIE_WAKE_TIMEOUT) {
if (ath10k_pci_is_awake(ar))
return 0;
udelay(curr_delay);
tot_delay += curr_delay;
if (curr_delay < 50)
curr_delay += 5;
}
return -ETIMEDOUT;
}
static int ath10k_pci_wake(struct ath10k *ar)
{
ath10k_pci_reg_write32(ar, PCIE_SOC_WAKE_ADDRESS,
PCIE_SOC_WAKE_V_MASK);
return ath10k_pci_wake_wait(ar);
}
static void ath10k_pci_sleep(struct ath10k *ar)
{
ath10k_pci_reg_write32(ar, PCIE_SOC_WAKE_ADDRESS,
PCIE_SOC_WAKE_RESET);
}
/* Called by lower (CE) layer when a send to Target completes. */
static void ath10k_pci_ce_send_done(struct ath10k_ce_pipe *ce_state)
{
struct ath10k *ar = ce_state->ar;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
void *transfer_context;
u32 ce_data;
unsigned int nbytes;
unsigned int transfer_id;
while (ath10k_ce_completed_send_next(ce_state, &transfer_context,
&ce_data, &nbytes,
&transfer_id) == 0) {
/* no need to call tx completion for NULL pointers */
if (transfer_context == NULL)
continue;
cb->tx_completion(ar, transfer_context, transfer_id);
}
}
/* Called by lower (CE) layer when data is received from the Target. */
static void ath10k_pci_ce_recv_data(struct ath10k_ce_pipe *ce_state)
{
struct ath10k *ar = ce_state->ar;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
struct sk_buff *skb;
void *transfer_context;
u32 ce_data;
unsigned int nbytes, max_nbytes;
unsigned int transfer_id;
unsigned int flags;
while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
&ce_data, &nbytes, &transfer_id,
&flags) == 0) {
skb = transfer_context;
max_nbytes = skb->len + skb_tailroom(skb);
dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
max_nbytes, DMA_FROM_DEVICE);
if (unlikely(max_nbytes < nbytes)) {
ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
nbytes, max_nbytes);
dev_kfree_skb_any(skb);
continue;
}
skb_put(skb, nbytes);
cb->rx_completion(ar, skb, pipe_info->pipe_num);
}
ath10k_pci_rx_post_pipe(pipe_info);
}
static int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
struct ath10k_hif_sg_item *items, int n_items)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
unsigned int nentries_mask;
unsigned int sw_index;
unsigned int write_index;
int err, i = 0;
spin_lock_bh(&ar_pci->ce_lock);
nentries_mask = src_ring->nentries_mask;
sw_index = src_ring->sw_index;
write_index = src_ring->write_index;
if (unlikely(CE_RING_DELTA(nentries_mask,
write_index, sw_index - 1) < n_items)) {
err = -ENOBUFS;
goto err;
}
for (i = 0; i < n_items - 1; i++) {
ath10k_dbg(ar, ATH10K_DBG_PCI,
"pci tx item %d paddr 0x%08x len %d n_items %d\n",
i, items[i].paddr, items[i].len, n_items);
ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
items[i].vaddr, items[i].len);
err = ath10k_ce_send_nolock(ce_pipe,
items[i].transfer_context,
items[i].paddr,
items[i].len,
items[i].transfer_id,
CE_SEND_FLAG_GATHER);
if (err)
goto err;
}
/* `i` is equal to `n_items -1` after for() */
ath10k_dbg(ar, ATH10K_DBG_PCI,
"pci tx item %d paddr 0x%08x len %d n_items %d\n",
i, items[i].paddr, items[i].len, n_items);
ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
items[i].vaddr, items[i].len);
err = ath10k_ce_send_nolock(ce_pipe,
items[i].transfer_context,
items[i].paddr,
items[i].len,
items[i].transfer_id,
0);
if (err)
goto err;
spin_unlock_bh(&ar_pci->ce_lock);
return 0;
err:
for (; i > 0; i--)
__ath10k_ce_send_revert(ce_pipe);
spin_unlock_bh(&ar_pci->ce_lock);
return err;
}
static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
}
static void ath10k_pci_dump_registers(struct ath10k *ar,
struct ath10k_fw_crash_data *crash_data)
{
__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
int i, ret;
lockdep_assert_held(&ar->data_lock);
ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
hi_failure_state,
REG_DUMP_COUNT_QCA988X * sizeof(__le32));
if (ret) {
ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
return;
}
BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
ath10k_err(ar, "firmware register dump:\n");
for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
i,
__le32_to_cpu(reg_dump_values[i]),
__le32_to_cpu(reg_dump_values[i + 1]),
__le32_to_cpu(reg_dump_values[i + 2]),
__le32_to_cpu(reg_dump_values[i + 3]));
if (!crash_data)
return;
for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
crash_data->registers[i] = reg_dump_values[i];
}
static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
{
struct ath10k_fw_crash_data *crash_data;
char uuid[50];
spin_lock_bh(&ar->data_lock);
crash_data = ath10k_debug_get_new_fw_crash_data(ar);
if (crash_data)
scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid);
else
scnprintf(uuid, sizeof(uuid), "n/a");
ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid);
ath10k_print_driver_info(ar);
ath10k_pci_dump_registers(ar, crash_data);
spin_unlock_bh(&ar->data_lock);
queue_work(ar->workqueue, &ar->restart_work);
}
static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
int force)
{
ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
if (!force) {
int resources;
/*
* Decide whether to actually poll for completions, or just
* wait for a later chance.
