6067 lines
175 KiB
C
6067 lines
175 KiB
C
/* Qualcomm Crypto Engine driver.
|
|
*
|
|
* Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 and
|
|
* only version 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
#define pr_fmt(fmt) "QCE50: %s: " fmt, __func__
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mod_devicetable.h>
|
|
#include <linux/device.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/err.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/io.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/crypto.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/clk/msm-clk.h>
|
|
#include <linux/qcrypto.h>
|
|
#include <crypto/hash.h>
|
|
#include <crypto/sha.h>
|
|
#include <soc/qcom/socinfo.h>
|
|
|
|
#include "qce.h"
|
|
#include "qce50.h"
|
|
#include "qcryptohw_50.h"
|
|
#include "qce_ota.h"
|
|
|
|
#define CRYPTO_CONFIG_RESET 0xE01EF
|
|
#define MAX_SPS_DESC_FIFO_SIZE 0xfff0
|
|
#define QCE_MAX_NUM_DSCR 0x200
|
|
#define QCE_SECTOR_SIZE 0x200
|
|
#define CE_CLK_100MHZ 100000000
|
|
#define CE_CLK_DIV 1000000
|
|
|
|
#define CRYPTO_CORE_MAJOR_VER_NUM 0x05
|
|
#define CRYPTO_CORE_MINOR_VER_NUM 0x03
|
|
#define CRYPTO_CORE_STEP_VER_NUM 0x1
|
|
|
|
#define CRYPTO_REQ_USER_PAT 0xdead0000
|
|
|
|
static DEFINE_MUTEX(bam_register_lock);
|
|
static DEFINE_MUTEX(qce_iomap_mutex);
|
|
|
|
struct bam_registration_info {
|
|
struct list_head qlist;
|
|
unsigned long handle;
|
|
uint32_t cnt;
|
|
uint32_t bam_mem;
|
|
void __iomem *bam_iobase;
|
|
bool support_cmd_dscr;
|
|
};
|
|
static LIST_HEAD(qce50_bam_list);
|
|
|
|
/* Used to determine the mode */
|
|
#define MAX_BUNCH_MODE_REQ 2
|
|
/* Max number of request supported */
|
|
#define MAX_QCE_BAM_REQ 8
|
|
/* Interrupt flag will be set for every SET_INTR_AT_REQ request */
|
|
#define SET_INTR_AT_REQ (MAX_QCE_BAM_REQ - 2)
|
|
/* To create extra request space to hold dummy request */
|
|
#define MAX_QCE_BAM_REQ_WITH_DUMMY_REQ (MAX_QCE_BAM_REQ + 1)
|
|
/* Allocate the memory for MAX_QCE_BAM_REQ + 1 (for dummy request) */
|
|
#define MAX_QCE_ALLOC_BAM_REQ MAX_QCE_BAM_REQ_WITH_DUMMY_REQ
|
|
/* QCE driver modes */
|
|
#define IN_INTERRUPT_MODE 0
|
|
#define IN_BUNCH_MODE 1
|
|
/* Dummy request data length */
|
|
#define DUMMY_REQ_DATA_LEN 64
|
|
/* Delay timer to expire when in bunch mode */
|
|
#define DELAY_IN_JIFFIES 5
|
|
/* Index to point the dummy request */
|
|
#define DUMMY_REQ_INDEX MAX_QCE_BAM_REQ
|
|
|
|
struct dummy_request {
|
|
struct qce_sha_req sreq;
|
|
uint8_t *in_buf;
|
|
struct scatterlist sg;
|
|
struct ahash_request areq;
|
|
};
|
|
|
|
/*
|
|
* CE HW device structure.
|
|
* Each engine has an instance of the structure.
|
|
* Each engine can only handle one crypto operation at one time. It is up to
|
|
* the sw above to ensure single threading of operation on an engine.
|
|
*/
|
|
struct qce_device {
|
|
struct device *pdev; /* Handle to platform_device structure */
|
|
struct bam_registration_info *pbam;
|
|
|
|
unsigned char *coh_vmem; /* Allocated coherent virtual memory */
|
|
dma_addr_t coh_pmem; /* Allocated coherent physical memory */
|
|
int memsize; /* Memory allocated */
|
|
uint32_t bam_mem; /* bam physical address, from DT */
|
|
uint32_t bam_mem_size; /* bam io size, from DT */
|
|
int is_shared; /* CE HW is shared */
|
|
bool support_cmd_dscr;
|
|
bool support_hw_key;
|
|
bool support_clk_mgmt_sus_res;
|
|
bool support_only_core_src_clk;
|
|
|
|
void __iomem *iobase; /* Virtual io base of CE HW */
|
|
unsigned int phy_iobase; /* Physical io base of CE HW */
|
|
|
|
struct clk *ce_core_src_clk; /* Handle to CE src clk*/
|
|
struct clk *ce_core_clk; /* Handle to CE clk */
|
|
struct clk *ce_clk; /* Handle to CE clk */
|
|
struct clk *ce_bus_clk; /* Handle to CE AXI clk*/
|
|
bool no_get_around;
|
|
bool no_ccm_mac_status_get_around;
|
|
unsigned int ce_opp_freq_hz;
|
|
bool use_sw_aes_cbc_ecb_ctr_algo;
|
|
bool use_sw_aead_algo;
|
|
bool use_sw_aes_xts_algo;
|
|
bool use_sw_ahash_algo;
|
|
bool use_sw_hmac_algo;
|
|
bool use_sw_aes_ccm_algo;
|
|
uint32_t engines_avail;
|
|
struct qce_ce_cfg_reg_setting reg;
|
|
struct ce_bam_info ce_bam_info;
|
|
struct ce_request_info ce_request_info[MAX_QCE_ALLOC_BAM_REQ];
|
|
unsigned int ce_request_index;
|
|
spinlock_t lock;
|
|
spinlock_t sps_lock;
|
|
unsigned int no_of_queued_req;
|
|
struct timer_list timer;
|
|
struct dummy_request dummyreq;
|
|
unsigned int mode;
|
|
unsigned int intr_cadence;
|
|
unsigned int dev_no;
|
|
struct qce_driver_stats qce_stats;
|
|
atomic_t bunch_cmd_seq;
|
|
atomic_t last_intr_seq;
|
|
};
|
|
|
|
static void print_notify_debug(struct sps_event_notify *notify);
|
|
static void _sps_producer_callback(struct sps_event_notify *notify);
|
|
static int qce_dummy_req(struct qce_device *pce_dev);
|
|
|
|
static int _qce50_disp_stats;
|
|
|
|
/* Standard initialization vector for SHA-1, source: FIPS 180-2 */
|
|
static uint32_t _std_init_vector_sha1[] = {
|
|
0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0
|
|
};
|
|
|
|
/* Standard initialization vector for SHA-256, source: FIPS 180-2 */
|
|
static uint32_t _std_init_vector_sha256[] = {
|
|
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
|
|
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
|
|
};
|
|
|
|
static void _byte_stream_to_net_words(uint32_t *iv, unsigned char *b,
|
|
unsigned int len)
|
|
{
|
|
unsigned n;
|
|
|
|
n = len / sizeof(uint32_t);
|
|
for (; n > 0; n--) {
|
|
*iv = ((*b << 24) & 0xff000000) |
|
|
(((*(b+1)) << 16) & 0xff0000) |
|
|
(((*(b+2)) << 8) & 0xff00) |
|
|
(*(b+3) & 0xff);
|
|
b += sizeof(uint32_t);
|
|
iv++;
|
|
}
|
|
|
|
n = len % sizeof(uint32_t);
|
|
if (n == 3) {
|
|
*iv = ((*b << 24) & 0xff000000) |
|
|
(((*(b+1)) << 16) & 0xff0000) |
|
|
(((*(b+2)) << 8) & 0xff00);
|
|
} else if (n == 2) {
|
|
*iv = ((*b << 24) & 0xff000000) |
|
|
(((*(b+1)) << 16) & 0xff0000);
|
|
} else if (n == 1) {
|
|
*iv = ((*b << 24) & 0xff000000);
|
|
}
|
|
}
|
|
|
|
static void _byte_stream_swap_to_net_words(uint32_t *iv, unsigned char *b,
|
|
unsigned int len)
|
|
{
|
|
unsigned i, j;
|
|
unsigned char swap_iv[AES_IV_LENGTH];
|
|
|
|
memset(swap_iv, 0, AES_IV_LENGTH);
|
|
for (i = (AES_IV_LENGTH-len), j = len-1; i < AES_IV_LENGTH; i++, j--)
|
|
swap_iv[i] = b[j];
|
|
_byte_stream_to_net_words(iv, swap_iv, AES_IV_LENGTH);
|
|
}
|
|
|
|
static int count_sg(struct scatterlist *sg, int nbytes)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; nbytes > 0; i++, sg = scatterwalk_sg_next(sg))
|
|
nbytes -= sg->length;
|
|
return i;
|
|
}
|
|
|
|
static int qce_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
enum dma_data_direction direction)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nents; ++i) {
|
|
dma_map_sg(dev, sg, 1, direction);
|
|
sg = scatterwalk_sg_next(sg);
|
|
}
|
|
|
|
return nents;
|
|
}
|
|
|
|
static int qce_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
|
|
int nents, enum dma_data_direction direction)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nents; ++i) {
|
|
dma_unmap_sg(dev, sg, 1, direction);
|
|
sg = scatterwalk_sg_next(sg);
|
|
}
|
|
|
|
return nents;
|
|
}
|
|
|
|
static int _probe_ce_engine(struct qce_device *pce_dev)
|
|
{
|
|
unsigned int rev;
|
|
unsigned int maj_rev, min_rev, step_rev;
|
|
|
|
rev = readl_relaxed(pce_dev->iobase + CRYPTO_VERSION_REG);
|
|
mb();
|
|
maj_rev = (rev & CRYPTO_CORE_MAJOR_REV_MASK) >> CRYPTO_CORE_MAJOR_REV;
|
|
min_rev = (rev & CRYPTO_CORE_MINOR_REV_MASK) >> CRYPTO_CORE_MINOR_REV;
|
|
step_rev = (rev & CRYPTO_CORE_STEP_REV_MASK) >> CRYPTO_CORE_STEP_REV;
|
|
|
|
if (maj_rev != CRYPTO_CORE_MAJOR_VER_NUM) {
|
|
pr_err("Unsupported Qualcomm crypto device at 0x%x, rev %d.%d.%d\n",
|
|
pce_dev->phy_iobase, maj_rev, min_rev, step_rev);
|
|
return -EIO;
|
|
} else {
|
|
/*
|
|
* The majority of crypto HW bugs have been fixed in 5.3.0 and
|
|
* above. That allows a single sps transfer of consumer
|
|
* pipe, and a single sps transfer of producer pipe
|
|
* for a crypto request. no_get_around flag indicates this.
