M7350/kernel/drivers/net/ethernet/msm/msm_rmnet_mhi.c
2024-09-09 08:57:42 +00:00

1046 lines
30 KiB
C

/* Copyright (c) 2014-2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* MHI RMNET Network interface
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/msm_rmnet.h>
#include <linux/if_arp.h>
#include <linux/dma-mapping.h>
#include <linux/msm_mhi.h>
#include <linux/debugfs.h>
#include <linux/ipc_logging.h>
#include <linux/device.h>
#define RMNET_MHI_DRIVER_NAME "rmnet_mhi"
#define RMNET_MHI_DEV_NAME "rmnet_mhi%d"
#define MHI_DEFAULT_MTU 8000
#define MHI_DEFAULT_MRU 8000
#define MHI_MAX_MRU 0xFFFF
#define MHI_NAPI_WEIGHT_VALUE 12
#define MHI_RX_HEADROOM 64
#define WATCHDOG_TIMEOUT (30 * HZ)
#define MHI_RMNET_DEVICE_COUNT 1
#define RMNET_IPC_LOG_PAGES (100)
#define IS_INBOUND(_chan) (((u32)(_chan)) % 2)
enum DBG_LVL {
MSG_VERBOSE = 0x1,
MSG_INFO = 0x2,
MSG_DBG = 0x4,
MSG_WARNING = 0x8,
MSG_ERROR = 0x10,
MSG_CRITICAL = 0x20,
MSG_reserved = 0x80000000
};
struct __packed mhi_skb_priv {
dma_addr_t dma_addr;
size_t dma_size;
};
enum DBG_LVL rmnet_ipc_log_lvl = MSG_VERBOSE;
enum DBG_LVL rmnet_msg_lvl = MSG_CRITICAL;
static unsigned int rmnet_log_override;
module_param(rmnet_msg_lvl , uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(rmnet_msg_lvl, "dbg lvl");
module_param(rmnet_ipc_log_lvl, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(rmnet_ipc_log_lvl, "dbg lvl");
module_param(rmnet_log_override , uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(rmnet_log_override, "dbg class");
unsigned int mru = MHI_DEFAULT_MRU;
module_param(mru, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(mru, "MRU interface setting");
void *rmnet_ipc_log;
#define rmnet_log(_msg_lvl, _msg, ...) do { \
DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, _msg); \
if ((rmnet_log_override || \
unlikely(descriptor.flags & _DPRINTK_FLAGS_PRINT)) &&\
(_msg_lvl) >= rmnet_msg_lvl) \
pr_alert("[%s] " _msg, __func__, ##__VA_ARGS__); \
if ((rmnet_log_override || \
unlikely(descriptor.flags & _DPRINTK_FLAGS_PRINT)) && \
rmnet_ipc_log && ((_msg_lvl) >= rmnet_ipc_log_lvl)) \
ipc_log_string(rmnet_ipc_log, \
"[%s] " _msg, __func__, ##__VA_ARGS__); \
} while (0)
unsigned long tx_interrupts_count[MHI_RMNET_DEVICE_COUNT];
module_param_array(tx_interrupts_count, ulong, 0, S_IRUGO);
MODULE_PARM_DESC(tx_interrupts_count, "Tx interrupts");
unsigned long rx_interrupts_count[MHI_RMNET_DEVICE_COUNT];
module_param_array(rx_interrupts_count, ulong, 0, S_IRUGO);
MODULE_PARM_DESC(rx_interrupts_count, "RX interrupts");
unsigned long tx_ring_full_count[MHI_RMNET_DEVICE_COUNT];
module_param_array(tx_ring_full_count, ulong, 0, S_IRUGO);
MODULE_PARM_DESC(tx_ring_full_count, "RING FULL errors from MHI Core");
unsigned long tx_queued_packets_count[MHI_RMNET_DEVICE_COUNT];
module_param_array(tx_queued_packets_count, ulong, 0, S_IRUGO);
MODULE_PARM_DESC(tx_queued_packets_count, "TX packets queued in MHI core");
unsigned long rx_interrupts_in_masked_irq[MHI_RMNET_DEVICE_COUNT];
module_param_array(rx_interrupts_in_masked_irq, ulong, 0, S_IRUGO);
MODULE_PARM_DESC(rx_interrupts_in_masked_irq,
"RX interrupts while IRQs are masked");
unsigned long rx_napi_skb_burst_min[MHI_RMNET_DEVICE_COUNT];
module_param_array(rx_napi_skb_burst_min, ulong, 0, S_IRUGO);
MODULE_PARM_DESC(rx_napi_skb_burst_min, "MIN SKBs sent to NS during NAPI");
unsigned long rx_napi_skb_burst_max[MHI_RMNET_DEVICE_COUNT];
module_param_array(rx_napi_skb_burst_max, ulong, 0, S_IRUGO);
