M7350/kernel/drivers/media/dvb-frontends/dib9000.c
2024-09-09 08:57:42 +00:00

2596 lines
71 KiB
C

/*
* Linux-DVB Driver for DiBcom's DiB9000 and demodulator-family.
*
* Copyright (C) 2005-10 DiBcom (http://www.dibcom.fr/)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, version 2.
*/
#include <linux/kernel.h>
#include <linux/i2c.h>
#include <linux/mutex.h>
#include "dvb_math.h"
#include "dvb_frontend.h"
#include "dib9000.h"
#include "dibx000_common.h"
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB9000: "); printk(args); printk("\n"); } } while (0)
#define MAX_NUMBER_OF_FRONTENDS 6
struct i2c_device {
struct i2c_adapter *i2c_adap;
u8 i2c_addr;
u8 *i2c_read_buffer;
u8 *i2c_write_buffer;
};
struct dib9000_pid_ctrl {
#define DIB9000_PID_FILTER_CTRL 0
#define DIB9000_PID_FILTER 1
u8 cmd;
u8 id;
u16 pid;
u8 onoff;
};
struct dib9000_state {
struct i2c_device i2c;
struct dibx000_i2c_master i2c_master;
struct i2c_adapter tuner_adap;
struct i2c_adapter component_bus;
u16 revision;
u8 reg_offs;
enum frontend_tune_state tune_state;
u32 status;
struct dvb_frontend_parametersContext channel_status;
u8 fe_id;
#define DIB9000_GPIO_DEFAULT_DIRECTIONS 0xffff
u16 gpio_dir;
#define DIB9000_GPIO_DEFAULT_VALUES 0x0000
u16 gpio_val;
#define DIB9000_GPIO_DEFAULT_PWM_POS 0xffff
u16 gpio_pwm_pos;
union { /* common for all chips */
struct {
u8 mobile_mode:1;
} host;
struct {
struct dib9000_fe_memory_map {
u16 addr;
u16 size;
} fe_mm[18];
u8 memcmd;
struct mutex mbx_if_lock; /* to protect read/write operations */
struct mutex mbx_lock; /* to protect the whole mailbox handling */
struct mutex mem_lock; /* to protect the memory accesses */
struct mutex mem_mbx_lock; /* to protect the memory-based mailbox */
#define MBX_MAX_WORDS (256 - 200 - 2)
#define DIB9000_MSG_CACHE_SIZE 2
u16 message_cache[DIB9000_MSG_CACHE_SIZE][MBX_MAX_WORDS];
u8 fw_is_running;
} risc;
} platform;
union { /* common for all platforms */
struct {
struct dib9000_config cfg;
} d9;
} chip;
struct dvb_frontend *fe[MAX_NUMBER_OF_FRONTENDS];
u16 component_bus_speed;
/* for the I2C transfer */
struct i2c_msg msg[2];
u8 i2c_write_buffer[255];
u8 i2c_read_buffer[255];
struct mutex demod_lock;
u8 get_frontend_internal;
struct dib9000_pid_ctrl pid_ctrl[10];
s8 pid_ctrl_index; /* -1: empty list; -2: do not use the list */
};
static const u32 fe_info[44] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0
};
enum dib9000_power_mode {
DIB9000_POWER_ALL = 0,
DIB9000_POWER_NO,
DIB9000_POWER_INTERF_ANALOG_AGC,
DIB9000_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD,
DIB9000_POWER_COR4_CRY_ESRAM_MOUT_NUD,
DIB9000_POWER_INTERFACE_ONLY,
};
enum dib9000_out_messages {
OUT_MSG_HBM_ACK,
OUT_MSG_HOST_BUF_FAIL,
OUT_MSG_REQ_VERSION,
OUT_MSG_BRIDGE_I2C_W,
OUT_MSG_BRIDGE_I2C_R,
OUT_MSG_BRIDGE_APB_W,
OUT_MSG_BRIDGE_APB_R,
OUT_MSG_SCAN_CHANNEL,
OUT_MSG_MONIT_DEMOD,
OUT_MSG_CONF_GPIO,
OUT_MSG_DEBUG_HELP,
OUT_MSG_SUBBAND_SEL,
OUT_MSG_ENABLE_TIME_SLICE,
OUT_MSG_FE_FW_DL,
OUT_MSG_FE_CHANNEL_SEARCH,
OUT_MSG_FE_CHANNEL_TUNE,
OUT_MSG_FE_SLEEP,
OUT_MSG_FE_SYNC,
OUT_MSG_CTL_MONIT,
OUT_MSG_CONF_SVC,
OUT_MSG_SET_HBM,
OUT_MSG_INIT_DEMOD,
OUT_MSG_ENABLE_DIVERSITY,
OUT_MSG_SET_OUTPUT_MODE,
OUT_MSG_SET_PRIORITARY_CHANNEL,
OUT_MSG_ACK_FRG,
OUT_MSG_INIT_PMU,
};
enum dib9000_in_messages {
IN_MSG_DATA,
IN_MSG_FRAME_INFO,
IN_MSG_CTL_MONIT,
IN_MSG_ACK_FREE_ITEM,
IN_MSG_DEBUG_BUF,
IN_MSG_MPE_MONITOR,
IN_MSG_RAWTS_MONITOR,
IN_MSG_END_BRIDGE_I2C_RW,
IN_MSG_END_BRIDGE_APB_RW,
IN_MSG_VERSION,
IN_MSG_END_OF_SCAN,
IN_MSG_MONIT_DEMOD,
IN_MSG_ERROR,
IN_MSG_FE_FW_DL_DONE,
IN_MSG_EVENT,
IN_MSG_ACK_CHANGE_SVC,
IN_MSG_HBM_PROF,
};
/* memory_access requests */
#define FE_MM_W_CHANNEL 0
#define FE_MM_W_FE_INFO 1
#define FE_MM_RW_SYNC 2
#define FE_SYNC_CHANNEL 1
#define FE_SYNC_W_GENERIC_MONIT 2
#define FE_SYNC_COMPONENT_ACCESS 3
#define FE_MM_R_CHANNEL_SEARCH_STATE 3
#define FE_MM_R_CHANNEL_UNION_CONTEXT 4
#define FE_MM_R_FE_INFO 5
#define FE_MM_R_FE_MONITOR 6
#define FE_MM_W_CHANNEL_HEAD 7
#define FE_MM_W_CHANNEL_UNION 8
#define FE_MM_W_CHANNEL_CONTEXT 9
#define FE_MM_R_CHANNEL_UNION 10
#define FE_MM_R_CHANNEL_CONTEXT 11
#define FE_MM_R_CHANNEL_TUNE_STATE 12
#define FE_MM_R_GENERIC_MONITORING_SIZE 13
#define FE_MM_W_GENERIC_MONITORING 14
#define FE_MM_R_GENERIC_MONITORING 15
#define FE_MM_W_COMPONENT_ACCESS 16
#define FE_MM_RW_COMPONENT_ACCESS_BUFFER 17
static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen, u8 * b, u32 len);
static int dib9000_risc_apb_access_write(struct dib9000_state *state, u32 address, u16 attribute, const u8 * b, u32 len);
static u16 to_fw_output_mode(u16 mode)
{
switch (mode) {
case OUTMODE_HIGH_Z:
return 0;
case OUTMODE_MPEG2_PAR_GATED_CLK:
return 4;
case OUTMODE_MPEG2_PAR_CONT_CLK:
return 8;
case OUTMODE_MPEG2_SERIAL:
return 16;
case OUTMODE_DIVERSITY:
return 128;
case OUTMODE_MPEG2_FIFO:
return 2;
case OUTMODE_ANALOG_ADC:
return 1;
default:
return 0;
}
}
static u16 dib9000_read16_attr(struct dib9000_state *state, u16 reg, u8 * b, u32 len, u16 attribute)
{
u32 chunk_size = 126;
u32 l;
int ret;
if (state->platform.risc.fw_is_running && (reg < 1024))
return dib9000_risc_apb_access_read(state, reg, attribute, NULL, 0, b, len);
memset(state->msg, 0, 2 * sizeof(struct i2c_msg));
state->msg[0].addr = state->i2c.i2c_addr >> 1;
state->msg[0].flags = 0;
state->msg[0].buf = state->i2c_write_buffer;
state->msg[0].len = 2;
state->msg[1].addr = state->i2c.i2c_addr >> 1;
state->msg[1].flags = I2C_M_RD;
state->msg[1].buf = b;
state->msg[1].len = len;
state->i2c_write_buffer[0] = reg >> 8;
state->i2c_write_buffer[1] = reg & 0xff;
if (attribute & DATA_BUS_ACCESS_MODE_8BIT)
state->i2c_write_buffer[0] |= (1 << 5);
if (attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)
state->i2c_write_buffer[0] |= (1 << 4);
do {
l = len < chunk_size ? len : chunk_size;
state->msg[1].len = l;
state->msg[1].buf = b;
ret = i2c_transfer(state->i2c.i2c_adap, state->msg, 2) != 2 ? -EREMOTEIO : 0;
if (ret != 0) {
dprintk("i2c read error on %d", reg);
return -EREMOTEIO;
}
b += l;
len -= l;
if (!(attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT))
reg += l / 2;
} while ((ret == 0) && len);
return 0;
}
static u16 dib9000_i2c_read16(struct i2c_device *i2c, u16 reg)
{
struct i2c_msg msg[2] = {
{.addr = i2c->i2c_addr >> 1, .flags = 0,
.buf = i2c->i2c_write_buffer, .len = 2},
{.addr = i2c->i2c_addr >> 1, .flags = I2C_M_RD,
.buf = i2c->i2c_read_buffer, .len = 2},
};
i2c->i2c_write_buffer[0] = reg >> 8;
i2c->i2c_write_buffer[1] = reg & 0xff;
if (i2c_transfer(i2c->i2c_adap, msg, 2) != 2) {
dprintk("read register %x error", reg);
return 0;
}
return (i2c->i2c_read_buffer[0] << 8) | i2c->i2c_read_buffer[1];
}
static inline u16 dib9000_read_word(struct dib9000_state *state, u16 reg)
{
if (dib9000_read16_attr(state, reg, state->i2c_read_buffer, 2, 0) != 0)
return 0;
return (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1];
}
static inline u16 dib9000_read_word_attr(struct dib9000_state *state, u16 reg, u16 attribute)
{
if (dib9000_read16_attr(state, reg, state->i2c_read_buffer, 2,
attribute) != 0)
return 0;
return (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1];
}
#define dib9000_read16_noinc_attr(state, reg, b, len, attribute) dib9000_read16_attr(state, reg, b, len, (attribute) | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)
static u16 dib9000_write16_attr(struct dib9000_state *state, u16 reg, const u8 * buf, u32 len, u16 attribute)
{
u32 chunk_size = 126;
u32 l;
int ret;
if (state->platform.risc.fw_is_running && (reg < 1024)) {
if (dib9000_risc_apb_access_write
(state, reg, DATA_BUS_ACCESS_MODE_16BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT | attribute, buf, len) != 0)
return -EINVAL;
return 0;
}
memset(&state->msg[0], 0, sizeof(struct i2c_msg));
state->msg[0].addr = state->i2c.i2c_addr >> 1;
state->msg[0].flags = 0;
state->msg[0].buf = state->i2c_write_buffer;
state->msg[0].len = len + 2;
state->i2c_write_buffer[0] = (reg >> 8) & 0xff;
state->i2c_write_buffer[1] = (reg) & 0xff;
if (attribute & DATA_BUS_ACCESS_MODE_8BIT)
state->i2c_write_buffer[0] |= (1 << 5);
if (attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)
state->i2c_write_buffer[0] |= (1 << 4);
do {
l = len < chunk_size ? len : chunk_size;
state->msg[0].len = l + 2;
memcpy(&state->i2c_write_buffer[2], buf, l);
ret = i2c_transfer(state->i2c.i2c_adap, state->msg, 1) != 1 ? -EREMOTEIO : 0;