|
|
*
|
|
* In 5.3.1, the CCM MAC_FAILED in result dump issue is
|
|
* fixed. no_ccm_mac_status_get_around flag indicates this.
|
|
*/
|
|
pce_dev->no_get_around = (min_rev >=
|
|
CRYPTO_CORE_MINOR_VER_NUM) ? true : false;
|
|
if (min_rev > CRYPTO_CORE_MINOR_VER_NUM)
|
|
pce_dev->no_ccm_mac_status_get_around = true;
|
|
else if ((min_rev == CRYPTO_CORE_MINOR_VER_NUM) &&
|
|
(step_rev >= CRYPTO_CORE_STEP_VER_NUM))
|
|
pce_dev->no_ccm_mac_status_get_around = true;
|
|
else
|
|
pce_dev->no_ccm_mac_status_get_around = false;
|
|
}
|
|
|
|
pce_dev->ce_bam_info.minor_version = min_rev;
|
|
|
|
pce_dev->engines_avail = readl_relaxed(pce_dev->iobase +
|
|
CRYPTO_ENGINES_AVAIL);
|
|
dev_info(pce_dev->pdev, "Qualcomm Crypto %d.%d.%d device found @0x%x\n",
|
|
maj_rev, min_rev, step_rev, pce_dev->phy_iobase);
|
|
|
|
pce_dev->ce_bam_info.ce_burst_size = MAX_CE_BAM_BURST_SIZE;
|
|
|
|
dev_info(pce_dev->pdev,
|
|
"CE device = 0x%x\n, "
|
|
"IO base, CE = 0x%p\n, "
|
|
"Consumer (IN) PIPE %d, "
|
|
"Producer (OUT) PIPE %d\n"
|
|
"IO base BAM = 0x%p\n"
|
|
"BAM IRQ %d\n"
|
|
"Engines Availability = 0x%x\n",
|
|
pce_dev->ce_bam_info.ce_device,
|
|
pce_dev->iobase,
|
|
pce_dev->ce_bam_info.dest_pipe_index,
|
|
pce_dev->ce_bam_info.src_pipe_index,
|
|
pce_dev->ce_bam_info.bam_iobase,
|
|
pce_dev->ce_bam_info.bam_irq,
|
|
pce_dev->engines_avail);
|
|
return 0;
|
|
};
|
|
|
|
static struct qce_cmdlist_info *_ce_get_hash_cmdlistinfo(
|
|
struct qce_device *pce_dev,
|
|
int req_info, struct qce_sha_req *sreq)
|
|
{
|
|
struct ce_sps_data *pce_sps_data;
|
|
struct qce_cmdlistptr_ops *cmdlistptr;
|
|
|
|
pce_sps_data = &pce_dev->ce_request_info[req_info].ce_sps;
|
|
cmdlistptr = &pce_sps_data->cmdlistptr;
|
|
switch (sreq->alg) {
|
|
case QCE_HASH_SHA1:
|
|
return &cmdlistptr->auth_sha1;
|
|
case QCE_HASH_SHA256:
|
|
return &cmdlistptr->auth_sha256;
|
|
case QCE_HASH_SHA1_HMAC:
|
|
return &cmdlistptr->auth_sha1_hmac;
|
|
case QCE_HASH_SHA256_HMAC:
|
|
return &cmdlistptr->auth_sha256_hmac;
|
|
case QCE_HASH_AES_CMAC:
|
|
if (sreq->authklen == AES128_KEY_SIZE)
|
|
return &cmdlistptr->auth_aes_128_cmac;
|
|
return &cmdlistptr->auth_aes_256_cmac;
|
|
default:
|
|
return NULL;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int _ce_setup_hash(struct qce_device *pce_dev,
|
|
struct qce_sha_req *sreq,
|
|
struct qce_cmdlist_info *cmdlistinfo)
|
|
{
|
|
uint32_t auth32[SHA256_DIGEST_SIZE / sizeof(uint32_t)];
|
|
uint32_t diglen;
|
|
int i;
|
|
uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
bool sha1 = false;
|
|
struct sps_command_element *pce = NULL;
|
|
bool use_hw_key = false;
|
|
bool use_pipe_key = false;
|
|
uint32_t authk_size_in_word = sreq->authklen/sizeof(uint32_t);
|
|
uint32_t auth_cfg;
|
|
|
|
if ((sreq->alg == QCE_HASH_SHA1_HMAC) ||
|
|
(sreq->alg == QCE_HASH_SHA256_HMAC) ||
|
|
(sreq->alg == QCE_HASH_AES_CMAC)) {
|
|
|
|
|
|
/* no more check for null key. use flag */
|
|
if ((sreq->flags & QCRYPTO_CTX_USE_HW_KEY)
|
|
== QCRYPTO_CTX_USE_HW_KEY)
|
|
use_hw_key = true;
|
|
else if ((sreq->flags & QCRYPTO_CTX_USE_PIPE_KEY) ==
|
|
QCRYPTO_CTX_USE_PIPE_KEY)
|
|
use_pipe_key = true;
|
|
pce = cmdlistinfo->go_proc;
|
|
if (use_hw_key == true) {
|
|
pce->addr = (uint32_t)(CRYPTO_GOPROC_QC_KEY_REG +
|
|
pce_dev->phy_iobase);
|
|
} else {
|
|
pce->addr = (uint32_t)(CRYPTO_GOPROC_REG +
|
|
pce_dev->phy_iobase);
|
|
pce = cmdlistinfo->auth_key;
|
|
if (use_pipe_key == false) {
|
|
_byte_stream_to_net_words(mackey32,
|
|
sreq->authkey,
|
|
sreq->authklen);
|
|
for (i = 0; i < authk_size_in_word; i++, pce++)
|
|
pce->data = mackey32[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sreq->alg == QCE_HASH_AES_CMAC)
|
|
goto go_proc;
|
|
|
|
/* if not the last, the size has to be on the block boundary */
|
|
if (sreq->last_blk == 0 && (sreq->size % SHA256_BLOCK_SIZE))
|
|
return -EIO;
|
|
|
|
switch (sreq->alg) {
|
|
case QCE_HASH_SHA1:
|
|
case QCE_HASH_SHA1_HMAC:
|
|
diglen = SHA1_DIGEST_SIZE;
|
|
sha1 = true;
|
|
break;
|
|
case QCE_HASH_SHA256:
|
|
case QCE_HASH_SHA256_HMAC:
|
|
diglen = SHA256_DIGEST_SIZE;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* write 20/32 bytes, 5/8 words into auth_iv for SHA1/SHA256 */
|
|
if (sreq->first_blk) {
|
|
if (sha1) {
|
|
for (i = 0; i < 5; i++)
|
|
auth32[i] = _std_init_vector_sha1[i];
|
|
} else {
|
|
for (i = 0; i < 8; i++)
|
|
auth32[i] = _std_init_vector_sha256[i];
|
|
}
|
|
} else {
|
|
_byte_stream_to_net_words(auth32, sreq->digest, diglen);
|
|
}
|
|
|
|
pce = cmdlistinfo->auth_iv;
|
|
for (i = 0; i < 5; i++, pce++)
|
|
pce->data = auth32[i];
|
|
|
|
if ((sreq->alg == QCE_HASH_SHA256) ||
|
|
(sreq->alg == QCE_HASH_SHA256_HMAC)) {
|
|
for (i = 5; i < 8; i++, pce++)
|
|
pce->data = auth32[i];
|
|
}
|
|
|
|
/* write auth_bytecnt 0/1, start with 0 */
|
|
pce = cmdlistinfo->auth_bytecount;
|
|
for (i = 0; i < 2; i++, pce++)
|
|
pce->data = sreq->auth_data[i];
|
|
|
|
/* Set/reset last bit in CFG register */
|
|
pce = cmdlistinfo->auth_seg_cfg;
|
|
auth_cfg = pce->data & ~(1 << CRYPTO_LAST |
|
|
1 << CRYPTO_FIRST |
|
|
1 << CRYPTO_USE_PIPE_KEY_AUTH |
|
|
1 << CRYPTO_USE_HW_KEY_AUTH);
|
|
if (sreq->last_blk)
|
|
auth_cfg |= 1 << CRYPTO_LAST;
|
|
if (sreq->first_blk)
|
|
auth_cfg |= 1 << CRYPTO_FIRST;
|
|
if (use_hw_key)
|
|
auth_cfg |= 1 << CRYPTO_USE_HW_KEY_AUTH;
|
|
if (use_pipe_key)
|
|
auth_cfg |= 1 << CRYPTO_USE_PIPE_KEY_AUTH;
|
|
pce->data = auth_cfg;
|
|
go_proc:
|
|
/* write auth seg size */
|
|
pce = cmdlistinfo->auth_seg_size;
|
|
pce->data = sreq->size;
|
|
|
|
pce = cmdlistinfo->encr_seg_cfg;
|
|
pce->data = 0;
|
|
|
|
/* write auth seg size start*/
|
|
pce = cmdlistinfo->auth_seg_start;
|
|
pce->data = 0;
|
|
|
|
/* write seg size */
|
|
pce = cmdlistinfo->seg_size;
|
|
|
|
/* always ensure there is input data. ZLT does not work for bam-ndp */
|
|
if (sreq->size)
|
|
pce->data = sreq->size;
|
|
else
|
|
pce->data = pce_dev->ce_bam_info.ce_burst_size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct qce_cmdlist_info *_ce_get_aead_cmdlistinfo(
|
|
struct qce_device *pce_dev,
|
|
int req_info, struct qce_req *creq)
|
|
{
|
|
struct ce_sps_data *pce_sps_data;
|
|
struct qce_cmdlistptr_ops *cmdlistptr;
|
|
|
|
pce_sps_data = &pce_dev->ce_request_info[req_info].ce_sps;
|
|
cmdlistptr = &pce_sps_data->cmdlistptr;
|
|
switch (creq->alg) {
|
|
case CIPHER_ALG_DES:
|
|
switch (creq->mode) {
|
|
case QCE_MODE_CBC:
|
|
if (creq->auth_alg == QCE_HASH_SHA1_HMAC)
|
|
return &cmdlistptr->aead_hmac_sha1_cbc_des;
|
|
else if (creq->auth_alg == QCE_HASH_SHA256_HMAC)
|
|
return &cmdlistptr->aead_hmac_sha256_cbc_des;
|
|
else
|
|
return NULL;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
break;
|
|
case CIPHER_ALG_3DES:
|
|
switch (creq->mode) {
|
|
case QCE_MODE_CBC:
|
|
if (creq->auth_alg == QCE_HASH_SHA1_HMAC)
|
|
return &cmdlistptr->aead_hmac_sha1_cbc_3des;
|
|
else if (creq->auth_alg == QCE_HASH_SHA256_HMAC)
|
|
return &cmdlistptr->aead_hmac_sha256_cbc_3des;
|
|
else
|
|
return NULL;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
break;
|
|
case CIPHER_ALG_AES:
|
|
switch (creq->mode) {
|
|
case QCE_MODE_CBC:
|
|
if (creq->encklen == AES128_KEY_SIZE) {
|
|
if (creq->auth_alg == QCE_HASH_SHA1_HMAC)
|
|
return &cmdlistptr->
|
|
aead_hmac_sha1_cbc_aes_128;
|
|
else if (creq->auth_alg ==
|
|
QCE_HASH_SHA256_HMAC)
|
|
return &cmdlistptr->
|
|
