M7350/kernel/drivers/i2c/busses/i2c-msm-v2.c
2024-09-09 08:57:42 +00:00

2978 lines
79 KiB
C

/* Copyright (c) 2014-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/*
* I2C controller driver for Qualcomm Technologies Inc platforms
*/
#define pr_fmt(fmt) "#%d " fmt "\n", __LINE__
#include <linux/module.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/mutex.h>
#include <linux/timer.h>
#include <linux/time.h>
#include <linux/slab.h>
#include <linux/pm_runtime.h>
#include <linux/dma-mapping.h>
#include <linux/i2c.h>
#include <linux/of.h>
#include <linux/msm-sps.h>
#include <linux/msm-bus.h>
#include <linux/msm-bus-board.h>
#include <linux/i2c/i2c-msm-v2.h>
#ifdef DEBUG
static const enum msm_i2_debug_level DEFAULT_DBG_LVL = MSM_DBG;
#else
static const enum msm_i2_debug_level DEFAULT_DBG_LVL = MSM_ERR;
#endif
/* Forward declarations */
static bool i2c_msm_xfer_next_buf(struct i2c_msm_ctrl *ctrl);
static int i2c_msm_xfer_wait_for_completion(struct i2c_msm_ctrl *ctrl,
struct completion *complete);
static int i2c_msm_pm_resume(struct device *dev);
static void i2c_msm_pm_suspend(struct device *dev);
static void i2c_msm_clk_path_init(struct i2c_msm_ctrl *ctrl);
/* string table for enum i2c_msm_xfer_mode_id */
const char * const i2c_msm_mode_str_tbl[] = {
"FIFO", "BLOCK", "DMA", "None",
};
static const u32 i2c_msm_fifo_block_sz_tbl[] = {16, 16 , 32, 0};
/* from enum i2c_msm_xfer_mode_id to qup_io_modes register values */
static const u32 i2c_msm_mode_to_reg_tbl[] = {
0x0, /* map I2C_MSM_XFER_MODE_FIFO -> binary 00 */
0x1, /* map I2C_MSM_XFER_MODE_BLOCK -> binary 01 */
0x3 /* map I2C_MSM_XFER_MODE_DMA -> binary 11 */
};
const char *i2c_msm_err_str_table[] = {
[I2C_MSM_NO_ERR] = "NONE",
[I2C_MSM_ERR_NACK] = "NACK: slave not responding, ensure its powered",
[I2C_MSM_ERR_ARB_LOST] = "ARB_LOST",
[I2C_MSM_ERR_BUS_ERR] = "BUS ERROR:noisy bus/unexpected start/stop tag",
[I2C_MSM_ERR_TIMEOUT] = "TIMEOUT_ERROR",
[I2C_MSM_ERR_CORE_CLK] = "CLOCK OFF: Check Core Clock",
[I2C_MSM_ERR_OVR_UNDR_RUN] = "OVER_UNDER_RUN_ERROR",
};
static void i2c_msm_dbg_dump_diag(struct i2c_msm_ctrl *ctrl,
bool use_param_vals, u32 status, u32 qup_op)
{
struct i2c_msm_xfer *xfer = &ctrl->xfer;
const char *str = i2c_msm_err_str_table[xfer->err];
char buf[I2C_MSM_REG_2_STR_BUF_SZ];
if (!use_param_vals) {
void __iomem *base = ctrl->rsrcs.base;
status = readl_relaxed(base + QUP_I2C_STATUS);
qup_op = readl_relaxed(base + QUP_OPERATIONAL);
}
if (xfer->err == I2C_MSM_ERR_TIMEOUT) {
/*
* if we are not the bus master or SDA/SCL is low then it may be
* that slave is pulling the lines low. Otherwise it is likely a
* GPIO issue
*/
if (!(status & QUP_BUS_MASTER))
snprintf(buf, I2C_MSM_REG_2_STR_BUF_SZ,
"%s(val:%dmsec) misconfigured GPIO or slave pulling bus line(s) low\n",
str, jiffies_to_msecs(xfer->timeout));
else
snprintf(buf, I2C_MSM_REG_2_STR_BUF_SZ,
"%s(val:%dmsec)", str, jiffies_to_msecs(xfer->timeout));
str = buf;
}
/* dump xfer details */
dev_err(ctrl->dev,
"%s: msgs(n:%d cur:%d %s) bc(rx:%zu tx:%zu) mode:%s slv_addr:0x%0x MSTR_STS:0x%08x OPER:0x%08x\n",
str, xfer->msg_cnt, xfer->cur_buf.msg_idx,
xfer->cur_buf.is_rx ? "rx" : "tx", xfer->rx_cnt, xfer->tx_cnt,
i2c_msm_mode_str_tbl[xfer->mode_id], xfer->msgs->addr,
status, qup_op);
}
static u32 i2c_msm_reg_io_modes_out_blk_sz(u32 qup_io_modes)
{
return i2c_msm_fifo_block_sz_tbl[qup_io_modes & 0x3];
}
static u32 i2c_msm_reg_io_modes_in_blk_sz(u32 qup_io_modes)
{
return i2c_msm_fifo_block_sz_tbl[BITS_AT(qup_io_modes, 5, 2)];
}
static const u32 i2c_msm_fifo_sz_table[] = {2, 4 , 8, 16};
static void i2c_msm_qup_fifo_calc_size(struct i2c_msm_ctrl *ctrl)
{
u32 reg_data, output_fifo_size, input_fifo_size;
struct i2c_msm_xfer_mode_fifo *fifo = &ctrl->xfer.fifo;
/* Gurad to read fifo size only once. It hard wired and never changes */
if (fifo->input_fifo_sz && fifo->output_fifo_sz)
return;
reg_data = readl_relaxed(ctrl->rsrcs.base + QUP_IO_MODES);
output_fifo_size = BITS_AT(reg_data, 2, 2);
input_fifo_size = BITS_AT(reg_data, 7, 2);
fifo->input_fifo_sz = i2c_msm_reg_io_modes_in_blk_sz(reg_data) *
i2c_msm_fifo_sz_table[input_fifo_size];
fifo->output_fifo_sz = i2c_msm_reg_io_modes_out_blk_sz(reg_data) *
i2c_msm_fifo_sz_table[output_fifo_size];
i2c_msm_dbg(ctrl, MSM_PROF, "QUP input-sz:%zu, input-sz:%zu",
fifo->input_fifo_sz, fifo->output_fifo_sz);
}
/*
* i2c_msm_tag_byte: accessor for tag as four bytes array
*/
static u8 *i2c_msm_tag_byte(struct i2c_msm_tag *tag, int byte_n)
{
return ((u8 *)tag) + byte_n;
}
/*
* i2c_msm_buf_to_ptr: translates a xfer buf to a pointer into the i2c_msg data
*/
static u8 *i2c_msm_buf_to_ptr(struct i2c_msm_xfer_buf *buf)
{
struct i2c_msm_xfer *xfer =
container_of(buf, struct i2c_msm_xfer, cur_buf);
struct i2c_msg *msg = xfer->msgs + buf->msg_idx;
return msg->buf + buf->byte_idx;
}
/*
* tag_lookup_table[is_new_addr][is_last][is_rx]
* @is_new_addr Is start tag required? (which requires two more bytes.)
* @is_last Use the XXXXX_N_STOP tag varient
* @is_rx READ/WRITE
*/
static const struct i2c_msm_tag tag_lookup_table[2][2][2] = {
{{{QUP_TAG2_DATA_WRITE , 2},
{QUP_TAG2_DATA_READ , 2} },
/* last buffer */
{{QUP_TAG2_DATA_WRITE_N_STOP , 2},
{QUP_TAG2_DATA_READ_N_STOP , 2} } } ,
/* new addr */
{{{QUP_TAG2_START | (QUP_TAG2_DATA_WRITE << 16), 4},
{QUP_TAG2_START | (QUP_TAG2_DATA_READ << 16), 4} },
/* last buffer + new addr */
{{QUP_TAG2_START | (QUP_TAG2_DATA_WRITE_N_STOP << 16), 4},
{QUP_TAG2_START | (QUP_TAG2_DATA_READ_N_STOP << 16), 4} } },
};
/*
* i2c_msm_tag_create: format a qup tag ver2
*/
static struct i2c_msm_tag i2c_msm_tag_create(bool is_new_addr, bool is_last_buf,
bool is_rx, u8 buf_len, u8 slave_addr)
{
struct i2c_msm_tag tag;
/* Normalize booleans to 1 or 0 */
is_new_addr = is_new_addr ? 1 : 0;
is_last_buf = is_last_buf ? 1 : 0;
is_rx = is_rx ? 1 : 0;
tag = tag_lookup_table[is_new_addr][is_last_buf][is_rx];
/* fill in the non-const value: the address and the length */
if (tag.len == I2C_MSM_TAG2_MAX_LEN) {
*i2c_msm_tag_byte(&tag, 1) = slave_addr;
*i2c_msm_tag_byte(&tag, 3) = buf_len;
} else {
*i2c_msm_tag_byte(&tag, 1) = buf_len;
}
return tag;
}
static int
i2c_msm_qup_state_wait_valid(struct i2c_msm_ctrl *ctrl,
enum i2c_msm_qup_state state, bool only_valid)
{
u32 status;
void __iomem *base = ctrl->rsrcs.base;
int ret = 0;
int read_cnt = 0;
do {
status = readl_relaxed(base + QUP_STATE);
++read_cnt;
/*
* If only valid bit needs to be checked, requested state is
* 'don't care'
*/
if (status & QUP_STATE_VALID) {
if (only_valid)
goto poll_valid_end;
else if ((state & QUP_I2C_MAST_GEN) &&
(status & QUP_I2C_MAST_GEN))
goto poll_valid_end;
else if ((status & QUP_STATE_MASK) == state)
goto poll_valid_end;
}
/*
* Sleeping for 1-1.5 ms for every 100 iterations and break if
* iterations crosses the 1500 marks allows roughly 10-15 msec
* of time to get the core to valid state.
*/
if (!(read_cnt % 100))
usleep_range(1000, 1500);
} while (read_cnt <= 1500);
ret = -ETIMEDOUT;
dev_err(ctrl->dev,
"error timeout on polling for valid state. check core_clk\n");
poll_valid_end:
if (!only_valid)
i2c_msm_prof_evnt_add(ctrl, MSM_DBG, I2C_MSM_VALID_END,
/* aggregate ret and state */
(((-ret) & 0xff) | ((state & 0xf) << 16)),
read_cnt, status);
return ret;
}
static int i2c_msm_qup_state_set(struct i2c_msm_ctrl *ctrl,
enum i2c_msm_qup_state state)
{
if (i2c_msm_qup_state_wait_valid(ctrl, 0, true))
return -EIO;
writel_relaxed(state, ctrl->rsrcs.base + QUP_STATE);
if (i2c_msm_qup_state_wait_valid(ctrl, state, false))
return -EIO;
return 0;
}
static int i2c_msm_qup_sw_reset(struct i2c_msm_ctrl *ctrl)
{
int ret;
writel_relaxed(1, ctrl->rsrcs.base + QUP_SW_RESET);
/*
* Ensure that QUP that reset state is written before waiting for a the
* reset state to be valid.
*/
wmb();
ret = i2c_msm_qup_state_wait_valid(ctrl, QUP_STATE_RESET, false);
if (ret) {
if (atomic_read(&ctrl->xfer.is_active))
ctrl->xfer.err = I2C_MSM_ERR_CORE_CLK;
dev_err(ctrl->dev, "error on issuing QUP software-reset\n");
}
return ret;
}
/*
* i2c_msm_qup_xfer_init_reset_state: setup QUP registers for the next run state
* @pre QUP must be in reset state.
* @pre xfer->mode_id is set to the chosen transfer state
* @post update values in QUP_MX_*_COUNT, QUP_CONFIG, QUP_IO_MODES,
* and QUP_OPERATIONAL_MASK registers
*/
static void
i2c_msm_qup_xfer_init_reset_state(struct i2c_msm_ctrl *ctrl)
{
struct i2c_msm_xfer *xfer = &ctrl->xfer;
void __iomem * const base = ctrl->rsrcs.base;
u32 mx_rd_cnt = 0;
u32 mx_wr_cnt = 0;
u32 mx_in_cnt = 0;
u32 mx_out_cnt = 0;
u32 no_input = 0;
u32 no_output = 0;
u32 input_mode = i2c_msm_mode_to_reg_tbl[xfer->mode_id] << 12;
u32 output_mode = i2c_msm_mode_to_reg_tbl[xfer->mode_id] << 10;
u32 config_reg;
u32 io_modes_reg;
u32 op_mask;
u32 rx_cnt = 0;
u32 tx_cnt = 0;
/*
* DMA mode:
* 1. QUP_MX_*_COUNT must be zero in all cases.
* 2. both QUP_NO_INPUT and QUP_NO_OUPUT are unset.