MODULE_PARM_DESC(rx_napi_skb_burst_max, "MAX SKBs sent to NS during NAPI");
unsigned long tx_cb_skb_free_burst_min[MHI_RMNET_DEVICE_COUNT];
module_param_array(tx_cb_skb_free_burst_min, ulong, 0, S_IRUGO);
MODULE_PARM_DESC(tx_cb_skb_free_burst_min, "MIN SKBs freed during TX CB");
unsigned long tx_cb_skb_free_burst_max[MHI_RMNET_DEVICE_COUNT];
module_param_array(tx_cb_skb_free_burst_max, ulong, 0, S_IRUGO);
MODULE_PARM_DESC(tx_cb_skb_free_burst_max, "MAX SKBs freed during TX CB");
unsigned long rx_napi_budget_overflow[MHI_RMNET_DEVICE_COUNT];
module_param_array(rx_napi_budget_overflow, ulong, 0, S_IRUGO);
MODULE_PARM_DESC(rx_napi_budget_overflow,
"Budget hit with more items to read counter");
unsigned long rx_fragmentation[MHI_RMNET_DEVICE_COUNT];
module_param_array(rx_fragmentation, ulong, 0, S_IRUGO);
MODULE_PARM_DESC(rx_fragmentation,
"Number of fragmented packets received");
struct rmnet_mhi_private {
int dev_index;
struct mhi_client_handle *tx_client_handle;
struct mhi_client_handle *rx_client_handle;
enum MHI_CLIENT_CHANNEL tx_channel;
enum MHI_CLIENT_CHANNEL rx_channel;
struct sk_buff_head tx_buffers;
struct sk_buff_head rx_buffers;
uint32_t mru;
struct napi_struct napi;
gfp_t allocation_flags;
uint32_t tx_buffers_max;
uint32_t rx_buffers_max;
u32 tx_enabled;
u32 rx_enabled;
u32 mhi_enabled;
struct net_device *dev;
atomic_t irq_masked_cntr;
rwlock_t out_chan_full_lock;
atomic_t pending_data;
struct sk_buff *frag_skb;
};
static struct rmnet_mhi_private rmnet_mhi_ctxt_list[MHI_RMNET_DEVICE_COUNT];
static int rmnet_mhi_process_fragment(struct rmnet_mhi_private *rmnet_mhi_ptr,
struct sk_buff *skb, int frag)
{
struct sk_buff *temp_skb;
if (rmnet_mhi_ptr->frag_skb) {
/* Merge the new skb into the old fragment */
temp_skb = skb_copy_expand(rmnet_mhi_ptr->frag_skb,
MHI_RX_HEADROOM,
skb->len,
GFP_ATOMIC);
if (!temp_skb) {
kfree(rmnet_mhi_ptr->frag_skb);
rmnet_mhi_ptr->frag_skb = NULL;
return -ENOMEM;
}
kfree_skb(rmnet_mhi_ptr->frag_skb);
rmnet_mhi_ptr->frag_skb = temp_skb;
memcpy(skb_put(rmnet_mhi_ptr->frag_skb, skb->len),
skb->data,
skb->len);
kfree_skb(skb);
if (!frag) {
/* Last fragmented piece was received, ship it */
netif_receive_skb(rmnet_mhi_ptr->frag_skb);
rmnet_mhi_ptr->frag_skb = NULL;
}
} else {
if (frag) {
/* This is the first fragment */
rmnet_mhi_ptr->frag_skb = skb;
rx_fragmentation[rmnet_mhi_ptr->dev_index]++;
} else {
netif_receive_skb(skb);
}
}
return 0;
}
static void rmnet_mhi_internal_clean_unmap_buffers(struct net_device *dev,
struct sk_buff_head *queue,
enum dma_data_direction dir)
{
struct mhi_skb_priv *skb_priv;
rmnet_log(MSG_INFO, "Entered\n");
while (!skb_queue_empty(queue)) {
struct sk_buff *skb = skb_dequeue(queue);
skb_priv = (struct mhi_skb_priv *)(skb->cb);
if (skb != 0) {
kfree_skb(skb);
}
}
rmnet_log(MSG_INFO, "Exited\n");
}
static __be16 rmnet_mhi_ip_type_trans(struct sk_buff *skb)
{
__be16 protocol = 0;
/* Determine L3 protocol */
switch (skb->data[0] & 0xf0) {
case 0x40:
protocol = htons(ETH_P_IP);
break;
case 0x60:
protocol = htons(ETH_P_IPV6);
break;
default:
/* Default is QMAP */
protocol = htons(ETH_P_MAP);
break;
}
return protocol;
}
static int rmnet_mhi_poll(struct napi_struct *napi, int budget)
{
int received_packets = 0;
struct net_device *dev = napi->dev;
struct rmnet_mhi_private *rmnet_mhi_ptr =
*(struct rmnet_mhi_private **)netdev_priv(dev);
enum MHI_STATUS res = MHI_STATUS_reserved;
bool should_reschedule = true;
struct sk_buff *skb;