aead_hmac_sha256_cbc_aes_128;
|
|
else
|
|
return NULL;
|
|
} else if (creq->encklen == AES256_KEY_SIZE) {
|
|
if (creq->auth_alg == QCE_HASH_SHA1_HMAC)
|
|
return &cmdlistptr->
|
|
aead_hmac_sha1_cbc_aes_256;
|
|
else if (creq->auth_alg ==
|
|
QCE_HASH_SHA256_HMAC)
|
|
return &cmdlistptr->
|
|
aead_hmac_sha256_cbc_aes_256;
|
|
else
|
|
return NULL;
|
|
} else
|
|
return NULL;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return NULL;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int _ce_setup_aead(struct qce_device *pce_dev, struct qce_req *q_req,
|
|
uint32_t totallen_in, uint32_t coffset,
|
|
struct qce_cmdlist_info *cmdlistinfo)
|
|
{
|
|
int32_t authk_size_in_word = SHA_HMAC_KEY_SIZE/sizeof(uint32_t);
|
|
int i;
|
|
uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {0};
|
|
struct sps_command_element *pce;
|
|
uint32_t a_cfg;
|
|
uint32_t enckey32[(MAX_CIPHER_KEY_SIZE*2)/sizeof(uint32_t)] = {0};
|
|
uint32_t enciv32[MAX_IV_LENGTH/sizeof(uint32_t)] = {0};
|
|
uint32_t enck_size_in_word = 0;
|
|
uint32_t enciv_in_word;
|
|
uint32_t key_size;
|
|
uint32_t encr_cfg = 0;
|
|
uint32_t ivsize = q_req->ivsize;
|
|
|
|
key_size = q_req->encklen;
|
|
enck_size_in_word = key_size/sizeof(uint32_t);
|
|
|
|
switch (q_req->alg) {
|
|
case CIPHER_ALG_DES:
|
|
enciv_in_word = 2;
|
|
break;
|
|
case CIPHER_ALG_3DES:
|
|
enciv_in_word = 2;
|
|
break;
|
|
case CIPHER_ALG_AES:
|
|
if ((key_size != AES128_KEY_SIZE) &&
|
|
(key_size != AES256_KEY_SIZE))
|
|
return -EINVAL;
|
|
enciv_in_word = 4;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* only support cbc mode */
|
|
if (q_req->mode != QCE_MODE_CBC)
|
|
return -EINVAL;
|
|
|
|
_byte_stream_to_net_words(enciv32, q_req->iv, ivsize);
|
|
pce = cmdlistinfo->encr_cntr_iv;
|
|
for (i = 0; i < enciv_in_word; i++, pce++)
|
|
pce->data = enciv32[i];
|
|
|
|
/*
|
|
* write encr key
|
|
* do not use hw key or pipe key
|
|
*/
|
|
_byte_stream_to_net_words(enckey32, q_req->enckey, key_size);
|
|
pce = cmdlistinfo->encr_key;
|
|
for (i = 0; i < enck_size_in_word; i++, pce++)
|
|
pce->data = enckey32[i];
|
|
|
|
/* write encr seg cfg */
|
|
pce = cmdlistinfo->encr_seg_cfg;
|
|
encr_cfg = pce->data;
|
|
if (q_req->dir == QCE_ENCRYPT)
|
|
encr_cfg |= (1 << CRYPTO_ENCODE);
|
|
else
|
|
encr_cfg &= ~(1 << CRYPTO_ENCODE);
|
|
pce->data = encr_cfg;
|
|
|
|
/* we only support sha1-hmac and sha256-hmac at this point */
|
|
_byte_stream_to_net_words(mackey32, q_req->authkey,
|
|
q_req->authklen);
|
|
pce = cmdlistinfo->auth_key;
|
|
for (i = 0; i < authk_size_in_word; i++, pce++)
|
|
pce->data = mackey32[i];
|
|
pce = cmdlistinfo->auth_iv;
|
|
|
|
if (q_req->auth_alg == QCE_HASH_SHA1_HMAC)
|
|
for (i = 0; i < 5; i++, pce++)
|
|
pce->data = _std_init_vector_sha1[i];
|
|
else
|
|
for (i = 0; i < 8; i++, pce++)
|
|
pce->data = _std_init_vector_sha256[i];
|
|
|
|
/* write auth_bytecnt 0/1, start with 0 */
|
|
pce = cmdlistinfo->auth_bytecount;
|
|
for (i = 0; i < 2; i++, pce++)
|
|
pce->data = 0;
|
|
|
|
pce = cmdlistinfo->auth_seg_cfg;
|
|
a_cfg = pce->data;
|
|
a_cfg &= ~(CRYPTO_AUTH_POS_MASK);
|
|
if (q_req->dir == QCE_ENCRYPT)
|
|
a_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS);
|
|
else
|
|
a_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
|
|
pce->data = a_cfg;
|
|
|
|
/* write auth seg size */
|
|
pce = cmdlistinfo->auth_seg_size;
|
|
pce->data = totallen_in;
|
|
|
|
/* write auth seg size start*/
|
|
pce = cmdlistinfo->auth_seg_start;
|
|
pce->data = 0;
|
|
|
|
/* write seg size */
|
|
pce = cmdlistinfo->seg_size;
|
|
pce->data = totallen_in;
|
|
|
|
/* write encr seg size */
|
|
pce = cmdlistinfo->encr_seg_size;
|
|
pce->data = q_req->cryptlen;
|
|
|
|
/* write encr seg start */
|
|
pce = cmdlistinfo->encr_seg_start;
|
|
pce->data = (coffset & 0xffff);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
static struct qce_cmdlist_info *_ce_get_cipher_cmdlistinfo(
|
|
struct qce_device *pce_dev,
|
|
int req_info, struct qce_req *creq)
|
|
{
|
|
struct ce_request_info *preq_info;
|
|
struct ce_sps_data *pce_sps_data;
|
|
struct qce_cmdlistptr_ops *cmdlistptr;
|
|
|
|
preq_info = &pce_dev->ce_request_info[req_info];
|
|
pce_sps_data = &preq_info->ce_sps;
|
|
cmdlistptr = &pce_sps_data->cmdlistptr;
|
|
if (creq->alg != CIPHER_ALG_AES) {
|
|
switch (creq->alg) {
|
|
case CIPHER_ALG_DES:
|
|
if (creq->mode == QCE_MODE_ECB)
|
|
return &cmdlistptr->cipher_des_ecb;
|
|
return &cmdlistptr->cipher_des_cbc;
|
|
case CIPHER_ALG_3DES:
|
|
if (creq->mode == QCE_MODE_ECB)
|
|
return &cmdlistptr->cipher_3des_ecb;
|
|
return &cmdlistptr->cipher_3des_cbc;
|
|
default:
|
|
return NULL;
|
|
}
|
|
} else {
|
|
switch (creq->mode) {
|
|
case QCE_MODE_ECB:
|
|
if (creq->encklen == AES128_KEY_SIZE)
|
|
return &cmdlistptr->cipher_aes_128_ecb;
|
|
return &cmdlistptr->cipher_aes_256_ecb;
|
|
case QCE_MODE_CBC:
|
|
case QCE_MODE_CTR:
|
|
if (creq->encklen == AES128_KEY_SIZE)
|
|
return &cmdlistptr->cipher_aes_128_cbc_ctr;
|
|
return &cmdlistptr->cipher_aes_256_cbc_ctr;
|
|
case QCE_MODE_XTS:
|
|
if (creq->encklen/2 == AES128_KEY_SIZE)
|
|
return &cmdlistptr->cipher_aes_128_xts;
|
|
return &cmdlistptr->cipher_aes_256_xts;
|
|
case QCE_MODE_CCM:
|
|
if (creq->encklen == AES128_KEY_SIZE)
|
|
return &cmdlistptr->aead_aes_128_ccm;
|
|
return &cmdlistptr->aead_aes_256_ccm;
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int _ce_setup_cipher(struct qce_device *pce_dev, struct qce_req *creq,
|
|
uint32_t totallen_in, uint32_t coffset,
|
|
struct qce_cmdlist_info *cmdlistinfo)
|
|
{
|
|
uint32_t enckey32[(MAX_CIPHER_KEY_SIZE * 2)/sizeof(uint32_t)] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
uint32_t enciv32[MAX_IV_LENGTH / sizeof(uint32_t)] = {
|
|
0, 0, 0, 0};
|
|
uint32_t enck_size_in_word = 0;
|
|
uint32_t key_size;
|
|
bool use_hw_key = false;
|
|
bool use_pipe_key = false;
|
|
uint32_t encr_cfg = 0;
|
|
uint32_t ivsize = creq->ivsize;
|
|
int i;
|
|
struct sps_command_element *pce = NULL;
|
|
|
|
if (creq->mode == QCE_MODE_XTS)
|
|
key_size = creq->encklen/2;
|
|
else
|
|
key_size = creq->encklen;
|
|
|
|
pce = cmdlistinfo->go_proc;
|
|
if ((creq->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) {
|
|
use_hw_key = true;
|
|
} else {
|
|
if ((creq->flags & QCRYPTO_CTX_USE_PIPE_KEY) ==
|
|
QCRYPTO_CTX_USE_PIPE_KEY)
|
|
use_pipe_key = true;
|
|
}
|
|
pce = cmdlistinfo->go_proc;
|
|
if (use_hw_key == true)
|
|
pce->addr = (uint32_t)(CRYPTO_GOPROC_QC_KEY_REG +
|
|
pce_dev->phy_iobase);
|
|
else
|
|
pce->addr = (uint32_t)(CRYPTO_GOPROC_REG +
|
|
pce_dev->phy_iobase);
|
|
if ((use_pipe_key == false) && (use_hw_key == false)) {
|
|
_byte_stream_to_net_words(enckey32, creq->enckey, key_size);
|
|
enck_size_in_word = key_size/sizeof(uint32_t);
|
|
}
|
|
|
|
if ((creq->op == QCE_REQ_AEAD) && (creq->mode == QCE_MODE_CCM)) {
|
|
uint32_t authklen32 = creq->encklen/sizeof(uint32_t);
|
|
uint32_t noncelen32 = MAX_NONCE/sizeof(uint32_t);
|
|
uint32_t nonce32[MAX_NONCE/sizeof(uint32_t)] = {0, 0, 0, 0};
|
|
uint32_t auth_cfg = 0;
|
|
|
|
/* write nonce */
|
|
_byte_stream_to_net_words(nonce32, creq->nonce, MAX_NONCE);
|
|
pce = cmdlistinfo->auth_nonce_info;
|
|
for (i = 0; i < noncelen32; i++, pce++)
|
|
pce->data = nonce32[i];
|
|
|
|
if (creq->authklen == AES128_KEY_SIZE)
|
|
auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_128;
|
|
else {
|
|
if (creq->authklen == AES256_KEY_SIZE)