* FIFO mode:
* 1. QUP_MX_INPUT_COUNT and QUP_MX_OUTPUT_COUNT are zero
* 2. QUP_MX_READ_COUNT and QUP_MX_WRITE_COUNT reflect true count
* 3. QUP_NO_INPUT and QUP_NO_OUPUT are set according to counts
*/
if (xfer->mode_id != I2C_MSM_XFER_MODE_DMA) {
rx_cnt = xfer->rx_cnt + xfer->rx_ovrhd_cnt;
tx_cnt = xfer->tx_cnt + xfer->tx_ovrhd_cnt;
no_input = rx_cnt ? 0 : QUP_NO_INPUT;
switch (xfer->mode_id) {
case I2C_MSM_XFER_MODE_FIFO:
mx_rd_cnt = rx_cnt;
mx_wr_cnt = tx_cnt;
break;
case I2C_MSM_XFER_MODE_BLOCK:
mx_in_cnt = rx_cnt;
mx_out_cnt = tx_cnt;
break;
default:
break;
}
}
/* init DMA/BLOCK modes counter */
writel_relaxed(mx_in_cnt, base + QUP_MX_INPUT_COUNT);
writel_relaxed(mx_out_cnt, base + QUP_MX_OUTPUT_COUNT);
/* int FIFO mode counter */
writel_relaxed(mx_rd_cnt, base + QUP_MX_READ_COUNT);
writel_relaxed(mx_wr_cnt, base + QUP_MX_WRITE_COUNT);
/*
* Set QUP mini-core to I2C tags ver-2
* sets NO_INPUT / NO_OUTPUT as needed
*/
config_reg = readl_relaxed(base + QUP_CONFIG);
config_reg &=
~(QUP_NO_INPUT | QUP_NO_OUPUT | QUP_N_MASK | QUP_MINI_CORE_MASK);
config_reg |= (no_input | no_output | QUP_N_VAL |
QUP_MINI_CORE_I2C_VAL);
writel_relaxed(config_reg, base + QUP_CONFIG);
/*
* Turns-on packing/unpacking
* sets NO_INPUT / NO_OUTPUT as needed
*/
io_modes_reg = readl_relaxed(base + QUP_IO_MODES);
io_modes_reg &=
~(QUP_INPUT_MODE | QUP_OUTPUT_MODE | QUP_PACK_EN | QUP_UNPACK_EN
| QUP_OUTPUT_BIT_SHIFT_EN);
io_modes_reg |=
(input_mode | output_mode | QUP_PACK_EN | QUP_UNPACK_EN);
writel_relaxed(io_modes_reg, base + QUP_IO_MODES);
/*
* mask INPUT and OUTPUT service flags in to prevent IRQs on FIFO status
* change on DMA-mode transfers
*/
op_mask = (xfer->mode_id == I2C_MSM_XFER_MODE_DMA) ?
(QUP_INPUT_SERVICE_MASK | QUP_OUTPUT_SERVICE_MASK) : 0 ;
writel_relaxed(op_mask, base + QUP_OPERATIONAL_MASK);
/* Ensure that QUP configuration is written before leaving this func */
wmb();
}
/*
* i2c_msm_clk_div_fld:
* @clk_freq_out output clock frequency
* @fs_div fs divider value
* @ht_div high time divider value
*/
struct i2c_msm_clk_div_fld {
u32 clk_freq_out;
u8 fs_div;
u8 ht_div;
};
/*
* divider values as per HW Designers
*/
static struct i2c_msm_clk_div_fld i2c_msm_clk_div_map[] = {
{KHz(100), 124, 62},
{KHz(400), 28, 14},
{KHz(1000), 8, 5},
};
/*
* @return zero on success
* @fs_div when zero use value from table above, otherwise use given value
* @ht_div when zero use value from table above, otherwise use given value
*
* Format the value to be configured into the clock divider register. This
* register is configured every time core is moved from reset to run state.
*/
static int i2c_msm_set_mstr_clk_ctl(struct i2c_msm_ctrl *ctrl, int fs_div,
int ht_div, int noise_rjct_scl, int noise_rjct_sda)
{
int ret = 0;
int i;
u32 reg_val = 0;
struct i2c_msm_clk_div_fld *itr = i2c_msm_clk_div_map;
/* set noise rejection values for scl and sda */
reg_val = I2C_MSM_SCL_NOISE_REJECTION(reg_val, noise_rjct_scl);
reg_val = I2C_MSM_SDA_NOISE_REJECTION(reg_val, noise_rjct_sda);
/*
* find matching freq and set divider values unless they are forced
* from parametr list
*/
for (i = 0; i < ARRAY_SIZE(i2c_msm_clk_div_map); ++i, ++itr) {
if (ctrl->rsrcs.clk_freq_out == itr->clk_freq_out) {
if (!fs_div)
fs_div = itr->fs_div;
if (!ht_div)
ht_div = itr->ht_div;
break;
}
}
if (!fs_div) {
dev_err(ctrl->dev, "For non-standard clock freq:%dKHz\n"
"clk divider value fs_div should be supply by client through\n"
"device tree\n", (ctrl->rsrcs.clk_freq_out / 1000));
return -EINVAL;
}
/* format values in clk-ctl cache */
ctrl->mstr_clk_ctl = (reg_val & (~0xff07ff)) | ((ht_div & 0xff) << 16)
|(fs_div & 0xff);
return ret;
}
/*
* i2c_msm_qup_xfer_init_run_state: set qup regs which must be set *after* reset
*/
static void i2c_msm_qup_xfer_init_run_state(struct i2c_msm_ctrl *ctrl)
{
void __iomem *base = ctrl->rsrcs.base;
writel_relaxed(ctrl->mstr_clk_ctl, base + QUP_I2C_MASTER_CLK_CTL);
/* Ensure that QUP configuration is written before leaving this func */
wmb();
if (ctrl->dbgfs.dbg_lvl == MSM_DBG) {
dev_info(ctrl->dev,
"QUP state after programming for next transfers\n");
i2c_msm_dbg_qup_reg_dump(ctrl);
}
}
static void i2c_msm_fifo_wr_word(struct i2c_msm_ctrl *ctrl, u32 data)
{
writel_relaxed(data, ctrl->rsrcs.base + QUP_OUT_FIFO_BASE);
i2c_msm_dbg(ctrl, MSM_DBG, "OUT-FIFO:0x%08x", data);
}
static u32 i2c_msm_fifo_rd_word(struct i2c_msm_ctrl *ctrl, u32 *data)
{
u32 val;
val = readl_relaxed(ctrl->rsrcs.base + QUP_IN_FIFO_BASE);
i2c_msm_dbg(ctrl, MSM_DBG, "IN-FIFO :0x%08x", val);
if (data)
*data = val;
return val;
}
/*
* i2c_msm_fifo_wr_buf_flush:
*/
static void i2c_msm_fifo_wr_buf_flush(struct i2c_msm_ctrl *ctrl)
{
struct i2c_msm_xfer_mode_fifo *fifo = &ctrl->xfer.fifo;
u32 *word;
if (!fifo->out_buf_idx)
return;
word = (u32 *) fifo->out_buf;
i2c_msm_fifo_wr_word(ctrl, *word);
fifo->out_buf_idx = 0;
*word = 0;
}
/*
* i2c_msm_fifo_wr_buf:
*
* @len buf size (in bytes)
* @return number of bytes from buf which have been processed (written to
* FIFO or kept in out buffer and will be written later)
*/
static size_t
i2c_msm_fifo_wr_buf(struct i2c_msm_ctrl *ctrl, u8 *buf, size_t len)
{
struct i2c_msm_xfer_mode_fifo *fifo = &ctrl->xfer.fifo;
int i;
for (i = 0 ; i < len; ++i, ++buf) {
fifo->out_buf[fifo->out_buf_idx] = *buf;
++fifo->out_buf_idx;
if (fifo->out_buf_idx == 4) {
u32 *word = (u32 *) fifo->out_buf;
i2c_msm_fifo_wr_word(ctrl, *word);
fifo->out_buf_idx = 0;
*word = 0;
}
}
return i;
}
static size_t i2c_msm_fifo_xfer_wr_tag(struct i2c_msm_ctrl *ctrl)
{
struct i2c_msm_xfer_buf *buf = &ctrl->xfer.cur_buf;
size_t len = 0;
if (ctrl->dbgfs.dbg_lvl >= MSM_DBG) {
char str[I2C_MSM_REG_2_STR_BUF_SZ];
dev_info(ctrl->dev, "tag.val:0x%llx tag.len:%d %s\n",
buf->out_tag.val, buf->out_tag.len,
i2c_msm_dbg_tag_to_str(&buf->out_tag, str,
sizeof(str)));
}
if (buf->out_tag.len) {
len = i2c_msm_fifo_wr_buf(ctrl, (u8 *) &buf->out_tag.val,
buf->out_tag.len);
if (len < buf->out_tag.len)
goto done;
buf->out_tag = (struct i2c_msm_tag) {0};
}
done:
return len;
}
/*
* i2c_msm_fifo_read: reads up to fifo size into user's buf
*/
static void i2c_msm_fifo_read_xfer_buf(struct i2c_msm_ctrl *ctrl)
{
struct i2c_msm_xfer_buf *buf = &ctrl->xfer.cur_buf;
struct i2c_msg *msg = ctrl->xfer.msgs + buf->msg_idx;
u8 *p_tag_val = (u8 *) &buf->in_tag.val;
int buf_need_bc = msg->len - buf->byte_idx;
u8 word[4];
int copy_bc;
int word_idx;
int word_bc;
if (!buf->is_rx)
return;
while (buf_need_bc || buf->in_tag.len) {
i2c_msm_fifo_rd_word(ctrl, (u32 *) word);
word_bc = sizeof(word);
word_idx = 0;
/*
* copy bytes from fifo word to tag.
* @note buf->in_tag.len (max 2bytes) < word_bc (4bytes)
*/
if (buf->in_tag.len) {
copy_bc = min_t(int, word_bc, buf->in_tag.len);
memcpy(p_tag_val + buf->in_tag.len, word, copy_bc);
word_idx += copy_bc;
word_bc -= copy_bc;
buf->in_tag.len -= copy_bc;
if ((ctrl->dbgfs.dbg_lvl >= MSM_DBG) &&
!buf->in_tag.len) {
char str[64];
dev_info(ctrl->dev, "%s\n",
i2c_msm_dbg_tag_to_str(&buf->in_tag,
str, sizeof(str)));
}
}
/* copy bytes from fifo word to user's buffer */
copy_bc = min_t(int, word_bc, buf_need_bc);
memcpy(msg->buf + buf->byte_idx, word + word_idx, copy_bc);
buf->byte_idx += copy_bc;
buf_need_bc -= copy_bc;
}
}
/*
* i2c_msm_fifo_write_xfer_buf: write xfer.cur_buf (user's-buf + tag) to fifo
*/
static void i2c_msm_fifo_write_xfer_buf(struct i2c_msm_ctrl *ctrl)
{
struct i2c_msm_xfer_buf *buf = &ctrl->xfer.cur_buf;
size_t len;
size_t tag_len;
tag_len = buf->out_tag.len;
len = i2c_msm_fifo_xfer_wr_tag(ctrl);
if (len < tag_len) {
dev_err(ctrl->dev, "error on writing tag to out FIFO\n");
return;
}
if (!buf->is_rx) {
if (ctrl->dbgfs.dbg_lvl >= MSM_DBG) {
char str[I2C_MSM_REG_2_STR_BUF_SZ];
int offset = 0;
u8 *p = i2c_msm_buf_to_ptr(buf);
int i;
for (i = 0 ; i < len; ++i, ++p)
offset += snprintf(str + offset,
sizeof(str) - offset,
"0x%x ", *p);
dev_info(ctrl->dev, "data: %s\n", str);
}
len = i2c_msm_fifo_wr_buf(ctrl, i2c_msm_buf_to_ptr(buf),
buf->len);
if (len < buf->len)
dev_err(ctrl->dev, "error on xfering buf with FIFO\n");
}
}
/*
* i2c_msm_fifo_xfer_process:
*
* @pre transfer size is less then or equal to fifo size.