struct mhi_skb_priv *skb_priv;
int r, cur_mru;
rmnet_log(MSG_VERBOSE, "Entered\n");
rmnet_mhi_ptr->mru = mru;
while (received_packets < budget) {
struct mhi_result *result =
mhi_poll(rmnet_mhi_ptr->rx_client_handle);
if (result->transaction_status == MHI_STATUS_DEVICE_NOT_READY) {
rmnet_log(MSG_INFO,
"Transaction status not ready, continuing\n");
break;
} else if (result->transaction_status != MHI_STATUS_SUCCESS &&
result->transaction_status != MHI_STATUS_OVERFLOW) {
rmnet_log(MSG_CRITICAL,
"mhi_poll failed, error %d\n",
result->transaction_status);
break;
}
/* Nothing more to read, or out of buffers in MHI layer */
if (unlikely(!result->buf_addr || !result->bytes_xferd)) {
rmnet_log(MSG_CRITICAL,
"Not valid buff not rescheduling\n");
should_reschedule = false;
break;
}
skb = skb_dequeue(&(rmnet_mhi_ptr->rx_buffers));
if (unlikely(!skb)) {
rmnet_log(MSG_CRITICAL,
"No RX buffers to match");
break;
}
skb_priv = (struct mhi_skb_priv *)(skb->cb);
/* Setup the tail to the end of data */
skb_put(skb, result->bytes_xferd);
skb->dev = dev;
skb->protocol = rmnet_mhi_ip_type_trans(skb);
if (result->transaction_status == MHI_STATUS_OVERFLOW)
r = rmnet_mhi_process_fragment(rmnet_mhi_ptr, skb, 1);
else
r = rmnet_mhi_process_fragment(rmnet_mhi_ptr, skb, 0);
if (r) {
rmnet_log(MSG_CRITICAL,
"Failed to process fragmented packet ret %d",
r);
BUG();
}
/* Statistics */
received_packets++;
dev->stats.rx_packets++;
dev->stats.rx_bytes += result->bytes_xferd;
/* Need to allocate a new buffer instead of this one */
cur_mru = rmnet_mhi_ptr->mru;
skb = alloc_skb(cur_mru, GFP_ATOMIC);
if (unlikely(!skb)) {
rmnet_log(MSG_CRITICAL,
"Can't allocate a new RX buffer for MHI");
break;
}
skb_priv = (struct mhi_skb_priv *)(skb->cb);
skb_priv->dma_size = cur_mru;
rmnet_log(MSG_VERBOSE,
"Allocated SKB of MRU 0x%x, SKB_DATA 0%p SKB_LEN 0x%x\n",
rmnet_mhi_ptr->mru, skb->data, skb->len);
/* Reserve headroom, tail == data */
skb_reserve(skb, MHI_RX_HEADROOM);
skb_priv->dma_size -= MHI_RX_HEADROOM;
skb_priv->dma_addr = 0;
rmnet_log(MSG_VERBOSE,
"Mapped SKB %p to DMA Addr 0x%lx, DMA_SIZE: 0x%lx\n",
skb->data,
(uintptr_t)skb->data,
(uintptr_t)skb_priv->dma_size);
res = mhi_queue_xfer(
rmnet_mhi_ptr->rx_client_handle,
skb->data, skb_priv->dma_size, MHI_EOT);
if (unlikely(MHI_STATUS_SUCCESS != res)) {
rmnet_log(MSG_CRITICAL,
"mhi_queue_xfer failed, error %d", res);
dev_kfree_skb_irq(skb);
break;
}
skb_queue_tail(&rmnet_mhi_ptr->rx_buffers, skb);
} /* while (received_packets < budget) or any other error */
napi_complete(napi);
/* We got a NULL descriptor back */
if (should_reschedule == false) {
if (atomic_read(&rmnet_mhi_ptr->irq_masked_cntr)) {
atomic_dec(&rmnet_mhi_ptr->irq_masked_cntr);
mhi_unmask_irq(rmnet_mhi_ptr->rx_client_handle);
}
} else {
if (received_packets == budget)
rx_napi_budget_overflow[rmnet_mhi_ptr->dev_index]++;
napi_reschedule(napi);
}
rx_napi_skb_burst_min[rmnet_mhi_ptr->dev_index] =
min((unsigned long)received_packets,
rx_napi_skb_burst_min[rmnet_mhi_ptr->dev_index]);
rx_napi_skb_burst_max[rmnet_mhi_ptr->dev_index] =
max((unsigned long)received_packets,
rx_napi_skb_burst_max[rmnet_mhi_ptr->dev_index]);
rmnet_log(MSG_VERBOSE, "Exited, polled %d pkts\n", received_packets);
return received_packets;
}
void rmnet_mhi_clean_buffers(struct net_device *dev)
{
struct rmnet_mhi_private *rmnet_mhi_ptr =
*(struct rmnet_mhi_private **)netdev_priv(dev);
rmnet_log(MSG_INFO, "Entered\n");
/* Clean TX buffers */
rmnet_mhi_internal_clean_unmap_buffers(dev,