|
|
auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_256;
|
|
}
|
|
if (creq->dir == QCE_ENCRYPT)
|
|
auth_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
|
|
else
|
|
auth_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS);
|
|
auth_cfg |= ((creq->authsize - 1) << CRYPTO_AUTH_SIZE);
|
|
|
|
if (use_hw_key == true) {
|
|
auth_cfg |= (1 << CRYPTO_USE_HW_KEY_AUTH);
|
|
} else {
|
|
auth_cfg &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
|
|
/* write auth key */
|
|
pce = cmdlistinfo->auth_key;
|
|
for (i = 0; i < authklen32; i++, pce++)
|
|
pce->data = enckey32[i];
|
|
}
|
|
|
|
pce = cmdlistinfo->auth_seg_cfg;
|
|
pce->data = auth_cfg;
|
|
|
|
pce = cmdlistinfo->auth_seg_size;
|
|
if (creq->dir == QCE_ENCRYPT)
|
|
pce->data = totallen_in;
|
|
else
|
|
pce->data = totallen_in - creq->authsize;
|
|
pce = cmdlistinfo->auth_seg_start;
|
|
pce->data = 0;
|
|
} else {
|
|
if (creq->op != QCE_REQ_AEAD) {
|
|
pce = cmdlistinfo->auth_seg_cfg;
|
|
pce->data = 0;
|
|
}
|
|
}
|
|
switch (creq->mode) {
|
|
case QCE_MODE_ECB:
|
|
if (key_size == AES128_KEY_SIZE)
|
|
encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_128;
|
|
else
|
|
encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_256;
|
|
break;
|
|
case QCE_MODE_CBC:
|
|
if (key_size == AES128_KEY_SIZE)
|
|
encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_128;
|
|
else
|
|
encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_256;
|
|
break;
|
|
case QCE_MODE_XTS:
|
|
if (key_size == AES128_KEY_SIZE)
|
|
encr_cfg = pce_dev->reg.encr_cfg_aes_xts_128;
|
|
else
|
|
encr_cfg = pce_dev->reg.encr_cfg_aes_xts_256;
|
|
break;
|
|
case QCE_MODE_CCM:
|
|
if (key_size == AES128_KEY_SIZE)
|
|
encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_128;
|
|
else
|
|
encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_256;
|
|
encr_cfg |= (CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE) |
|
|
(CRYPTO_LAST_CCM_XFR << CRYPTO_LAST_CCM);
|
|
break;
|
|
case QCE_MODE_CTR:
|
|
default:
|
|
if (key_size == AES128_KEY_SIZE)
|
|
encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_128;
|
|
else
|
|
encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_256;
|
|
break;
|
|
}
|
|
|
|
switch (creq->alg) {
|
|
case CIPHER_ALG_DES:
|
|
if (creq->mode != QCE_MODE_ECB) {
|
|
_byte_stream_to_net_words(enciv32, creq->iv, ivsize);
|
|
pce = cmdlistinfo->encr_cntr_iv;
|
|
pce->data = enciv32[0];
|
|
pce++;
|
|
pce->data = enciv32[1];
|
|
}
|
|
if (use_hw_key == false) {
|
|
pce = cmdlistinfo->encr_key;
|
|
pce->data = enckey32[0];
|
|
pce++;
|
|
pce->data = enckey32[1];
|
|
}
|
|
break;
|
|
case CIPHER_ALG_3DES:
|
|
if (creq->mode != QCE_MODE_ECB) {
|
|
_byte_stream_to_net_words(enciv32, creq->iv, ivsize);
|
|
pce = cmdlistinfo->encr_cntr_iv;
|
|
pce->data = enciv32[0];
|
|
pce++;
|
|
pce->data = enciv32[1];
|
|
}
|
|
if (use_hw_key == false) {
|
|
/* write encr key */
|
|
pce = cmdlistinfo->encr_key;
|
|
for (i = 0; i < 6; i++, pce++)
|
|
pce->data = enckey32[i];
|
|
}
|
|
break;
|
|
case CIPHER_ALG_AES:
|
|
default:
|
|
if (creq->mode == QCE_MODE_XTS) {
|
|
uint32_t xtskey32[MAX_CIPHER_KEY_SIZE/sizeof(uint32_t)]
|
|
= {0, 0, 0, 0, 0, 0, 0, 0};
|
|
uint32_t xtsklen =
|
|
creq->encklen/(2 * sizeof(uint32_t));
|
|
|
|
if ((use_hw_key == false) && (use_pipe_key == false)) {
|
|
_byte_stream_to_net_words(xtskey32,
|
|
(creq->enckey + creq->encklen/2),
|
|
creq->encklen/2);
|
|
/* write xts encr key */
|
|
pce = cmdlistinfo->encr_xts_key;
|
|
for (i = 0; i < xtsklen; i++, pce++)
|
|
pce->data = xtskey32[i];
|
|
}
|
|
/* write xts du size */
|
|
pce = cmdlistinfo->encr_xts_du_size;
|
|
switch (creq->flags & QCRYPTO_CTX_XTS_MASK) {
|
|
case QCRYPTO_CTX_XTS_DU_SIZE_512B:
|
|
pce->data = min((unsigned int)QCE_SECTOR_SIZE,
|
|
creq->cryptlen);
|
|
break;
|
|
case QCRYPTO_CTX_XTS_DU_SIZE_1KB:
|
|
pce->data =
|
|
min((unsigned int)QCE_SECTOR_SIZE * 2,
|
|
creq->cryptlen);
|
|
break;
|
|
default:
|
|
pce->data = creq->cryptlen;
|
|
break;
|
|
}
|
|
}
|
|
if (creq->mode != QCE_MODE_ECB) {
|
|
if (creq->mode == QCE_MODE_XTS)
|
|
_byte_stream_swap_to_net_words(enciv32,
|
|
creq->iv, ivsize);
|
|
else
|
|
_byte_stream_to_net_words(enciv32, creq->iv,
|
|
ivsize);
|
|
/* write encr cntr iv */
|
|
pce = cmdlistinfo->encr_cntr_iv;
|
|
for (i = 0; i < 4; i++, pce++)
|
|
pce->data = enciv32[i];
|
|
|
|
if (creq->mode == QCE_MODE_CCM) {
|
|
/* write cntr iv for ccm */
|
|
pce = cmdlistinfo->encr_ccm_cntr_iv;
|
|
for (i = 0; i < 4; i++, pce++)
|
|
pce->data = enciv32[i];
|
|
/* update cntr_iv[3] by one */
|
|
pce = cmdlistinfo->encr_cntr_iv;
|
|
pce += 3;
|
|
pce->data += 1;
|
|
}
|
|
}
|
|
|
|
if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) {
|
|
encr_cfg |= (CRYPTO_ENCR_KEY_SZ_AES128 <<
|
|
CRYPTO_ENCR_KEY_SZ);
|
|
} else {
|
|
if (use_hw_key == false) {
|
|
/* write encr key */
|
|
pce = cmdlistinfo->encr_key;
|
|
for (i = 0; i < enck_size_in_word; i++, pce++)
|
|
pce->data = enckey32[i];
|
|
}
|
|
} /* else of if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) */
|
|
break;
|
|
} /* end of switch (creq->mode) */
|
|
|
|
if (use_pipe_key)
|
|
encr_cfg |= (CRYPTO_USE_PIPE_KEY_ENCR_ENABLED
|
|
<< CRYPTO_USE_PIPE_KEY_ENCR);
|
|
|
|
/* write encr seg cfg */
|
|
pce = cmdlistinfo->encr_seg_cfg;
|
|
if ((creq->alg == CIPHER_ALG_DES) || (creq->alg == CIPHER_ALG_3DES)) {
|
|
if (creq->dir == QCE_ENCRYPT)
|
|
pce->data |= (1 << CRYPTO_ENCODE);
|
|
else
|
|
pce->data &= ~(1 << CRYPTO_ENCODE);
|
|
encr_cfg = pce->data;
|
|
} else {
|
|
encr_cfg |=
|
|
((creq->dir == QCE_ENCRYPT) ? 1 : 0) << CRYPTO_ENCODE;
|
|
}
|
|
if (use_hw_key == true)
|
|
encr_cfg |= (CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
|
|
else
|
|
encr_cfg &= ~(CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
|
|
pce->data = encr_cfg;
|
|
|
|
/* write encr seg size */
|
|
pce = cmdlistinfo->encr_seg_size;
|
|
if ((creq->mode == QCE_MODE_CCM) && (creq->dir == QCE_DECRYPT))
|
|
pce->data = (creq->cryptlen + creq->authsize);
|
|
else
|
|
pce->data = creq->cryptlen;
|
|
|
|
/* write encr seg start */
|
|
pce = cmdlistinfo->encr_seg_start;
|
|
pce->data = (coffset & 0xffff);
|
|
|
|
/* write seg size */
|
|
pce = cmdlistinfo->seg_size;
|
|
pce->data = totallen_in;
|
|
|
|
return 0;
|
|
};
|
|
|
|
static int _ce_f9_setup(struct qce_device *pce_dev, struct qce_f9_req *req,
|
|
struct qce_cmdlist_info *cmdlistinfo)
|
|
{
|
|
uint32_t ikey32[OTA_KEY_SIZE/sizeof(uint32_t)];
|
|
uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t);
|
|
uint32_t cfg;
|
|
struct sps_command_element *pce;
|
|
int i;
|
|
|
|
switch (req->algorithm) {
|
|
case QCE_OTA_ALGO_KASUMI:
|
|
cfg = pce_dev->reg.auth_cfg_kasumi;
|
|
break;
|
|
case QCE_OTA_ALGO_SNOW3G:
|
|
default:
|
|
cfg = pce_dev->reg.auth_cfg_snow3g;
|
|
break;
|
|
};
|
|
|
|
/* write key in CRYPTO_AUTH_IV0-3_REG */
|
|
_byte_stream_to_net_words(ikey32, &req->ikey[0], OTA_KEY_SIZE);
|
|
pce = cmdlistinfo->auth_iv;
|
|
for (i = 0; i < key_size_in_word; i++, pce++)
|
|
pce->data = ikey32[i];
|
|
|
|
/* write last bits in CRYPTO_AUTH_IV4_REG */
|
|
pce->data = req->last_bits;
|
|
|
|
/* write fresh to CRYPTO_AUTH_BYTECNT0_REG */
|
|
pce = cmdlistinfo->auth_bytecount;
|
|
pce->data = req->fresh;
|
|
|
|
/* write count-i to CRYPTO_AUTH_BYTECNT1_REG */
|
|
pce++;
|
|
pce->data = req->count_i;
|
|
|
|
/* write auth seg cfg */