buf += l;
len -= l;
if (!(attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT))
reg += l / 2;
} while ((ret == 0) && len);
return ret;
}
static int dib9000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val)
{
struct i2c_msg msg = {
.addr = i2c->i2c_addr >> 1, .flags = 0,
.buf = i2c->i2c_write_buffer, .len = 4
};
i2c->i2c_write_buffer[0] = (reg >> 8) & 0xff;
i2c->i2c_write_buffer[1] = reg & 0xff;
i2c->i2c_write_buffer[2] = (val >> 8) & 0xff;
i2c->i2c_write_buffer[3] = val & 0xff;
return i2c_transfer(i2c->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
}
static inline int dib9000_write_word(struct dib9000_state *state, u16 reg, u16 val)
{
u8 b[2] = { val >> 8, val & 0xff };
return dib9000_write16_attr(state, reg, b, 2, 0);
}
static inline int dib9000_write_word_attr(struct dib9000_state *state, u16 reg, u16 val, u16 attribute)
{
u8 b[2] = { val >> 8, val & 0xff };
return dib9000_write16_attr(state, reg, b, 2, attribute);
}
#define dib9000_write(state, reg, buf, len) dib9000_write16_attr(state, reg, buf, len, 0)
#define dib9000_write16_noinc(state, reg, buf, len) dib9000_write16_attr(state, reg, buf, len, DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)
#define dib9000_write16_noinc_attr(state, reg, buf, len, attribute) dib9000_write16_attr(state, reg, buf, len, DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT | (attribute))
#define dib9000_mbx_send(state, id, data, len) dib9000_mbx_send_attr(state, id, data, len, 0)
#define dib9000_mbx_get_message(state, id, msg, len) dib9000_mbx_get_message_attr(state, id, msg, len, 0)
#define MAC_IRQ (1 << 1)
#define IRQ_POL_MSK (1 << 4)
#define dib9000_risc_mem_read_chunks(state, b, len) dib9000_read16_attr(state, 1063, b, len, DATA_BUS_ACCESS_MODE_8BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)
#define dib9000_risc_mem_write_chunks(state, buf, len) dib9000_write16_attr(state, 1063, buf, len, DATA_BUS_ACCESS_MODE_8BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)
static void dib9000_risc_mem_setup_cmd(struct dib9000_state *state, u32 addr, u32 len, u8 reading)
{
u8 b[14] = { 0 };
/* dprintk("%d memcmd: %d %d %d\n", state->fe_id, addr, addr+len, len); */
/* b[0] = 0 << 7; */
b[1] = 1;
/* b[2] = 0; */
/* b[3] = 0; */
b[4] = (u8) (addr >> 8);
b[5] = (u8) (addr & 0xff);
/* b[10] = 0; */
/* b[11] = 0; */
b[12] = (u8) (addr >> 8);
b[13] = (u8) (addr & 0xff);
addr += len;
/* b[6] = 0; */
/* b[7] = 0; */
b[8] = (u8) (addr >> 8);
b[9] = (u8) (addr & 0xff);
dib9000_write(state, 1056, b, 14);
if (reading)
dib9000_write_word(state, 1056, (1 << 15) | 1);
state->platform.risc.memcmd = -1; /* if it was called directly reset it - to force a future setup-call to set it */
}
static void dib9000_risc_mem_setup(struct dib9000_state *state, u8 cmd)
{
struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[cmd & 0x7f];
/* decide whether we need to "refresh" the memory controller */
if (state->platform.risc.memcmd == cmd && /* same command */
!(cmd & 0x80 && m->size < 67)) /* and we do not want to read something with less than 67 bytes looping - working around a bug in the memory controller */
return;
dib9000_risc_mem_setup_cmd(state, m->addr, m->size, cmd & 0x80);
state->platform.risc.memcmd = cmd;
}
static int dib9000_risc_mem_read(struct dib9000_state *state, u8 cmd, u8 * b, u16 len)
{
if (!state->platform.risc.fw_is_running)
return -EIO;
if (mutex_lock_interruptible(&state->platform.risc.mem_lock) < 0) {
dprintk("could not get the lock");
return -EINTR;
}
dib9000_risc_mem_setup(state, cmd | 0x80);
dib9000_risc_mem_read_chunks(state, b, len);
mutex_unlock(&state->platform.risc.mem_lock);
return 0;
}
static int dib9000_risc_mem_write(struct dib9000_state *state, u8 cmd, const u8 * b)
{
struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[cmd];
if (!state->platform.risc.fw_is_running)
return -EIO;
if (mutex_lock_interruptible(&state->platform.risc.mem_lock) < 0) {
dprintk("could not get the lock");
return -EINTR;
}
dib9000_risc_mem_setup(state, cmd);
dib9000_risc_mem_write_chunks(state, b, m->size);
mutex_unlock(&state->platform.risc.mem_lock);
return 0;
}
static int dib9000_firmware_download(struct dib9000_state *state, u8 risc_id, u16 key, const u8 * code, u32 len)
{
u16 offs;
if (risc_id == 1)
offs = 16;
else
offs = 0;
/* config crtl reg */
dib9000_write_word(state, 1024 + offs, 0x000f);
dib9000_write_word(state, 1025 + offs, 0);
dib9000_write_word(state, 1031 + offs, key);
dprintk("going to download %dB of microcode", len);
if (dib9000_write16_noinc(state, 1026 + offs, (u8 *) code, (u16) len) != 0) {
dprintk("error while downloading microcode for RISC %c", 'A' + risc_id);
return -EIO;
}
dprintk("Microcode for RISC %c loaded", 'A' + risc_id);
return 0;
}
static int dib9000_mbx_host_init(struct dib9000_state *state, u8 risc_id)
{
u16 mbox_offs;
u16 reset_reg;
u16 tries = 1000;
if (risc_id == 1)
mbox_offs = 16;
else
mbox_offs = 0;
/* Reset mailbox */
dib9000_write_word(state, 1027 + mbox_offs, 0x8000);
/* Read reset status */
do {
reset_reg = dib9000_read_word(state, 1027 + mbox_offs);
msleep(100);
} while ((reset_reg & 0x8000) && --tries);
if (reset_reg & 0x8000) {
dprintk("MBX: init ERROR, no response from RISC %c", 'A' + risc_id);
return -EIO;
}
dprintk("MBX: initialized");
return 0;
}
#define MAX_MAILBOX_TRY 100
static int dib9000_mbx_send_attr(struct dib9000_state *state, u8 id, u16 * data, u8 len, u16 attr)
{
u8 *d, b[2];
u16 tmp;
u16 size;
u32 i;
int ret = 0;
if (!state->platform.risc.fw_is_running)
return -EINVAL;
if (mutex_lock_interruptible(&state->platform.risc.mbx_if_lock) < 0) {
dprintk("could not get the lock");
return -EINTR;
}
tmp = MAX_MAILBOX_TRY;
do {
size = dib9000_read_word_attr(state, 1043, attr) & 0xff;
if ((size + len + 1) > MBX_MAX_WORDS && --tmp) {
dprintk("MBX: RISC mbx full, retrying");
msleep(100);
} else
break;
} while (1);
/*dprintk( "MBX: size: %d", size); */
if (tmp == 0) {
ret = -EINVAL;
goto out;
}
#ifdef DUMP_MSG
dprintk("--> %02x %d ", id, len + 1);
for (i = 0; i < len; i++)
dprintk("%04x ", data[i]);
dprintk("\n");
#endif
/* byte-order conversion - works on big (where it is not necessary) or little endian */
d = (u8 *) data;
for (i = 0; i < len; i++) {
tmp = data[i];
*d++ = tmp >> 8;
*d++ = tmp & 0xff;
}
/* write msg */
b[0] = id;
b[1] = len + 1;
if (dib9000_write16_noinc_attr(state, 1045, b, 2, attr) != 0 || dib9000_write16_noinc_attr(state, 1045, (u8 *) data, len * 2, attr) != 0) {
ret = -EIO;
goto out;
}
/* update register nb_mes_in_RX */
ret = (u8) dib9000_write_word_attr(state, 1043, 1 << 14, attr);
out:
mutex_unlock(&state->platform.risc.mbx_if_lock);
return ret;
}
static u8 dib9000_mbx_read(struct dib9000_state *state, u16 * data, u8 risc_id, u16 attr)
{
#ifdef DUMP_MSG
u16 *d = data;
#endif
u16 tmp, i;
u8 size;
u8 mc_base;
if (!state->platform.risc.fw_is_running)
return 0;
if (mutex_lock_interruptible(&state->platform.risc.mbx_if_lock) < 0) {
dprintk("could not get the lock");
return 0;
}
if (risc_id == 1)
mc_base = 16;
else
mc_base = 0;
/* Length and type in the first word */
*data = dib9000_read_word_attr(state, 1029 + mc_base, attr);
size = *data & 0xff;
if (size <= MBX_MAX_WORDS) {
data++;
size--; /* Initial word already read */
dib9000_read16_noinc_attr(state, 1029 + mc_base, (u8 *) data, size * 2, attr);
/* to word conversion */
for (i = 0; i < size; i++) {
tmp = *data;
*data = (tmp >> 8) | (tmp << 8);
data++;
}
#ifdef DUMP_MSG
dprintk("<-- ");
for (i = 0; i < size + 1; i++)
dprintk("%04x ", d[i]);
dprintk("\n");
#endif
} else {
dprintk("MBX: message is too big for message cache (%d), flushing message", size);
size--; /* Initial word already read */
while (size--)
dib9000_read16_noinc_attr(state, 1029 + mc_base, (u8 *) data, 2, attr);
}
/* Update register nb_mes_in_TX */
dib9000_write_word_attr(state, 1028 + mc_base, 1 << 14, attr);
mutex_unlock(&state->platform.risc.mbx_if_lock);
return size + 1;
}
static int dib9000_risc_debug_buf(struct dib9000_state *state, u16 * data, u8 size)
{
u32 ts = data[1] << 16 | data[0];
char *b = (char *)&data[2];
b[2 * (size - 2) - 1] = '\0'; /* Bullet proof the buffer */
if (*b == '~') {
b++;
dprintk("%s", b);
} else
dprintk("RISC%d: %d.%04d %s", state->fe_id, ts / 10000, ts % 10000, *b ? b : "<empty>");
return 1;
}
static int dib9000_mbx_fetch_to_cache(struct dib9000_state *state, u16 attr)
{
int i;
u8 size;
u16 *block;