* @pre QUP in run state/pause
* @return zero on success
*/
static int i2c_msm_fifo_xfer_process(struct i2c_msm_ctrl *ctrl)
{
struct i2c_msm_xfer_buf first_buf = ctrl->xfer.cur_buf;
int ret;
/* load fifo while in pause state to avoid race conditions */
ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_PAUSE);
if (ret < 0)
return ret;
/* write all that goes to output fifo */
while (i2c_msm_xfer_next_buf(ctrl))
i2c_msm_fifo_write_xfer_buf(ctrl);
i2c_msm_fifo_wr_buf_flush(ctrl);
ctrl->xfer.cur_buf = first_buf;
ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_RUN);
if (ret < 0)
return ret;
/* wait for input done interrupt */
ret = i2c_msm_xfer_wait_for_completion(ctrl, &ctrl->xfer.complete);
if (ret < 0)
return ret;
/* read all from input fifo */
while (i2c_msm_xfer_next_buf(ctrl))
i2c_msm_fifo_read_xfer_buf(ctrl);
return 0;
}
/*
* i2c_msm_fifo_xfer: process transfer using fifo mode
*/
static int i2c_msm_fifo_xfer(struct i2c_msm_ctrl *ctrl)
{
int ret;
i2c_msm_dbg(ctrl, MSM_DBG, "Starting FIFO transfer");
ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_RESET);
if (ret < 0)
return ret;
/* program qup registers */
i2c_msm_qup_xfer_init_reset_state(ctrl);
ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_RUN);
if (ret < 0)
return ret;
/* program qup registers which must be set *after* reset */
i2c_msm_qup_xfer_init_run_state(ctrl);
ret = i2c_msm_fifo_xfer_process(ctrl);
return ret;
}
/*
* i2c_msm_blk_init_struct: Allocate memory and initialize blk structure
*
* @return 0 on success or error code
*/
static int i2c_msm_blk_init_struct(struct i2c_msm_ctrl *ctrl)
{
u32 reg_data = readl_relaxed(ctrl->rsrcs.base + QUP_IO_MODES);
int ret;
struct i2c_msm_xfer_mode_blk *blk = &ctrl->xfer.blk;
blk->in_blk_sz = i2c_msm_reg_io_modes_in_blk_sz(reg_data),
blk->out_blk_sz = i2c_msm_reg_io_modes_out_blk_sz(reg_data),
blk->tx_cache = kmalloc(blk->out_blk_sz, GFP_KERNEL);
if (!blk->tx_cache) {
dev_err(ctrl->dev,
"error on allocating memory for block tx_cache. malloc(size:%zu)\n",
blk->out_blk_sz);
ret = -ENOMEM;
goto out_buf_err;
}
blk->rx_cache = kmalloc(blk->in_blk_sz, GFP_KERNEL);
if (!blk->tx_cache) {
dev_err(ctrl->dev,
"error on allocating memory for block tx_cache. malloc(size:%zu)\n",
blk->out_blk_sz);
ret = -ENOMEM;
goto in_buf_err;
}
blk->is_init = true;
return 0;
in_buf_err:
kfree(blk->tx_cache);
out_buf_err:
return ret;
}
/*
* i2c_msm_blk_wr_flush: flushes internal cached block to FIFO
*
* @return 0 on success or error code
*/
static int i2c_msm_blk_wr_flush(struct i2c_msm_ctrl *ctrl)
{
int byte_num;
int ret = 0;
struct i2c_msm_xfer_mode_blk *blk = &ctrl->xfer.blk;
u32 *buf_u32_ptr;
if (!blk->tx_cache_idx)
return 0;
/* if no blocks availble wait for interrupt */
ret = i2c_msm_xfer_wait_for_completion(ctrl, &blk->wait_tx_blk);
if (ret)
return ret;
/*
* pause the controller until we finish loading the block in order to
* avoid race conditions
*/
ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_PAUSE);
if (ret < 0)
return ret;
i2c_msm_dbg(ctrl, MSM_DBG, "OUT-BLK:%*phC", blk->tx_cache_idx,
blk->tx_cache);
for (byte_num = 0; byte_num < blk->tx_cache_idx;
byte_num += sizeof(u32)) {
buf_u32_ptr = (u32 *) (blk->tx_cache + byte_num);
writel_relaxed(*buf_u32_ptr,
ctrl->rsrcs.base + QUP_OUT_FIFO_BASE);
*buf_u32_ptr = 0;
}
/* now cache is empty */
blk->tx_cache_idx = 0;
ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_RUN);
if (ret < 0)
return ret;
return ret;
}
/*
* i2c_msm_blk_wr_buf:
*
* @len buf size (in bytes)
* @return number of bytes from buf which have been processed (written to
* FIFO or kept in out buffer and will be written later)
*/
static int
i2c_msm_blk_wr_buf(struct i2c_msm_ctrl *ctrl, const u8 *buf, int len)
{
struct i2c_msm_xfer_mode_blk *blk = &ctrl->xfer.blk;
int byte_num;
int ret = 0;
for (byte_num = 0; byte_num < len; ++byte_num, ++buf) {
blk->tx_cache[blk->tx_cache_idx] = *buf;
++blk->tx_cache_idx;
/* flush cached buffer to HW FIFO when full */
if (blk->tx_cache_idx == blk->out_blk_sz) {
ret = i2c_msm_blk_wr_flush(ctrl);
if (ret)
return ret;
}
}
return byte_num;
}
/*
* i2c_msm_blk_xfer_wr_tag: buffered writing the tag of current buf
* @return zero on success
*/
static int i2c_msm_blk_xfer_wr_tag(struct i2c_msm_ctrl *ctrl)
{
struct i2c_msm_xfer_buf *buf = &ctrl->xfer.cur_buf;
int len = 0;
if (!buf->out_tag.len)
return 0;
len = i2c_msm_blk_wr_buf(ctrl, (u8 *) &buf->out_tag.val,
buf->out_tag.len);
if (len != buf->out_tag.len)
return -EFAULT;
buf->out_tag = (struct i2c_msm_tag) {0};
return 0;
}
/*
* i2c_msm_blk_wr_xfer_buf: writes ctrl->xfer.cur_buf to HW
*
* @return zero on success
*/
static int i2c_msm_blk_wr_xfer_buf(struct i2c_msm_ctrl *ctrl)
{
struct i2c_msm_xfer_buf *buf = &ctrl->xfer.cur_buf;
int len;
int ret;
ret = i2c_msm_blk_xfer_wr_tag(ctrl);
if (ret)
return ret;
len = i2c_msm_blk_wr_buf(ctrl, i2c_msm_buf_to_ptr(buf), buf->len);
if (len < buf->len)
return -EFAULT;
buf->byte_idx += len;
return 0;
}
/*
* i2c_msm_blk_rd_blk: read a block from HW FIFO to internal cache
*
* @return number of bytes read or negative error value
* @need_bc number of bytes that we need
*
* uses internal counter to keep track of number of available blocks. When
* zero, waits for interrupt.
*/
static int i2c_msm_blk_rd_blk(struct i2c_msm_ctrl *ctrl, int need_bc)
{
int byte_num;
int ret = 0;
struct i2c_msm_xfer_mode_blk *blk = &ctrl->xfer.blk;
u32 *cache_ptr = (u32 *) blk->rx_cache;
int read_bc = min_t(int, blk->in_blk_sz, need_bc);
/* wait for block avialble interrupt */
ret = i2c_msm_xfer_wait_for_completion(ctrl, &blk->wait_rx_blk);
if (ret)
return ret;
/* Read block from HW to cache */
for (byte_num = 0; byte_num < blk->in_blk_sz;
byte_num += sizeof(u32)) {
if (byte_num < read_bc) {
*cache_ptr = readl_relaxed(ctrl->rsrcs.base +
QUP_IN_FIFO_BASE);
++cache_ptr;
}
}
blk->rx_cache_idx = 0;
return read_bc;
}
/*
* i2c_msm_blk_rd_xfer_buf: fill in ctrl->xfer.cur_buf from HW
*
* @return zero on success
*/
static int i2c_msm_blk_rd_xfer_buf(struct i2c_msm_ctrl *ctrl)
{
struct i2c_msm_xfer_mode_blk *blk = &ctrl->xfer.blk;
struct i2c_msm_xfer_buf *buf = &ctrl->xfer.cur_buf;
struct i2c_msg *msg = ctrl->xfer.msgs + buf->msg_idx;
int copy_bc; /* number of bytes to copy to user's buffer */
int cache_avail_bc;
int ret = 0;
/* write tag to out FIFO */
ret = i2c_msm_blk_xfer_wr_tag(ctrl);
if (ret)
return ret;
i2c_msm_blk_wr_flush(ctrl);
while (buf->len || buf->in_tag.len) {
cache_avail_bc = i2c_msm_blk_rd_blk(ctrl,
buf->len + buf->in_tag.len);
i2c_msm_dbg(ctrl, MSM_DBG, "IN-BLK:%*phC\n", cache_avail_bc,
blk->rx_cache + blk->rx_cache_idx);
if (cache_avail_bc < 0)
return cache_avail_bc;
/* discard tag from input FIFO */
if (buf->in_tag.len) {
int discard_bc = min_t(int, cache_avail_bc,
buf->in_tag.len);
blk->rx_cache_idx += discard_bc;
buf->in_tag.len -= discard_bc;
cache_avail_bc -= discard_bc;
}
/* copy bytes from cached block to user's buffer */
copy_bc = min_t(int, cache_avail_bc, buf->len);
memcpy(msg->buf + buf->byte_idx,
blk->rx_cache + blk->rx_cache_idx, copy_bc);
blk->rx_cache_idx += copy_bc;
buf->len -= copy_bc;
buf->byte_idx += copy_bc;
}
return ret;
}
/*
* i2c_msm_blk_xfer: process transfer using block mode
*/
static int i2c_msm_blk_xfer(struct i2c_msm_ctrl *ctrl)
{
int ret = 0;
struct i2c_msm_xfer_buf *buf = &ctrl->xfer.cur_buf;
struct i2c_msm_xfer_mode_blk *blk = &ctrl->xfer.blk;
if (!blk->is_init) {
ret = i2c_msm_blk_init_struct(ctrl);
if (!blk->is_init)
return ret;
}
init_completion(&blk->wait_rx_blk);
init_completion(&blk->wait_tx_blk);
/* tx_cnt > 0 always */
blk->complete_mask = QUP_MAX_OUTPUT_DONE_FLAG;
if (ctrl->xfer.rx_cnt)
blk->complete_mask |= QUP_MAX_INPUT_DONE_FLAG;
/* initialize block mode for new transfer */
blk->tx_cache_idx = 0;
blk->rx_cache_idx = 0;
ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_RESET);
if (ret < 0)
return ret;
/* program qup registers */
i2c_msm_qup_xfer_init_reset_state(ctrl);
ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_RUN);
if (ret < 0)
return ret;
/* program qup registers which must be set *after* reset */
i2c_msm_qup_xfer_init_run_state(ctrl);
while (i2c_msm_xfer_next_buf(ctrl)) {
if (buf->is_rx) {
ret = i2c_msm_blk_rd_xfer_buf(ctrl);
if (ret)
return ret;
/*
* SW workaround to wait for extra interrupt from
* hardware for last block in block mode for read
*/
if (buf->is_last) {
ret = i2c_msm_xfer_wait_for_completion(ctrl,
&blk->wait_rx_blk);
if (!ret)
complete(&ctrl->xfer.complete);
}
} else {
ret = i2c_msm_blk_wr_xfer_buf(ctrl);
if (ret)
return ret;
}
}
i2c_msm_blk_wr_flush(ctrl);
return i2c_msm_xfer_wait_for_completion(ctrl, &ctrl->xfer.complete);
}
/*
* i2c_msm_dma_xfer_prepare: map DMA buffers, and create tags.
* @return zero on success or negative error value
*/
static int i2c_msm_dma_xfer_prepare(struct i2c_msm_ctrl *ctrl)
{
struct i2c_msm_xfer_mode_dma *dma = &ctrl->xfer.dma;
struct i2c_msm_xfer_buf *buf = &ctrl->xfer.cur_buf;
struct i2c_msm_dma_chan *tx = &dma->chan[I2C_MSM_DMA_TX];
struct i2c_msm_dma_chan *rx = &dma->chan[I2C_MSM_DMA_RX];
struct i2c_msm_dma_buf *dma_buf;
int rem_buf_cnt = I2C_MSM_DMA_DESC_ARR_SIZ;
struct i2c_msg *cur_msg;
enum dma_data_direction buf_dma_dirctn;
struct i2c_msm_dma_mem data;
u8 *tag_arr_itr_vrtl_addr;
dma_addr_t tag_arr_itr_phy_addr;
tx->desc_cnt_cur = 0;
rx->desc_cnt_cur = 0;
dma->buf_arr_cnt = 0;
dma_buf = dma->buf_arr;
tag_arr_itr_vrtl_addr = ((u8 *) dma->tag_arr.vrtl_addr);
tag_arr_itr_phy_addr = dma->tag_arr.phy_addr;
for (; i2c_msm_xfer_next_buf(ctrl) && rem_buf_cnt;
++dma_buf,
tag_arr_itr_phy_addr += sizeof(dma_addr_t),
tag_arr_itr_vrtl_addr += sizeof(dma_addr_t)) {
/* dma-map the client's message */
cur_msg = ctrl->xfer.msgs + buf->msg_idx;
data.vrtl_addr = cur_msg->buf + buf->byte_idx;
if (buf->is_rx) {
buf_dma_dirctn = DMA_FROM_DEVICE;
rx->desc_cnt_cur += 2; /* msg + tag */
tx->desc_cnt_cur += 1; /* tag */
} else {
buf_dma_dirctn = DMA_TO_DEVICE;
tx->desc_cnt_cur += 2; /* msg + tag */
}
/* for last buffer in a transfer msg */
if (buf->is_last) {
/* add ovrhead byte cnt for tags specific to DMA mode */
ctrl->xfer.rx_ovrhd_cnt += 2; /* EOT+FLUSH_STOP tags*/
ctrl->xfer.tx_ovrhd_cnt += 2; /* EOT+FLUSH_STOP tags */
/* increment rx desc cnt to read off tags and
* increment tx desc cnt to queue EOT+FLUSH_STOP tags */
tx->desc_cnt_cur++;
rx->desc_cnt_cur++;
}
if ((rx->desc_cnt_cur >= I2C_MSM_DMA_RX_SZ) ||
(tx->desc_cnt_cur >= I2C_MSM_DMA_TX_SZ))
return -ENOMEM;
data.phy_addr = dma_map_single(ctrl->dev, data.vrtl_addr,
buf->len, buf_dma_dirctn);
if (dma_mapping_error(ctrl->dev, data.phy_addr)) {
dev_err(ctrl->dev,
"error DMA mapping DMA buffers, err:%lld buf_vrtl:0x%p data_len:%d dma_dir:%s\n",
(u64) data.phy_addr, data.vrtl_addr, buf->len,
((buf_dma_dirctn == DMA_FROM_DEVICE)
? "DMA_FROM_DEVICE" : "DMA_TO_DEVICE"));
return -EFAULT;
}
/* copy 8 bytes. Only tag.len bytes will be used */
*((u64 *)tag_arr_itr_vrtl_addr) = buf->out_tag.val;
i2c_msm_dbg(ctrl, MSM_DBG,
"vrtl:0x%p phy:0x%llx val:0x%llx sizeof(dma_addr_t):%zu",
tag_arr_itr_vrtl_addr, (u64) tag_arr_itr_phy_addr,
*((u64 *)tag_arr_itr_vrtl_addr), sizeof(dma_addr_t));
/*
* create dma buf, in the dma buf arr, based on the buf created
* by i2c_msm_xfer_next_buf()
*/
*dma_buf = (struct i2c_msm_dma_buf) {
.ptr = data,
.len = buf->len,
.dma_dir = buf_dma_dirctn,
.is_rx = buf->is_rx,
.is_last = buf->is_last,
.tag = (struct i2c_msm_dma_tag) {
.buf = tag_arr_itr_phy_addr,
.len = buf->out_tag.len,
},
};
++dma->buf_arr_cnt;
--rem_buf_cnt;
}
return 0;
}
/*
* i2c_msm_dma_xfer_unprepare: DAM unmap buffers.