|
|
pce = cmdlistinfo->auth_seg_cfg;
|
|
if (req->direction == QCE_OTA_DIR_DOWNLINK)
|
|
cfg |= BIT(CRYPTO_F9_DIRECTION);
|
|
pce->data = cfg;
|
|
|
|
/* write auth seg size */
|
|
pce = cmdlistinfo->auth_seg_size;
|
|
pce->data = req->msize;
|
|
|
|
/* write auth seg start*/
|
|
pce = cmdlistinfo->auth_seg_start;
|
|
pce->data = 0;
|
|
|
|
/* write seg size */
|
|
pce = cmdlistinfo->seg_size;
|
|
pce->data = req->msize;
|
|
|
|
|
|
/* write go */
|
|
pce = cmdlistinfo->go_proc;
|
|
pce->addr = (uint32_t)(CRYPTO_GOPROC_REG + pce_dev->phy_iobase);
|
|
return 0;
|
|
}
|
|
|
|
static int _ce_f8_setup(struct qce_device *pce_dev, struct qce_f8_req *req,
|
|
bool key_stream_mode, uint16_t npkts, uint16_t cipher_offset,
|
|
uint16_t cipher_size,
|
|
struct qce_cmdlist_info *cmdlistinfo)
|
|
{
|
|
uint32_t ckey32[OTA_KEY_SIZE/sizeof(uint32_t)];
|
|
uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t);
|
|
uint32_t cfg;
|
|
struct sps_command_element *pce;
|
|
int i;
|
|
|
|
switch (req->algorithm) {
|
|
case QCE_OTA_ALGO_KASUMI:
|
|
cfg = pce_dev->reg.encr_cfg_kasumi;
|
|
break;
|
|
case QCE_OTA_ALGO_SNOW3G:
|
|
default:
|
|
cfg = pce_dev->reg.encr_cfg_snow3g;
|
|
break;
|
|
};
|
|
/* write key */
|
|
_byte_stream_to_net_words(ckey32, &req->ckey[0], OTA_KEY_SIZE);
|
|
pce = cmdlistinfo->encr_key;
|
|
for (i = 0; i < key_size_in_word; i++, pce++)
|
|
pce->data = ckey32[i];
|
|
|
|
/* write encr seg cfg */
|
|
pce = cmdlistinfo->encr_seg_cfg;
|
|
if (key_stream_mode)
|
|
cfg |= BIT(CRYPTO_F8_KEYSTREAM_ENABLE);
|
|
if (req->direction == QCE_OTA_DIR_DOWNLINK)
|
|
cfg |= BIT(CRYPTO_F8_DIRECTION);
|
|
pce->data = cfg;
|
|
|
|
/* write encr seg start */
|
|
pce = cmdlistinfo->encr_seg_start;
|
|
pce->data = (cipher_offset & 0xffff);
|
|
|
|
/* write encr seg size */
|
|
pce = cmdlistinfo->encr_seg_size;
|
|
pce->data = cipher_size;
|
|
|
|
/* write seg size */
|
|
pce = cmdlistinfo->seg_size;
|
|
pce->data = req->data_len;
|
|
|
|
/* write cntr0_iv0 for countC */
|
|
pce = cmdlistinfo->encr_cntr_iv;
|
|
pce->data = req->count_c;
|
|
/* write cntr1_iv1 for nPkts, and bearer */
|
|
pce++;
|
|
if (npkts == 1)
|
|
npkts = 0;
|
|
pce->data = req->bearer << CRYPTO_CNTR1_IV1_REG_F8_BEARER |
|
|
npkts << CRYPTO_CNTR1_IV1_REG_F8_PKT_CNT;
|
|
|
|
/* write go */
|
|
pce = cmdlistinfo->go_proc;
|
|
pce->addr = (uint32_t)(CRYPTO_GOPROC_REG + pce_dev->phy_iobase);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void _qce_dump_descr_fifos(struct qce_device *pce_dev, int req_info)
|
|
{
|
|
int i, j, ents;
|
|
struct ce_sps_data *pce_sps_data;
|
|
struct sps_iovec *iovec;
|
|
uint32_t cmd_flags = SPS_IOVEC_FLAG_CMD;
|
|
|
|
pce_sps_data = &pce_dev->ce_request_info[req_info].ce_sps;
|
|
iovec = pce_sps_data->in_transfer.iovec;
|
|
pr_info("==============================================\n");
|
|
pr_info("CONSUMER (TX/IN/DEST) PIPE DESCRIPTOR\n");
|
|
pr_info("==============================================\n");
|
|
for (i = 0; i < pce_sps_data->in_transfer.iovec_count; i++) {
|
|
pr_info(" [%d] addr=0x%x size=0x%x flags=0x%x\n", i,
|
|
iovec->addr, iovec->size, iovec->flags);
|
|
if (iovec->flags & cmd_flags) {
|
|
struct sps_command_element *pced;
|
|
|
|
pced = (struct sps_command_element *)
|
|
(GET_VIRT_ADDR(iovec->addr));
|
|
ents = iovec->size/(sizeof(struct sps_command_element));
|
|
for (j = 0; j < ents; j++) {
|
|
pr_info(" [%d] [0x%x] 0x%x\n", j,
|
|
pced->addr, pced->data);
|
|
pced++;
|
|
}
|
|
}
|
|
iovec++;
|
|
}
|
|
|
|
pr_info("==============================================\n");
|
|
pr_info("PRODUCER (RX/OUT/SRC) PIPE DESCRIPTOR\n");
|
|
pr_info("==============================================\n");
|
|
iovec = pce_sps_data->out_transfer.iovec;
|
|
for (i = 0; i < pce_sps_data->out_transfer.iovec_count; i++) {
|
|
pr_info(" [%d] addr=0x%x size=0x%x flags=0x%x\n", i,
|
|
iovec->addr, iovec->size, iovec->flags);
|
|
iovec++;
|
|
}
|
|
}
|
|
|
|
#ifdef QCE_DEBUG
|
|
|
|
static void _qce_dump_descr_fifos_dbg(struct qce_device *pce_dev, int req_info)
|
|
{
|
|
_qce_dump_descr_fifos(pce_dev, req_info);
|
|
}
|
|
|
|
#define QCE_WRITE_REG(val, addr) \
|
|
{ \
|
|
pr_info(" [0x%p] 0x%x\n", addr, (uint32_t)val); \
|
|
writel_relaxed(val, addr); \
|
|
}
|
|
|
|
#else
|
|
|
|
static void _qce_dump_descr_fifos_dbg(struct qce_device *pce_dev, int req_info)
|
|
{
|
|
}
|
|
|
|
#define QCE_WRITE_REG(val, addr) \
|
|
writel_relaxed(val, addr)
|
|
|
|
#endif
|
|
|
|
static int _ce_setup_hash_direct(struct qce_device *pce_dev,
|
|
struct qce_sha_req *sreq)
|
|
{
|
|
uint32_t auth32[SHA256_DIGEST_SIZE / sizeof(uint32_t)];
|
|
uint32_t diglen;
|
|
bool use_hw_key = false;
|
|
bool use_pipe_key = false;
|
|
int i;
|
|
uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
uint32_t authk_size_in_word = sreq->authklen/sizeof(uint32_t);
|
|
bool sha1 = false;
|
|
uint32_t auth_cfg = 0;
|
|
|
|
/* clear status */
|
|
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
|
|
|
|
QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase +
|
|
CRYPTO_CONFIG_REG));
|
|
/*
|
|
* Ensure previous instructions (setting the CONFIG register)
|
|
* was completed before issuing starting to set other config register
|
|
* This is to ensure the configurations are done in correct endian-ness
|
|
* as set in the CONFIG registers
|
|
*/
|
|
mb();
|
|
|
|
if (sreq->alg == QCE_HASH_AES_CMAC) {
|
|
/* write seg_cfg */
|
|
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
|
|
/* write seg_cfg */
|
|
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
|
|
/* write seg_cfg */
|
|
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG);
|
|
|
|
/* Clear auth_ivn, auth_keyn registers */
|
|
for (i = 0; i < 16; i++) {
|
|
QCE_WRITE_REG(0, (pce_dev->iobase +
|
|
(CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
|
|
QCE_WRITE_REG(0, (pce_dev->iobase +
|
|
(CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t))));
|
|
}
|
|
/* write auth_bytecnt 0/1/2/3, start with 0 */
|
|
for (i = 0; i < 4; i++)
|
|
QCE_WRITE_REG(0, pce_dev->iobase +
|
|
CRYPTO_AUTH_BYTECNT0_REG +
|
|
i * sizeof(uint32_t));
|
|
|
|
if (sreq->authklen == AES128_KEY_SIZE)
|
|
auth_cfg = pce_dev->reg.auth_cfg_cmac_128;
|
|
else
|
|
auth_cfg = pce_dev->reg.auth_cfg_cmac_256;
|
|
}
|
|
|
|
if ((sreq->alg == QCE_HASH_SHA1_HMAC) ||
|
|
(sreq->alg == QCE_HASH_SHA256_HMAC) ||
|
|
(sreq->alg == QCE_HASH_AES_CMAC)) {
|
|
|
|
_byte_stream_to_net_words(mackey32, sreq->authkey,
|
|
sreq->authklen);
|
|
|
|
/* no more check for null key. use flag to check*/
|
|
|
|
if ((sreq->flags & QCRYPTO_CTX_USE_HW_KEY) ==
|
|
QCRYPTO_CTX_USE_HW_KEY) {
|
|
use_hw_key = true;
|
|
} else if ((sreq->flags & QCRYPTO_CTX_USE_PIPE_KEY) ==
|
|
QCRYPTO_CTX_USE_PIPE_KEY) {
|
|
use_pipe_key = true;
|
|
} else {
|
|
/* setup key */
|
|
for (i = 0; i < authk_size_in_word; i++)
|
|
QCE_WRITE_REG(mackey32[i], (pce_dev->iobase +
|
|
(CRYPTO_AUTH_KEY0_REG +
|
|
i*sizeof(uint32_t))));
|
|
}
|
|
}
|
|
|
|
if (sreq->alg == QCE_HASH_AES_CMAC)
|
|
goto go_proc;
|
|
|
|
/* if not the last, the size has to be on the block boundary */
|
|
if (sreq->last_blk == 0 && (sreq->size % SHA256_BLOCK_SIZE))
|
|
return -EIO;
|
|
|
|
switch (sreq->alg) {
|
|
case QCE_HASH_SHA1:
|
|
auth_cfg = pce_dev->reg.auth_cfg_sha1;
|
|
diglen = SHA1_DIGEST_SIZE;
|
|
sha1 = true;
|
|
break;
|
|
case QCE_HASH_SHA1_HMAC:
|
|
auth_cfg = pce_dev->reg.auth_cfg_hmac_sha1;