/* find a free slot */
for (i = 0; i < DIB9000_MSG_CACHE_SIZE; i++) {
block = state->platform.risc.message_cache[i];
if (*block == 0) {
size = dib9000_mbx_read(state, block, 1, attr);
/* dprintk( "MBX: fetched %04x message to cache", *block); */
switch (*block >> 8) {
case IN_MSG_DEBUG_BUF:
dib9000_risc_debug_buf(state, block + 1, size); /* debug-messages are going to be printed right away */
*block = 0; /* free the block */
break;
#if 0
case IN_MSG_DATA: /* FE-TRACE */
dib9000_risc_data_process(state, block + 1, size);
*block = 0;
break;
#endif
default:
break;
}
return 1;
}
}
dprintk("MBX: no free cache-slot found for new message...");
return -1;
}
static u8 dib9000_mbx_count(struct dib9000_state *state, u8 risc_id, u16 attr)
{
if (risc_id == 0)
return (u8) (dib9000_read_word_attr(state, 1028, attr) >> 10) & 0x1f; /* 5 bit field */
else
return (u8) (dib9000_read_word_attr(state, 1044, attr) >> 8) & 0x7f; /* 7 bit field */
}
static int dib9000_mbx_process(struct dib9000_state *state, u16 attr)
{
int ret = 0;
if (!state->platform.risc.fw_is_running)
return -1;
if (mutex_lock_interruptible(&state->platform.risc.mbx_lock) < 0) {
dprintk("could not get the lock");
return -1;
}
if (dib9000_mbx_count(state, 1, attr)) /* 1=RiscB */
ret = dib9000_mbx_fetch_to_cache(state, attr);
dib9000_read_word_attr(state, 1229, attr); /* Clear the IRQ */
/* if (tmp) */
/* dprintk( "cleared IRQ: %x", tmp); */
mutex_unlock(&state->platform.risc.mbx_lock);
return ret;
}
static int dib9000_mbx_get_message_attr(struct dib9000_state *state, u16 id, u16 * msg, u8 * size, u16 attr)
{
u8 i;
u16 *block;
u16 timeout = 30;
*msg = 0;
do {
/* dib9000_mbx_get_from_cache(); */
for (i = 0; i < DIB9000_MSG_CACHE_SIZE; i++) {
block = state->platform.risc.message_cache[i];
if ((*block >> 8) == id) {
*size = (*block & 0xff) - 1;
memcpy(msg, block + 1, (*size) * 2);
*block = 0; /* free the block */
i = 0; /* signal that we found a message */
break;
}
}
if (i == 0)
break;
if (dib9000_mbx_process(state, attr) == -1) /* try to fetch one message - if any */
return -1;
} while (--timeout);
if (timeout == 0) {
dprintk("waiting for message %d timed out", id);
return -1;
}
return i == 0;
}
static int dib9000_risc_check_version(struct dib9000_state *state)
{
u8 r[4];
u8 size;
u16 fw_version = 0;
if (dib9000_mbx_send(state, OUT_MSG_REQ_VERSION, &fw_version, 1) != 0)
return -EIO;
if (dib9000_mbx_get_message(state, IN_MSG_VERSION, (u16 *) r, &size) < 0)
return -EIO;
fw_version = (r[0] << 8) | r[1];
dprintk("RISC: ver: %d.%02d (IC: %d)", fw_version >> 10, fw_version & 0x3ff, (r[2] << 8) | r[3]);
if ((fw_version >> 10) != 7)
return -EINVAL;
switch (fw_version & 0x3ff) {
case 11:
case 12:
case 14:
case 15:
case 16:
case 17:
break;
default:
dprintk("RISC: invalid firmware version");
return -EINVAL;
}
dprintk("RISC: valid firmware version");
return 0;
}
static int dib9000_fw_boot(struct dib9000_state *state, const u8 * codeA, u32 lenA, const u8 * codeB, u32 lenB)
{
/* Reconfig pool mac ram */
dib9000_write_word(state, 1225, 0x02); /* A: 8k C, 4 k D - B: 32k C 6 k D - IRAM 96k */
dib9000_write_word(state, 1226, 0x05);
/* Toggles IP crypto to Host APB interface. */
dib9000_write_word(state, 1542, 1);
/* Set jump and no jump in the dma box */
dib9000_write_word(state, 1074, 0);
dib9000_write_word(state, 1075, 0);
/* Set MAC as APB Master. */
dib9000_write_word(state, 1237, 0);
/* Reset the RISCs */
if (codeA != NULL)
dib9000_write_word(state, 1024, 2);
else
dib9000_write_word(state, 1024, 15);
if (codeB != NULL)
dib9000_write_word(state, 1040, 2);
if (codeA != NULL)
dib9000_firmware_download(state, 0, 0x1234, codeA, lenA);
if (codeB != NULL)
dib9000_firmware_download(state, 1, 0x1234, codeB, lenB);
/* Run the RISCs */
if (codeA != NULL)
dib9000_write_word(state, 1024, 0);
if (codeB != NULL)
dib9000_write_word(state, 1040, 0);
if (codeA != NULL)
if (dib9000_mbx_host_init(state, 0) != 0)
return -EIO;
if (codeB != NULL)
if (dib9000_mbx_host_init(state, 1) != 0)
return -EIO;
msleep(100);
state->platform.risc.fw_is_running = 1;
if (dib9000_risc_check_version(state) != 0)
return -EINVAL;
state->platform.risc.memcmd = 0xff;
return 0;
}
static u16 dib9000_identify(struct i2c_device *client)
{
u16 value;
value = dib9000_i2c_read16(client, 896);
if (value != 0x01b3) {
dprintk("wrong Vendor ID (0x%x)", value);
return 0;
}
value = dib9000_i2c_read16(client, 897);
if (value != 0x4000 && value != 0x4001 && value != 0x4002 && value != 0x4003 && value != 0x4004 && value != 0x4005) {
dprintk("wrong Device ID (0x%x)", value);
return 0;
}
/* protect this driver to be used with 7000PC */
if (value == 0x4000 && dib9000_i2c_read16(client, 769) == 0x4000) {
dprintk("this driver does not work with DiB7000PC");
return 0;
}
switch (value) {
case 0x4000:
dprintk("found DiB7000MA/PA/MB/PB");
break;
case 0x4001:
dprintk("found DiB7000HC");
break;
case 0x4002:
dprintk("found DiB7000MC");
break;
case 0x4003:
dprintk("found DiB9000A");
break;
case 0x4004:
dprintk("found DiB9000H");
break;
case 0x4005:
dprintk("found DiB9000M");
break;
}
return value;
}
static void dib9000_set_power_mode(struct dib9000_state *state, enum dib9000_power_mode mode)
{
/* by default everything is going to be powered off */
u16 reg_903 = 0x3fff, reg_904 = 0xffff, reg_905 = 0xffff, reg_906;
u8 offset;
if (state->revision == 0x4003 || state->revision == 0x4004 || state->revision == 0x4005)
offset = 1;
else
offset = 0;
reg_906 = dib9000_read_word(state, 906 + offset) | 0x3; /* keep settings for RISC */
/* now, depending on the requested mode, we power on */
switch (mode) {
/* power up everything in the demod */
case DIB9000_POWER_ALL:
reg_903 = 0x0000;
reg_904 = 0x0000;
reg_905 = 0x0000;
reg_906 = 0x0000;
break;
/* just leave power on the control-interfaces: GPIO and (I2C or SDIO or SRAM) */
case DIB9000_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C or SRAM */
reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 2));
break;
case DIB9000_POWER_INTERF_ANALOG_AGC:
reg_903 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10));
reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4) | (1 << 2));
reg_906 &= ~((1 << 0));
break;
case DIB9000_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD:
reg_903 = 0x0000;
reg_904 = 0x801f;
reg_905 = 0x0000;
reg_906 &= ~((1 << 0));
break;
case DIB9000_POWER_COR4_CRY_ESRAM_MOUT_NUD:
reg_903 = 0x0000;
reg_904 = 0x8000;
reg_905 = 0x010b;
reg_906 &= ~((1 << 0));
break;
default:
case DIB9000_POWER_NO:
break;
}
/* always power down unused parts */
if (!state->platform.host.mobile_mode)
reg_904 |= (1 << 7) | (1 << 6) | (1 << 4) | (1 << 2) | (1 << 1);
/* P_sdio_select_clk = 0 on MC and after */
if (state->revision != 0x4000)
reg_906 <<= 1;
dib9000_write_word(state, 903 + offset, reg_903);
dib9000_write_word(state, 904 + offset, reg_904);
dib9000_write_word(state, 905 + offset, reg_905);
dib9000_write_word(state, 906 + offset, reg_906);
}
static int dib9000_fw_reset(struct dvb_frontend *fe)
{
struct dib9000_state *state = fe->demodulator_priv;
dib9000_write_word(state, 1817, 0x0003);
dib9000_write_word(state, 1227, 1);
dib9000_write_word(state, 1227, 0);
switch ((state->revision = dib9000_identify(&state->i2c))) {
case 0x4003:
case 0x4004:
case 0x4005:
state->reg_offs = 1;
break;
default:
return -EINVAL;
}
/* reset the i2c-master to use the host interface */
dibx000_reset_i2c_master(&state->i2c_master);
dib9000_set_power_mode(state, DIB9000_POWER_ALL);
/* unforce divstr regardless whether i2c enumeration was done or not */
dib9000_write_word(state, 1794, dib9000_read_word(state, 1794) & ~(1 << 1));
dib9000_write_word(state, 1796, 0);
dib9000_write_word(state, 1805, 0x805);
/* restart all parts */
dib9000_write_word(state, 898, 0xffff);
dib9000_write_word(state, 899, 0xffff);
dib9000_write_word(state, 900, 0x0001);
dib9000_write_word(state, 901, 0xff19);
dib9000_write_word(state, 902, 0x003c);
dib9000_write_word(state, 898, 0);
dib9000_write_word(state, 899, 0);
dib9000_write_word(state, 900, 0);
dib9000_write_word(state, 901, 0);
dib9000_write_word(state, 902, 0);
dib9000_write_word(state, 911, state->chip.d9.cfg.if_drives);
dib9000_set_power_mode(state, DIB9000_POWER_INTERFACE_ONLY);
return 0;
}
static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen, u8 * b, u32 len)
{
u16 mb[10];
u8 i, s;
if (address >= 1024 || !state->platform.risc.fw_is_running)
return -EINVAL;