*/
static void i2c_msm_dma_xfer_unprepare(struct i2c_msm_ctrl *ctrl)
{
int i;
struct i2c_msm_dma_buf *buf_itr = ctrl->xfer.dma.buf_arr;
for (i = 0 ; i < ctrl->xfer.dma.buf_arr_cnt ; ++i, ++buf_itr)
dma_unmap_single(ctrl->dev, buf_itr->ptr.phy_addr, buf_itr->len,
buf_itr->dma_dir);
}
static void i2c_msm_dma_callback_xfer_complete(void *dma_async_param)
{
struct i2c_msm_ctrl *ctrl = dma_async_param;
complete(&ctrl->xfer.complete);
}
/*
* i2c_msm_dma_xfer_process: Queue transfers to DMA
* @pre 1)QUP is in run state. 2) i2c_msm_dma_xfer_prepare() was called.
* @return zero on success or negative error value
*/
static int i2c_msm_dma_xfer_process(struct i2c_msm_ctrl *ctrl)
{
struct i2c_msm_xfer_mode_dma *dma = &ctrl->xfer.dma;
struct i2c_msm_dma_chan *tx = &dma->chan[I2C_MSM_DMA_TX];
struct i2c_msm_dma_chan *rx = &dma->chan[I2C_MSM_DMA_RX];
struct scatterlist *sg_rx = NULL;
struct scatterlist *sg_rx_itr = NULL;
struct scatterlist *sg_tx = NULL;
struct scatterlist *sg_tx_itr = NULL;
struct dma_async_tx_descriptor *dma_desc_rx;
struct dma_async_tx_descriptor *dma_desc_tx;
struct i2c_msm_dma_buf *buf_itr;
int i;
int ret = 0;
i2c_msm_dbg(ctrl, MSM_DBG, "Going to enqueue %zu buffers in DMA",
dma->buf_arr_cnt);
/* Set the QUP State to pause while DMA completes the txn */
ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_PAUSE);
if (ret) {
dev_err(ctrl->dev, "transition to pause state failed before DMA transaction :%d\n",
ret);
return ret;
}
sg_tx = kzalloc(sizeof(struct scatterlist) * tx->desc_cnt_cur,
GFP_KERNEL);
if (!sg_tx) {
ret = -ENOMEM;
goto dma_xfer_end;
}
sg_init_table(sg_tx, tx->desc_cnt_cur);
sg_tx_itr = sg_tx;
sg_rx = kzalloc(sizeof(struct scatterlist) * rx->desc_cnt_cur,
GFP_KERNEL);
if (!sg_rx) {
ret = -ENOMEM;
goto dma_xfer_end;
}
sg_init_table(sg_rx, rx->desc_cnt_cur);
sg_rx_itr = sg_rx;
buf_itr = dma->buf_arr;
for (i = 0; i < dma->buf_arr_cnt ; ++i, ++buf_itr) {
/* Queue tag */
sg_dma_address(sg_tx_itr) = buf_itr->tag.buf;
sg_dma_len(sg_tx_itr) = buf_itr->tag.len;
++sg_tx_itr;
/* read off tag + len bytes(don't care) in input FIFO
* on read transfer
*/
if (buf_itr->is_rx) {
/* rid of input tag */
sg_dma_address(sg_rx_itr) =
ctrl->xfer.dma.input_tag.phy_addr;
sg_dma_len(sg_rx_itr) = QUP_BUF_OVERHD_BC;
++sg_rx_itr;
/* queue data buffer */
sg_dma_address(sg_rx_itr) = buf_itr->ptr.phy_addr;
sg_dma_len(sg_rx_itr) = buf_itr->len;
++sg_rx_itr;
} else {
sg_dma_address(sg_tx_itr) = buf_itr->ptr.phy_addr;
sg_dma_len(sg_tx_itr) = buf_itr->len;
++sg_tx_itr;
}
}
/* this tag will be copied to rx fifo */
sg_dma_address(sg_tx_itr) = dma->eot_n_flush_stop_tags.phy_addr;
sg_dma_len(sg_tx_itr) = QUP_BUF_OVERHD_BC;
++sg_tx_itr;
/*
* Reading the tag off the input fifo has side effects and
* it is mandatory for getting the DMA's interrupt.
*/
sg_dma_address(sg_rx_itr) = ctrl->xfer.dma.input_tag.phy_addr;
sg_dma_len(sg_rx_itr) = QUP_BUF_OVERHD_BC;
++sg_rx_itr;
/*
* We only want a single BAM interrupt per transfer, and we always
* add a flush-stop i2c tag as the last tx sg entry. Since the dma
* driver puts the supplied BAM flags only on the last BAM descriptor,
* the flush stop will always be the one which generate that interrupt
* and invokes the callback.
*/
dma_desc_tx = dmaengine_prep_slave_sg(tx->dma_chan,
sg_tx,
sg_tx_itr - sg_tx,
tx->dir,
(SPS_IOVEC_FLAG_EOT |
SPS_IOVEC_FLAG_NWD));
if (dma_desc_tx < 0) {
dev_err(ctrl->dev, "error dmaengine_prep_slave_sg tx:%ld\n",
PTR_ERR(dma_desc_tx));
ret = PTR_ERR(dma_desc_tx);
goto dma_xfer_end;
}
/* callback defined for tx dma desc */
dma_desc_tx->callback = i2c_msm_dma_callback_xfer_complete;
dma_desc_tx->callback_param = ctrl;
dmaengine_submit(dma_desc_tx);
dma_async_issue_pending(tx->dma_chan);
/* queue the rx dma desc */
dma_desc_rx = dmaengine_prep_slave_sg(rx->dma_chan, sg_rx,
sg_rx_itr - sg_rx, rx->dir, 0);
if (dma_desc_rx < 0) {
dev_err(ctrl->dev,
"error dmaengine_prep_slave_sg rx:%ld\n",
PTR_ERR(dma_desc_rx));
ret = PTR_ERR(dma_desc_rx);
goto dma_xfer_end;
}
dmaengine_submit(dma_desc_rx);
dma_async_issue_pending(rx->dma_chan);
/* Set the QUP State to Run when completes the txn */
ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_RUN);
if (ret) {
dev_err(ctrl->dev, "transition to run state failed before DMA transaction :%d\n",
ret);
goto dma_xfer_end;
}
ret = i2c_msm_xfer_wait_for_completion(ctrl, &ctrl->xfer.complete);
dma_xfer_end:
/* free scatter-gather lists */
kfree(sg_tx);
kfree(sg_rx);
return ret;
}
static void i2c_msm_dma_free_channels(struct i2c_msm_ctrl *ctrl)
{
int i;
for (i = 0; i < I2C_MSM_DMA_CNT; ++i) {
struct i2c_msm_dma_chan *chan = &ctrl->xfer.dma.chan[i];
if (!chan->is_init)
continue;
dma_release_channel(chan->dma_chan);
chan->is_init = false;
chan->dma_chan = NULL;
}
if (ctrl->xfer.dma.state > I2C_MSM_DMA_INIT_CORE)
ctrl->xfer.dma.state = I2C_MSM_DMA_INIT_CORE;
}
static const char * const i2c_msm_dma_chan_name[] = {"tx", "rx"};
static int i2c_msm_dmaengine_dir[] = {
DMA_MEM_TO_DEV, DMA_DEV_TO_MEM
};
static int i2c_msm_dma_init_channels(struct i2c_msm_ctrl *ctrl)
{
int ret = 0;
int i;
/* Iterate over the dma channels to initialize them */
for (i = 0; i < I2C_MSM_DMA_CNT; ++i) {
struct dma_slave_config cfg = {0};
struct i2c_msm_dma_chan *chan = &ctrl->xfer.dma.chan[i];
if (chan->is_init)
continue;
chan->name = i2c_msm_dma_chan_name[i];
chan->dma_chan = dma_request_slave_channel(ctrl->dev,
chan->name);
if (!chan->dma_chan) {
dev_err(ctrl->dev,
"error dma_request_slave_channel(dev:%s chan:%s)\n",
dev_name(ctrl->dev), chan->name);
/* free the channels if allocated before */
i2c_msm_dma_free_channels(ctrl);
return -ENODEV;
}
chan->dir = cfg.direction = i2c_msm_dmaengine_dir[i];
ret = dmaengine_slave_config(chan->dma_chan, &cfg);
if (ret) {
dev_err(ctrl->dev,
"error:%d dmaengine_slave_config(chan:%s)\n",
ret, chan->name);
dma_release_channel(chan->dma_chan);
chan->dma_chan = NULL;
i2c_msm_dma_free_channels(ctrl);
return ret;
}
chan->is_init = true;
}
ctrl->xfer.dma.state = I2C_MSM_DMA_INIT_CHAN;
return 0;
}
static void i2c_msm_dma_teardown(struct i2c_msm_ctrl *ctrl)
{
struct i2c_msm_xfer_mode_dma *dma = &ctrl->xfer.dma;
i2c_msm_dma_free_channels(ctrl);
if (dma->state > I2C_MSM_DMA_INIT_NONE)
dma_free_coherent(ctrl->dev, I2C_MSM_DMA_TAG_MEM_SZ,
dma->input_tag.vrtl_addr,
dma->input_tag.phy_addr);
dma->state = I2C_MSM_DMA_INIT_NONE;
}
static int i2c_msm_dma_init(struct i2c_msm_ctrl *ctrl)
{
struct i2c_msm_xfer_mode_dma *dma = &ctrl->xfer.dma;
u8 *tags_space_virt_addr;
dma_addr_t tags_space_phy_addr;
/* check if DMA core is initialized */
if (dma->state > I2C_MSM_DMA_INIT_NONE)
goto dma_core_is_init;
/*
* allocate dma memory for input_tag + eot_n_flush_stop_tags + tag_arr
* for more see: I2C_MSM_DMA_TAG_MEM_SZ definition
*/
tags_space_virt_addr = dma_alloc_coherent(
ctrl->dev,
I2C_MSM_DMA_TAG_MEM_SZ,
&tags_space_phy_addr,
GFP_KERNEL);
if (!tags_space_virt_addr) {
dev_err(ctrl->dev,
"error alloc %d bytes of DMAable memory for DMA tags space\n",
I2C_MSM_DMA_TAG_MEM_SZ);
return -ENOMEM;
}
/*
* set the dma-tags virtual and physical addresses:
* 1) the first tag space is for the input (throw away) tag
*/
dma->input_tag.vrtl_addr = tags_space_virt_addr;
dma->input_tag.phy_addr = tags_space_phy_addr;
/* 2) second tag space is for eot_flush_stop tag which is const value */
tags_space_virt_addr += I2C_MSM_TAG2_MAX_LEN;
tags_space_phy_addr += I2C_MSM_TAG2_MAX_LEN;
dma->eot_n_flush_stop_tags.vrtl_addr = tags_space_virt_addr;
dma->eot_n_flush_stop_tags.phy_addr = tags_space_phy_addr;
/* set eot_n_flush_stop_tags value */
*((u16 *) dma->eot_n_flush_stop_tags.vrtl_addr) =
QUP_TAG2_INPUT_EOT | (QUP_TAG2_FLUSH_STOP << 8);
/* 3) all other tag spaces are used for transfer tags */
tags_space_virt_addr += I2C_MSM_TAG2_MAX_LEN;
tags_space_phy_addr += I2C_MSM_TAG2_MAX_LEN;
dma->tag_arr.vrtl_addr = tags_space_virt_addr;
dma->tag_arr.phy_addr = tags_space_phy_addr;
dma->state = I2C_MSM_DMA_INIT_CORE;
dma_core_is_init:
return i2c_msm_dma_init_channels(ctrl);
}
static int i2c_msm_dma_xfer(struct i2c_msm_ctrl *ctrl)
{
int ret;
ret = i2c_msm_dma_init(ctrl);
if (ret) {
dev_err(ctrl->dev, "DMA Init Failed: %d\n", ret);
return ret;
}
/* dma map user's buffers and create tags */
ret = i2c_msm_dma_xfer_prepare(ctrl);
if (ret < 0) {
dev_err(ctrl->dev, "error on i2c_msm_dma_xfer_prepare():%d\n",
ret);
goto err_dma_xfer;
}
ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_RESET);
if (ret < 0)
goto err_dma_xfer;
/* program qup registers */
i2c_msm_qup_xfer_init_reset_state(ctrl);
ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_RUN);
if (ret < 0)
goto err_dma_xfer;
/* program qup registers which must be set *after* reset */
i2c_msm_qup_xfer_init_run_state(ctrl);
/* enqueue transfer buffers */
ret = i2c_msm_dma_xfer_process(ctrl);
if (ret)
dev_err(ctrl->dev,
"error i2c_msm_dma_xfer_process(n_bufs:%zu):%d\n",
ctrl->xfer.dma.buf_arr_cnt, ret);
err_dma_xfer:
i2c_msm_dma_xfer_unprepare(ctrl);
return ret;
}
/*
* i2c_msm_qup_slv_holds_bus: true when slave hold the SDA low
*/
static bool i2c_msm_qup_slv_holds_bus(struct i2c_msm_ctrl *ctrl)
{
u32 status = readl_relaxed(ctrl->rsrcs.base + QUP_I2C_STATUS);
bool slv_holds_bus = !(status & QUP_I2C_SDA) &&
(status & QUP_BUS_ACTIVE) &&
!(status & QUP_BUS_MASTER);
if (slv_holds_bus)
dev_info(ctrl->dev,
"bus lines held low by a slave detected\n");
return slv_holds_bus;
}
/*
* i2c_msm_qup_poll_bus_active_unset: poll until QUP_BUS_ACTIVE is unset
*
* @return zero when bus inactive, or nonzero on timeout.