* If there seem to be plenty of resources left, then just wait
* since checking involves reading a CE register, which is a
* relatively expensive operation.
*/
resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
/*
* If at least 50% of the total resources are still available,
* don't bother checking again yet.
*/
if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
return;
}
ath10k_ce_per_engine_service(ar, pipe);
}
static void ath10k_pci_hif_set_callbacks(struct ath10k *ar,
struct ath10k_hif_cb *callbacks)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif set callbacks\n");
memcpy(&ar_pci->msg_callbacks_current, callbacks,
sizeof(ar_pci->msg_callbacks_current));
}
static void ath10k_pci_kill_tasklet(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int i;
tasklet_kill(&ar_pci->intr_tq);
tasklet_kill(&ar_pci->msi_fw_err);
for (i = 0; i < CE_COUNT; i++)
tasklet_kill(&ar_pci->pipe_info[i].intr);
del_timer_sync(&ar_pci->rx_post_retry);
}
static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar,
u16 service_id, u8 *ul_pipe,
u8 *dl_pipe, int *ul_is_polled,
int *dl_is_polled)
{
const struct service_to_pipe *entry;
bool ul_set = false, dl_set = false;
int i;
ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
/* polling for received messages not supported */
*dl_is_polled = 0;
for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
entry = &target_service_to_ce_map_wlan[i];
if (__le32_to_cpu(entry->service_id) != service_id)
continue;
switch (__le32_to_cpu(entry->pipedir)) {
case PIPEDIR_NONE:
break;
case PIPEDIR_IN:
WARN_ON(dl_set);
*dl_pipe = __le32_to_cpu(entry->pipenum);
dl_set = true;
break;
case PIPEDIR_OUT:
WARN_ON(ul_set);
*ul_pipe = __le32_to_cpu(entry->pipenum);
ul_set = true;
break;
case PIPEDIR_INOUT:
WARN_ON(dl_set);
WARN_ON(ul_set);
*dl_pipe = __le32_to_cpu(entry->pipenum);
*ul_pipe = __le32_to_cpu(entry->pipenum);
dl_set = true;
ul_set = true;
break;
}
}
if (WARN_ON(!ul_set || !dl_set))
return -ENOENT;
*ul_is_polled =
(host_ce_config_wlan[*ul_pipe].flags & CE_ATTR_DIS_INTR) != 0;
return 0;
}
static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
u8 *ul_pipe, u8 *dl_pipe)
{
int ul_is_polled, dl_is_polled;
ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
(void)ath10k_pci_hif_map_service_to_pipe(ar,
ATH10K_HTC_SVC_ID_RSVD_CTRL,
ul_pipe,
dl_pipe,
&ul_is_polled,
&dl_is_polled);
}
static void ath10k_pci_irq_disable(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int i;
ath10k_ce_disable_interrupts(ar);
ath10k_pci_disable_and_clear_legacy_irq(ar);
/* FIXME: How to mask all MSI interrupts? */
for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
synchronize_irq(ar_pci->pdev->irq + i);
}
static void ath10k_pci_irq_enable(struct ath10k *ar)
{
ath10k_ce_enable_interrupts(ar);
ath10k_pci_enable_legacy_irq(ar);
/* FIXME: How to unmask all MSI interrupts? */
}
static int ath10k_pci_hif_start(struct ath10k *ar)
{
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
ath10k_pci_irq_enable(ar);
ath10k_pci_rx_post(ar);
return 0;
}
static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info)
{
struct ath10k *ar;
struct ath10k_pci *ar_pci;
struct ath10k_ce_pipe *ce_hdl;
u32 buf_sz;
struct sk_buff *netbuf;
u32 ce_data;
buf_sz = pipe_info->buf_sz;
/* Unused Copy Engine */
if (buf_sz == 0)
return;
ar = pipe_info->hif_ce_state;
ar_pci = ath10k_pci_priv(ar);
ce_hdl = pipe_info->ce_hdl;
while (ath10k_ce_revoke_recv_next(ce_hdl, (void **)&netbuf,
&ce_data) == 0) {
dma_unmap_single(ar->dev, ATH10K_SKB_CB(netbuf)->paddr,
netbuf->len + skb_tailroom(netbuf),
DMA_FROM_DEVICE);
dev_kfree_skb_any(netbuf);
}
}
static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info)
{
struct ath10k *ar;
struct ath10k_pci *ar_pci;
struct ath10k_ce_pipe *ce_hdl;
struct sk_buff *netbuf;
u32 ce_data;
unsigned int nbytes;
unsigned int id;
u32 buf_sz;
buf_sz = pipe_info->buf_sz;
/* Unused Copy Engine */
if (buf_sz == 0)
return;
ar = pipe_info->hif_ce_state;
ar_pci = ath10k_pci_priv(ar);
ce_hdl = pipe_info->ce_hdl;
while (ath10k_ce_cancel_send_next(ce_hdl, (void **)&netbuf,
&ce_data, &nbytes, &id) == 0) {
/* no need to call tx completion for NULL pointers */
if (!netbuf)
continue;
ar_pci->msg_callbacks_current.tx_completion(ar,
netbuf,
id);
}
}
/*
* Cleanup residual buffers for device shutdown:
* buffers that were enqueued for receive
* buffers that were to be sent
* Note: Buffers that had completed but which were
* not yet processed are on a completion queue. They
* are handled when the completion thread shuts down.