/* dprintk( "APB access thru rd fw %d %x", address, attribute); */
mb[0] = (u16) address;
mb[1] = len / 2;
dib9000_mbx_send_attr(state, OUT_MSG_BRIDGE_APB_R, mb, 2, attribute);
switch (dib9000_mbx_get_message_attr(state, IN_MSG_END_BRIDGE_APB_RW, mb, &s, attribute)) {
case 1:
s--;
for (i = 0; i < s; i++) {
b[i * 2] = (mb[i + 1] >> 8) & 0xff;
b[i * 2 + 1] = (mb[i + 1]) & 0xff;
}
return 0;
default:
return -EIO;
}
return -EIO;
}
static int dib9000_risc_apb_access_write(struct dib9000_state *state, u32 address, u16 attribute, const u8 * b, u32 len)
{
u16 mb[10];
u8 s, i;
if (address >= 1024 || !state->platform.risc.fw_is_running)
return -EINVAL;
if (len > 18)
return -EINVAL;
/* dprintk( "APB access thru wr fw %d %x", address, attribute); */
mb[0] = (u16)address;
for (i = 0; i + 1 < len; i += 2)
mb[1 + i / 2] = b[i] << 8 | b[i + 1];
if (len & 1)
mb[1 + len / 2] = b[len - 1] << 8;
dib9000_mbx_send_attr(state, OUT_MSG_BRIDGE_APB_W, mb, (3 + len) / 2, attribute);
return dib9000_mbx_get_message_attr(state, IN_MSG_END_BRIDGE_APB_RW, mb, &s, attribute) == 1 ? 0 : -EINVAL;
}
static int dib9000_fw_memmbx_sync(struct dib9000_state *state, u8 i)
{
u8 index_loop = 10;
if (!state->platform.risc.fw_is_running)
return 0;
dib9000_risc_mem_write(state, FE_MM_RW_SYNC, &i);
do {
dib9000_risc_mem_read(state, FE_MM_RW_SYNC, state->i2c_read_buffer, 1);
} while (state->i2c_read_buffer[0] && index_loop--);
if (index_loop > 0)
return 0;
return -EIO;
}
static int dib9000_fw_init(struct dib9000_state *state)
{
struct dibGPIOFunction *f;
u16 b[40] = { 0 };
u8 i;
u8 size;
if (dib9000_fw_boot(state, NULL, 0, state->chip.d9.cfg.microcode_B_fe_buffer, state->chip.d9.cfg.microcode_B_fe_size) != 0)
return -EIO;
/* initialize the firmware */
for (i = 0; i < ARRAY_SIZE(state->chip.d9.cfg.gpio_function); i++) {
f = &state->chip.d9.cfg.gpio_function[i];
if (f->mask) {
switch (f->function) {
case BOARD_GPIO_FUNCTION_COMPONENT_ON:
b[0] = (u16) f->mask;
b[1] = (u16) f->direction;
b[2] = (u16) f->value;
break;
case BOARD_GPIO_FUNCTION_COMPONENT_OFF:
b[3] = (u16) f->mask;
b[4] = (u16) f->direction;
b[5] = (u16) f->value;
break;
}
}
}
if (dib9000_mbx_send(state, OUT_MSG_CONF_GPIO, b, 15) != 0)
return -EIO;
/* subband */
b[0] = state->chip.d9.cfg.subband.size; /* type == 0 -> GPIO - PWM not yet supported */
for (i = 0; i < state->chip.d9.cfg.subband.size; i++) {
b[1 + i * 4] = state->chip.d9.cfg.subband.subband[i].f_mhz;
b[2 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.mask;
b[3 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.direction;
b[4 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.value;
}
b[1 + i * 4] = 0; /* fe_id */
if (dib9000_mbx_send(state, OUT_MSG_SUBBAND_SEL, b, 2 + 4 * i) != 0)
return -EIO;
/* 0 - id, 1 - no_of_frontends */
b[0] = (0 << 8) | 1;
/* 0 = i2c-address demod, 0 = tuner */
b[1] = (0 << 8) | (0);
b[2] = (u16) (((state->chip.d9.cfg.xtal_clock_khz * 1000) >> 16) & 0xffff);
b[3] = (u16) (((state->chip.d9.cfg.xtal_clock_khz * 1000)) & 0xffff);
b[4] = (u16) ((state->chip.d9.cfg.vcxo_timer >> 16) & 0xffff);
b[5] = (u16) ((state->chip.d9.cfg.vcxo_timer) & 0xffff);
b[6] = (u16) ((state->chip.d9.cfg.timing_frequency >> 16) & 0xffff);
b[7] = (u16) ((state->chip.d9.cfg.timing_frequency) & 0xffff);
b[29] = state->chip.d9.cfg.if_drives;
if (dib9000_mbx_send(state, OUT_MSG_INIT_DEMOD, b, ARRAY_SIZE(b)) != 0)
return -EIO;
if (dib9000_mbx_send(state, OUT_MSG_FE_FW_DL, NULL, 0) != 0)
return -EIO;
if (dib9000_mbx_get_message(state, IN_MSG_FE_FW_DL_DONE, b, &size) < 0)
return -EIO;
if (size > ARRAY_SIZE(b)) {
dprintk("error : firmware returned %dbytes needed but the used buffer has only %dbytes\n Firmware init ABORTED", size,
(int)ARRAY_SIZE(b));
return -EINVAL;
}
for (i = 0; i < size; i += 2) {
state->platform.risc.fe_mm[i / 2].addr = b[i + 0];
state->platform.risc.fe_mm[i / 2].size = b[i + 1];
}
return 0;
}
static void dib9000_fw_set_channel_head(struct dib9000_state *state)
{
u8 b[9];
u32 freq = state->fe[0]->dtv_property_cache.frequency / 1000;
if (state->fe_id % 2)
freq += 101;
b[0] = (u8) ((freq >> 0) & 0xff);
b[1] = (u8) ((freq >> 8) & 0xff);
b[2] = (u8) ((freq >> 16) & 0xff);
b[3] = (u8) ((freq >> 24) & 0xff);
b[4] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 0) & 0xff);
b[5] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 8) & 0xff);
b[6] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 16) & 0xff);
b[7] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 24) & 0xff);
b[8] = 0x80; /* do not wait for CELL ID when doing autosearch */
if (state->fe[0]->dtv_property_cache.delivery_system == SYS_DVBT)
b[8] |= 1;
dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_HEAD, b);
}
static int dib9000_fw_get_channel(struct dvb_frontend *fe)
{
struct dib9000_state *state = fe->demodulator_priv;
struct dibDVBTChannel {
s8 spectrum_inversion;
s8 nfft;
s8 guard;
s8 constellation;
s8 hrch;
s8 alpha;
s8 code_rate_hp;
s8 code_rate_lp;
s8 select_hp;
s8 intlv_native;
};
struct dibDVBTChannel *ch;
int ret = 0;
if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) {
dprintk("could not get the lock");
return -EINTR;
}
if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) {
ret = -EIO;
goto error;
}
dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_UNION,
state->i2c_read_buffer, sizeof(struct dibDVBTChannel));
ch = (struct dibDVBTChannel *)state->i2c_read_buffer;
switch (ch->spectrum_inversion & 0x7) {
case 1:
state->fe[0]->dtv_property_cache.inversion = INVERSION_ON;
break;
case 0:
state->fe[0]->dtv_property_cache.inversion = INVERSION_OFF;
break;
default:
case -1:
state->fe[0]->dtv_property_cache.inversion = INVERSION_AUTO;
break;
}
switch (ch->nfft) {
case 0:
state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_2K;
break;
case 2:
state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_4K;
break;
case 1:
state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K;
break;
default:
case -1:
state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_AUTO;
break;
}
switch (ch->guard) {
case 0:
state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_32;
break;
case 1:
state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_16;
break;
case 2:
state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8;
break;
case 3:
state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_4;
break;
default:
case -1:
state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_AUTO;
break;
}
switch (ch->constellation) {
case 2:
state->fe[0]->dtv_property_cache.modulation = QAM_64;
break;
case 1:
state->fe[0]->dtv_property_cache.modulation = QAM_16;
break;
case 0:
state->fe[0]->dtv_property_cache.modulation = QPSK;
break;
default:
case -1:
state->fe[0]->dtv_property_cache.modulation = QAM_AUTO;
break;
}
switch (ch->hrch) {
case 0:
state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_NONE;
break;
case 1:
state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_1;
break;
default:
case -1:
state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_AUTO;
break;
}
switch (ch->code_rate_hp) {
case 1:
state->fe[0]->dtv_property_cache.code_rate_HP = FEC_1_2;
break;
case 2:
state->fe[0]->dtv_property_cache.code_rate_HP = FEC_2_3;
break;
case 3:
state->fe[0]->dtv_property_cache.code_rate_HP = FEC_3_4;
break;
case 5:
state->fe[0]->dtv_property_cache.code_rate_HP = FEC_5_6;
break;
case 7:
state->fe[0]->dtv_property_cache.code_rate_HP = FEC_7_8;
break;
default:
case -1:
state->fe[0]->dtv_property_cache.code_rate_HP = FEC_AUTO;
break;
}
switch (ch->code_rate_lp) {
case 1:
state->fe[0]->dtv_property_cache.code_rate_LP = FEC_1_2;
break;
case 2:
state->fe[0]->dtv_property_cache.code_rate_LP = FEC_2_3;
break;
case 3:
state->fe[0]->dtv_property_cache.code_rate_LP = FEC_3_4;
break;
case 5:
state->fe[0]->dtv_property_cache.code_rate_LP = FEC_5_6;
break;
case 7:
state->fe[0]->dtv_property_cache.code_rate_LP = FEC_7_8;
break;
default:
case -1:
state->fe[0]->dtv_property_cache.code_rate_LP = FEC_AUTO;
break;
}
error:
mutex_unlock(&state->platform.risc.mem_mbx_lock);
return ret;
}
static int dib9000_fw_set_channel_union(struct dvb_frontend *fe)
{
struct dib9000_state *state = fe->demodulator_priv;
struct dibDVBTChannel {
s8 spectrum_inversion;
s8 nfft;
s8 guard;
s8 constellation;
s8 hrch;
s8 alpha;
s8 code_rate_hp;
s8 code_rate_lp;
s8 select_hp;
s8 intlv_native;
};
struct dibDVBTChannel ch;