*
* Loop and reads QUP_I2C_MASTER_STATUS until bus is inactive or timeout
* reached. Used to avoid race condition due to gap between QUP completion
* interrupt and QUP issuing stop signal on the bus.
*/
static int i2c_msm_qup_poll_bus_active_unset(struct i2c_msm_ctrl *ctrl)
{
void __iomem *base = ctrl->rsrcs.base;
ulong timeout = jiffies + msecs_to_jiffies(I2C_MSM_MAX_POLL_MSEC);
int ret = 0;
size_t read_cnt = 0;
do {
if (!(readl_relaxed(base + QUP_I2C_STATUS) & QUP_BUS_ACTIVE))
goto poll_active_end;
++read_cnt;
} while (time_before_eq(jiffies, timeout));
ret = -EBUSY;
poll_active_end:
/* second logged value is time-left before timeout or zero if expired */
i2c_msm_prof_evnt_add(ctrl, MSM_DBG, I2C_MSM_ACTV_END,
ret, (ret ? 0 : (timeout - jiffies)), read_cnt);
return ret;
}
static void i2c_msm_clk_path_vote(struct i2c_msm_ctrl *ctrl)
{
i2c_msm_clk_path_init(ctrl);
if (ctrl->rsrcs.clk_path_vote.client_hdl)
msm_bus_scale_client_update_request(
ctrl->rsrcs.clk_path_vote.client_hdl,
I2C_MSM_CLK_PATH_RESUME_VEC);
}
static void i2c_msm_clk_path_unvote(struct i2c_msm_ctrl *ctrl)
{
if (ctrl->rsrcs.clk_path_vote.client_hdl)
msm_bus_scale_client_update_request(
ctrl->rsrcs.clk_path_vote.client_hdl,
I2C_MSM_CLK_PATH_SUSPEND_VEC);
}
static void i2c_msm_clk_path_teardown(struct i2c_msm_ctrl *ctrl)
{
if (ctrl->rsrcs.clk_path_vote.client_hdl) {
msm_bus_scale_unregister_client(
ctrl->rsrcs.clk_path_vote.client_hdl);
ctrl->rsrcs.clk_path_vote.client_hdl = 0;
}
}
/*
* i2c_msm_clk_path_init_structs: internal impl detail of i2c_msm_clk_path_init
*
* allocates and initilizes the bus scaling vectors.
*/
static int i2c_msm_clk_path_init_structs(struct i2c_msm_ctrl *ctrl)
{
struct msm_bus_vectors *paths = NULL;
struct msm_bus_paths *usecases = NULL;
i2c_msm_dbg(ctrl, MSM_PROF, "initializes path clock voting structs");
paths = devm_kzalloc(ctrl->dev, sizeof(*paths) * 2, GFP_KERNEL);
if (!paths) {
dev_err(ctrl->dev,
"error msm_bus_paths.paths memory allocation failed\n");
return -ENOMEM;
}
usecases = devm_kzalloc(ctrl->dev, sizeof(*usecases) * 2, GFP_KERNEL);
if (!usecases) {
dev_err(ctrl->dev,
"error msm_bus_scale_pdata.usecases memory allocation failed\n");
goto path_init_err;
}
ctrl->rsrcs.clk_path_vote.pdata = devm_kzalloc(ctrl->dev,
sizeof(*ctrl->rsrcs.clk_path_vote.pdata),
GFP_KERNEL);
if (!ctrl->rsrcs.clk_path_vote.pdata) {
dev_err(ctrl->dev,
"error msm_bus_scale_pdata memory allocation failed\n");
goto path_init_err;
}
paths[I2C_MSM_CLK_PATH_SUSPEND_VEC] = (struct msm_bus_vectors) {
.src = ctrl->rsrcs.clk_path_vote.mstr_id,
.dst = MSM_BUS_SLAVE_EBI_CH0,
.ab = 0,
.ib = 0,
};
paths[I2C_MSM_CLK_PATH_RESUME_VEC] = (struct msm_bus_vectors) {
.src = ctrl->rsrcs.clk_path_vote.mstr_id,
.dst = MSM_BUS_SLAVE_EBI_CH0,
.ab = I2C_MSM_CLK_PATH_AVRG_BW(ctrl),
.ib = I2C_MSM_CLK_PATH_BRST_BW(ctrl),
};
usecases[I2C_MSM_CLK_PATH_SUSPEND_VEC] = (struct msm_bus_paths) {
.num_paths = 1,
.vectors = &paths[I2C_MSM_CLK_PATH_SUSPEND_VEC],
};
usecases[I2C_MSM_CLK_PATH_RESUME_VEC] = (struct msm_bus_paths) {
.num_paths = 1,
.vectors = &paths[I2C_MSM_CLK_PATH_RESUME_VEC],
};
*ctrl->rsrcs.clk_path_vote.pdata = (struct msm_bus_scale_pdata) {
.usecase = usecases,
.num_usecases = 2,
.name = dev_name(ctrl->dev),
};
return 0;
path_init_err:
devm_kfree(ctrl->dev, paths);
devm_kfree(ctrl->dev, usecases);
devm_kfree(ctrl->dev, ctrl->rsrcs.clk_path_vote.pdata);
ctrl->rsrcs.clk_path_vote.pdata = NULL;
return -ENOMEM;
}
/*
* i2c_msm_clk_path_postponed_register: reg with bus-scaling after it is probed
*
* @return zero on success
*
* Workaround: i2c driver may be probed before the bus scaling driver. Calling
* msm_bus_scale_register_client() will fail if the bus scaling driver is not
* ready yet. Thus, this function should be called not from probe but from a
* later context. Also, this function may be called more then once before
* register succeed. At this case only one error message will be logged. At boot
* time all clocks are on, so earlier i2c transactions should succeed.
*/
static int i2c_msm_clk_path_postponed_register(struct i2c_msm_ctrl *ctrl)
{
ctrl->rsrcs.clk_path_vote.client_hdl =
msm_bus_scale_register_client(ctrl->rsrcs.clk_path_vote.pdata);
if (ctrl->rsrcs.clk_path_vote.client_hdl) {
if (ctrl->rsrcs.clk_path_vote.reg_err) {
/* log a success message if an error msg was logged */
ctrl->rsrcs.clk_path_vote.reg_err = false;
dev_err(ctrl->dev,
"msm_bus_scale_register_client(mstr-id:%d):0x%x (ok)",
ctrl->rsrcs.clk_path_vote.mstr_id,
ctrl->rsrcs.clk_path_vote.client_hdl);
}
} else {
/* guard to log only one error on multiple failure */
if (!ctrl->rsrcs.clk_path_vote.reg_err) {
ctrl->rsrcs.clk_path_vote.reg_err = true;
dev_info(ctrl->dev,
"msm_bus_scale_register_client(mstr-id:%d):0 (not a problem)",
ctrl->rsrcs.clk_path_vote.mstr_id);
}
}
return ctrl->rsrcs.clk_path_vote.client_hdl ? 0 : -EAGAIN;
}
static void i2c_msm_clk_path_init(struct i2c_msm_ctrl *ctrl)
{
/*
* bail out if path voting is diabled (master_id == 0) or if it is
* already registered (client_hdl != 0)
*/
if (!ctrl->rsrcs.clk_path_vote.mstr_id ||
ctrl->rsrcs.clk_path_vote.client_hdl)
return;
/* if fail once then try no more */
if (!ctrl->rsrcs.clk_path_vote.pdata &&
i2c_msm_clk_path_init_structs(ctrl)) {
ctrl->rsrcs.clk_path_vote.mstr_id = 0;
return;
};
/* on failure try again later */
if (i2c_msm_clk_path_postponed_register(ctrl))
return;
}
/*
* i2c_msm_qup_isr: QUP interrupt service routine
*/
static irqreturn_t i2c_msm_qup_isr(int irq, void *devid)
{
struct i2c_msm_ctrl *ctrl = devid;
void __iomem *base = ctrl->rsrcs.base;
struct i2c_msm_xfer *xfer = &ctrl->xfer;
struct i2c_msm_xfer_mode_blk *blk = &ctrl->xfer.blk;
u32 i2c_status = 0;
u32 err_flags = 0;
u32 qup_op = 0;
u32 clr_flds = 0;
bool log_event = false;
bool signal_complete = false;
bool need_wmb = false;
i2c_msm_prof_evnt_add(ctrl, MSM_PROF, I2C_MSM_IRQ_BGN, irq, 0, 0);
if (!atomic_read(&ctrl->xfer.is_active)) {
dev_info(ctrl->dev, "irq:%d when no active transfer\n", irq);
return IRQ_HANDLED;
}
i2c_status = readl_relaxed(base + QUP_I2C_STATUS);
err_flags = readl_relaxed(base + QUP_ERROR_FLAGS);
qup_op = readl_relaxed(base + QUP_OPERATIONAL);
if (i2c_status & QUP_MSTR_STTS_ERR_MASK) {
signal_complete = true;
log_event = true;
/*
* If there is more than 1 error here, last one sticks.
* The order of the error set here matters.
*/
if (i2c_status & QUP_ARB_LOST)
ctrl->xfer.err = I2C_MSM_ERR_ARB_LOST;
if (i2c_status & QUP_BUS_ERROR)
ctrl->xfer.err = I2C_MSM_ERR_BUS_ERR;
if (i2c_status & QUP_PACKET_NACKED)
ctrl->xfer.err = I2C_MSM_ERR_NACK;
}
/* check for FIFO over/under runs error */
if (err_flags & QUP_ERR_FLGS_MASK)
ctrl->xfer.err = I2C_MSM_ERR_OVR_UNDR_RUN;
/* Dump the register values before reset the core */
if (ctrl->xfer.err && ctrl->dbgfs.dbg_lvl >= MSM_DBG)
i2c_msm_dbg_qup_reg_dump(ctrl);
/* clear interrupts fields */
clr_flds = i2c_status & QUP_MSTR_STTS_ERR_MASK;
if (clr_flds) {
writel_relaxed(clr_flds, base + QUP_I2C_STATUS);
need_wmb = true;
}
clr_flds = err_flags & QUP_ERR_FLGS_MASK;
if (clr_flds) {
writel_relaxed(clr_flds, base + QUP_ERROR_FLAGS);
need_wmb = true;
}
clr_flds = qup_op & (QUP_OUTPUT_SERVICE_FLAG | QUP_INPUT_SERVICE_FLAG);
if (clr_flds) {
writel_relaxed(clr_flds, base + QUP_OPERATIONAL);
need_wmb = true;
}
if (need_wmb)
/*
* flush writes that clear the interrupt flags before changing
* state to reset.
*/
wmb();
/* Reset and bail out on error */
if (ctrl->xfer.err) {
/* Flush for the tags in case of an error and DMA Mode*/
if (ctrl->xfer.mode_id == I2C_MSM_XFER_MODE_DMA) {
writel_relaxed(QUP_I2C_FLUSH, ctrl->rsrcs.base
+ QUP_STATE);
/*
* Ensure that QUP_I2C_FLUSH is written before
* State reset
*/
wmb();
}
/* HW workaround: when interrupt is level triggerd, more
* than one interrupt may fire in error cases. Thus we
* change the QUP core state to Reset immediately in the
* ISR to ward off the next interrupt.
*/
writel_relaxed(QUP_STATE_RESET, ctrl->rsrcs.base + QUP_STATE);
signal_complete = true;
log_event = true;
goto isr_end;
}
/* handle data completion */
if (xfer->mode_id == I2C_MSM_XFER_MODE_BLOCK) {
/* block ready for writing */
if (qup_op & QUP_OUTPUT_SERVICE_FLAG) {
log_event = true;
if (qup_op & QUP_OUT_BLOCK_WRITE_REQ)
complete(&blk->wait_tx_blk);
if ((qup_op & blk->complete_mask)
== blk->complete_mask) {
log_event = true;
signal_complete = true;
}
}
/* block ready for reading */
if (qup_op & QUP_INPUT_SERVICE_FLAG) {
log_event = true;
complete(&blk->wait_rx_blk);
}
} else {
/* for FIFO/DMA Mode*/
if (qup_op & QUP_MAX_INPUT_DONE_FLAG) {
log_event = true;
/*
* If last transaction is an input then the entire
* transfer is done
*/
if (ctrl->xfer.last_is_rx)
signal_complete = true;
}
/*
* Ideally, would like to check QUP_MAX_OUTPUT_DONE_FLAG.
* However, QUP_MAX_OUTPUT_DONE_FLAG is lagging behind
* QUP_OUTPUT_SERVICE_FLAG. The only reason for
* QUP_OUTPUT_SERVICE_FLAG to be set in FIFO mode is
* QUP_MAX_OUTPUT_DONE_FLAG condition. The code checking
* here QUP_OUTPUT_SERVICE_FLAG and assumes that
* QUP_MAX_OUTPUT_DONE_FLAG.
