M7350/kernel/drivers/media/tuners/mxl301rf.c
2024-09-09 08:57:42 +00:00

350 lines
8.0 KiB
C

/*
* MaxLinear MxL301RF OFDM tuner driver
*
* Copyright (C) 2014 Akihiro Tsukada <tskd08@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* NOTICE:
* This driver is incomplete and lacks init/config of the chips,
* as the necessary info is not disclosed.
* Other features like get_if_frequency() are missing as well.
* It assumes that users of this driver (such as a PCI bridge of
* DTV receiver cards) properly init and configure the chip
* via I2C *before* calling this driver's init() function.
*
* Currently, PT3 driver is the only one that uses this driver,
* and contains init/config code in its firmware.
* Thus some part of the code might be dependent on PT3 specific config.
*/
#include <linux/kernel.h>
#include "mxl301rf.h"
struct mxl301rf_state {
struct mxl301rf_config cfg;
struct i2c_client *i2c;
};
static struct mxl301rf_state *cfg_to_state(struct mxl301rf_config *c)
{
return container_of(c, struct mxl301rf_state, cfg);
}
static int raw_write(struct mxl301rf_state *state, const u8 *buf, int len)
{
int ret;
ret = i2c_master_send(state->i2c, buf, len);
if (ret >= 0 && ret < len)
ret = -EIO;
return (ret == len) ? 0 : ret;
}
static int reg_write(struct mxl301rf_state *state, u8 reg, u8 val)
{
u8 buf[2] = { reg, val };
return raw_write(state, buf, 2);
}
static int reg_read(struct mxl301rf_state *state, u8 reg, u8 *val)
{
u8 wbuf[2] = { 0xfb, reg };
int ret;
ret = raw_write(state, wbuf, sizeof(wbuf));
if (ret == 0)
ret = i2c_master_recv(state->i2c, val, 1);
if (ret >= 0 && ret < 1)
ret = -EIO;
return (ret == 1) ? 0 : ret;
}
/* tuner_ops */
/* get RSSI and update propery cache, set to *out in % */
static int mxl301rf_get_rf_strength(struct dvb_frontend *fe, u16 *out)
{
struct mxl301rf_state *state;
int ret;
u8 rf_in1, rf_in2, rf_off1, rf_off2;
u16 rf_in, rf_off;
s64 level;
struct dtv_fe_stats *rssi;
rssi = &fe->dtv_property_cache.strength;
rssi->len = 1;
rssi->stat[0].scale = FE_SCALE_NOT_AVAILABLE;
*out = 0;
state = fe->tuner_priv;
ret = reg_write(state, 0x14, 0x01);
if (ret < 0)
return ret;
usleep_range(1000, 2000);
ret = reg_read(state, 0x18, &rf_in1);
if (ret == 0)
ret = reg_read(state, 0x19, &rf_in2);
if (ret == 0)
ret = reg_read(state, 0xd6, &rf_off1);
if (ret == 0)
ret = reg_read(state, 0xd7, &rf_off2);
if (ret != 0)
return ret;
rf_in = (rf_in2 & 0x07) << 8 | rf_in1;
rf_off = (rf_off2 & 0x0f) << 5 | (rf_off1 >> 3);
level = rf_in - rf_off - (113 << 3); /* x8 dBm */
level = level * 1000 / 8;
rssi->stat[0].svalue = level;
rssi->stat[0].scale = FE_SCALE_DECIBEL;
/* *out = (level - min) * 100 / (max - min) */
*out = (rf_in - rf_off + (1 << 9) - 1) * 100 / ((5 << 9) - 2);
return 0;
}
/* spur shift parameters */
struct shf {
u32 freq; /* Channel center frequency */
u32 ofst_th; /* Offset frequency threshold */
u8 shf_val; /* Spur shift value */
u8 shf_dir; /* Spur shift direction */
};
static const struct shf shf_tab[] = {
{ 64500, 500, 0x92, 0x07 },
{ 191500, 300, 0xe2, 0x07 },
{ 205500, 500, 0x2c, 0x04 },
{ 212500, 500, 0x1e, 0x04 },
{ 226500, 500, 0xd4, 0x07 },
{ 99143, 500, 0x9c, 0x07 },
{ 173143, 500, 0xd4, 0x07 },
{ 191143, 300, 0xd4, 0x07 },
{ 207143, 500, 0xce, 0x07 },
{ 225143, 500, 0xce, 0x07 },
{ 243143, 500, 0xd4, 0x07 },
{ 261143, 500, 0xd4, 0x07 },
{ 291143, 500, 0xd4, 0x07 },
{ 339143, 500, 0x2c, 0x04 },
{ 117143, 500, 0x7a, 0x07 },
{ 135143, 300, 0x7a, 0x07 },
{ 153143, 500, 0x01, 0x07 }
};
struct reg_val {
u8 reg;
u8 val;
} __attribute__ ((__packed__));
static const struct reg_val set_idac[] = {
{ 0x0d, 0x00 },
{ 0x0c, 0x67 },
{ 0x6f, 0x89 },
{ 0x70, 0x0c },
{ 0x6f, 0x8a },
{ 0x70, 0x0e },
{ 0x6f, 0x8b },
{ 0x70, 0x1c },
};
static int mxl301rf_set_params(struct dvb_frontend *fe)
{
struct reg_val tune0[] = {