&rmnet_mhi_ptr->tx_buffers,
DMA_TO_DEVICE);
/* Clean RX buffers */
rmnet_mhi_internal_clean_unmap_buffers(dev,
&rmnet_mhi_ptr->rx_buffers,
DMA_FROM_DEVICE);
rmnet_log(MSG_INFO, "Exited\n");
}
static int rmnet_mhi_disable_channels(struct rmnet_mhi_private *rmnet_mhi_ptr)
{
rmnet_log(MSG_INFO, "Closing MHI TX channel\n");
mhi_close_channel(rmnet_mhi_ptr->tx_client_handle);
rmnet_log(MSG_INFO, "Closing MHI RX channel\n");
mhi_close_channel(rmnet_mhi_ptr->rx_client_handle);
rmnet_log(MSG_INFO, "Clearing Pending TX buffers.\n");
rmnet_mhi_clean_buffers(rmnet_mhi_ptr->dev);
rmnet_mhi_ptr->tx_client_handle = NULL;
rmnet_mhi_ptr->rx_client_handle = NULL;
return 0;
}
static int rmnet_mhi_init_inbound(struct rmnet_mhi_private *rmnet_mhi_ptr)
{
u32 i;
enum MHI_STATUS res;
struct mhi_skb_priv *rx_priv;
u32 cur_mru = rmnet_mhi_ptr->mru;
struct sk_buff *skb;
rmnet_log(MSG_INFO, "Entered\n");
rmnet_mhi_ptr->tx_buffers_max = mhi_get_max_desc(
rmnet_mhi_ptr->tx_client_handle);
rmnet_mhi_ptr->rx_buffers_max = mhi_get_max_desc(
rmnet_mhi_ptr->rx_client_handle);
for (i = 0; i < rmnet_mhi_ptr->rx_buffers_max; i++) {
skb = alloc_skb(cur_mru, rmnet_mhi_ptr->allocation_flags);
if (!skb) {
rmnet_log(MSG_CRITICAL,
"SKB allocation failure during open");
return -ENOMEM;
}
rx_priv = (struct mhi_skb_priv *)(skb->cb);
skb_reserve(skb, MHI_RX_HEADROOM);
rx_priv->dma_size = cur_mru - MHI_RX_HEADROOM;
rx_priv->dma_addr = 0;
skb_queue_tail(&rmnet_mhi_ptr->rx_buffers, skb);
}
/* Submit the RX buffers */
for (i = 0; i < rmnet_mhi_ptr->rx_buffers_max; i++) {
skb = skb_dequeue(&rmnet_mhi_ptr->rx_buffers);
rx_priv = (struct mhi_skb_priv *)(skb->cb);
res = mhi_queue_xfer(rmnet_mhi_ptr->rx_client_handle,
skb->data,
rx_priv->dma_size,
MHI_EOT);
if (MHI_STATUS_SUCCESS != res) {
rmnet_log(MSG_CRITICAL,
"mhi_queue_xfer failed, error %d", res);
return -EIO;
}
skb_queue_tail(&rmnet_mhi_ptr->rx_buffers, skb);
}
rmnet_log(MSG_INFO, "Exited\n");
return 0;
}
static void rmnet_mhi_tx_cb(struct mhi_result *result)
{
struct net_device *dev;
struct rmnet_mhi_private *rmnet_mhi_ptr;
unsigned long burst_counter = 0;
unsigned long flags;
rmnet_mhi_ptr = result->user_data;
dev = rmnet_mhi_ptr->dev;
tx_interrupts_count[rmnet_mhi_ptr->dev_index]++;
rmnet_log(MSG_VERBOSE, "Entered\n");
if (!result->buf_addr || !result->bytes_xferd)
return;
/* Free the buffers which are TX'd up to the provided address */
while (!skb_queue_empty(&(rmnet_mhi_ptr->tx_buffers))) {
struct sk_buff *skb =
skb_dequeue(&(rmnet_mhi_ptr->tx_buffers));
if (!skb) {
rmnet_log(MSG_CRITICAL,
"NULL buffer returned, error");
break;
} else {
if (skb->data == result->buf_addr) {
kfree_skb(skb);
break;
}
kfree_skb(skb);
burst_counter++;
/* Update statistics */
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
/* The payload is expected to be the phy addr.
Comparing to see if it's the last skb to
replenish
*/
}
} /* While TX queue is not empty */
tx_cb_skb_free_burst_min[rmnet_mhi_ptr->dev_index] =
min(burst_counter,
tx_cb_skb_free_burst_min[rmnet_mhi_ptr->dev_index]);
tx_cb_skb_free_burst_max[rmnet_mhi_ptr->dev_index] =
max(burst_counter,
tx_cb_skb_free_burst_max[rmnet_mhi_ptr->dev_index]);
/* In case we couldn't write again, now we can! */
read_lock_irqsave(&rmnet_mhi_ptr->out_chan_full_lock, flags);
rmnet_log(MSG_VERBOSE, "Waking up queue\n");
netif_wake_queue(dev);
read_unlock_irqrestore(&rmnet_mhi_ptr->out_chan_full_lock, flags);
rmnet_log(MSG_VERBOSE, "Exited\n");
}