switch (state->fe[0]->dtv_property_cache.inversion) {
case INVERSION_ON:
ch.spectrum_inversion = 1;
break;
case INVERSION_OFF:
ch.spectrum_inversion = 0;
break;
default:
case INVERSION_AUTO:
ch.spectrum_inversion = -1;
break;
}
switch (state->fe[0]->dtv_property_cache.transmission_mode) {
case TRANSMISSION_MODE_2K:
ch.nfft = 0;
break;
case TRANSMISSION_MODE_4K:
ch.nfft = 2;
break;
case TRANSMISSION_MODE_8K:
ch.nfft = 1;
break;
default:
case TRANSMISSION_MODE_AUTO:
ch.nfft = 1;
break;
}
switch (state->fe[0]->dtv_property_cache.guard_interval) {
case GUARD_INTERVAL_1_32:
ch.guard = 0;
break;
case GUARD_INTERVAL_1_16:
ch.guard = 1;
break;
case GUARD_INTERVAL_1_8:
ch.guard = 2;
break;
case GUARD_INTERVAL_1_4:
ch.guard = 3;
break;
default:
case GUARD_INTERVAL_AUTO:
ch.guard = -1;
break;
}
switch (state->fe[0]->dtv_property_cache.modulation) {
case QAM_64:
ch.constellation = 2;
break;
case QAM_16:
ch.constellation = 1;
break;
case QPSK:
ch.constellation = 0;
break;
default:
case QAM_AUTO:
ch.constellation = -1;
break;
}
switch (state->fe[0]->dtv_property_cache.hierarchy) {
case HIERARCHY_NONE:
ch.hrch = 0;
break;
case HIERARCHY_1:
case HIERARCHY_2:
case HIERARCHY_4:
ch.hrch = 1;
break;
default:
case HIERARCHY_AUTO:
ch.hrch = -1;
break;
}
ch.alpha = 1;
switch (state->fe[0]->dtv_property_cache.code_rate_HP) {
case FEC_1_2:
ch.code_rate_hp = 1;
break;
case FEC_2_3:
ch.code_rate_hp = 2;
break;
case FEC_3_4:
ch.code_rate_hp = 3;
break;
case FEC_5_6:
ch.code_rate_hp = 5;
break;
case FEC_7_8:
ch.code_rate_hp = 7;
break;
default:
case FEC_AUTO:
ch.code_rate_hp = -1;
break;
}
switch (state->fe[0]->dtv_property_cache.code_rate_LP) {
case FEC_1_2:
ch.code_rate_lp = 1;
break;
case FEC_2_3:
ch.code_rate_lp = 2;
break;
case FEC_3_4:
ch.code_rate_lp = 3;
break;
case FEC_5_6:
ch.code_rate_lp = 5;
break;
case FEC_7_8:
ch.code_rate_lp = 7;
break;
default:
case FEC_AUTO:
ch.code_rate_lp = -1;
break;
}
ch.select_hp = 1;
ch.intlv_native = 1;
dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_UNION, (u8 *) &ch);
return 0;
}
static int dib9000_fw_tune(struct dvb_frontend *fe)
{
struct dib9000_state *state = fe->demodulator_priv;
int ret = 10, search = state->channel_status.status == CHANNEL_STATUS_PARAMETERS_UNKNOWN;
s8 i;
switch (state->tune_state) {
case CT_DEMOD_START:
dib9000_fw_set_channel_head(state);
/* write the channel context - a channel is initialized to 0, so it is OK */
dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_CONTEXT, (u8 *) fe_info);
dib9000_risc_mem_write(state, FE_MM_W_FE_INFO, (u8 *) fe_info);
if (search)
dib9000_mbx_send(state, OUT_MSG_FE_CHANNEL_SEARCH, NULL, 0);
else {
dib9000_fw_set_channel_union(fe);
dib9000_mbx_send(state, OUT_MSG_FE_CHANNEL_TUNE, NULL, 0);
}
state->tune_state = CT_DEMOD_STEP_1;
break;
case CT_DEMOD_STEP_1:
if (search)
dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_SEARCH_STATE, state->i2c_read_buffer, 1);
else
dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_TUNE_STATE, state->i2c_read_buffer, 1);
i = (s8)state->i2c_read_buffer[0];
switch (i) { /* something happened */
case 0:
break;
case -2: /* tps locks are "slower" than MPEG locks -> even in autosearch data is OK here */
if (search)
state->status = FE_STATUS_DEMOD_SUCCESS;
else {
state->tune_state = CT_DEMOD_STOP;
state->status = FE_STATUS_LOCKED;
}
break;
default:
state->status = FE_STATUS_TUNE_FAILED;
state->tune_state = CT_DEMOD_STOP;
break;
}
break;
default:
ret = FE_CALLBACK_TIME_NEVER;
break;
}
return ret;
}
static int dib9000_fw_set_diversity_in(struct dvb_frontend *fe, int onoff)
{
struct dib9000_state *state = fe->demodulator_priv;
u16 mode = (u16) onoff;
return dib9000_mbx_send(state, OUT_MSG_ENABLE_DIVERSITY, &mode, 1);
}
static int dib9000_fw_set_output_mode(struct dvb_frontend *fe, int mode)
{
struct dib9000_state *state = fe->demodulator_priv;
u16 outreg, smo_mode;
dprintk("setting output mode for demod %p to %d", fe, mode);
switch (mode) {
case OUTMODE_MPEG2_PAR_GATED_CLK:
outreg = (1 << 10); /* 0x0400 */
break;
case OUTMODE_MPEG2_PAR_CONT_CLK:
outreg = (1 << 10) | (1 << 6); /* 0x0440 */
break;
case OUTMODE_MPEG2_SERIAL:
outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */
break;
case OUTMODE_DIVERSITY:
outreg = (1 << 10) | (4 << 6); /* 0x0500 */
break;
case OUTMODE_MPEG2_FIFO:
outreg = (1 << 10) | (5 << 6);
break;
case OUTMODE_HIGH_Z:
outreg = 0;
break;
default:
dprintk("Unhandled output_mode passed to be set for demod %p", &state->fe[0]);
return -EINVAL;
}
dib9000_write_word(state, 1795, outreg);
switch (mode) {
case OUTMODE_MPEG2_PAR_GATED_CLK:
case OUTMODE_MPEG2_PAR_CONT_CLK:
case OUTMODE_MPEG2_SERIAL:
case OUTMODE_MPEG2_FIFO:
smo_mode = (dib9000_read_word(state, 295) & 0x0010) | (1 << 1);
if (state->chip.d9.cfg.output_mpeg2_in_188_bytes)
smo_mode |= (1 << 5);
dib9000_write_word(state, 295, smo_mode);
break;
}
outreg = to_fw_output_mode(mode);
return dib9000_mbx_send(state, OUT_MSG_SET_OUTPUT_MODE, &outreg, 1);
}
static int dib9000_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
struct dib9000_state *state = i2c_get_adapdata(i2c_adap);
u16 i, len, t, index_msg;
for (index_msg = 0; index_msg < num; index_msg++) {
if (msg[index_msg].flags & I2C_M_RD) { /* read */
len = msg[index_msg].len;
if (len > 16)
len = 16;
if (dib9000_read_word(state, 790) != 0)
dprintk("TunerITF: read busy");
dib9000_write_word(state, 784, (u16) (msg[index_msg].addr));
dib9000_write_word(state, 787, (len / 2) - 1);
dib9000_write_word(state, 786, 1); /* start read */
i = 1000;
while (dib9000_read_word(state, 790) != (len / 2) && i)
i--;
if (i == 0)
dprintk("TunerITF: read failed");
for (i = 0; i < len; i += 2) {
t = dib9000_read_word(state, 785);
msg[index_msg].buf[i] = (t >> 8) & 0xff;
msg[index_msg].buf[i + 1] = (t) & 0xff;
}
if (dib9000_read_word(state, 790) != 0)
dprintk("TunerITF: read more data than expected");
} else {
i = 1000;
while (dib9000_read_word(state, 789) && i)
i--;
if (i == 0)
dprintk("TunerITF: write busy");
len = msg[index_msg].len;
if (len > 16)
len = 16;
for (i = 0; i < len; i += 2)
dib9000_write_word(state, 785, (msg[index_msg].buf[i] << 8) | msg[index_msg].buf[i + 1]);
dib9000_write_word(state, 784, (u16) msg[index_msg].addr);
dib9000_write_word(state, 787, (len / 2) - 1);
dib9000_write_word(state, 786, 0); /* start write */
i = 1000;
while (dib9000_read_word(state, 791) > 0 && i)
i--;
if (i == 0)
dprintk("TunerITF: write failed");
}
}
return num;
}
int dib9000_fw_set_component_bus_speed(struct dvb_frontend *fe, u16 speed)
{
struct dib9000_state *state = fe->demodulator_priv;
state->component_bus_speed = speed;
return 0;
}
EXPORT_SYMBOL(dib9000_fw_set_component_bus_speed);
static int dib9000_fw_component_bus_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
struct dib9000_state *state = i2c_get_adapdata(i2c_adap);
u8 type = 0; /* I2C */
u8 port = DIBX000_I2C_INTERFACE_GPIO_3_4;
u16 scl = state->component_bus_speed; /* SCL frequency */
struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[FE_MM_RW_COMPONENT_ACCESS_BUFFER];
u8 p[13] = { 0 };
p[0] = type;
p[1] = port;
p[2] = msg[0].addr << 1;
p[3] = (u8) scl & 0xff; /* scl */
p[4] = (u8) (scl >> 8);
p[7] = 0;
p[8] = 0;
p[9] = (u8) (msg[0].len);
p[10] = (u8) (msg[0].len >> 8);
if ((num > 1) && (msg[1].flags & I2C_M_RD)) {
p[11] = (u8) (msg[1].len);
p[12] = (u8) (msg[1].len >> 8);
} else {
p[11] = 0;
p[12] = 0;
}
if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) {
dprintk("could not get the lock");
return 0;
}
dib9000_risc_mem_write(state, FE_MM_W_COMPONENT_ACCESS, p);
{ /* write-part */
dib9000_risc_mem_setup_cmd(state, m->addr, msg[0].len, 0);
dib9000_risc_mem_write_chunks(state, msg[0].buf, msg[0].len);
}
/* do the transaction */
if (dib9000_fw_memmbx_sync(state, FE_SYNC_COMPONENT_ACCESS) < 0) {
mutex_unlock(&state->platform.risc.mem_mbx_lock);
return 0;
}
/* read back any possible result */
if ((num > 1) && (msg[1].flags & I2C_M_RD))
dib9000_risc_mem_read(state, FE_MM_RW_COMPONENT_ACCESS_BUFFER, msg[1].buf, msg[1].len);
mutex_unlock(&state->platform.risc.mem_mbx_lock);
return num;
}
static u32 dib9000_i2c_func(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C;
}
static struct i2c_algorithm dib9000_tuner_algo = {
.master_xfer = dib9000_tuner_xfer,
.functionality = dib9000_i2c_func,
};
static struct i2c_algorithm dib9000_component_bus_algo = {
.master_xfer = dib9000_fw_component_bus_xfer,