*/
if (qup_op & (QUP_OUTPUT_SERVICE_FLAG |
QUP_MAX_OUTPUT_DONE_FLAG)) {
log_event = true;
/*
* If last transaction is an output then the
* entire transfer is done
*/
if (!ctrl->xfer.last_is_rx)
signal_complete = true;
}
}
isr_end:
if (ctrl->xfer.err || (ctrl->dbgfs.dbg_lvl >= MSM_DBG))
i2c_msm_dbg_dump_diag(ctrl, true, i2c_status, qup_op);
if (log_event || (ctrl->dbgfs.dbg_lvl >= MSM_DBG))
i2c_msm_prof_evnt_add(ctrl, MSM_PROF,
I2C_MSM_IRQ_END,
i2c_status, qup_op, err_flags);
if (signal_complete)
complete(&ctrl->xfer.complete);
return IRQ_HANDLED;
}
static void i2x_msm_blk_free_cache(struct i2c_msm_ctrl *ctrl)
{
kfree(ctrl->xfer.blk.tx_cache);
kfree(ctrl->xfer.blk.rx_cache);
}
static void i2c_msm_qup_init(struct i2c_msm_ctrl *ctrl)
{
u32 state;
void __iomem *base = ctrl->rsrcs.base;
i2c_msm_prof_evnt_add(ctrl, MSM_PROF, I2C_MSM_PROF_RESET, 0, 0, 0);
i2c_msm_qup_sw_reset(ctrl);
i2c_msm_qup_state_set(ctrl, QUP_STATE_RESET);
writel_relaxed(QUP_N_VAL | QUP_MINI_CORE_I2C_VAL, base + QUP_CONFIG);
writel_relaxed(QUP_OUTPUT_OVER_RUN_ERR_EN | QUP_INPUT_UNDER_RUN_ERR_EN
| QUP_OUTPUT_UNDER_RUN_ERR_EN | QUP_INPUT_OVER_RUN_ERR_EN,
base + QUP_ERROR_FLAGS_EN);
writel_relaxed(QUP_INPUT_SERVICE_MASK | QUP_OUTPUT_SERVICE_MASK,
base + QUP_OPERATIONAL_MASK);
writel_relaxed(QUP_EN_VERSION_TWO_TAG, base + QUP_I2C_MASTER_CONFIG);
i2c_msm_qup_fifo_calc_size(ctrl);
/*
* Ensure that QUP configuration is written and that fifo size if read
* before leaving this function
*/
mb();
state = readl_relaxed(base + QUP_STATE);
if (!(state & QUP_I2C_MAST_GEN))
dev_err(ctrl->dev,
"error on verifying HW support (I2C_MAST_GEN=0)\n");
}
/*
* qup_i2c_try_recover_bus_busy: issue QUP bus clear command
*/
static int qup_i2c_try_recover_bus_busy(struct i2c_msm_ctrl *ctrl)
{
int ret;
ulong min_sleep_usec;
/* call i2c_msm_qup_init() to set core in idle state */
i2c_msm_qup_init(ctrl);
/* must be in run state for bus clear */
ret = i2c_msm_qup_state_set(ctrl, QUP_STATE_RUN);
if (ret < 0) {
dev_err(ctrl->dev, "error: bus clear fail to set run state\n");
return ret;
}
/*
* call i2c_msm_qup_xfer_init_run_state() to set clock dividers.
* the dividers are necessary for bus clear.
*/
i2c_msm_qup_xfer_init_run_state(ctrl);
writel_relaxed(0x1, ctrl->rsrcs.base + QUP_I2C_MASTER_BUS_CLR);
/*
* wait for recovery (9 clock pulse cycles) to complete.
* min_time = 9 clock *10 (1000% margin)
* max_time = 10* min_time
*/
min_sleep_usec =
max_t(ulong, (9 * 10 * USEC_PER_SEC) / ctrl->rsrcs.clk_freq_out, 100);
usleep_range(min_sleep_usec, min_sleep_usec * 10);
return ret;
}
static int qup_i2c_recover_bus_busy(struct i2c_msm_ctrl *ctrl)
{
u32 bus_clr, bus_active, status;
int retry = 0;
dev_info(ctrl->dev, "Executing bus recovery procedure (9 clk pulse)\n");
do {
qup_i2c_try_recover_bus_busy(ctrl);
bus_clr = readl_relaxed(ctrl->rsrcs.base +
QUP_I2C_MASTER_BUS_CLR);
status = readl_relaxed(ctrl->rsrcs.base + QUP_I2C_STATUS);
bus_active = status & I2C_STATUS_BUS_ACTIVE;
if (++retry >= I2C_QUP_MAX_BUS_RECOVERY_RETRY)
break;
} while (bus_clr || bus_active);
dev_info(ctrl->dev, "Bus recovery %s after %d retries\n",
(bus_clr || bus_active) ? "fail" : "success", retry);
return 0;
}
static int i2c_msm_qup_post_xfer(struct i2c_msm_ctrl *ctrl, int err)
{
/* poll until bus is released */
if (i2c_msm_qup_poll_bus_active_unset(ctrl)) {
if ((ctrl->xfer.err == I2C_MSM_ERR_ARB_LOST) ||
(ctrl->xfer.err == I2C_MSM_ERR_BUS_ERR) ||
(ctrl->xfer.err == I2C_MSM_ERR_TIMEOUT)) {
if (i2c_msm_qup_slv_holds_bus(ctrl))
qup_i2c_recover_bus_busy(ctrl);
/* do not generalize error to EIO if its already set */
if (!err)
err = -EIO;
}
}
/*
* Disable the IRQ before change to reset state to avoid
* spurious interrupts.
*
*/
disable_irq(ctrl->rsrcs.irq);
/* flush dma data and reset the qup core in timeout error.
* for other error case, its handled by the ISR
*/
if (ctrl->xfer.err & I2C_MSM_ERR_TIMEOUT) {
/* Flush for the DMA registers */
if (ctrl->xfer.mode_id == I2C_MSM_XFER_MODE_DMA)
writel_relaxed(QUP_I2C_FLUSH, ctrl->rsrcs.base
+ QUP_STATE);
/* reset the qup core */
i2c_msm_qup_state_set(ctrl, QUP_STATE_RESET);
err = -ETIMEDOUT;
} else if (ctrl->xfer.err == I2C_MSM_ERR_NACK) {
err = -ENOTCONN;
}
return err;
}
static enum i2c_msm_xfer_mode_id
i2c_msm_qup_choose_mode(struct i2c_msm_ctrl *ctrl)
{
struct i2c_msm_xfer_mode_fifo *fifo = &ctrl->xfer.fifo;
struct i2c_msm_xfer *xfer = &ctrl->xfer;
size_t rx_cnt_sum = xfer->rx_cnt + xfer->rx_ovrhd_cnt;
size_t tx_cnt_sum = xfer->tx_cnt + xfer->tx_ovrhd_cnt;
if (ctrl->dbgfs.force_xfer_mode != I2C_MSM_XFER_MODE_NONE)
return ctrl->dbgfs.force_xfer_mode;
if (((rx_cnt_sum < fifo->input_fifo_sz) &&
(tx_cnt_sum < fifo->output_fifo_sz)))
return I2C_MSM_XFER_MODE_FIFO;
if (ctrl->rsrcs.disable_dma)
return I2C_MSM_XFER_MODE_BLOCK;
return I2C_MSM_XFER_MODE_DMA;
}
/*
* i2c_msm_xfer_calc_timeout: calc maximum xfer time in jiffies
*
* Basically timeout = (bit_count / frequency) * safety_coefficient.
* The safety-coefficient also accounts for debugging delay (mostly from
* printk() calls).
*/
static void i2c_msm_xfer_calc_timeout(struct i2c_msm_ctrl *ctrl)
{
size_t byte_cnt = ctrl->xfer.rx_cnt + ctrl->xfer.tx_cnt;
size_t bit_cnt = byte_cnt * 9;
size_t bit_usec = (bit_cnt * USEC_PER_SEC) / ctrl->rsrcs.clk_freq_out;
size_t loging_ovrhd_coef = ctrl->dbgfs.dbg_lvl + 1;
size_t safety_coef = I2C_MSM_TIMEOUT_SAFTY_COEF * loging_ovrhd_coef;
size_t xfer_max_usec = (bit_usec * safety_coef) +
I2C_MSM_TIMEOUT_MIN_USEC;
ctrl->xfer.timeout = usecs_to_jiffies(xfer_max_usec);
}
static int i2c_msm_xfer_wait_for_completion(struct i2c_msm_ctrl *ctrl,
struct completion *complete)
{
struct i2c_msm_xfer *xfer = &ctrl->xfer;
long time_left;
int ret = 0;
time_left = wait_for_completion_timeout(complete, xfer->timeout);
if (!time_left) {
xfer->err = I2C_MSM_ERR_TIMEOUT;
i2c_msm_dbg_dump_diag(ctrl, false, 0, 0);
ret = -EIO;
i2c_msm_prof_evnt_add(ctrl, MSM_ERR, I2C_MSM_COMPLT_FL,
xfer->timeout, time_left, 0);
} else {
/* return an error if one detected by ISR */
if (xfer->err)
ret = -(xfer->err);
i2c_msm_prof_evnt_add(ctrl, MSM_DBG, I2C_MSM_COMPLT_OK,
xfer->timeout, time_left, 0);
}
return ret;
}
static u16 i2c_msm_slv_rd_wr_addr(u16 slv_addr, bool is_rx)
{
return (slv_addr << 1) | (is_rx ? 0x1 : 0x0);
}
/*
* @return true when the current transfer's buffer points to the last message
* of the user's request.
*/
static bool i2c_msm_xfer_msg_is_last(struct i2c_msm_ctrl *ctrl)
{
return ctrl->xfer.cur_buf.msg_idx >= (ctrl->xfer.msg_cnt - 1);
}
/*
* @return true when the current transfer's buffer points to the last
* transferable buffer (size =< QUP_MAX_BUF_SZ) of the last message of the
* user's request.
*/
static bool i2c_msm_xfer_buf_is_last(struct i2c_msm_ctrl *ctrl)
{
struct i2c_msm_xfer_buf *cur_buf = &ctrl->xfer.cur_buf;
struct i2c_msg *cur_msg = ctrl->xfer.msgs + cur_buf->msg_idx;
return i2c_msm_xfer_msg_is_last(ctrl) &&
((cur_buf->byte_idx + QUP_MAX_BUF_SZ) >= cur_msg->len);
}
static void i2c_msm_xfer_create_cur_tag(struct i2c_msm_ctrl *ctrl,
bool start_req)
{
struct i2c_msm_xfer_buf *cur_buf = &ctrl->xfer.cur_buf;
cur_buf->out_tag = i2c_msm_tag_create(start_req, cur_buf->is_last,
cur_buf->is_rx, cur_buf->len,
cur_buf->slv_addr);
cur_buf->in_tag.len = cur_buf->is_rx ? QUP_BUF_OVERHD_BC : 0;
}
/*
* i2c_msm_xfer_next_buf: support cases when msg.len > 256 bytes
*
* @return true when next buffer exist, or false when no such buffer
*/
static bool i2c_msm_xfer_next_buf(struct i2c_msm_ctrl *ctrl)
{
struct i2c_msm_xfer_buf *cur_buf = &ctrl->xfer.cur_buf;
struct i2c_msg *cur_msg = ctrl->xfer.msgs + cur_buf->msg_idx;
int bc_rem = cur_msg->len - cur_buf->end_idx;
if (cur_buf->is_init && cur_buf->end_idx && bc_rem) {
/* not the first buffer in a message */
cur_buf->byte_idx = cur_buf->end_idx;
cur_buf->is_last = i2c_msm_xfer_buf_is_last(ctrl);
cur_buf->len = min_t(int, bc_rem, QUP_MAX_BUF_SZ);
cur_buf->end_idx += cur_buf->len;
/* No Start is required if it is not a first buffer in msg */
i2c_msm_xfer_create_cur_tag(ctrl, false);
} else {
/* first buffer in a new message */
if (cur_buf->is_init) {
if (i2c_msm_xfer_msg_is_last(ctrl)) {
return false;
} else {
++cur_buf->msg_idx;
++cur_msg;
}
} else {
cur_buf->is_init = true;
}
cur_buf->byte_idx = 0;
cur_buf->is_last = i2c_msm_xfer_buf_is_last(ctrl);
cur_buf->len = min_t(int, cur_msg->len, QUP_MAX_BUF_SZ);
cur_buf->is_rx = (cur_msg->flags & I2C_M_RD);
cur_buf->end_idx = cur_buf->len;
cur_buf->slv_addr = i2c_msm_slv_rd_wr_addr(cur_msg->addr,
cur_buf->is_rx);
i2c_msm_xfer_create_cur_tag(ctrl, true);
}
i2c_msm_prof_evnt_add(ctrl, MSM_DBG, I2C_MSM_NEXT_BUF, cur_buf->msg_idx,
cur_buf->byte_idx, 0);
return true;
}
static void i2c_msm_pm_clk_disable_unprepare(struct i2c_msm_ctrl *ctrl)
{
clk_disable_unprepare(ctrl->rsrcs.core_clk);
clk_disable_unprepare(ctrl->rsrcs.iface_clk);
}
static int i2c_msm_pm_clk_prepare_enable(struct i2c_msm_ctrl *ctrl)
{
int ret;
ret = clk_prepare_enable(ctrl->rsrcs.iface_clk);
if (ret) {
dev_err(ctrl->dev,
"error on clk_prepare_enable(iface_clk):%d\n", ret);
return ret;
}
ret = clk_prepare_enable(ctrl->rsrcs.core_clk);
if (ret) {
clk_disable_unprepare(ctrl->rsrcs.iface_clk);
dev_err(ctrl->dev,
"error clk_prepare_enable(core_clk):%d\n", ret);
}
return ret;
}
static int i2c_msm_pm_xfer_start(struct i2c_msm_ctrl *ctrl)
{
int ret;
struct i2c_msm_xfer *xfer = &ctrl->xfer;
mutex_lock(&ctrl->xfer.mtx);
/* if system is suspended just bail out */
if (ctrl->pwr_state == I2C_MSM_PM_SYS_SUSPENDED) {
struct i2c_msg *msgs = xfer->msgs + xfer->cur_buf.msg_idx;
dev_err(ctrl->dev,
"slave:0x%x is calling xfer when system is suspended\n",
msgs->addr);
mutex_unlock(&ctrl->xfer.mtx);
return -EIO;
}
pm_runtime_get_sync(ctrl->dev);
/*
* if runtime PM callback was not invoked (when both runtime-pm
* and systme-pm are in transition concurrently)
*/
if (ctrl->pwr_state != I2C_MSM_PM_RT_ACTIVE) {
dev_info(ctrl->dev, "Runtime PM-callback was not invoked.\n");
i2c_msm_pm_resume(ctrl->dev);
}
ret = i2c_msm_pm_clk_prepare_enable(ctrl);
if (ret) {
mutex_unlock(&ctrl->xfer.mtx);
return ret;
}
i2c_msm_qup_init(ctrl);
/* Set xfer to active state (efectively enabling our ISR)*/
atomic_set(&ctrl->xfer.is_active, 1);
enable_irq(ctrl->rsrcs.irq);
return 0;
}
static void i2c_msm_pm_xfer_end(struct i2c_msm_ctrl *ctrl)
{
atomic_set(&ctrl->xfer.is_active, 0);
/*
* DMA resources are freed due to multi-EE use case.