static void rmnet_mhi_rx_cb(struct mhi_result *result)
{
struct net_device *dev;
struct rmnet_mhi_private *rmnet_mhi_ptr;
rmnet_mhi_ptr = result->user_data;
dev = rmnet_mhi_ptr->dev;
rmnet_log(MSG_VERBOSE, "Entered\n");
rx_interrupts_count[rmnet_mhi_ptr->dev_index]++;
if (napi_schedule_prep(&(rmnet_mhi_ptr->napi))) {
mhi_mask_irq(rmnet_mhi_ptr->rx_client_handle);
atomic_inc(&rmnet_mhi_ptr->irq_masked_cntr);
__napi_schedule(&(rmnet_mhi_ptr->napi));
} else {
rx_interrupts_in_masked_irq[rmnet_mhi_ptr->dev_index]++;
}
rmnet_log(MSG_VERBOSE, "Exited\n");
}
static int rmnet_mhi_open(struct net_device *dev)
{
struct rmnet_mhi_private *rmnet_mhi_ptr =
*(struct rmnet_mhi_private **)netdev_priv(dev);
rmnet_log(MSG_INFO,
"Opened net dev interface for MHI chans %d and %d\n",
rmnet_mhi_ptr->tx_channel,
rmnet_mhi_ptr->rx_channel);
netif_start_queue(dev);
/* Poll to check if any buffers are accumulated in the
* transport buffers
*/
if (napi_schedule_prep(&(rmnet_mhi_ptr->napi))) {
mhi_mask_irq(rmnet_mhi_ptr->rx_client_handle);
atomic_inc(&rmnet_mhi_ptr->irq_masked_cntr);
__napi_schedule(&(rmnet_mhi_ptr->napi));
} else {
rx_interrupts_in_masked_irq[rmnet_mhi_ptr->dev_index]++;
}
return 0;
}
static int rmnet_mhi_disable_iface(struct rmnet_mhi_private *rmnet_mhi_ptr)
{
rmnet_mhi_ptr->rx_enabled = 0;
rmnet_mhi_ptr->tx_enabled = 0;
rmnet_mhi_ptr->mhi_enabled = 0;
if (rmnet_mhi_ptr->dev != 0) {
netif_stop_queue(rmnet_mhi_ptr->dev);
netif_napi_del(&(rmnet_mhi_ptr->napi));
rmnet_mhi_disable_channels(rmnet_mhi_ptr);
unregister_netdev(rmnet_mhi_ptr->dev);
free_netdev(rmnet_mhi_ptr->dev);
rmnet_mhi_ptr->dev = 0;
}
return 0;
}
static int rmnet_mhi_disable(struct rmnet_mhi_private *rmnet_mhi_ptr)
{
rmnet_mhi_ptr->mhi_enabled = 0;
rmnet_mhi_disable_iface(rmnet_mhi_ptr);
napi_disable(&(rmnet_mhi_ptr->napi));
if (atomic_read(&rmnet_mhi_ptr->irq_masked_cntr)) {
mhi_unmask_irq(rmnet_mhi_ptr->rx_client_handle);
atomic_dec(&rmnet_mhi_ptr->irq_masked_cntr);
}
return 0;
}
static int rmnet_mhi_stop(struct net_device *dev)
{
struct rmnet_mhi_private *rmnet_mhi_ptr =
*(struct rmnet_mhi_private **)netdev_priv(dev);
netif_stop_queue(dev);
rmnet_log(MSG_VERBOSE, "Entered\n");
if (atomic_read(&rmnet_mhi_ptr->irq_masked_cntr)) {
mhi_unmask_irq(rmnet_mhi_ptr->rx_client_handle);
atomic_dec(&rmnet_mhi_ptr->irq_masked_cntr);
rmnet_log(MSG_ERROR, "IRQ was masked, unmasking...\n");
}
rmnet_log(MSG_VERBOSE, "Exited\n");
return 0;
}
static int rmnet_mhi_change_mtu(struct net_device *dev, int new_mtu)
{
if (0 > new_mtu || MHI_MAX_MTU < new_mtu)
return -EINVAL;
dev->mtu = new_mtu;
return 0;
}
static int rmnet_mhi_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct rmnet_mhi_private *rmnet_mhi_ptr =
*(struct rmnet_mhi_private **)netdev_priv(dev);
enum MHI_STATUS res = MHI_STATUS_reserved;
unsigned long flags;
int retry = 0;
struct mhi_skb_priv *tx_priv;
rmnet_log(MSG_VERBOSE, "Entered chan %d\n", rmnet_mhi_ptr->tx_channel);
tx_priv = (struct mhi_skb_priv *)(skb->cb);
tx_priv->dma_size = skb->len;
tx_priv->dma_addr = 0;
do {
retry = 0;
res = mhi_queue_xfer(rmnet_mhi_ptr->tx_client_handle,
skb->data,
skb->len,
MHI_EOT);
if (-ENOSPC == res) {
write_lock_irqsave(&rmnet_mhi_ptr->out_chan_full_lock,
flags);
if (!mhi_get_free_desc(
rmnet_mhi_ptr->tx_client_handle)) {
/* Stop writing until we can write again */
tx_ring_full_count[rmnet_mhi_ptr->dev_index]++;
netif_stop_queue(dev);
rmnet_log(MSG_VERBOSE, "Stopping Queue\n");
goto rmnet_mhi_xmit_error_cleanup;
} else {