.functionality = dib9000_i2c_func,
};
struct i2c_adapter *dib9000_get_tuner_interface(struct dvb_frontend *fe)
{
struct dib9000_state *st = fe->demodulator_priv;
return &st->tuner_adap;
}
EXPORT_SYMBOL(dib9000_get_tuner_interface);
struct i2c_adapter *dib9000_get_component_bus_interface(struct dvb_frontend *fe)
{
struct dib9000_state *st = fe->demodulator_priv;
return &st->component_bus;
}
EXPORT_SYMBOL(dib9000_get_component_bus_interface);
struct i2c_adapter *dib9000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating)
{
struct dib9000_state *st = fe->demodulator_priv;
return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
}
EXPORT_SYMBOL(dib9000_get_i2c_master);
int dib9000_set_i2c_adapter(struct dvb_frontend *fe, struct i2c_adapter *i2c)
{
struct dib9000_state *st = fe->demodulator_priv;
st->i2c.i2c_adap = i2c;
return 0;
}
EXPORT_SYMBOL(dib9000_set_i2c_adapter);
static int dib9000_cfg_gpio(struct dib9000_state *st, u8 num, u8 dir, u8 val)
{
st->gpio_dir = dib9000_read_word(st, 773);
st->gpio_dir &= ~(1 << num); /* reset the direction bit */
st->gpio_dir |= (dir & 0x1) << num; /* set the new direction */
dib9000_write_word(st, 773, st->gpio_dir);
st->gpio_val = dib9000_read_word(st, 774);
st->gpio_val &= ~(1 << num); /* reset the direction bit */
st->gpio_val |= (val & 0x01) << num; /* set the new value */
dib9000_write_word(st, 774, st->gpio_val);
dprintk("gpio dir: %04x: gpio val: %04x", st->gpio_dir, st->gpio_val);
return 0;
}
int dib9000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val)
{
struct dib9000_state *state = fe->demodulator_priv;
return dib9000_cfg_gpio(state, num, dir, val);
}
EXPORT_SYMBOL(dib9000_set_gpio);
int dib9000_fw_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
{
struct dib9000_state *state = fe->demodulator_priv;
u16 val;
int ret;
if ((state->pid_ctrl_index != -2) && (state->pid_ctrl_index < 9)) {
/* postpone the pid filtering cmd */
dprintk("pid filter cmd postpone");
state->pid_ctrl_index++;
state->pid_ctrl[state->pid_ctrl_index].cmd = DIB9000_PID_FILTER_CTRL;
state->pid_ctrl[state->pid_ctrl_index].onoff = onoff;
return 0;
}
if (mutex_lock_interruptible(&state->demod_lock) < 0) {
dprintk("could not get the lock");
return -EINTR;
}
val = dib9000_read_word(state, 294 + 1) & 0xffef;
val |= (onoff & 0x1) << 4;
dprintk("PID filter enabled %d", onoff);
ret = dib9000_write_word(state, 294 + 1, val);
mutex_unlock(&state->demod_lock);
return ret;
}
EXPORT_SYMBOL(dib9000_fw_pid_filter_ctrl);
int dib9000_fw_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
{
struct dib9000_state *state = fe->demodulator_priv;
int ret;
if (state->pid_ctrl_index != -2) {
/* postpone the pid filtering cmd */
dprintk("pid filter postpone");
if (state->pid_ctrl_index < 9) {
state->pid_ctrl_index++;
state->pid_ctrl[state->pid_ctrl_index].cmd = DIB9000_PID_FILTER;
state->pid_ctrl[state->pid_ctrl_index].id = id;
state->pid_ctrl[state->pid_ctrl_index].pid = pid;
state->pid_ctrl[state->pid_ctrl_index].onoff = onoff;
} else
dprintk("can not add any more pid ctrl cmd");
return 0;
}
if (mutex_lock_interruptible(&state->demod_lock) < 0) {
dprintk("could not get the lock");
return -EINTR;
}
dprintk("Index %x, PID %d, OnOff %d", id, pid, onoff);
ret = dib9000_write_word(state, 300 + 1 + id,
onoff ? (1 << 13) | pid : 0);
mutex_unlock(&state->demod_lock);
return ret;
}
EXPORT_SYMBOL(dib9000_fw_pid_filter);
int dib9000_firmware_post_pll_init(struct dvb_frontend *fe)
{
struct dib9000_state *state = fe->demodulator_priv;
return dib9000_fw_init(state);
}
EXPORT_SYMBOL(dib9000_firmware_post_pll_init);
static void dib9000_release(struct dvb_frontend *demod)
{
struct dib9000_state *st = demod->demodulator_priv;
u8 index_frontend;
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++)
dvb_frontend_detach(st->fe[index_frontend]);
dibx000_exit_i2c_master(&st->i2c_master);
i2c_del_adapter(&st->tuner_adap);
i2c_del_adapter(&st->component_bus);
kfree(st->fe[0]);
kfree(st);
}
static int dib9000_wakeup(struct dvb_frontend *fe)
{
return 0;
}
static int dib9000_sleep(struct dvb_frontend *fe)
{
struct dib9000_state *state = fe->demodulator_priv;
u8 index_frontend;
int ret = 0;
if (mutex_lock_interruptible(&state->demod_lock) < 0) {
dprintk("could not get the lock");
return -EINTR;
}
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]);
if (ret < 0)
goto error;
}
ret = dib9000_mbx_send(state, OUT_MSG_FE_SLEEP, NULL, 0);
error:
mutex_unlock(&state->demod_lock);
return ret;
}
static int dib9000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune)
{
tune->min_delay_ms = 1000;
return 0;
}
static int dib9000_get_frontend(struct dvb_frontend *fe)
{
struct dib9000_state *state = fe->demodulator_priv;
u8 index_frontend, sub_index_frontend;
fe_status_t stat;
int ret = 0;
if (state->get_frontend_internal == 0) {
if (mutex_lock_interruptible(&state->demod_lock) < 0) {
dprintk("could not get the lock");
return -EINTR;
}
}
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat);
if (stat & FE_HAS_SYNC) {
dprintk("TPS lock on the slave%i", index_frontend);
/* synchronize the cache with the other frontends */
state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend]);
for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL);
sub_index_frontend++) {
if (sub_index_frontend != index_frontend) {
state->fe[sub_index_frontend]->dtv_property_cache.modulation =
state->fe[index_frontend]->dtv_property_cache.modulation;
state->fe[sub_index_frontend]->dtv_property_cache.inversion =
state->fe[index_frontend]->dtv_property_cache.inversion;
state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode =
state->fe[index_frontend]->dtv_property_cache.transmission_mode;
state->fe[sub_index_frontend]->dtv_property_cache.guard_interval =
state->fe[index_frontend]->dtv_property_cache.guard_interval;
state->fe[sub_index_frontend]->dtv_property_cache.hierarchy =
state->fe[index_frontend]->dtv_property_cache.hierarchy;
state->fe[sub_index_frontend]->dtv_property_cache.code_rate_HP =
state->fe[index_frontend]->dtv_property_cache.code_rate_HP;
state->fe[sub_index_frontend]->dtv_property_cache.code_rate_LP =
state->fe[index_frontend]->dtv_property_cache.code_rate_LP;
state->fe[sub_index_frontend]->dtv_property_cache.rolloff =
state->fe[index_frontend]->dtv_property_cache.rolloff;
}
}
ret = 0;
goto return_value;
}
}
/* get the channel from master chip */
ret = dib9000_fw_get_channel(fe);
if (ret != 0)
goto return_value;
/* synchronize the cache with the other frontends */
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
state->fe[index_frontend]->dtv_property_cache.inversion = fe->dtv_property_cache.inversion;
state->fe[index_frontend]->dtv_property_cache.transmission_mode = fe->dtv_property_cache.transmission_mode;
state->fe[index_frontend]->dtv_property_cache.guard_interval = fe->dtv_property_cache.guard_interval;
state->fe[index_frontend]->dtv_property_cache.modulation = fe->dtv_property_cache.modulation;
state->fe[index_frontend]->dtv_property_cache.hierarchy = fe->dtv_property_cache.hierarchy;
state->fe[index_frontend]->dtv_property_cache.code_rate_HP = fe->dtv_property_cache.code_rate_HP;
state->fe[index_frontend]->dtv_property_cache.code_rate_LP = fe->dtv_property_cache.code_rate_LP;
state->fe[index_frontend]->dtv_property_cache.rolloff = fe->dtv_property_cache.rolloff;
}
ret = 0;
return_value:
if (state->get_frontend_internal == 0)
mutex_unlock(&state->demod_lock);
return ret;
}
static int dib9000_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state)
{
struct dib9000_state *state = fe->demodulator_priv;
state->tune_state = tune_state;
if (tune_state == CT_DEMOD_START)
state->status = FE_STATUS_TUNE_PENDING;
return 0;
}
static u32 dib9000_get_status(struct dvb_frontend *fe)
{
struct dib9000_state *state = fe->demodulator_priv;
return state->status;
}
static int dib9000_set_channel_status(struct dvb_frontend *fe, struct dvb_frontend_parametersContext *channel_status)
{
struct dib9000_state *state = fe->demodulator_priv;
memcpy(&state->channel_status, channel_status, sizeof(struct dvb_frontend_parametersContext));
return 0;
}
static int dib9000_set_frontend(struct dvb_frontend *fe)
{
struct dib9000_state *state = fe->demodulator_priv;
int sleep_time, sleep_time_slave;
u32 frontend_status;
u8 nbr_pending, exit_condition, index_frontend, index_frontend_success;
struct dvb_frontend_parametersContext channel_status;