*/
static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int pipe_num;
for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
struct ath10k_pci_pipe *pipe_info;
pipe_info = &ar_pci->pipe_info[pipe_num];
ath10k_pci_rx_pipe_cleanup(pipe_info);
ath10k_pci_tx_pipe_cleanup(pipe_info);
}
}
static void ath10k_pci_ce_deinit(struct ath10k *ar)
{
int i;
for (i = 0; i < CE_COUNT; i++)
ath10k_ce_deinit_pipe(ar, i);
}
static void ath10k_pci_flush(struct ath10k *ar)
{
ath10k_pci_kill_tasklet(ar);
ath10k_pci_buffer_cleanup(ar);
}
static void ath10k_pci_hif_stop(struct ath10k *ar)
{
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
/* Most likely the device has HTT Rx ring configured. The only way to
* prevent the device from accessing (and possible corrupting) host
* memory is to reset the chip now.
*
* There's also no known way of masking MSI interrupts on the device.
* For ranged MSI the CE-related interrupts can be masked. However
* regardless how many MSI interrupts are assigned the first one
* is always used for firmware indications (crashes) and cannot be
* masked. To prevent the device from asserting the interrupt reset it
* before proceeding with cleanup.
*/
ath10k_pci_warm_reset(ar);
ath10k_pci_irq_disable(ar);
ath10k_pci_flush(ar);
}
static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
void *req, u32 req_len,
void *resp, u32 *resp_len)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
dma_addr_t req_paddr = 0;
dma_addr_t resp_paddr = 0;
struct bmi_xfer xfer = {};
void *treq, *tresp = NULL;
int ret = 0;
might_sleep();
if (resp && !resp_len)
return -EINVAL;
if (resp && resp_len && *resp_len == 0)
return -EINVAL;
treq = kmemdup(req, req_len, GFP_KERNEL);
if (!treq)
return -ENOMEM;
req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
ret = dma_mapping_error(ar->dev, req_paddr);
if (ret)
goto err_dma;
if (resp && resp_len) {
tresp = kzalloc(*resp_len, GFP_KERNEL);
if (!tresp) {
ret = -ENOMEM;
goto err_req;
}
resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
DMA_FROM_DEVICE);
ret = dma_mapping_error(ar->dev, resp_paddr);
if (ret)
goto err_req;
xfer.wait_for_resp = true;
xfer.resp_len = 0;
ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
}
ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
if (ret)
goto err_resp;
ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer);
if (ret) {
u32 unused_buffer;
unsigned int unused_nbytes;
unsigned int unused_id;
ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
&unused_nbytes, &unused_id);
} else {
/* non-zero means we did not time out */
ret = 0;
}
err_resp:
if (resp) {
u32 unused_buffer;
ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
dma_unmap_single(ar->dev, resp_paddr,
*resp_len, DMA_FROM_DEVICE);
}
err_req:
dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
if (ret == 0 && resp_len) {
*resp_len = min(*resp_len, xfer.resp_len);
memcpy(resp, tresp, xfer.resp_len);
}
err_dma:
kfree(treq);
kfree(tresp);
return ret;
}
static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
{
struct bmi_xfer *xfer;
u32 ce_data;
unsigned int nbytes;
unsigned int transfer_id;
if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer, &ce_data,
&nbytes, &transfer_id))
return;
xfer->tx_done = true;
}
static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
{
struct ath10k *ar = ce_state->ar;
struct bmi_xfer *xfer;
u32 ce_data;
unsigned int nbytes;
unsigned int transfer_id;
unsigned int flags;
if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, &ce_data,
&nbytes, &transfer_id, &flags))
return;
if (!xfer->wait_for_resp) {
ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
return;
}
xfer->resp_len = nbytes;
xfer->rx_done = true;
}
static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
struct ath10k_ce_pipe *rx_pipe,
struct bmi_xfer *xfer)
{
unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
while (time_before_eq(jiffies, timeout)) {
ath10k_pci_bmi_send_done(tx_pipe);
ath10k_pci_bmi_recv_data(rx_pipe);
if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp))
return 0;
schedule();
}
return -ETIMEDOUT;
}
/*
* Send an interrupt to the device to wake up the Target CPU
* so it has an opportunity to notice any changed state.