retry = 1;
}
write_unlock_irqrestore(
&rmnet_mhi_ptr->out_chan_full_lock,
flags);
}
} while (retry);
if (MHI_STATUS_SUCCESS != res) {
netif_stop_queue(dev);
rmnet_log(MSG_CRITICAL,
"mhi_queue_xfer failed, error %d\n", res);
goto rmnet_mhi_xmit_error_cleanup;
}
skb_queue_tail(&(rmnet_mhi_ptr->tx_buffers), skb);
dev->trans_start = jiffies;
tx_queued_packets_count[rmnet_mhi_ptr->dev_index]++;
rmnet_log(MSG_VERBOSE, "Exited\n");
return 0;
rmnet_mhi_xmit_error_cleanup:
rmnet_log(MSG_VERBOSE, "Ring full\n");
write_unlock_irqrestore(&rmnet_mhi_ptr->out_chan_full_lock, flags);
return NETDEV_TX_BUSY;
}
static int rmnet_mhi_ioctl_extended(struct net_device *dev, struct ifreq *ifr)
{
struct rmnet_ioctl_extended_s ext_cmd;
int rc = 0;
struct rmnet_mhi_private *rmnet_mhi_ptr =
*(struct rmnet_mhi_private **)netdev_priv(dev);
rc = copy_from_user(&ext_cmd, ifr->ifr_ifru.ifru_data,
sizeof(struct rmnet_ioctl_extended_s));
if (rc) {
rmnet_log(MSG_CRITICAL,
"copy_from_user failed ,error %d", rc);
return rc;
}
switch (ext_cmd.extended_ioctl) {
case RMNET_IOCTL_SET_MRU:
if ((0 > ext_cmd.u.data) || (ext_cmd.u.data > MHI_MAX_MRU)) {
rmnet_log(MSG_CRITICAL,
"Can't set MRU, value %u is invalid\n",
ext_cmd.u.data);
return -EINVAL;
}
rmnet_log(MSG_INFO,
"MRU change request to 0x%x\n",
ext_cmd.u.data);
mru = ext_cmd.u.data;
rmnet_mhi_ptr->mru = mru;
break;
case RMNET_IOCTL_GET_EPID:
ext_cmd.u.data =
mhi_get_epid(rmnet_mhi_ptr->tx_client_handle);
break;
case RMNET_IOCTL_GET_SUPPORTED_FEATURES:
ext_cmd.u.data = 0;
break;
case RMNET_IOCTL_GET_DRIVER_NAME:
strlcpy(ext_cmd.u.if_name, RMNET_MHI_DRIVER_NAME,
sizeof(ext_cmd.u.if_name));
break;
case RMNET_IOCTL_SET_SLEEP_STATE:
if (rmnet_mhi_ptr->mhi_enabled &&
rmnet_mhi_ptr->tx_client_handle != NULL) {
mhi_set_lpm(rmnet_mhi_ptr->tx_client_handle,
ext_cmd.u.data);
} else {
rmnet_log(MSG_ERROR,
"Cannot set LPM value, MHI is not up.\n");
return -ENODEV;
}
break;
default:
rc = -EINVAL;
break;
}
rc = copy_to_user(ifr->ifr_ifru.ifru_data, &ext_cmd,
sizeof(struct rmnet_ioctl_extended_s));
if (rc)
rmnet_log(MSG_CRITICAL,
"copy_to_user failed, error %d\n",
rc);
return rc;
}
static int rmnet_mhi_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
int rc = 0;
struct rmnet_ioctl_data_s ioctl_data;
switch (cmd) {
case RMNET_IOCTL_SET_LLP_IP: /* Set RAWIP protocol */
break;
case RMNET_IOCTL_GET_LLP: /* Get link protocol state */
ioctl_data.u.operation_mode = RMNET_MODE_LLP_IP;
if (copy_to_user(ifr->ifr_ifru.ifru_data, &ioctl_data,
sizeof(struct rmnet_ioctl_data_s)))
rc = -EFAULT;
break;
case RMNET_IOCTL_GET_OPMODE: /* Get operation mode */
ioctl_data.u.operation_mode = RMNET_MODE_LLP_IP;
if (copy_to_user(ifr->ifr_ifru.ifru_data, &ioctl_data,
sizeof(struct rmnet_ioctl_data_s)))
rc = -EFAULT;
break;
case RMNET_IOCTL_SET_QOS_ENABLE:
rc = -EINVAL;
break;
case RMNET_IOCTL_SET_QOS_DISABLE:
rc = 0;
break;
case RMNET_IOCTL_OPEN:
case RMNET_IOCTL_CLOSE:
/* We just ignore them and return success */
rc = 0;
break;
case RMNET_IOCTL_EXTENDED:
rc = rmnet_mhi_ioctl_extended(dev, ifr);
break;
default:
/* Don't fail any IOCTL right now */
rc = 0;
break;
}
return rc;
}
static const struct net_device_ops rmnet_mhi_ops_ip = {
.ndo_open = rmnet_mhi_open,
.ndo_stop = rmnet_mhi_stop,
.ndo_start_xmit = rmnet_mhi_xmit,
.ndo_do_ioctl = rmnet_mhi_ioctl,
.ndo_change_mtu = rmnet_mhi_change_mtu,
.ndo_set_mac_address = 0,
.ndo_validate_addr = 0,
};
static void rmnet_mhi_setup(struct net_device *dev)
{
dev->netdev_ops = &rmnet_mhi_ops_ip;