|
|
diglen = SHA1_DIGEST_SIZE;
|
|
sha1 = true;
|
|
break;
|
|
case QCE_HASH_SHA256:
|
|
auth_cfg = pce_dev->reg.auth_cfg_sha256;
|
|
diglen = SHA256_DIGEST_SIZE;
|
|
break;
|
|
case QCE_HASH_SHA256_HMAC:
|
|
auth_cfg = pce_dev->reg.auth_cfg_hmac_sha256;
|
|
diglen = SHA256_DIGEST_SIZE;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* write 20/32 bytes, 5/8 words into auth_iv for SHA1/SHA256 */
|
|
if (sreq->first_blk) {
|
|
if (sha1) {
|
|
for (i = 0; i < 5; i++)
|
|
auth32[i] = _std_init_vector_sha1[i];
|
|
} else {
|
|
for (i = 0; i < 8; i++)
|
|
auth32[i] = _std_init_vector_sha256[i];
|
|
}
|
|
} else {
|
|
_byte_stream_to_net_words(auth32, sreq->digest, diglen);
|
|
}
|
|
|
|
/* Set auth_ivn, auth_keyn registers */
|
|
for (i = 0; i < 5; i++)
|
|
QCE_WRITE_REG(auth32[i], (pce_dev->iobase +
|
|
(CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
|
|
|
|
if ((sreq->alg == QCE_HASH_SHA256) ||
|
|
(sreq->alg == QCE_HASH_SHA256_HMAC)) {
|
|
for (i = 5; i < 8; i++)
|
|
QCE_WRITE_REG(auth32[i], (pce_dev->iobase +
|
|
(CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
|
|
}
|
|
|
|
|
|
/* write auth_bytecnt 0/1/2/3, start with 0 */
|
|
for (i = 0; i < 2; i++)
|
|
QCE_WRITE_REG(sreq->auth_data[i], pce_dev->iobase +
|
|
CRYPTO_AUTH_BYTECNT0_REG +
|
|
i * sizeof(uint32_t));
|
|
|
|
/* Set/reset last bit in CFG register */
|
|
if (sreq->last_blk)
|
|
auth_cfg |= 1 << CRYPTO_LAST;
|
|
else
|
|
auth_cfg &= ~(1 << CRYPTO_LAST);
|
|
if (sreq->first_blk)
|
|
auth_cfg |= 1 << CRYPTO_FIRST;
|
|
else
|
|
auth_cfg &= ~(1 << CRYPTO_FIRST);
|
|
if (use_hw_key)
|
|
auth_cfg |= 1 << CRYPTO_USE_HW_KEY_AUTH;
|
|
if (use_pipe_key)
|
|
auth_cfg |= 1 << CRYPTO_USE_PIPE_KEY_AUTH;
|
|
go_proc:
|
|
/* write seg_cfg */
|
|
QCE_WRITE_REG(auth_cfg, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
|
|
/* write auth seg_size */
|
|
QCE_WRITE_REG(sreq->size, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
|
|
|
|
/* write auth_seg_start */
|
|
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG);
|
|
|
|
/* reset encr seg_cfg */
|
|
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
|
|
|
|
/* write seg_size */
|
|
QCE_WRITE_REG(sreq->size, pce_dev->iobase + CRYPTO_SEG_SIZE_REG);
|
|
|
|
QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase +
|
|
CRYPTO_CONFIG_REG));
|
|
/* issue go to crypto */
|
|
if (use_hw_key == false) {
|
|
QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
|
|
pce_dev->iobase + CRYPTO_GOPROC_REG);
|
|
} else {
|
|
QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
|
|
pce_dev->iobase + CRYPTO_GOPROC_QC_KEY_REG);
|
|
}
|
|
/*
|
|
* Ensure previous instructions (setting the GO register)
|
|
* was completed before issuing a DMA transfer request
|
|
*/
|
|
mb();
|
|
return 0;
|
|
}
|
|
|
|
static int _ce_setup_aead_direct(struct qce_device *pce_dev,
|
|
struct qce_req *q_req, uint32_t totallen_in, uint32_t coffset)
|
|
{
|
|
int32_t authk_size_in_word = SHA_HMAC_KEY_SIZE/sizeof(uint32_t);
|
|
int i;
|
|
uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {0};
|
|
uint32_t a_cfg;
|
|
uint32_t enckey32[(MAX_CIPHER_KEY_SIZE*2)/sizeof(uint32_t)] = {0};
|
|
uint32_t enciv32[MAX_IV_LENGTH/sizeof(uint32_t)] = {0};
|
|
uint32_t enck_size_in_word = 0;
|
|
uint32_t enciv_in_word;
|
|
uint32_t key_size;
|
|
uint32_t ivsize = q_req->ivsize;
|
|
uint32_t encr_cfg;
|
|
|
|
|
|
/* clear status */
|
|
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
|
|
|
|
QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase +
|
|
CRYPTO_CONFIG_REG));
|
|
/*
|
|
* Ensure previous instructions (setting the CONFIG register)
|
|
* was completed before issuing starting to set other config register
|
|
* This is to ensure the configurations are done in correct endian-ness
|
|
* as set in the CONFIG registers
|
|
*/
|
|
mb();
|
|
|
|
key_size = q_req->encklen;
|
|
enck_size_in_word = key_size/sizeof(uint32_t);
|
|
|
|
switch (q_req->alg) {
|
|
|
|
case CIPHER_ALG_DES:
|
|
|
|
switch (q_req->mode) {
|
|
case QCE_MODE_CBC:
|
|
encr_cfg = pce_dev->reg.encr_cfg_des_cbc;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
enciv_in_word = 2;
|
|
break;
|
|
|
|
case CIPHER_ALG_3DES:
|
|
|
|
switch (q_req->mode) {
|
|
case QCE_MODE_CBC:
|
|
encr_cfg = pce_dev->reg.encr_cfg_3des_cbc;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
enciv_in_word = 2;
|
|
|
|
break;
|
|
|
|
case CIPHER_ALG_AES:
|
|
|
|
switch (q_req->mode) {
|
|
case QCE_MODE_CBC:
|
|
if (key_size == AES128_KEY_SIZE)
|
|
encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_128;
|
|
else if (key_size == AES256_KEY_SIZE)
|
|
encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_256;
|
|
else
|
|
return -EINVAL;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
enciv_in_word = 4;
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
|
|
|
|
|
|
/* write CNTR0_IV0_REG */
|
|
if (q_req->mode != QCE_MODE_ECB) {
|
|
_byte_stream_to_net_words(enciv32, q_req->iv, ivsize);
|
|
for (i = 0; i < enciv_in_word; i++)
|
|
QCE_WRITE_REG(enciv32[i], pce_dev->iobase +
|
|
(CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)));
|
|
}
|
|
|
|
/*
|
|
* write encr key
|
|
* do not use hw key or pipe key
|
|
*/
|
|
_byte_stream_to_net_words(enckey32, q_req->enckey, key_size);
|
|
for (i = 0; i < enck_size_in_word; i++)
|
|
QCE_WRITE_REG(enckey32[i], pce_dev->iobase +
|
|
(CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)));
|
|
|
|
/* write encr seg cfg */
|
|
if (q_req->dir == QCE_ENCRYPT)
|
|
encr_cfg |= (1 << CRYPTO_ENCODE);
|
|
QCE_WRITE_REG(encr_cfg, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
|
|
|
|
/* we only support sha1-hmac and sha256-hmac at this point */
|
|
_byte_stream_to_net_words(mackey32, q_req->authkey,
|
|
q_req->authklen);
|
|
for (i = 0; i < authk_size_in_word; i++)
|
|
QCE_WRITE_REG(mackey32[i], pce_dev->iobase +
|
|
(CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t)));
|
|
|
|
if (q_req->auth_alg == QCE_HASH_SHA1_HMAC) {
|
|
for (i = 0; i < 5; i++)
|
|
QCE_WRITE_REG(_std_init_vector_sha1[i],
|
|
pce_dev->iobase +
|
|
(CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)));
|
|
} else {
|
|
for (i = 0; i < 8; i++)
|
|
QCE_WRITE_REG(_std_init_vector_sha256[i],
|
|
pce_dev->iobase +
|
|
(CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)));
|
|
}
|
|
|
|
/* write auth_bytecnt 0/1, start with 0 */
|
|
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_BYTECNT0_REG);
|
|
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_BYTECNT1_REG);
|
|
|
|
/* write encr seg size */
|
|
QCE_WRITE_REG(q_req->cryptlen, pce_dev->iobase +
|
|
CRYPTO_ENCR_SEG_SIZE_REG);
|
|
|
|
/* write encr start */
|
|
QCE_WRITE_REG(coffset & 0xffff, pce_dev->iobase +
|
|
CRYPTO_ENCR_SEG_START_REG);
|
|
|
|
if (q_req->auth_alg == QCE_HASH_SHA1_HMAC)
|
|
a_cfg = pce_dev->reg.auth_cfg_aead_sha1_hmac;
|
|
else
|
|
a_cfg = pce_dev->reg.auth_cfg_aead_sha256_hmac;
|
|
|
|
if (q_req->dir == QCE_ENCRYPT)
|
|
a_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS);
|
|
else
|
|
a_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
|
|
|
|
/* write auth seg_cfg */
|
|
QCE_WRITE_REG(a_cfg, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
|
|
|
|
/* write auth seg_size */
|
|
QCE_WRITE_REG(totallen_in, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
|
|
|
|
/* write auth_seg_start */
|
|