* Other EEs can potentially use the DMA
* resources with in the same runtime PM vote.
*/
if (ctrl->xfer.mode_id == I2C_MSM_XFER_MODE_DMA)
i2c_msm_dma_free_channels(ctrl);
i2c_msm_pm_clk_disable_unprepare(ctrl);
if (pm_runtime_enabled(ctrl->dev)) {
pm_runtime_mark_last_busy(ctrl->dev);
pm_runtime_put_autosuspend(ctrl->dev);
} else {
i2c_msm_pm_suspend(ctrl->dev);
}
mutex_unlock(&ctrl->xfer.mtx);
}
/*
* i2c_msm_xfer_scan: initial input scan
*/
static void i2c_msm_xfer_scan(struct i2c_msm_ctrl *ctrl)
{
struct i2c_msm_xfer *xfer = &ctrl->xfer;
struct i2c_msm_xfer_buf *cur_buf = &xfer->cur_buf;
while (i2c_msm_xfer_next_buf(ctrl)) {
if (cur_buf->is_rx)
xfer->rx_cnt += cur_buf->len;
else
xfer->tx_cnt += cur_buf->len;
xfer->rx_ovrhd_cnt += cur_buf->in_tag.len;
xfer->tx_ovrhd_cnt += cur_buf->out_tag.len;
if (i2c_msm_xfer_msg_is_last(ctrl))
xfer->last_is_rx = cur_buf->is_rx;
}
xfer->cur_buf = (struct i2c_msm_xfer_buf){0};
}
static int
i2c_msm_frmwrk_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
{
int ret = 0;
struct i2c_msm_ctrl *ctrl = i2c_get_adapdata(adap);
struct i2c_msm_xfer *xfer = &ctrl->xfer;
if (IS_ERR_OR_NULL(msgs)) {
dev_err(ctrl->dev, " error on msgs Accessing invalid pointer location\n");
return PTR_ERR(msgs);
}
ret = i2c_msm_pm_xfer_start(ctrl);
if (ret)
return ret;
/* init xfer */
xfer->msgs = msgs;
xfer->msg_cnt = num;
xfer->mode_id = I2C_MSM_XFER_MODE_NONE;
xfer->err = 0;
xfer->rx_cnt = 0;
xfer->tx_cnt = 0;
xfer->rx_ovrhd_cnt = 0;
xfer->tx_ovrhd_cnt = 0;
atomic_set(&xfer->event_cnt, 0);
init_completion(&xfer->complete);
xfer->cur_buf.is_init = false;
xfer->cur_buf.msg_idx = 0;
i2c_msm_prof_evnt_add(ctrl, MSM_PROF, I2C_MSM_XFER_BEG, num,
msgs->addr, 0);
i2c_msm_xfer_scan(ctrl);
i2c_msm_xfer_calc_timeout(ctrl);
xfer->mode_id = i2c_msm_qup_choose_mode(ctrl);
dev_dbg(ctrl->dev, "xfer() mode:%d msg_cnt:%d rx_cbt:%zu tx_cnt:%zu\n",
xfer->mode_id, xfer->msg_cnt, xfer->rx_cnt, xfer->tx_cnt);
switch (xfer->mode_id) {
case I2C_MSM_XFER_MODE_FIFO:
ret = i2c_msm_fifo_xfer(ctrl);
break;
case I2C_MSM_XFER_MODE_BLOCK:
ret = i2c_msm_blk_xfer(ctrl);
break;
case I2C_MSM_XFER_MODE_DMA:
ret = i2c_msm_dma_xfer(ctrl);
break;
default:
ret = -EINTR;
};
i2c_msm_prof_evnt_add(ctrl, MSM_PROF, I2C_MSM_SCAN_SUM,
((xfer->rx_cnt & 0xff) | ((xfer->rx_ovrhd_cnt & 0xff) << 16)),
((xfer->tx_cnt & 0xff) | ((xfer->tx_ovrhd_cnt & 0xff) << 16)),
((ctrl->xfer.timeout & 0xfff) | ((xfer->mode_id & 0xf) << 24)));
ret = i2c_msm_qup_post_xfer(ctrl, ret);
/* on success, return number of messages sent (which is index + 1)*/
if (!ret)
ret = xfer->cur_buf.msg_idx + 1;
i2c_msm_prof_evnt_add(ctrl, MSM_PROF, I2C_MSM_XFER_END, ret, xfer->err,
xfer->cur_buf.msg_idx + 1);
/* process and dump profiling data */
if (xfer->err || (ctrl->dbgfs.dbg_lvl >= MSM_PROF))
i2c_msm_prof_evnt_dump(ctrl);
i2c_msm_pm_xfer_end(ctrl);
return ret;
}
enum i2c_msm_dt_entry_status {
DT_REQ, /* Required: fail if missing */
DT_SGST, /* Suggested: warn if missing */
DT_OPT, /* Optional: don't warn if missing */
};
enum i2c_msm_dt_entry_type {
DT_U32,
DT_BOOL,
DT_ID, /* of_alias_get_id() */
};
struct i2c_msm_dt_to_pdata_map {
const char *dt_name;
void *ptr_data;
enum i2c_msm_dt_entry_status status;
enum i2c_msm_dt_entry_type type;
int default_val;
};
static int i2c_msm_dt_to_pdata_populate(struct i2c_msm_ctrl *ctrl,
struct platform_device *pdev,
struct i2c_msm_dt_to_pdata_map *itr)
{
int ret, err = 0;
struct device_node *node = pdev->dev.of_node;
for (; itr->dt_name ; ++itr) {
switch (itr->type) {
case DT_U32:
ret = of_property_read_u32(node, itr->dt_name,
(u32 *) itr->ptr_data);
break;
case DT_BOOL:
*((bool *) itr->ptr_data) =
of_property_read_bool(node, itr->dt_name);
ret = 0;
break;
case DT_ID:
ret = of_alias_get_id(node, itr->dt_name);
if (ret >= 0) {
*((int *) itr->ptr_data) = ret;
ret = 0;
}
break;
default:
dev_err(ctrl->dev,
"error %d is of unknown DT entry type\n",
itr->type);
ret = -EBADE;
}
i2c_msm_dbg(ctrl, MSM_PROF, "DT entry ret:%d name:%s val:%d",
ret, itr->dt_name, *((int *)itr->ptr_data));
if (ret) {
*((int *)itr->ptr_data) = itr->default_val;
if (itr->status < DT_OPT) {
dev_err(ctrl->dev,
"error Missing '%s' DT entry\n",
itr->dt_name);
/* cont on err to dump all missing entries */
if (itr->status == DT_REQ && !err)
err = ret;
}
}
}
return err;
}
/*
* i2c_msm_rsrcs_process_dt: copy data from DT to platform data
* @return zero on success or negative error code
*/
static int i2c_msm_rsrcs_process_dt(struct i2c_msm_ctrl *ctrl,
struct platform_device *pdev)
{
u32 fs_clk_div, ht_clk_div, noise_rjct_scl, noise_rjct_sda;
int ret;
struct i2c_msm_dt_to_pdata_map map[] = {
{"i2c", &pdev->id, DT_REQ, DT_ID, -1},
{"qcom,clk-freq-out", &ctrl->rsrcs.clk_freq_out,
DT_REQ, DT_U32, 0},
{"qcom,clk-freq-in", &ctrl->rsrcs.clk_freq_in,
DT_REQ, DT_U32, 0},
{"qcom,disable-dma", &(ctrl->rsrcs.disable_dma),
DT_OPT, DT_BOOL, 0},
{"qcom,master-id", &(ctrl->rsrcs.clk_path_vote.mstr_id),
DT_SGST, DT_U32, 0},
{"qcom,noise-rjct-scl", &noise_rjct_scl,
DT_OPT, DT_U32, 0},
{"qcom,noise-rjct-sda", &noise_rjct_sda,
DT_OPT, DT_U32, 0},
{"qcom,high-time-clk-div", &ht_clk_div,
DT_OPT, DT_U32, 0},
{"qcom,fs-clk-div", &fs_clk_div,
DT_OPT, DT_U32, 0},
{NULL, NULL, 0, 0, 0},
};
ret = i2c_msm_dt_to_pdata_populate(ctrl, pdev, map);
if (ret)
return ret;
/* set divider and noise reject values */
return i2c_msm_set_mstr_clk_ctl(ctrl, fs_clk_div, ht_clk_div,
noise_rjct_scl, noise_rjct_sda);
}
/*
* i2c_msm_rsrcs_mem_init: reads pdata request region and ioremap it
* @return zero on success or negative error code
*/
static int i2c_msm_rsrcs_mem_init(struct platform_device *pdev,
struct i2c_msm_ctrl *ctrl)
{
struct resource *mem_region;
ctrl->rsrcs.mem = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"qup_phys_addr");
if (!ctrl->rsrcs.mem) {
dev_err(ctrl->dev, "error Missing 'qup_phys_addr' resource\n");
return -ENODEV;
}
mem_region = request_mem_region(ctrl->rsrcs.mem->start,
resource_size(ctrl->rsrcs.mem),
pdev->name);
if (!mem_region) {
dev_err(ctrl->dev,
"QUP physical memory region already claimed\n");
return -EBUSY;
}
ctrl->rsrcs.base = devm_ioremap(ctrl->dev, ctrl->rsrcs.mem->start,
resource_size(ctrl->rsrcs.mem));
if (!ctrl->rsrcs.base) {
dev_err(ctrl->dev,
"error failed ioremap(base:0x%llx size:0x%llx\n)",
(u64) ctrl->rsrcs.mem->start,
(u64) resource_size(ctrl->rsrcs.mem));
release_mem_region(ctrl->rsrcs.mem->start,
resource_size(ctrl->rsrcs.mem));
return -ENOMEM;
}
return 0;
}
static void i2c_msm_rsrcs_mem_teardown(struct i2c_msm_ctrl *ctrl)
{
release_mem_region(ctrl->rsrcs.mem->start,
resource_size(ctrl->rsrcs.mem));
}
/*
* i2c_msm_rsrcs_irq_init: finds irq num in pdata and requests it
* @return zero on success or negative error code
*/
static int i2c_msm_rsrcs_irq_init(struct platform_device *pdev,
struct i2c_msm_ctrl *ctrl)
{
int ret, irq;
irq = platform_get_irq_byname(pdev, "qup_irq");
if (irq < 0) {
dev_err(ctrl->dev, "error reading irq resource\n");
return irq;
}
ret = request_irq(irq, i2c_msm_qup_isr, IRQF_TRIGGER_HIGH,
"i2c-msm-v2-irq", ctrl);
if (ret) {
dev_err(ctrl->dev, "error request_irq(irq_num:%d ) ret:%d\n",
irq, ret);
return ret;
}
disable_irq(irq);
ctrl->rsrcs.irq = irq;
return 0;
}
static void i2c_msm_rsrcs_irq_teardown(struct i2c_msm_ctrl *ctrl)
{
free_irq(ctrl->rsrcs.irq, ctrl);
}
static struct pinctrl_state *
i2c_msm_rsrcs_gpio_get_state(struct i2c_msm_ctrl *ctrl, const char *name)
{
struct pinctrl_state *pin_state
= pinctrl_lookup_state(ctrl->rsrcs.pinctrl, name);
if (IS_ERR_OR_NULL(pin_state))
dev_info(ctrl->dev, "note pinctrl_lookup_state(%s) err:%ld\n",
name, PTR_ERR(pin_state));
return pin_state;
}
/*
* i2c_msm_rsrcs_gpio_pinctrl_init: initializes the pinctrl for i2c gpios
*
* @pre platform data must be initialized
*/
static int i2c_msm_rsrcs_gpio_pinctrl_init(struct i2c_msm_ctrl *ctrl)
{
ctrl->rsrcs.pinctrl = devm_pinctrl_get(ctrl->dev);
if (IS_ERR_OR_NULL(ctrl->rsrcs.pinctrl)) {
dev_err(ctrl->dev, "error devm_pinctrl_get() failed err:%ld\n",
PTR_ERR(ctrl->rsrcs.pinctrl));
return PTR_ERR(ctrl->rsrcs.pinctrl);
}
ctrl->rsrcs.gpio_state_active =
i2c_msm_rsrcs_gpio_get_state(ctrl, I2C_MSM_PINCTRL_ACTIVE);
ctrl->rsrcs.gpio_state_suspend =
i2c_msm_rsrcs_gpio_get_state(ctrl, I2C_MSM_PINCTRL_SUSPEND);
return 0;
}
static void i2c_msm_pm_pinctrl_state(struct i2c_msm_ctrl *ctrl,
bool runtime_active)
{
struct pinctrl_state *pins_state;
const char *pins_state_name;
if (runtime_active) {
pins_state = ctrl->rsrcs.gpio_state_active;
pins_state_name = I2C_MSM_PINCTRL_ACTIVE;
} else {
pins_state = ctrl->rsrcs.gpio_state_suspend;
pins_state_name = I2C_MSM_PINCTRL_SUSPEND;
}
if (!IS_ERR_OR_NULL(pins_state)) {
int ret = pinctrl_select_state(ctrl->rsrcs.pinctrl, pins_state);
if (ret)
dev_err(ctrl->dev,
"error pinctrl_select_state(%s) err:%d\n",
pins_state_name, ret);
} else {
dev_err(ctrl->dev,
"error pinctrl state-name:'%s' is not configured\n",
pins_state_name);
}
}
/*
* i2c_msm_rsrcs_clk_init: get clocks and set rate
*
* @return zero on success or negative error code
*/
static int i2c_msm_rsrcs_clk_init(struct i2c_msm_ctrl *ctrl)
{
int ret = 0;
if ((ctrl->rsrcs.clk_freq_out <= 0) ||
(ctrl->rsrcs.clk_freq_out > I2C_MSM_CLK_FAST_PLUS_FREQ)) {
dev_err(ctrl->dev,
"error clock frequency %dKHZ is not supported\n",
(ctrl->rsrcs.clk_freq_out / 1000));
return -EIO;
}
ctrl->rsrcs.core_clk = clk_get(ctrl->dev, "core_clk");
if (IS_ERR(ctrl->rsrcs.core_clk)) {
ret = PTR_ERR(ctrl->rsrcs.core_clk);
dev_err(ctrl->dev, "error on clk_get(core_clk):%d\n", ret);
return ret;
}
ret = clk_set_rate(ctrl->rsrcs.core_clk, ctrl->rsrcs.clk_freq_in);
if (ret) {
dev_err(ctrl->dev, "error on clk_set_rate(core_clk, %dKHz):%d\n",
(ctrl->rsrcs.clk_freq_in / 1000), ret);
goto err_set_rate;
}
ctrl->rsrcs.iface_clk = clk_get(ctrl->dev, "iface_clk");
if (IS_ERR(ctrl->rsrcs.iface_clk)) {
ret = PTR_ERR(ctrl->rsrcs.iface_clk);
dev_err(ctrl->dev, "error on clk_get(iface_clk):%d\n", ret);
goto err_set_rate;
}
return 0;
err_set_rate:
clk_put(ctrl->rsrcs.core_clk);
ctrl->rsrcs.core_clk = NULL;
return ret;
}
static void i2c_msm_rsrcs_clk_teardown(struct i2c_msm_ctrl *ctrl)
{
clk_put(ctrl->rsrcs.core_clk);
clk_put(ctrl->rsrcs.iface_clk);
i2c_msm_clk_path_teardown(ctrl);
}
static void i2c_msm_pm_suspend(struct device *dev)
{
struct i2c_msm_ctrl *ctrl = dev_get_drvdata(dev);
if (ctrl->pwr_state == I2C_MSM_PM_RT_SUSPENDED) {
dev_err(ctrl->dev, "attempt to suspend when suspended\n");
return;
}
i2c_msm_dbg(ctrl, MSM_DBG, "suspending...");
i2c_msm_pm_pinctrl_state(ctrl, false);
i2c_msm_clk_path_unvote(ctrl);
/*
* We implement system and runtime suspend in the same way. However
* it is important for us to distinguish between them in when servicing
* a transfer requests. If we get transfer request while in runtime
* suspend we want to simply wake up and service that request. But if we
* get a transfer request while system is suspending we want to bail
* out on that request. This is why if we marked that we are in system
* suspend, we do not want to override that state with runtime suspend.