ether_setup(dev);
/* set this after calling ether_setup */
dev->header_ops = 0; /* No header */
dev->type = ARPHRD_RAWIP;
dev->hard_header_len = 0;
dev->mtu = MHI_DEFAULT_MTU;
dev->addr_len = 0;
dev->flags &= ~(IFF_BROADCAST | IFF_MULTICAST);
dev->watchdog_timeo = WATCHDOG_TIMEOUT;
}
static int rmnet_mhi_enable_iface(struct rmnet_mhi_private *rmnet_mhi_ptr)
{
int ret = 0;
struct rmnet_mhi_private **rmnet_mhi_ctxt = NULL;
enum MHI_STATUS r = MHI_STATUS_SUCCESS;
memset(tx_interrupts_count, 0, sizeof(tx_interrupts_count));
memset(rx_interrupts_count, 0, sizeof(rx_interrupts_count));
memset(rx_interrupts_in_masked_irq, 0,
sizeof(rx_interrupts_in_masked_irq));
memset(rx_napi_skb_burst_min, 0, sizeof(rx_napi_skb_burst_min));
memset(rx_napi_skb_burst_max, 0, sizeof(rx_napi_skb_burst_max));
memset(tx_cb_skb_free_burst_min, 0, sizeof(tx_cb_skb_free_burst_min));
memset(tx_cb_skb_free_burst_max, 0, sizeof(tx_cb_skb_free_burst_max));
memset(tx_ring_full_count, 0, sizeof(tx_ring_full_count));
memset(tx_queued_packets_count, 0, sizeof(tx_queued_packets_count));
memset(rx_napi_budget_overflow, 0, sizeof(rx_napi_budget_overflow));
rmnet_log(MSG_INFO, "Entered.\n");
if (rmnet_mhi_ptr == NULL) {
rmnet_log(MSG_CRITICAL, "Bad input args.\n");
return -EINVAL;
}
rx_napi_skb_burst_min[rmnet_mhi_ptr->dev_index] = UINT_MAX;
tx_cb_skb_free_burst_min[rmnet_mhi_ptr->dev_index] = UINT_MAX;
skb_queue_head_init(&(rmnet_mhi_ptr->tx_buffers));
skb_queue_head_init(&(rmnet_mhi_ptr->rx_buffers));
if (rmnet_mhi_ptr->tx_client_handle != NULL) {
rmnet_log(MSG_INFO,
"Opening TX channel\n");
r = mhi_open_channel(rmnet_mhi_ptr->tx_client_handle);
if (r != MHI_STATUS_SUCCESS) {
rmnet_log(MSG_CRITICAL,
"Failed to start TX chan ret %d\n", r);
goto mhi_tx_chan_start_fail;
} else {
rmnet_mhi_ptr->tx_enabled = 1;
}
}
if (rmnet_mhi_ptr->rx_client_handle != NULL) {
rmnet_log(MSG_INFO,
"Opening RX channel\n");
r = mhi_open_channel(rmnet_mhi_ptr->rx_client_handle);
if (r != MHI_STATUS_SUCCESS) {
rmnet_log(MSG_CRITICAL,
"Failed to start RX chan ret %d\n", r);
goto mhi_rx_chan_start_fail;
} else {
rmnet_mhi_ptr->rx_enabled = 1;
}
}
rmnet_mhi_ptr->dev =
alloc_netdev(sizeof(struct rmnet_mhi_private *),
RMNET_MHI_DEV_NAME,
NET_NAME_PREDICTABLE, rmnet_mhi_setup);
if (!rmnet_mhi_ptr->dev) {
rmnet_log(MSG_CRITICAL, "Network device allocation failed\n");
ret = -ENOMEM;
goto net_dev_alloc_fail;
}
rmnet_mhi_ctxt = netdev_priv(rmnet_mhi_ptr->dev);
*rmnet_mhi_ctxt = rmnet_mhi_ptr;
ret = dma_set_mask(&(rmnet_mhi_ptr->dev->dev),
MHI_DMA_MASK);
if (ret)
rmnet_mhi_ptr->allocation_flags = GFP_KERNEL;
else
rmnet_mhi_ptr->allocation_flags = GFP_DMA;
r = rmnet_mhi_init_inbound(rmnet_mhi_ptr);
if (r) {
rmnet_log(MSG_CRITICAL,
"Failed to init inbound ret %d\n", r);
}
netif_napi_add(rmnet_mhi_ptr->dev, &(rmnet_mhi_ptr->napi),
rmnet_mhi_poll, MHI_NAPI_WEIGHT_VALUE);
rmnet_mhi_ptr->mhi_enabled = 1;
ret = register_netdev(rmnet_mhi_ptr->dev);
if (ret) {
rmnet_log(MSG_CRITICAL,
"Network device registration failed\n");
goto net_dev_reg_fail;
}
napi_enable(&(rmnet_mhi_ptr->napi));
rmnet_log(MSG_INFO, "Exited.\n");
return 0;
net_dev_reg_fail:
netif_napi_del(&(rmnet_mhi_ptr->napi));
free_netdev(rmnet_mhi_ptr->dev);
net_dev_alloc_fail:
mhi_close_channel(rmnet_mhi_ptr->rx_client_handle);
rmnet_mhi_ptr->dev = NULL;
mhi_rx_chan_start_fail:
mhi_close_channel(rmnet_mhi_ptr->tx_client_handle);
mhi_tx_chan_start_fail:
rmnet_log(MSG_INFO, "Exited ret %d.\n", ret);
return ret;
}