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG);
|
|
|
|
|
|
/* write seg_size */
|
|
QCE_WRITE_REG(totallen_in, pce_dev->iobase + CRYPTO_SEG_SIZE_REG);
|
|
|
|
|
|
QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase +
|
|
|
|
CRYPTO_CONFIG_REG));
|
|
/* issue go to crypto */
|
|
QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
|
|
pce_dev->iobase + CRYPTO_GOPROC_REG);
|
|
/*
|
|
* Ensure previous instructions (setting the GO register)
|
|
* was completed before issuing a DMA transfer request
|
|
*/
|
|
mb();
|
|
return 0;
|
|
};
|
|
|
|
static int _ce_setup_cipher_direct(struct qce_device *pce_dev,
|
|
struct qce_req *creq, uint32_t totallen_in, uint32_t coffset)
|
|
{
|
|
uint32_t enckey32[(MAX_CIPHER_KEY_SIZE * 2)/sizeof(uint32_t)] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
uint32_t enciv32[MAX_IV_LENGTH / sizeof(uint32_t)] = {
|
|
0, 0, 0, 0};
|
|
uint32_t enck_size_in_word = 0;
|
|
uint32_t key_size;
|
|
bool use_hw_key = false;
|
|
bool use_pipe_key = false;
|
|
uint32_t encr_cfg = 0;
|
|
uint32_t ivsize = creq->ivsize;
|
|
int i;
|
|
|
|
/* clear status */
|
|
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
|
|
|
|
QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase +
|
|
CRYPTO_CONFIG_REG));
|
|
/*
|
|
* Ensure previous instructions (setting the CONFIG register)
|
|
* was completed before issuing starting to set other config register
|
|
* This is to ensure the configurations are done in correct endian-ness
|
|
* as set in the CONFIG registers
|
|
*/
|
|
mb();
|
|
|
|
if (creq->mode == QCE_MODE_XTS)
|
|
key_size = creq->encklen/2;
|
|
else
|
|
key_size = creq->encklen;
|
|
|
|
if ((creq->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) {
|
|
use_hw_key = true;
|
|
} else {
|
|
if ((creq->flags & QCRYPTO_CTX_USE_PIPE_KEY) ==
|
|
QCRYPTO_CTX_USE_PIPE_KEY)
|
|
use_pipe_key = true;
|
|
}
|
|
if ((use_pipe_key == false) && (use_hw_key == false)) {
|
|
_byte_stream_to_net_words(enckey32, creq->enckey, key_size);
|
|
enck_size_in_word = key_size/sizeof(uint32_t);
|
|
}
|
|
if ((creq->op == QCE_REQ_AEAD) && (creq->mode == QCE_MODE_CCM)) {
|
|
uint32_t authklen32 = creq->encklen/sizeof(uint32_t);
|
|
uint32_t noncelen32 = MAX_NONCE/sizeof(uint32_t);
|
|
uint32_t nonce32[MAX_NONCE/sizeof(uint32_t)] = {0, 0, 0, 0};
|
|
uint32_t auth_cfg = 0;
|
|
|
|
/* Clear auth_ivn, auth_keyn registers */
|
|
for (i = 0; i < 16; i++) {
|
|
QCE_WRITE_REG(0, (pce_dev->iobase +
|
|
(CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
|
|
QCE_WRITE_REG(0, (pce_dev->iobase +
|
|
(CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t))));
|
|
}
|
|
/* write auth_bytecnt 0/1/2/3, start with 0 */
|
|
for (i = 0; i < 4; i++)
|
|
QCE_WRITE_REG(0, pce_dev->iobase +
|
|
CRYPTO_AUTH_BYTECNT0_REG +
|
|
i * sizeof(uint32_t));
|
|
/* write nonce */
|
|
_byte_stream_to_net_words(nonce32, creq->nonce, MAX_NONCE);
|
|
for (i = 0; i < noncelen32; i++)
|
|
QCE_WRITE_REG(nonce32[i], pce_dev->iobase +
|
|
CRYPTO_AUTH_INFO_NONCE0_REG +
|
|
(i*sizeof(uint32_t)));
|
|
|
|
if (creq->authklen == AES128_KEY_SIZE)
|
|
auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_128;
|
|
else {
|
|
if (creq->authklen == AES256_KEY_SIZE)
|
|
auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_256;
|
|
}
|
|
if (creq->dir == QCE_ENCRYPT)
|
|
auth_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
|
|
else
|
|
auth_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS);
|
|
auth_cfg |= ((creq->authsize - 1) << CRYPTO_AUTH_SIZE);
|
|
|
|
if (use_hw_key == true) {
|
|
auth_cfg |= (1 << CRYPTO_USE_HW_KEY_AUTH);
|
|
} else {
|
|
auth_cfg &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
|
|
/* write auth key */
|
|
for (i = 0; i < authklen32; i++)
|
|
QCE_WRITE_REG(enckey32[i], pce_dev->iobase +
|
|
CRYPTO_AUTH_KEY0_REG + (i*sizeof(uint32_t)));
|
|
}
|
|
QCE_WRITE_REG(auth_cfg, pce_dev->iobase +
|
|
CRYPTO_AUTH_SEG_CFG_REG);
|
|
if (creq->dir == QCE_ENCRYPT) {
|
|
QCE_WRITE_REG(totallen_in, pce_dev->iobase +
|
|
CRYPTO_AUTH_SEG_SIZE_REG);
|
|
} else {
|
|
QCE_WRITE_REG((totallen_in - creq->authsize),
|
|
pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
|
|
}
|
|
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG);
|
|
} else {
|
|
if (creq->op != QCE_REQ_AEAD)
|
|
QCE_WRITE_REG(0, pce_dev->iobase +
|
|
CRYPTO_AUTH_SEG_CFG_REG);
|
|
}
|
|
/*
|
|
* Ensure previous instructions (write to all AUTH registers)
|
|
* was completed before accessing a register that is not in
|
|
* in the same 1K range.
|
|
*/
|
|
mb();
|
|
switch (creq->mode) {
|
|
case QCE_MODE_ECB:
|
|
if (key_size == AES128_KEY_SIZE)
|
|
encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_128;
|
|
else
|
|
encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_256;
|
|
break;
|
|
case QCE_MODE_CBC:
|
|
if (key_size == AES128_KEY_SIZE)
|
|
encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_128;
|
|
else
|
|
encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_256;
|
|
break;
|
|
case QCE_MODE_XTS:
|
|
if (key_size == AES128_KEY_SIZE)
|
|
encr_cfg = pce_dev->reg.encr_cfg_aes_xts_128;
|
|
else
|
|
encr_cfg = pce_dev->reg.encr_cfg_aes_xts_256;
|
|
break;
|
|
case QCE_MODE_CCM:
|
|
if (key_size == AES128_KEY_SIZE)
|
|
encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_128;
|
|
else
|
|
encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_256;
|
|
break;
|
|
case QCE_MODE_CTR:
|
|
default:
|
|
if (key_size == AES128_KEY_SIZE)
|
|
encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_128;
|
|
else
|
|
encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_256;
|
|
break;
|
|
}
|
|
|
|
switch (creq->alg) {
|
|
case CIPHER_ALG_DES:
|
|
if (creq->mode != QCE_MODE_ECB) {
|
|
encr_cfg = pce_dev->reg.encr_cfg_des_cbc;
|
|
_byte_stream_to_net_words(enciv32, creq->iv, ivsize);
|
|
QCE_WRITE_REG(enciv32[0], pce_dev->iobase +
|
|
CRYPTO_CNTR0_IV0_REG);
|
|
QCE_WRITE_REG(enciv32[1], pce_dev->iobase +
|
|
CRYPTO_CNTR1_IV1_REG);
|
|
} else {
|
|
encr_cfg = pce_dev->reg.encr_cfg_des_ecb;
|
|
}
|
|
if (use_hw_key == false) {
|
|
QCE_WRITE_REG(enckey32[0], pce_dev->iobase +
|
|
CRYPTO_ENCR_KEY0_REG);
|
|
QCE_WRITE_REG(enckey32[1], pce_dev->iobase +
|
|
CRYPTO_ENCR_KEY1_REG);
|
|
}
|
|
break;
|
|
case CIPHER_ALG_3DES:
|
|
if (creq->mode != QCE_MODE_ECB) {
|
|
_byte_stream_to_net_words(enciv32, creq->iv, ivsize);
|
|
QCE_WRITE_REG(enciv32[0], pce_dev->iobase +
|
|
CRYPTO_CNTR0_IV0_REG);
|
|
QCE_WRITE_REG(enciv32[1], pce_dev->iobase +
|
|
CRYPTO_CNTR1_IV1_REG);
|
|
encr_cfg = pce_dev->reg.encr_cfg_3des_cbc;
|
|
} else {
|
|
encr_cfg = pce_dev->reg.encr_cfg_3des_ecb;
|
|
}
|
|
if (use_hw_key == false) {
|
|
/* write encr key */
|
|
for (i = 0; i < 6; i++)
|
|
QCE_WRITE_REG(enckey32[0], (pce_dev->iobase +
|
|
(CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t))));
|
|
}
|
|
break;
|
|
case CIPHER_ALG_AES:
|
|
default:
|
|
if (creq->mode == QCE_MODE_XTS) {
|
|
uint32_t xtskey32[MAX_CIPHER_KEY_SIZE/sizeof(uint32_t)]
|
|
= {0, 0, 0, 0, 0, 0, 0, 0};
|
|
uint32_t xtsklen =
|
|
creq->encklen/(2 * sizeof(uint32_t));
|
|
|
|
if ((use_hw_key == false) && (use_pipe_key == false)) {
|
|
_byte_stream_to_net_words(xtskey32,
|
|
(creq->enckey + creq->encklen/2),
|
|
creq->encklen/2);
|
|
/* write xts encr key */
|
|
for (i = 0; i < xtsklen; i++)
|
|
QCE_WRITE_REG(xtskey32[i],
|
|
pce_dev->iobase +
|
|
CRYPTO_ENCR_XTS_KEY0_REG +
|
|