/* check that the correct parameters are set */
if (state->fe[0]->dtv_property_cache.frequency == 0) {
dprintk("dib9000: must specify frequency ");
return 0;
}
if (state->fe[0]->dtv_property_cache.bandwidth_hz == 0) {
dprintk("dib9000: must specify bandwidth ");
return 0;
}
state->pid_ctrl_index = -1; /* postpone the pid filtering cmd */
if (mutex_lock_interruptible(&state->demod_lock) < 0) {
dprintk("could not get the lock");
return 0;
}
fe->dtv_property_cache.delivery_system = SYS_DVBT;
/* set the master status */
if (state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO ||
state->fe[0]->dtv_property_cache.guard_interval == GUARD_INTERVAL_AUTO ||
state->fe[0]->dtv_property_cache.modulation == QAM_AUTO ||
state->fe[0]->dtv_property_cache.code_rate_HP == FEC_AUTO) {
/* no channel specified, autosearch the channel */
state->channel_status.status = CHANNEL_STATUS_PARAMETERS_UNKNOWN;
} else
state->channel_status.status = CHANNEL_STATUS_PARAMETERS_SET;
/* set mode and status for the different frontends */
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
dib9000_fw_set_diversity_in(state->fe[index_frontend], 1);
/* synchronization of the cache */
memcpy(&state->fe[index_frontend]->dtv_property_cache, &fe->dtv_property_cache, sizeof(struct dtv_frontend_properties));
state->fe[index_frontend]->dtv_property_cache.delivery_system = SYS_DVBT;
dib9000_fw_set_output_mode(state->fe[index_frontend], OUTMODE_HIGH_Z);
dib9000_set_channel_status(state->fe[index_frontend], &state->channel_status);
dib9000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START);
}
/* actual tune */
exit_condition = 0; /* 0: tune pending; 1: tune failed; 2:tune success */
index_frontend_success = 0;
do {
sleep_time = dib9000_fw_tune(state->fe[0]);
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
sleep_time_slave = dib9000_fw_tune(state->fe[index_frontend]);
if (sleep_time == FE_CALLBACK_TIME_NEVER)
sleep_time = sleep_time_slave;
else if ((sleep_time_slave != FE_CALLBACK_TIME_NEVER) && (sleep_time_slave > sleep_time))
sleep_time = sleep_time_slave;
}
if (sleep_time != FE_CALLBACK_TIME_NEVER)
msleep(sleep_time / 10);
else
break;
nbr_pending = 0;
exit_condition = 0;
index_frontend_success = 0;
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
frontend_status = -dib9000_get_status(state->fe[index_frontend]);
if (frontend_status > -FE_STATUS_TUNE_PENDING) {
exit_condition = 2; /* tune success */
index_frontend_success = index_frontend;
break;
}
if (frontend_status == -FE_STATUS_TUNE_PENDING)
nbr_pending++; /* some frontends are still tuning */
}
if ((exit_condition != 2) && (nbr_pending == 0))
exit_condition = 1; /* if all tune are done and no success, exit: tune failed */
} while (exit_condition == 0);
/* check the tune result */
if (exit_condition == 1) { /* tune failed */
dprintk("tune failed");
mutex_unlock(&state->demod_lock);
/* tune failed; put all the pid filtering cmd to junk */
state->pid_ctrl_index = -1;
return 0;
}
dprintk("tune success on frontend%i", index_frontend_success);
/* synchronize all the channel cache */
state->get_frontend_internal = 1;
dib9000_get_frontend(state->fe[0]);
state->get_frontend_internal = 0;
/* retune the other frontends with the found channel */
channel_status.status = CHANNEL_STATUS_PARAMETERS_SET;
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
/* only retune the frontends which was not tuned success */
if (index_frontend != index_frontend_success) {
dib9000_set_channel_status(state->fe[index_frontend], &channel_status);
dib9000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START);
}
}
do {
sleep_time = FE_CALLBACK_TIME_NEVER;
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
if (index_frontend != index_frontend_success) {
sleep_time_slave = dib9000_fw_tune(state->fe[index_frontend]);
if (sleep_time == FE_CALLBACK_TIME_NEVER)
sleep_time = sleep_time_slave;
else if ((sleep_time_slave != FE_CALLBACK_TIME_NEVER) && (sleep_time_slave > sleep_time))
sleep_time = sleep_time_slave;
}
}
if (sleep_time != FE_CALLBACK_TIME_NEVER)
msleep(sleep_time / 10);
else
break;
nbr_pending = 0;
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
if (index_frontend != index_frontend_success) {
frontend_status = -dib9000_get_status(state->fe[index_frontend]);
if ((index_frontend != index_frontend_success) && (frontend_status == -FE_STATUS_TUNE_PENDING))
nbr_pending++; /* some frontends are still tuning */
}
}
} while (nbr_pending != 0);
/* set the output mode */
dib9000_fw_set_output_mode(state->fe[0], state->chip.d9.cfg.output_mode);
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
dib9000_fw_set_output_mode(state->fe[index_frontend], OUTMODE_DIVERSITY);
/* turn off the diversity for the last frontend */
dib9000_fw_set_diversity_in(state->fe[index_frontend - 1], 0);
mutex_unlock(&state->demod_lock);
if (state->pid_ctrl_index >= 0) {
u8 index_pid_filter_cmd;
u8 pid_ctrl_index = state->pid_ctrl_index;
state->pid_ctrl_index = -2;
for (index_pid_filter_cmd = 0;
index_pid_filter_cmd <= pid_ctrl_index;
index_pid_filter_cmd++) {
if (state->pid_ctrl[index_pid_filter_cmd].cmd == DIB9000_PID_FILTER_CTRL)
dib9000_fw_pid_filter_ctrl(state->fe[0],
state->pid_ctrl[index_pid_filter_cmd].onoff);
else if (state->pid_ctrl[index_pid_filter_cmd].cmd == DIB9000_PID_FILTER)
dib9000_fw_pid_filter(state->fe[0],
state->pid_ctrl[index_pid_filter_cmd].id,
state->pid_ctrl[index_pid_filter_cmd].pid,
state->pid_ctrl[index_pid_filter_cmd].onoff);
}
}
/* do not postpone any more the pid filtering */
state->pid_ctrl_index = -2;
return 0;
}
static u16 dib9000_read_lock(struct dvb_frontend *fe)
{
struct dib9000_state *state = fe->demodulator_priv;
return dib9000_read_word(state, 535);
}
static int dib9000_read_status(struct dvb_frontend *fe, fe_status_t * stat)
{
struct dib9000_state *state = fe->demodulator_priv;
u8 index_frontend;
u16 lock = 0, lock_slave = 0;
if (mutex_lock_interruptible(&state->demod_lock) < 0) {
dprintk("could not get the lock");
return -EINTR;
}
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
lock_slave |= dib9000_read_lock(state->fe[index_frontend]);
lock = dib9000_read_word(state, 535);
*stat = 0;
if ((lock & 0x8000) || (lock_slave & 0x8000))
*stat |= FE_HAS_SIGNAL;
if ((lock & 0x3000) || (lock_slave & 0x3000))
*stat |= FE_HAS_CARRIER;
if ((lock & 0x0100) || (lock_slave & 0x0100))
*stat |= FE_HAS_VITERBI;
if (((lock & 0x0038) == 0x38) || ((lock_slave & 0x0038) == 0x38))
*stat |= FE_HAS_SYNC;
if ((lock & 0x0008) || (lock_slave & 0x0008))
*stat |= FE_HAS_LOCK;
mutex_unlock(&state->demod_lock);
return 0;
}
static int dib9000_read_ber(struct dvb_frontend *fe, u32 * ber)
{
struct dib9000_state *state = fe->demodulator_priv;
u16 *c;
int ret = 0;
if (mutex_lock_interruptible(&state->demod_lock) < 0) {
dprintk("could not get the lock");
return -EINTR;
}
if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) {
dprintk("could not get the lock");
ret = -EINTR;
goto error;
}
if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) {
mutex_unlock(&state->platform.risc.mem_mbx_lock);
ret = -EIO;
goto error;
}
dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR,
state->i2c_read_buffer, 16 * 2);
mutex_unlock(&state->platform.risc.mem_mbx_lock);
c = (u16 *)state->i2c_read_buffer;
*ber = c[10] << 16 | c[11];
error:
mutex_unlock(&state->demod_lock);
return ret;
}
static int dib9000_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
{
struct dib9000_state *state = fe->demodulator_priv;
u8 index_frontend;
u16 *c = (u16 *)state->i2c_read_buffer;
u16 val;
int ret = 0;
if (mutex_lock_interruptible(&state->demod_lock) < 0) {
dprintk("could not get the lock");
return -EINTR;
}
*strength = 0;
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val);
if (val > 65535 - *strength)
*strength = 65535;
else
*strength += val;
}
if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) {
dprintk("could not get the lock");
ret = -EINTR;
goto error;
}
if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) {
mutex_unlock(&state->platform.risc.mem_mbx_lock);
ret = -EIO;
goto error;
}
dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2);
mutex_unlock(&state->platform.risc.mem_mbx_lock);
val = 65535 - c[4];
if (val > 65535 - *strength)
*strength = 65535;
else
*strength += val;
error:
mutex_unlock(&state->demod_lock);
return ret;
}
static u32 dib9000_get_snr(struct dvb_frontend *fe)
{