static void rmnet_mhi_cb(struct mhi_cb_info *cb_info)
{
struct rmnet_mhi_private *rmnet_mhi_ptr;
struct mhi_result *result;
enum MHI_STATUS r = MHI_STATUS_SUCCESS;
if (NULL != cb_info && NULL != cb_info->result) {
result = cb_info->result;
rmnet_mhi_ptr = result->user_data;
} else {
rmnet_log(MSG_CRITICAL,
"Invalid data in MHI callback, quitting\n");
}
switch (cb_info->cb_reason) {
case MHI_CB_MHI_DISABLED:
rmnet_log(MSG_CRITICAL,
"Got MHI_DISABLED notification. Stopping stack\n");
if (rmnet_mhi_ptr->mhi_enabled) {
rmnet_mhi_ptr->mhi_enabled = 0;
/* Ensure MHI is disabled before other mem ops */
wmb();
while (atomic_read(&rmnet_mhi_ptr->pending_data)) {
rmnet_log(MSG_CRITICAL,
"Waiting for channels to stop.\n");
msleep(25);
}
rmnet_mhi_disable(rmnet_mhi_ptr);
}
break;
case MHI_CB_MHI_ENABLED:
rmnet_log(MSG_CRITICAL,
"Got MHI_ENABLED notification. Starting stack\n");
if (IS_INBOUND(cb_info->chan))
rmnet_mhi_ptr->rx_enabled = 1;
else
rmnet_mhi_ptr->tx_enabled = 1;
if (rmnet_mhi_ptr->tx_enabled &&
rmnet_mhi_ptr->rx_enabled) {
rmnet_log(MSG_INFO,
"Both RX/TX are enabled, enabling iface.\n");
r = rmnet_mhi_enable_iface(rmnet_mhi_ptr);
if (r)
rmnet_log(MSG_CRITICAL,
"Failed to enable iface for chan %d\n",
cb_info->chan);
else
rmnet_log(MSG_INFO,
"Enabled iface for chan %d\n",
cb_info->chan);
}
break;
case MHI_CB_XFER:
atomic_inc(&rmnet_mhi_ptr->pending_data);
/* Flush pending data is set before any other mem operations */
wmb();
if (rmnet_mhi_ptr->mhi_enabled) {
if (IS_INBOUND(cb_info->chan))
rmnet_mhi_rx_cb(cb_info->result);
else
rmnet_mhi_tx_cb(cb_info->result);
}
atomic_dec(&rmnet_mhi_ptr->pending_data);
break;
default:
break;
}
}
static struct mhi_client_info_t rmnet_mhi_info = {rmnet_mhi_cb};
static int __init rmnet_mhi_init(void)
{
int i;
enum MHI_STATUS res = MHI_STATUS_SUCCESS;
struct rmnet_mhi_private *rmnet_mhi_ptr = 0;
rmnet_ipc_log = ipc_log_context_create(RMNET_IPC_LOG_PAGES,
"mhi_rmnet", 0);
for (i = 0; i < MHI_RMNET_DEVICE_COUNT; i++) {
rmnet_mhi_ptr = &rmnet_mhi_ctxt_list[i];
rmnet_mhi_ptr->tx_channel = MHI_CLIENT_IP_HW_0_OUT +
(enum MHI_CLIENT_CHANNEL)(i * 2);
rmnet_mhi_ptr->rx_channel = MHI_CLIENT_IP_HW_0_IN +
(enum MHI_CLIENT_CHANNEL)((i * 2));
rmnet_mhi_ptr->tx_client_handle = 0;
rmnet_mhi_ptr->rx_client_handle = 0;
rwlock_init(&rmnet_mhi_ptr->out_chan_full_lock);
rmnet_mhi_ptr->mru = MHI_DEFAULT_MRU;
rmnet_mhi_ptr->dev_index = i;
res = mhi_register_channel(
&(rmnet_mhi_ptr->tx_client_handle),
rmnet_mhi_ptr->tx_channel, 0,
&rmnet_mhi_info, rmnet_mhi_ptr);
if (MHI_STATUS_SUCCESS != res) {
rmnet_mhi_ptr->tx_client_handle = 0;
rmnet_log(MSG_CRITICAL,
"mhi_register_channel failed chan %d ret %d\n",
rmnet_mhi_ptr->tx_channel, res);
}
res = mhi_register_channel(
&(rmnet_mhi_ptr->rx_client_handle),
rmnet_mhi_ptr->rx_channel, 0,
&rmnet_mhi_info, rmnet_mhi_ptr);
if (MHI_STATUS_SUCCESS != res) {
rmnet_mhi_ptr->rx_client_handle = 0;
rmnet_log(MSG_CRITICAL,
"mhi_register_channel failed chan %d, ret %d\n",
rmnet_mhi_ptr->rx_channel, res);
}
}
return 0;
}
static void __exit rmnet_mhi_exit(void)
{
struct rmnet_mhi_private *rmnet_mhi_ptr = 0;
int index = 0;
for (index = 0; index < MHI_RMNET_DEVICE_COUNT; index++) {
rmnet_mhi_ptr = &rmnet_mhi_ctxt_list[index];
mhi_deregister_channel(rmnet_mhi_ptr->tx_client_handle);
mhi_deregister_channel(rmnet_mhi_ptr->rx_client_handle);
}
}
module_exit(rmnet_mhi_exit);
module_init(rmnet_mhi_init);
MODULE_DESCRIPTION("MHI RMNET Network Interface");
MODULE_LICENSE("GPL v2");