*/
static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
{
u32 addr, val;
addr = SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS;
val = ath10k_pci_read32(ar, addr);
val |= CORE_CTRL_CPU_INTR_MASK;
ath10k_pci_write32(ar, addr, val);
return 0;
}
static int ath10k_pci_init_config(struct ath10k *ar)
{
u32 interconnect_targ_addr;
u32 pcie_state_targ_addr = 0;
u32 pipe_cfg_targ_addr = 0;
u32 svc_to_pipe_map = 0;
u32 pcie_config_flags = 0;
u32 ealloc_value;
u32 ealloc_targ_addr;
u32 flag2_value;
u32 flag2_targ_addr;
int ret = 0;
/* Download to Target the CE Config and the service-to-CE map */
interconnect_targ_addr =
host_interest_item_address(HI_ITEM(hi_interconnect_state));
/* Supply Target-side CE configuration */
ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
&pcie_state_targ_addr);
if (ret != 0) {
ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
return ret;
}
if (pcie_state_targ_addr == 0) {
ret = -EIO;
ath10k_err(ar, "Invalid pcie state addr\n");
return ret;
}
ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
offsetof(struct pcie_state,
pipe_cfg_addr)),
&pipe_cfg_targ_addr);
if (ret != 0) {
ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
return ret;
}
if (pipe_cfg_targ_addr == 0) {
ret = -EIO;
ath10k_err(ar, "Invalid pipe cfg addr\n");
return ret;
}
ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
target_ce_config_wlan,
sizeof(target_ce_config_wlan));
if (ret != 0) {
ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
return ret;
}
ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
offsetof(struct pcie_state,
svc_to_pipe_map)),
&svc_to_pipe_map);
if (ret != 0) {
ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
return ret;
}
if (svc_to_pipe_map == 0) {
ret = -EIO;
ath10k_err(ar, "Invalid svc_to_pipe map\n");
return ret;
}
ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
target_service_to_ce_map_wlan,
sizeof(target_service_to_ce_map_wlan));
if (ret != 0) {
ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
return ret;
}
ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
offsetof(struct pcie_state,
config_flags)),
&pcie_config_flags);
if (ret != 0) {
ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
return ret;
}
pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
offsetof(struct pcie_state,
config_flags)),
pcie_config_flags);
if (ret != 0) {
ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
return ret;
}
/* configure early allocation */
ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
if (ret != 0) {
ath10k_err(ar, "Faile to get early alloc val: %d\n", ret);
return ret;
}
/* first bank is switched to IRAM */
ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
HI_EARLY_ALLOC_MAGIC_MASK);
ealloc_value |= ((1 << HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
HI_EARLY_ALLOC_IRAM_BANKS_MASK);
ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
if (ret != 0) {
ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
return ret;
}
/* Tell Target to proceed with initialization */
flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
if (ret != 0) {
ath10k_err(ar, "Failed to get option val: %d\n", ret);
return ret;
}
flag2_value |= HI_OPTION_EARLY_CFG_DONE;
ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
if (ret != 0) {
ath10k_err(ar, "Failed to set option val: %d\n", ret);
return ret;
}
return 0;
}
static int ath10k_pci_alloc_ce(struct ath10k *ar)
{
int i, ret;
for (i = 0; i < CE_COUNT; i++) {
ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
if (ret) {
ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
i, ret);
return ret;
}
}
return 0;
}
static void ath10k_pci_free_ce(struct ath10k *ar)
{
int i;
for (i = 0; i < CE_COUNT; i++)
ath10k_ce_free_pipe(ar, i);
}
static int ath10k_pci_ce_init(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_pci_pipe *pipe_info;
const struct ce_attr *attr;
int pipe_num, ret;
for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
pipe_info = &ar_pci->pipe_info[pipe_num];
pipe_info->ce_hdl = &ar_pci->ce_states[pipe_num];
pipe_info->pipe_num = pipe_num;
pipe_info->hif_ce_state = ar;
attr = &host_ce_config_wlan[pipe_num];
ret = ath10k_ce_init_pipe(ar, pipe_num, attr,
ath10k_pci_ce_send_done,
ath10k_pci_ce_recv_data);
if (ret) {
ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
pipe_num, ret);
return ret;
}
if (pipe_num == CE_COUNT - 1) {
/*
* Reserve the ultimate CE for
* diagnostic Window support
*/
ar_pci->ce_diag = pipe_info->ce_hdl;
continue;
}
pipe_info->buf_sz = (size_t)(attr->src_sz_max);
}
return 0;
}
static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
{
return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
FW_IND_EVENT_PENDING;
}
static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
{
u32 val;
val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