struct dib9000_state *state = fe->demodulator_priv;
u16 *c = (u16 *)state->i2c_read_buffer;
u32 n, s, exp;
u16 val;
if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) {
dprintk("could not get the lock");
return 0;
}
if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) {
mutex_unlock(&state->platform.risc.mem_mbx_lock);
return 0;
}
dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2);
mutex_unlock(&state->platform.risc.mem_mbx_lock);
val = c[7];
n = (val >> 4) & 0xff;
exp = ((val & 0xf) << 2);
val = c[8];
exp += ((val >> 14) & 0x3);
if ((exp & 0x20) != 0)
exp -= 0x40;
n <<= exp + 16;
s = (val >> 6) & 0xFF;
exp = (val & 0x3F);
if ((exp & 0x20) != 0)
exp -= 0x40;
s <<= exp + 16;
if (n > 0) {
u32 t = (s / n) << 16;
return t + ((s << 16) - n * t) / n;
}
return 0xffffffff;
}
static int dib9000_read_snr(struct dvb_frontend *fe, u16 * snr)
{
struct dib9000_state *state = fe->demodulator_priv;
u8 index_frontend;
u32 snr_master;
if (mutex_lock_interruptible(&state->demod_lock) < 0) {
dprintk("could not get the lock");
return -EINTR;
}
snr_master = dib9000_get_snr(fe);
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
snr_master += dib9000_get_snr(state->fe[index_frontend]);
if ((snr_master >> 16) != 0) {
snr_master = 10 * intlog10(snr_master >> 16);
*snr = snr_master / ((1 << 24) / 10);
} else
*snr = 0;
mutex_unlock(&state->demod_lock);
return 0;
}
static int dib9000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc)
{
struct dib9000_state *state = fe->demodulator_priv;
u16 *c = (u16 *)state->i2c_read_buffer;
int ret = 0;
if (mutex_lock_interruptible(&state->demod_lock) < 0) {
dprintk("could not get the lock");
return -EINTR;
}
if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) {
dprintk("could not get the lock");
ret = -EINTR;
goto error;
}
if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) {
mutex_unlock(&state->platform.risc.mem_mbx_lock);
ret = -EIO;
goto error;
}
dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2);
mutex_unlock(&state->platform.risc.mem_mbx_lock);
*unc = c[12];
error:
mutex_unlock(&state->demod_lock);
return ret;
}
int dib9000_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, u8 first_addr)
{
int k = 0, ret = 0;
u8 new_addr = 0;
struct i2c_device client = {.i2c_adap = i2c };
client.i2c_write_buffer = kzalloc(4 * sizeof(u8), GFP_KERNEL);
if (!client.i2c_write_buffer) {
dprintk("%s: not enough memory", __func__);
return -ENOMEM;
}
client.i2c_read_buffer = kzalloc(4 * sizeof(u8), GFP_KERNEL);
if (!client.i2c_read_buffer) {
dprintk("%s: not enough memory", __func__);
ret = -ENOMEM;
goto error_memory;
}
client.i2c_addr = default_addr + 16;
dib9000_i2c_write16(&client, 1796, 0x0);
for (k = no_of_demods - 1; k >= 0; k--) {
/* designated i2c address */
new_addr = first_addr + (k << 1);
client.i2c_addr = default_addr;
dib9000_i2c_write16(&client, 1817, 3);
dib9000_i2c_write16(&client, 1796, 0);
dib9000_i2c_write16(&client, 1227, 1);
dib9000_i2c_write16(&client, 1227, 0);
client.i2c_addr = new_addr;
dib9000_i2c_write16(&client, 1817, 3);
dib9000_i2c_write16(&client, 1796, 0);
dib9000_i2c_write16(&client, 1227, 1);
dib9000_i2c_write16(&client, 1227, 0);
if (dib9000_identify(&client) == 0) {
client.i2c_addr = default_addr;
if (dib9000_identify(&client) == 0) {
dprintk("DiB9000 #%d: not identified", k);
ret = -EIO;
goto error;
}
}
dib9000_i2c_write16(&client, 1795, (1 << 10) | (4 << 6));
dib9000_i2c_write16(&client, 1794, (new_addr << 2) | 2);
dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr);
}
for (k = 0; k < no_of_demods; k++) {
new_addr = first_addr | (k << 1);
client.i2c_addr = new_addr;
dib9000_i2c_write16(&client, 1794, (new_addr << 2));
dib9000_i2c_write16(&client, 1795, 0);
}
error:
kfree(client.i2c_read_buffer);
error_memory:
kfree(client.i2c_write_buffer);
return ret;
}
EXPORT_SYMBOL(dib9000_i2c_enumeration);
int dib9000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave)
{
struct dib9000_state *state = fe->demodulator_priv;
u8 index_frontend = 1;
while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL))
index_frontend++;
if (index_frontend < MAX_NUMBER_OF_FRONTENDS) {
dprintk("set slave fe %p to index %i", fe_slave, index_frontend);
state->fe[index_frontend] = fe_slave;
return 0;
}
dprintk("too many slave frontend");
return -ENOMEM;
}
EXPORT_SYMBOL(dib9000_set_slave_frontend);
int dib9000_remove_slave_frontend(struct dvb_frontend *fe)
{
struct dib9000_state *state = fe->demodulator_priv;
u8 index_frontend = 1;
while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL))
index_frontend++;
if (index_frontend != 1) {
dprintk("remove slave fe %p (index %i)", state->fe[index_frontend - 1], index_frontend - 1);
state->fe[index_frontend] = NULL;
return 0;
}
dprintk("no frontend to be removed");
return -ENODEV;
}
EXPORT_SYMBOL(dib9000_remove_slave_frontend);
struct dvb_frontend *dib9000_get_slave_frontend(struct dvb_frontend *fe, int slave_index)
{
struct dib9000_state *state = fe->demodulator_priv;
if (slave_index >= MAX_NUMBER_OF_FRONTENDS)
return NULL;
return state->fe[slave_index];
}
EXPORT_SYMBOL(dib9000_get_slave_frontend);
static struct dvb_frontend_ops dib9000_ops;
struct dvb_frontend *dib9000_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, const struct dib9000_config *cfg)
{
struct dvb_frontend *fe;
struct dib9000_state *st;
st = kzalloc(sizeof(struct dib9000_state), GFP_KERNEL);
if (st == NULL)
return NULL;
fe = kzalloc(sizeof(struct dvb_frontend), GFP_KERNEL);
if (fe == NULL) {
kfree(st);
return NULL;
}
memcpy(&st->chip.d9.cfg, cfg, sizeof(struct dib9000_config));
st->i2c.i2c_adap = i2c_adap;
st->i2c.i2c_addr = i2c_addr;
st->i2c.i2c_write_buffer = st->i2c_write_buffer;
st->i2c.i2c_read_buffer = st->i2c_read_buffer;
st->gpio_dir = DIB9000_GPIO_DEFAULT_DIRECTIONS;
st->gpio_val = DIB9000_GPIO_DEFAULT_VALUES;
st->gpio_pwm_pos = DIB9000_GPIO_DEFAULT_PWM_POS;
mutex_init(&st->platform.risc.mbx_if_lock);
mutex_init(&st->platform.risc.mbx_lock);
mutex_init(&st->platform.risc.mem_lock);
mutex_init(&st->platform.risc.mem_mbx_lock);
mutex_init(&st->demod_lock);
st->get_frontend_internal = 0;
st->pid_ctrl_index = -2;
st->fe[0] = fe;
fe->demodulator_priv = st;
memcpy(&st->fe[0]->ops, &dib9000_ops, sizeof(struct dvb_frontend_ops));
/* Ensure the output mode remains at the previous default if it's
* not specifically set by the caller.
*/
if ((st->chip.d9.cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->chip.d9.cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
st->chip.d9.cfg.output_mode = OUTMODE_MPEG2_FIFO;
if (dib9000_identify(&st->i2c) == 0)
goto error;
dibx000_init_i2c_master(&st->i2c_master, DIB7000MC, st->i2c.i2c_adap, st->i2c.i2c_addr);
st->tuner_adap.dev.parent = i2c_adap->dev.parent;
strncpy(st->tuner_adap.name, "DIB9000_FW TUNER ACCESS", sizeof(st->tuner_adap.name));
st->tuner_adap.algo = &dib9000_tuner_algo;
st->tuner_adap.algo_data = NULL;
i2c_set_adapdata(&st->tuner_adap, st);
if (i2c_add_adapter(&st->tuner_adap) < 0)
goto error;
st->component_bus.dev.parent = i2c_adap->dev.parent;
strncpy(st->component_bus.name, "DIB9000_FW COMPONENT BUS ACCESS", sizeof(st->component_bus.name));
st->component_bus.algo = &dib9000_component_bus_algo;
st->component_bus.algo_data = NULL;
st->component_bus_speed = 340;
i2c_set_adapdata(&st->component_bus, st);
if (i2c_add_adapter(&st->component_bus) < 0)
goto component_bus_add_error;
dib9000_fw_reset(fe);
return fe;
component_bus_add_error:
i2c_del_adapter(&st->tuner_adap);
error:
kfree(st);
return NULL;
}
EXPORT_SYMBOL(dib9000_attach);
static struct dvb_frontend_ops dib9000_ops = {
.delsys = { SYS_DVBT },
.info = {
.name = "DiBcom 9000",
.frequency_min = 44250000,
.frequency_max = 867250000,
.frequency_stepsize = 62500,
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO,
},
.release = dib9000_release,
.init = dib9000_wakeup,
.sleep = dib9000_sleep,
.set_frontend = dib9000_set_frontend,
.get_tune_settings = dib9000_fe_get_tune_settings,
.get_frontend = dib9000_get_frontend,
.read_status = dib9000_read_status,
.read_ber = dib9000_read_ber,
.read_signal_strength = dib9000_read_signal_strength,
.read_snr = dib9000_read_snr,
.read_ucblocks = dib9000_read_unc_blocks,
};
MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
MODULE_AUTHOR("Olivier Grenie <ogrenie@dibcom.fr>");
MODULE_DESCRIPTION("Driver for the DiBcom 9000 COFDM demodulator");
MODULE_LICENSE("GPL");