{ 0x13, 0x00 }, /* abort tuning */
{ 0x3b, 0xc0 },
{ 0x3b, 0x80 },
{ 0x10, 0x95 }, /* BW */
{ 0x1a, 0x05 },
{ 0x61, 0x00 }, /* spur shift value (placeholder) */
{ 0x62, 0xa0 } /* spur shift direction (placeholder) */
};
struct reg_val tune1[] = {
{ 0x11, 0x40 }, /* RF frequency L (placeholder) */
{ 0x12, 0x0e }, /* RF frequency H (placeholder) */
{ 0x13, 0x01 } /* start tune */
};
struct mxl301rf_state *state;
u32 freq;
u16 f;
u32 tmp, div;
int i, ret;
state = fe->tuner_priv;
freq = fe->dtv_property_cache.frequency;
/* spur shift function (for analog) */
for (i = 0; i < ARRAY_SIZE(shf_tab); i++) {
if (freq >= (shf_tab[i].freq - shf_tab[i].ofst_th) * 1000 &&
freq <= (shf_tab[i].freq + shf_tab[i].ofst_th) * 1000) {
tune0[5].val = shf_tab[i].shf_val;
tune0[6].val = 0xa0 | shf_tab[i].shf_dir;
break;
}
}
ret = raw_write(state, (u8 *) tune0, sizeof(tune0));
if (ret < 0)
goto failed;
usleep_range(3000, 4000);
/* convert freq to 10.6 fixed point float [MHz] */
f = freq / 1000000;
tmp = freq % 1000000;
div = 1000000;
for (i = 0; i < 6; i++) {
f <<= 1;
div >>= 1;
if (tmp > div) {
tmp -= div;
f |= 1;
}
}
if (tmp > 7812)
f++;
tune1[0].val = f & 0xff;
tune1[1].val = f >> 8;
ret = raw_write(state, (u8 *) tune1, sizeof(tune1));
if (ret < 0)
goto failed;
msleep(31);
ret = reg_write(state, 0x1a, 0x0d);
if (ret < 0)
goto failed;
ret = raw_write(state, (u8 *) set_idac, sizeof(set_idac));
if (ret < 0)
goto failed;
return 0;
failed:
dev_warn(&state->i2c->dev, "(%s) failed. [adap%d-fe%d]\n",
__func__, fe->dvb->num, fe->id);
return ret;
}
static const struct reg_val standby_data[] = {
{ 0x01, 0x00 },
{ 0x13, 0x00 }
};
static int mxl301rf_sleep(struct dvb_frontend *fe)
{
struct mxl301rf_state *state;
int ret;
state = fe->tuner_priv;
ret = raw_write(state, (u8 *)standby_data, sizeof(standby_data));
if (ret < 0)
dev_warn(&state->i2c->dev, "(%s) failed. [adap%d-fe%d]\n",
__func__, fe->dvb->num, fe->id);
return ret;
}
/* init sequence is not public.
* the parent must have init'ed the device.
* just wake up here.
*/
static int mxl301rf_init(struct dvb_frontend *fe)
{
struct mxl301rf_state *state;
int ret;
state = fe->tuner_priv;
ret = reg_write(state, 0x01, 0x01);
if (ret < 0) {
dev_warn(&state->i2c->dev, "(%s) failed. [adap%d-fe%d]\n",
__func__, fe->dvb->num, fe->id);
return ret;
}
return 0;
}
/* I2C driver functions */
static const struct dvb_tuner_ops mxl301rf_ops = {
.info = {
.name = "MaxLinear MxL301RF",
.frequency_min = 93000000,
.frequency_max = 803142857,
},
.init = mxl301rf_init,
.sleep = mxl301rf_sleep,
.set_params = mxl301rf_set_params,
.get_rf_strength = mxl301rf_get_rf_strength,
};
static int mxl301rf_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct mxl301rf_state *state;
struct mxl301rf_config *cfg;
struct dvb_frontend *fe;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return -ENOMEM;
state->i2c = client;
cfg = client->dev.platform_data;
memcpy(&state->cfg, cfg, sizeof(state->cfg));
fe = cfg->fe;
fe->tuner_priv = state;
memcpy(&fe->ops.tuner_ops, &mxl301rf_ops, sizeof(mxl301rf_ops));
i2c_set_clientdata(client, &state->cfg);
dev_info(&client->dev, "MaxLinear MxL301RF attached.\n");
return 0;
}
static int mxl301rf_remove(struct i2c_client *client)
{
struct mxl301rf_state *state;
state = cfg_to_state(i2c_get_clientdata(client));
state->cfg.fe->tuner_priv = NULL;
kfree(state);
return 0;
}
static const struct i2c_device_id mxl301rf_id[] = {
{"mxl301rf", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, mxl301rf_id);
static struct i2c_driver mxl301rf_driver = {
.driver = {
.name = "mxl301rf",
},
.probe = mxl301rf_probe,
.remove = mxl301rf_remove,
.id_table = mxl301rf_id,
};
module_i2c_driver(mxl301rf_driver);
MODULE_DESCRIPTION("MaxLinear MXL301RF tuner");
MODULE_AUTHOR("Akihiro TSUKADA");
MODULE_LICENSE("GPL");