val &= ~FW_IND_EVENT_PENDING;
ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
}
/* this function effectively clears target memory controller assert line */
static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
{
u32 val;
val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
val | SOC_RESET_CONTROL_SI0_RST_MASK);
val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
msleep(10);
val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
msleep(10);
}
static int ath10k_pci_warm_reset(struct ath10k *ar)
{
u32 val;
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
/* debug */
val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
PCIE_INTR_CAUSE_ADDRESS);
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot host cpu intr cause: 0x%08x\n",
val);
val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
CPU_INTR_ADDRESS);
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target cpu intr cause: 0x%08x\n",
val);
/* disable pending irqs */
ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
PCIE_INTR_ENABLE_ADDRESS, 0);
ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
PCIE_INTR_CLR_ADDRESS, ~0);
msleep(100);
/* clear fw indicator */
ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
/* clear target LF timer interrupts */
val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
SOC_LF_TIMER_CONTROL0_ADDRESS);
ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
SOC_LF_TIMER_CONTROL0_ADDRESS,
val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
/* reset CE */
val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
SOC_RESET_CONTROL_ADDRESS);
ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
val | SOC_RESET_CONTROL_CE_RST_MASK);
val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
SOC_RESET_CONTROL_ADDRESS);
msleep(10);
/* unreset CE */
ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
val & ~SOC_RESET_CONTROL_CE_RST_MASK);
val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
SOC_RESET_CONTROL_ADDRESS);
msleep(10);
ath10k_pci_warm_reset_si0(ar);
/* debug */
val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
PCIE_INTR_CAUSE_ADDRESS);
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot host cpu intr cause: 0x%08x\n",
val);
val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
CPU_INTR_ADDRESS);
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target cpu intr cause: 0x%08x\n",
val);
/* CPU warm reset */
val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
SOC_RESET_CONTROL_ADDRESS);
ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
SOC_RESET_CONTROL_ADDRESS);
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target reset state: 0x%08x\n",
val);
msleep(100);
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
return 0;
}
static int __ath10k_pci_hif_power_up(struct ath10k *ar, bool cold_reset)
{
int ret;
/*
* Bring the target up cleanly.
*
* The target may be in an undefined state with an AUX-powered Target
* and a Host in WoW mode. If the Host crashes, loses power, or is
* restarted (without unloading the driver) then the Target is left
* (aux) powered and running. On a subsequent driver load, the Target
* is in an unexpected state. We try to catch that here in order to
* reset the Target and retry the probe.
*/
if (cold_reset)
ret = ath10k_pci_cold_reset(ar);
else
ret = ath10k_pci_warm_reset(ar);
if (ret) {
ath10k_err(ar, "failed to reset target: %d\n", ret);
goto err;
}
ret = ath10k_pci_ce_init(ar);
if (ret) {
ath10k_err(ar, "failed to initialize CE: %d\n", ret);
goto err;
}
ret = ath10k_pci_wait_for_target_init(ar);
if (ret) {
ath10k_err(ar, "failed to wait for target to init: %d\n", ret);
goto err_ce;
}
ret = ath10k_pci_init_config(ar);
if (ret) {
ath10k_err(ar, "failed to setup init config: %d\n", ret);
goto err_ce;
}
ret = ath10k_pci_wake_target_cpu(ar);
if (ret) {
ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
goto err_ce;
}
return 0;
err_ce:
ath10k_pci_ce_deinit(ar);
ath10k_pci_warm_reset(ar);
err:
return ret;
}
static int ath10k_pci_hif_power_up_warm(struct ath10k *ar)
{
int i, ret;
/*
* Sometime warm reset succeeds after retries.
*
* FIXME: It might be possible to tune ath10k_pci_warm_reset() to work
* at first try.
*/
for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
ret = __ath10k_pci_hif_power_up(ar, false);
if (ret == 0)
break;
ath10k_warn(ar, "failed to warm reset (attempt %d out of %d): %d\n",
i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS, ret);
}
return ret;
}
static int ath10k_pci_hif_power_up(struct ath10k *ar)
{
int ret;
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
/*
* Hardware CUS232 version 2 has some issues with cold reset and the
* preferred (and safer) way to perform a device reset is through a
* warm reset.
*
* Warm reset doesn't always work though so fall back to cold reset may
* be necessary.