*/
if (ctrl->pwr_state != I2C_MSM_PM_SYS_SUSPENDED)
ctrl->pwr_state = I2C_MSM_PM_RT_SUSPENDED;
return;
}
static int i2c_msm_pm_resume(struct device *dev)
{
struct i2c_msm_ctrl *ctrl = dev_get_drvdata(dev);
if (ctrl->pwr_state == I2C_MSM_PM_RT_ACTIVE)
return 0;
i2c_msm_dbg(ctrl, MSM_DBG, "resuming...");
i2c_msm_clk_path_vote(ctrl);
i2c_msm_pm_pinctrl_state(ctrl, true);
ctrl->pwr_state = I2C_MSM_PM_RT_ACTIVE;
return 0;
}
#ifdef CONFIG_PM
/*
* i2c_msm_pm_sys_suspend_noirq: system power management callback
*/
static int i2c_msm_pm_sys_suspend_noirq(struct device *dev)
{
int ret = 0;
struct i2c_msm_ctrl *ctrl = dev_get_drvdata(dev);
enum i2c_msm_power_state prev_state = ctrl->pwr_state;
i2c_msm_dbg(ctrl, MSM_DBG, "pm_sys_noirq: suspending...");
/* Acquire mutex to ensure current transaction is over */
mutex_lock(&ctrl->xfer.mtx);
ctrl->pwr_state = I2C_MSM_PM_SYS_SUSPENDED;
mutex_unlock(&ctrl->xfer.mtx);
i2c_msm_dbg(ctrl, MSM_DBG, "pm_sys_noirq: suspending...");
if (prev_state == I2C_MSM_PM_RT_ACTIVE) {
i2c_msm_pm_suspend(dev);
/*
* Synchronize runtime-pm and system-pm states:
* at this point we are already suspended. However, the
* runtime-PM framework still thinks that we are active.
* The three calls below let the runtime-PM know that we are
* suspended already without re-invoking the suspend callback
*/
pm_runtime_disable(dev);
pm_runtime_set_suspended(dev);
pm_runtime_enable(dev);
}
return ret;
}
/*
* i2c_msm_pm_sys_resume: system power management callback
* shifts the controller's power state from system suspend to runtime suspend
*/
static int i2c_msm_pm_sys_resume_noirq(struct device *dev)
{
struct i2c_msm_ctrl *ctrl = dev_get_drvdata(dev);
i2c_msm_dbg(ctrl, MSM_DBG, "pm_sys_noirq: resuming...");
mutex_lock(&ctrl->xfer.mtx);
ctrl->pwr_state = I2C_MSM_PM_RT_SUSPENDED;
mutex_unlock(&ctrl->xfer.mtx);
return 0;
}
#endif
#ifdef CONFIG_PM_RUNTIME
static void i2c_msm_pm_rt_init(struct device *dev)
{
pm_runtime_set_suspended(dev);
pm_runtime_set_autosuspend_delay(dev, (MSEC_PER_SEC >> 2));
pm_runtime_use_autosuspend(dev);
pm_runtime_enable(dev);
}
/*
* i2c_msm_pm_rt_suspend: runtime power management callback
*/
static int i2c_msm_pm_rt_suspend(struct device *dev)
{
struct i2c_msm_ctrl *ctrl = dev_get_drvdata(dev);
i2c_msm_dbg(ctrl, MSM_DBG, "pm_runtime: suspending...");
i2c_msm_pm_suspend(dev);
return 0;
}
/*
* i2c_msm_pm_rt_resume: runtime power management callback
*/
static int i2c_msm_pm_rt_resume(struct device *dev)
{
struct i2c_msm_ctrl *ctrl = dev_get_drvdata(dev);
i2c_msm_dbg(ctrl, MSM_DBG, "pm_runtime: resuming...");
return i2c_msm_pm_resume(dev);
}
#else
static void i2c_msm_pm_rt_init(struct device *dev) {}
#define i2c_msm_pm_rt_suspend NULL
#define i2c_msm_pm_rt_resume NULL
#endif
static const struct dev_pm_ops i2c_msm_pm_ops = {
#ifdef CONFIG_PM_SLEEP
.suspend_noirq = i2c_msm_pm_sys_suspend_noirq,
.resume_noirq = i2c_msm_pm_sys_resume_noirq,
#endif
SET_RUNTIME_PM_OPS(i2c_msm_pm_rt_suspend,
i2c_msm_pm_rt_resume,
NULL)
};
static u32 i2c_msm_frmwrk_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
}
static const struct i2c_algorithm i2c_msm_frmwrk_algrtm = {
.master_xfer = i2c_msm_frmwrk_xfer,
.functionality = i2c_msm_frmwrk_func,
};
static const char const *i2c_msm_adapter_name = "MSM-I2C-v2-adapter";
static int i2c_msm_frmwrk_reg(struct platform_device *pdev,
struct i2c_msm_ctrl *ctrl)
{
int ret;
i2c_set_adapdata(&ctrl->adapter, ctrl);
ctrl->adapter.algo = &i2c_msm_frmwrk_algrtm;
strlcpy(ctrl->adapter.name, i2c_msm_adapter_name,
sizeof(ctrl->adapter.name));
ctrl->adapter.nr = pdev->id;
ctrl->adapter.dev.parent = &pdev->dev;
ctrl->adapter.dev.of_node = pdev->dev.of_node;
ret = i2c_add_numbered_adapter(&ctrl->adapter);
if (ret) {
dev_err(ctrl->dev, "error i2c_add_adapter failed\n");
return ret;
}
return ret;
}
static void i2c_msm_frmwrk_unreg(struct i2c_msm_ctrl *ctrl)
{
i2c_del_adapter(&ctrl->adapter);
}
static int i2c_msm_probe(struct platform_device *pdev)
{
struct i2c_msm_ctrl *ctrl;
int ret = 0;
dev_info(&pdev->dev, "probing driver i2c-msm-v2\n");
ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL);
if (!ctrl)
return -ENOMEM;
ctrl->dev = &pdev->dev;
platform_set_drvdata(pdev, ctrl);
ctrl->dbgfs.dbg_lvl = DEFAULT_DBG_LVL;
ctrl->dbgfs.force_xfer_mode = I2C_MSM_XFER_MODE_NONE;
mutex_init(&ctrl->xfer.mtx);
ctrl->pwr_state = I2C_MSM_PM_RT_SUSPENDED;
if (!pdev->dev.of_node) {
dev_err(&pdev->dev, "error: null device-tree node");
return -EBADE;
}
ret = i2c_msm_rsrcs_process_dt(ctrl, pdev);
if (ret) {
dev_err(ctrl->dev, "error in process device tree node");
return ret;
}
ret = i2c_msm_rsrcs_mem_init(pdev, ctrl);
if (ret)
goto mem_err;
ret = i2c_msm_rsrcs_clk_init(ctrl);
if (ret)
goto clk_err;
/* vote for clock to enable reading the version number off the HW */
i2c_msm_clk_path_vote(ctrl);
ret = i2c_msm_pm_clk_prepare_enable(ctrl);
if (ret) {
dev_err(ctrl->dev, "error in enabling clocks:%d\n", ret);
goto clk_err;
}
/*
* reset the core before registering for interrupts. This solves an
* interrupt storm issue when the bootloader leaves a pending interrupt.
*/
ret = i2c_msm_qup_sw_reset(ctrl);
if (ret)
dev_err(ctrl->dev, "error error on qup software reset\n");
i2c_msm_pm_clk_disable_unprepare(ctrl);
i2c_msm_clk_path_unvote(ctrl);
ret = i2c_msm_rsrcs_gpio_pinctrl_init(ctrl);
if (ret)
goto err_no_pinctrl;
i2c_msm_pm_rt_init(ctrl->dev);
ret = i2c_msm_rsrcs_irq_init(pdev, ctrl);
if (ret)
goto irq_err;
i2c_msm_dbgfs_init(ctrl);
ret = i2c_msm_frmwrk_reg(pdev, ctrl);
if (ret)
goto reg_err;
i2c_msm_dbg(ctrl, MSM_PROF, "probe() completed with success");
return 0;
reg_err:
i2c_msm_dbgfs_teardown(ctrl);
i2c_msm_rsrcs_irq_teardown(ctrl);
irq_err:
i2x_msm_blk_free_cache(ctrl);
err_no_pinctrl:
i2c_msm_rsrcs_clk_teardown(ctrl);
clk_err:
i2c_msm_rsrcs_mem_teardown(ctrl);
mem_err:
dev_err(ctrl->dev, "error probe() failed with err:%d\n", ret);
devm_kfree(&pdev->dev, ctrl);
return ret;
}
static int i2c_msm_remove(struct platform_device *pdev)
{
struct i2c_msm_ctrl *ctrl = platform_get_drvdata(pdev);
/* Grab mutex to ensure ongoing transaction is over */
mutex_lock(&ctrl->xfer.mtx);
ctrl->pwr_state = I2C_MSM_PM_SYS_SUSPENDED;
pm_runtime_disable(ctrl->dev);
/* no one can call a xfer after the next line */
i2c_msm_frmwrk_unreg(ctrl);
mutex_unlock(&ctrl->xfer.mtx);
mutex_destroy(&ctrl->xfer.mtx);
i2c_msm_dma_teardown(ctrl);
i2c_msm_dbgfs_teardown(ctrl);
i2c_msm_rsrcs_irq_teardown(ctrl);
i2c_msm_rsrcs_clk_teardown(ctrl);
i2c_msm_rsrcs_mem_teardown(ctrl);
i2x_msm_blk_free_cache(ctrl);
return 0;
}
static struct of_device_id i2c_msm_dt_match[] = {
{
.compatible = "qcom,i2c-msm-v2",
},
{}
};
static struct platform_driver i2c_msm_driver = {
.probe = i2c_msm_probe,
.remove = i2c_msm_remove,
.driver = {
.name = "i2c-msm-v2",
.owner = THIS_MODULE,
.pm = &i2c_msm_pm_ops,
.of_match_table = i2c_msm_dt_match,
},
};
static int i2c_msm_init(void)
{
return platform_driver_register(&i2c_msm_driver);
}
arch_initcall(i2c_msm_init);
static void i2c_msm_exit(void)
{
platform_driver_unregister(&i2c_msm_driver);
}
module_exit(i2c_msm_exit);
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:i2c-msm-v2");