*/
ret = ath10k_pci_hif_power_up_warm(ar);
if (ret) {
ath10k_warn(ar, "failed to power up target using warm reset: %d\n",
ret);
if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY)
return ret;
ath10k_warn(ar, "trying cold reset\n");
ret = __ath10k_pci_hif_power_up(ar, true);
if (ret) {
ath10k_err(ar, "failed to power up target using cold reset too (%d)\n",
ret);
return ret;
}
}
return 0;
}
static void ath10k_pci_hif_power_down(struct ath10k *ar)
{
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
ath10k_pci_warm_reset(ar);
}
#ifdef CONFIG_PM
#define ATH10K_PCI_PM_CONTROL 0x44
static int ath10k_pci_hif_suspend(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct pci_dev *pdev = ar_pci->pdev;
u32 val;
pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
if ((val & 0x000000ff) != 0x3) {
pci_save_state(pdev);
pci_disable_device(pdev);
pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
(val & 0xffffff00) | 0x03);
}
return 0;
}
static int ath10k_pci_hif_resume(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct pci_dev *pdev = ar_pci->pdev;
u32 val;
pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
if ((val & 0x000000ff) != 0) {
pci_restore_state(pdev);
pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
val & 0xffffff00);
/*
* Suspend/Resume resets the PCI configuration space,
* so we have to re-disable the RETRY_TIMEOUT register (0x41)
* to keep PCI Tx retries from interfering with C3 CPU state
*/
pci_read_config_dword(pdev, 0x40, &val);
if ((val & 0x0000ff00) != 0)
pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
}
return 0;
}
#endif
static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
.tx_sg = ath10k_pci_hif_tx_sg,
.exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
.start = ath10k_pci_hif_start,
.stop = ath10k_pci_hif_stop,
.map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
.get_default_pipe = ath10k_pci_hif_get_default_pipe,
.send_complete_check = ath10k_pci_hif_send_complete_check,
.set_callbacks = ath10k_pci_hif_set_callbacks,
.get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
.power_up = ath10k_pci_hif_power_up,
.power_down = ath10k_pci_hif_power_down,
#ifdef CONFIG_PM
.suspend = ath10k_pci_hif_suspend,
.resume = ath10k_pci_hif_resume,
#endif
};
static void ath10k_pci_ce_tasklet(unsigned long ptr)
{
struct ath10k_pci_pipe *pipe = (struct ath10k_pci_pipe *)ptr;
struct ath10k_pci *ar_pci = pipe->ar_pci;
ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num);
}
static void ath10k_msi_err_tasklet(unsigned long data)
{
struct ath10k *ar = (struct ath10k *)data;
if (!ath10k_pci_has_fw_crashed(ar)) {
ath10k_warn(ar, "received unsolicited fw crash interrupt\n");
return;
}
ath10k_pci_fw_crashed_clear(ar);
ath10k_pci_fw_crashed_dump(ar);
}
/*
* Handler for a per-engine interrupt on a PARTICULAR CE.
* This is used in cases where each CE has a private MSI interrupt.
*/
static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg)
{
struct ath10k *ar = arg;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL;
if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) {
ath10k_warn(ar, "unexpected/invalid irq %d ce_id %d\n", irq,
ce_id);
return IRQ_HANDLED;
}
/*
* NOTE: We are able to derive ce_id from irq because we
* use a one-to-one mapping for CE's 0..5.
* CE's 6 & 7 do not use interrupts at all.
*
* This mapping must be kept in sync with the mapping
* used by firmware.
*/
tasklet_schedule(&ar_pci->pipe_info[ce_id].intr);
return IRQ_HANDLED;
}
static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg)
{
struct ath10k *ar = arg;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
tasklet_schedule(&ar_pci->msi_fw_err);
return IRQ_HANDLED;
}
/*
* Top-level interrupt handler for all PCI interrupts from a Target.
* When a block of MSI interrupts is allocated, this top-level handler
* is not used; instead, we directly call the correct sub-handler.
*/
static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
{
struct ath10k *ar = arg;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
if (ar_pci->num_msi_intrs == 0) {
if (!ath10k_pci_irq_pending(ar))
return IRQ_NONE;
ath10k_pci_disable_and_clear_legacy_irq(ar);
}
tasklet_schedule(&ar_pci->intr_tq);
return IRQ_HANDLED;
}
static void ath10k_pci_tasklet(unsigned long data)
{
struct ath10k *ar = (struct ath10k *)data;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
if (ath10k_pci_has_fw_crashed(ar)) {
ath10k_pci_fw_crashed_clear(ar);
ath10k_pci_fw_crashed_dump(ar);
return;
}
ath10k_ce_per_engine_service_any(ar);
/* Re-enable legacy irq that was disabled in the irq handler */
if (ar_pci->num_msi_intrs == 0)
ath10k_pci_enable_legacy_irq(ar);
}
static int ath10k_pci_request_irq_msix(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret, i;
ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW,
ath10k_pci_msi_fw_handler,
IRQF_SHARED, "ath10k_pci", ar);
if (ret) {
ath10k_warn(ar, "failed to request MSI-X fw irq %d: %d\n",
ar_pci->pdev->irq + MSI_ASSIGN_FW, ret);
return ret;
}
for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) {
ret = request_irq(ar_pci->pdev->irq + i,
ath10k_pci_per_engine_handler,
IRQF_SHARED, "ath10k_pci", ar);
if (ret) {
ath10k_warn(ar, "failed to request MSI-X ce irq %d: %d\n",
ar_pci->pdev->irq + i, ret);
for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--)
free_irq(ar_pci->pdev->irq + i, ar);
free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar);
return ret;
}
}
return 0;
}
static int ath10k_pci_request_irq_msi(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret;
ret = request_irq(ar_pci->pdev->irq,
ath10k_pci_interrupt_handler,
IRQF_SHARED, "ath10k_pci", ar);
if (ret) {
ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
ar_pci->pdev->irq, ret);
return ret;
}
return 0;
}
static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret;
ret = request_irq(ar_pci->pdev->irq,
ath10k_pci_interrupt_handler,
IRQF_SHARED, "ath10k_pci", ar);
if (ret) {
ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
ar_pci->pdev->irq, ret);
return ret;
}
return 0;
}
static int ath10k_pci_request_irq(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
switch (ar_pci->num_msi_intrs) {
case 0:
return ath10k_pci_request_irq_legacy(ar);
case 1:
return ath10k_pci_request_irq_msi(ar);
case MSI_NUM_REQUEST:
return ath10k_pci_request_irq_msix(ar);
}
ath10k_warn(ar, "unknown irq configuration upon request\n");
return -EINVAL;
}
static void ath10k_pci_free_irq(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int i;
/* There's at least one interrupt irregardless whether its legacy INTR
* or MSI or MSI-X */
for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
free_irq(ar_pci->pdev->irq + i, ar);
}
static void ath10k_pci_init_irq_tasklets(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int i;
tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long)ar);
tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet,
(unsigned long)ar);
for (i = 0; i < CE_COUNT; i++) {
ar_pci->pipe_info[i].ar_pci = ar_pci;
tasklet_init(&ar_pci->pipe_info[i].intr, ath10k_pci_ce_tasklet,
(unsigned long)&ar_pci->pipe_info[i]);
}
}
static int ath10k_pci_init_irq(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret;
ath10k_pci_init_irq_tasklets(ar);
if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
ath10k_info(ar, "limiting irq mode to: %d\n",
ath10k_pci_irq_mode);
/* Try MSI-X */
if (ath10k_pci_irq_mode == ATH10K_PCI_IRQ_AUTO) {
ar_pci->num_msi_intrs = MSI_NUM_REQUEST;
ret = pci_enable_msi_range(ar_pci->pdev, ar_pci->num_msi_intrs,
ar_pci->num_msi_intrs);
if (ret > 0)
return 0;
/* fall-through */
}
/* Try MSI */
if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
ar_pci->num_msi_intrs = 1;
ret = pci_enable_msi(ar_pci->pdev);
if (ret == 0)
return 0;
/* fall-through */
}
/* Try legacy irq
*
* A potential race occurs here: The CORE_BASE write
* depends on target correctly decoding AXI address but
* host won't know when target writes BAR to CORE_CTRL.
* This write might get lost if target has NOT written BAR.
* For now, fix the race by repeating the write in below
* synchronization checking. */
ar_pci->num_msi_intrs = 0;
ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
return 0;
}
static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
{
ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
0);
}
static int ath10k_pci_deinit_irq(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
switch (ar_pci->num_msi_intrs) {
case 0:
ath10k_pci_deinit_irq_legacy(ar);
return 0;
case 1:
/* fall-through */
case MSI_NUM_REQUEST:
pci_disable_msi(ar_pci->pdev);
return 0;
default:
pci_disable_msi(ar_pci->pdev);
}
ath10k_warn(ar, "unknown irq configuration upon deinit\n");
return -EINVAL;
}
static int ath10k_pci_wait_for_target_init(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
unsigned long timeout;
u32 val;
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
do {
val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
val);
/* target should never return this */
if (val == 0xffffffff)
continue;
/* the device has crashed so don't bother trying anymore */
if (val & FW_IND_EVENT_PENDING)
break;
if (val & FW_IND_INITIALIZED)
break;
if (ar_pci->num_msi_intrs == 0)
/* Fix potential race by repeating CORE_BASE writes */
ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
PCIE_INTR_ENABLE_ADDRESS,
PCIE_INTR_FIRMWARE_MASK |
PCIE_INTR_CE_MASK_ALL);
mdelay(10);
} while (time_before(jiffies, timeout));
if (val == 0xffffffff) {
ath10k_err(ar, "failed to read device register, device is gone\n");
return -EIO;
}
if (val & FW_IND_EVENT_PENDING) {
ath10k_warn(ar, "device has crashed during init\n");
ath10k_pci_fw_crashed_clear(ar);
ath10k_pci_fw_crashed_dump(ar);
return -ECOMM;
}
if (!(val & FW_IND_INITIALIZED)) {
ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
val);
return -ETIMEDOUT;
}
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
return 0;
}
static int ath10k_pci_cold_reset(struct ath10k *ar)
{
int i;
u32 val;
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
/* Put Target, including PCIe, into RESET. */
val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
val |= 1;
ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
if (ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) &
RTC_STATE_COLD_RESET_MASK)
break;
msleep(1);
}
/* Pull Target, including PCIe, out of RESET. */
val &= ~1;
ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
if (!(ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) &
RTC_STATE_COLD_RESET_MASK))
break;
msleep(1);
}
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
return 0;
}
static int ath10k_pci_claim(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct pci_dev *pdev = ar_pci->pdev;
u32 lcr_val;
int ret;
pci_set_drvdata(pdev, ar);
ret = pci_enable_device(pdev);
if (ret) {
ath10k_err(ar, "failed to enable pci device: %d\n", ret);
return ret;
}
ret = pci_request_region(pdev, BAR_NUM, "ath");
if (ret) {
ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
ret);
goto err_device;
}
/* Target expects 32 bit DMA. Enforce it. */
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (ret) {
ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
goto err_region;
}
ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
if (ret) {
ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
ret);
goto err_region;
}
pci_set_master(pdev);
/* Workaround: Disable ASPM */
pci_read_config_dword(pdev, 0x80, &lcr_val);
pci_write_config_dword(pdev, 0x80, (lcr_val & 0xffffff00));
/* Arrange for access to Target SoC registers. */
ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
if (!ar_pci->mem) {
ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
ret = -EIO;
goto err_master;
}
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%p\n", ar_pci->mem);
return 0;
err_master:
pci_clear_master(pdev);
err_region:
pci_release_region(pdev, BAR_NUM);
err_device:
pci_disable_device(pdev);
return ret;
}
static void ath10k_pci_release(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct pci_dev *pdev = ar_pci->pdev;
pci_iounmap(pdev, ar_pci->mem);
pci_release_region(pdev, BAR_NUM);
pci_clear_master(pdev);
pci_disable_device(pdev);
}
static int ath10k_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *pci_dev)
{
int ret = 0;
struct ath10k *ar;
struct ath10k_pci *ar_pci;
u32 chip_id;
ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev,
&ath10k_pci_hif_ops);
if (!ar) {
dev_err(&pdev->dev, "failed to allocate core\n");
return -ENOMEM;
}
ath10k_dbg(ar, ATH10K_DBG_PCI, "pci probe\n");
ar_pci = ath10k_pci_priv(ar);
ar_pci->pdev = pdev;
ar_pci->dev = &pdev->dev;
ar_pci->ar = ar;
spin_lock_init(&ar_pci->ce_lock);
setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry,
(unsigned long)ar);
ret = ath10k_pci_claim(ar);
if (ret) {
ath10k_err(ar, "failed to claim device: %d\n", ret);
goto err_core_destroy;
}
ret = ath10k_pci_wake(ar);
if (ret) {
ath10k_err(ar, "failed to wake up: %d\n", ret);
goto err_release;
}
chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
if (chip_id == 0xffffffff) {
ath10k_err(ar, "failed to get chip id\n");
goto err_sleep;
}
ret = ath10k_pci_alloc_ce(ar);
if (ret) {
ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
ret);
goto err_sleep;
}
ath10k_pci_ce_deinit(ar);
ret = ath10k_ce_disable_interrupts(ar);
if (ret) {
ath10k_err(ar, "failed to disable copy engine interrupts: %d\n",
ret);
goto err_free_ce;
}
/* Workaround: There's no known way to mask all possible interrupts via
* device CSR. The only way to make sure device doesn't assert
* interrupts is to reset it. Interrupts are then disabled on host
* after handlers are registered.
*/
ath10k_pci_warm_reset(ar);
ret = ath10k_pci_init_irq(ar);
if (ret) {
ath10k_err(ar, "failed to init irqs: %d\n", ret);
goto err_free_ce;
}
ath10k_info(ar, "pci irq %s interrupts %d irq_mode %d reset_mode %d\n",
ath10k_pci_get_irq_method(ar), ar_pci->num_msi_intrs,
ath10k_pci_irq_mode, ath10k_pci_reset_mode);
ret = ath10k_pci_request_irq(ar);
if (ret) {
ath10k_warn(ar, "failed to request irqs: %d\n", ret);
goto err_deinit_irq;
}
/* This shouldn't race as the device has been reset above. */
ath10k_pci_irq_disable(ar);
ret = ath10k_core_register(ar, chip_id);
if (ret) {
ath10k_err(ar, "failed to register driver core: %d\n", ret);
goto err_free_irq;
}
return 0;
err_free_irq:
ath10k_pci_free_irq(ar);
ath10k_pci_kill_tasklet(ar);
err_deinit_irq:
ath10k_pci_deinit_irq(ar);
err_free_ce:
ath10k_pci_free_ce(ar);
err_sleep:
ath10k_pci_sleep(ar);
err_release:
ath10k_pci_release(ar);
err_core_destroy:
ath10k_core_destroy(ar);
return ret;
}
static void ath10k_pci_remove(struct pci_dev *pdev)
{
struct ath10k *ar = pci_get_drvdata(pdev);
struct ath10k_pci *ar_pci;
ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
if (!ar)
return;
ar_pci = ath10k_pci_priv(ar);
if (!ar_pci)
return;
ath10k_core_unregister(ar);
ath10k_pci_free_irq(ar);
ath10k_pci_kill_tasklet(ar);
ath10k_pci_deinit_irq(ar);
ath10k_pci_ce_deinit(ar);
ath10k_pci_free_ce(ar);
ath10k_pci_sleep(ar);
ath10k_pci_release(ar);
ath10k_core_destroy(ar);
}
MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
static struct pci_driver ath10k_pci_driver = {
.name = "ath10k_pci",
.id_table = ath10k_pci_id_table,
.probe = ath10k_pci_probe,
.remove = ath10k_pci_remove,
};
static int __init ath10k_pci_init(void)
{
int ret;
ret = pci_register_driver(&ath10k_pci_driver);
if (ret)
printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
ret);
return ret;
}
module_init(ath10k_pci_init);
static void __exit ath10k_pci_exit(void)
{
pci_unregister_driver(&ath10k_pci_driver);
}
module_exit(ath10k_pci_exit);
MODULE_AUTHOR("Qualcomm Atheros");
MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_3_FILE);
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);