(i * sizeof(uint32_t)));
|
|
}
|
|
/* write xts du size */
|
|
switch (creq->flags & QCRYPTO_CTX_XTS_MASK) {
|
|
case QCRYPTO_CTX_XTS_DU_SIZE_512B:
|
|
QCE_WRITE_REG(
|
|
min((uint32_t)QCE_SECTOR_SIZE,
|
|
creq->cryptlen), pce_dev->iobase +
|
|
CRYPTO_ENCR_XTS_DU_SIZE_REG);
|
|
break;
|
|
case QCRYPTO_CTX_XTS_DU_SIZE_1KB:
|
|
QCE_WRITE_REG(
|
|
min((uint32_t)(QCE_SECTOR_SIZE * 2),
|
|
creq->cryptlen), pce_dev->iobase +
|
|
CRYPTO_ENCR_XTS_DU_SIZE_REG);
|
|
break;
|
|
default:
|
|
QCE_WRITE_REG(creq->cryptlen,
|
|
pce_dev->iobase +
|
|
CRYPTO_ENCR_XTS_DU_SIZE_REG);
|
|
break;
|
|
}
|
|
}
|
|
if (creq->mode != QCE_MODE_ECB) {
|
|
if (creq->mode == QCE_MODE_XTS)
|
|
_byte_stream_swap_to_net_words(enciv32,
|
|
creq->iv, ivsize);
|
|
else
|
|
_byte_stream_to_net_words(enciv32, creq->iv,
|
|
ivsize);
|
|
|
|
/* write encr cntr iv */
|
|
for (i = 0; i <= 3; i++)
|
|
QCE_WRITE_REG(enciv32[i], pce_dev->iobase +
|
|
CRYPTO_CNTR0_IV0_REG +
|
|
(i * sizeof(uint32_t)));
|
|
|
|
if (creq->mode == QCE_MODE_CCM) {
|
|
/* write cntr iv for ccm */
|
|
for (i = 0; i <= 3; i++)
|
|
QCE_WRITE_REG(enciv32[i],
|
|
pce_dev->iobase +
|
|
CRYPTO_ENCR_CCM_INT_CNTR0_REG +
|
|
(i * sizeof(uint32_t)));
|
|
/* update cntr_iv[3] by one */
|
|
QCE_WRITE_REG((enciv32[3] + 1),
|
|
pce_dev->iobase +
|
|
CRYPTO_CNTR0_IV0_REG +
|
|
(3 * sizeof(uint32_t)));
|
|
}
|
|
}
|
|
|
|
if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) {
|
|
encr_cfg |= (CRYPTO_ENCR_KEY_SZ_AES128 <<
|
|
CRYPTO_ENCR_KEY_SZ);
|
|
} else {
|
|
if ((use_hw_key == false) && (use_pipe_key == false)) {
|
|
for (i = 0; i < enck_size_in_word; i++)
|
|
QCE_WRITE_REG(enckey32[i],
|
|
pce_dev->iobase +
|
|
CRYPTO_ENCR_KEY0_REG +
|
|
(i * sizeof(uint32_t)));
|
|
}
|
|
} /* else of if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) */
|
|
break;
|
|
} /* end of switch (creq->mode) */
|
|
|
|
if (use_pipe_key)
|
|
encr_cfg |= (CRYPTO_USE_PIPE_KEY_ENCR_ENABLED
|
|
<< CRYPTO_USE_PIPE_KEY_ENCR);
|
|
|
|
/* write encr seg cfg */
|
|
encr_cfg |= ((creq->dir == QCE_ENCRYPT) ? 1 : 0) << CRYPTO_ENCODE;
|
|
if (use_hw_key == true)
|
|
encr_cfg |= (CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
|
|
else
|
|
encr_cfg &= ~(CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
|
|
/* write encr seg cfg */
|
|
QCE_WRITE_REG(encr_cfg, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
|
|
|
|
/* write encr seg size */
|
|
if ((creq->mode == QCE_MODE_CCM) && (creq->dir == QCE_DECRYPT)) {
|
|
QCE_WRITE_REG((creq->cryptlen + creq->authsize),
|
|
pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG);
|
|
} else {
|
|
QCE_WRITE_REG(creq->cryptlen,
|
|
pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG);
|
|
}
|
|
|
|
/* write encr seg start */
|
|
QCE_WRITE_REG((coffset & 0xffff),
|
|
pce_dev->iobase + CRYPTO_ENCR_SEG_START_REG);
|
|
|
|
/* write encr counter mask */
|
|
QCE_WRITE_REG(0xffffffff,
|
|
pce_dev->iobase + CRYPTO_CNTR_MASK_REG);
|
|
QCE_WRITE_REG(0xffffffff,
|
|
pce_dev->iobase + CRYPTO_CNTR_MASK_REG0);
|
|
QCE_WRITE_REG(0xffffffff,
|
|
pce_dev->iobase + CRYPTO_CNTR_MASK_REG1);
|
|
QCE_WRITE_REG(0xffffffff,
|
|
pce_dev->iobase + CRYPTO_CNTR_MASK_REG2);
|
|
|
|
/* write seg size */
|
|
QCE_WRITE_REG(totallen_in, pce_dev->iobase + CRYPTO_SEG_SIZE_REG);
|
|
|
|
QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase +
|
|
CRYPTO_CONFIG_REG));
|
|
/* issue go to crypto */
|
|
if (use_hw_key == false) {
|
|
QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
|
|
pce_dev->iobase + CRYPTO_GOPROC_REG);
|
|
} else {
|
|
QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
|
|
pce_dev->iobase + CRYPTO_GOPROC_QC_KEY_REG);
|
|
}
|
|
/*
|
|
* Ensure previous instructions (setting the GO register)
|
|
* was completed before issuing a DMA transfer request
|
|
*/
|
|
mb();
|
|
return 0;
|
|
};
|
|
|
|
static int _ce_f9_setup_direct(struct qce_device *pce_dev,
|
|
struct qce_f9_req *req)
|
|
{
|
|
uint32_t ikey32[OTA_KEY_SIZE/sizeof(uint32_t)];
|
|
uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t);
|
|
uint32_t auth_cfg;
|
|
int i;
|
|
|
|
switch (req->algorithm) {
|
|
case QCE_OTA_ALGO_KASUMI:
|
|
auth_cfg = pce_dev->reg.auth_cfg_kasumi;
|
|
break;
|
|
case QCE_OTA_ALGO_SNOW3G:
|
|
default:
|
|
auth_cfg = pce_dev->reg.auth_cfg_snow3g;
|
|
break;
|
|
};
|
|
|
|
/* clear status */
|
|
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
|
|
|
|
/* set big endian configuration */
|
|
QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase +
|
|
CRYPTO_CONFIG_REG));
|
|
/*
|
|
* Ensure previous instructions (setting the CONFIG register)
|
|
* was completed before issuing starting to set other config register
|
|
* This is to ensure the configurations are done in correct endian-ness
|
|
* as set in the CONFIG registers
|
|
*/
|
|
mb();
|
|
|
|
/* write enc_seg_cfg */
|
|
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
|
|
|
|
/* write ecn_seg_size */
|
|
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG);
|
|
|
|
/* write key in CRYPTO_AUTH_IV0-3_REG */
|
|
_byte_stream_to_net_words(ikey32, &req->ikey[0], OTA_KEY_SIZE);
|
|
for (i = 0; i < key_size_in_word; i++)
|
|
QCE_WRITE_REG(ikey32[i], (pce_dev->iobase +
|
|
(CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
|
|
|
|
/* write last bits in CRYPTO_AUTH_IV4_REG */
|
|
QCE_WRITE_REG(req->last_bits, (pce_dev->iobase +
|
|
CRYPTO_AUTH_IV4_REG));
|
|
|
|
/* write fresh to CRYPTO_AUTH_BYTECNT0_REG */
|
|
QCE_WRITE_REG(req->fresh, (pce_dev->iobase +
|
|
CRYPTO_AUTH_BYTECNT0_REG));
|
|
|
|
/* write count-i to CRYPTO_AUTH_BYTECNT1_REG */
|
|
QCE_WRITE_REG(req->count_i, (pce_dev->iobase +
|
|
CRYPTO_AUTH_BYTECNT1_REG));
|
|
|
|
/* write auth seg cfg */
|
|
if (req->direction == QCE_OTA_DIR_DOWNLINK)
|
|
auth_cfg |= BIT(CRYPTO_F9_DIRECTION);
|
|
QCE_WRITE_REG(auth_cfg, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
|
|
|
|
/* write auth seg size */
|
|
QCE_WRITE_REG(req->msize, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
|
|
|
|
/* write auth seg start*/
|
|
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG);
|
|
|
|
/* write seg size */
|
|
QCE_WRITE_REG(req->msize, pce_dev->iobase + CRYPTO_SEG_SIZE_REG);
|
|
|
|
/* set little endian configuration before go*/
|
|
QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase +
|
|
CRYPTO_CONFIG_REG));
|
|
/* write go */
|
|
QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
|
|
pce_dev->iobase + CRYPTO_GOPROC_REG);
|
|
/*
|
|
* Ensure previous instructions (setting the GO register)
|
|
* was completed before issuing a DMA transfer request
|
|
*/
|
|
mb();
|
|
return 0;
|
|
}
|
|
|
|
static int _ce_f8_setup_direct(struct qce_device *pce_dev,
|
|
struct qce_f8_req *req, bool key_stream_mode,
|
|
uint16_t npkts, uint16_t cipher_offset, uint16_t cipher_size)
|
|
{
|
|
int i = 0;
|
|
uint32_t encr_cfg = 0;
|
|
uint32_t ckey32[OTA_KEY_SIZE/sizeof(uint32_t)];
|
|
uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t);
|
|
|
|
switch (req->algorithm) {
|
|
case QCE_OTA_ALGO_KASUMI:
|
|
encr_cfg = pce_dev->reg.encr_cfg_kasumi;
|
|
break;
|
|
case QCE_OTA_ALGO_SNOW3G:
|
|
default:
|
|
encr_cfg = pce_dev->reg.encr_cfg_snow3g;
|
|
break;
|
|
};
|
|
/* clear status */
|
|
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
|
|
/* set big endian configuration */
|
|
QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase +
|
|
CRYPTO_CONFIG_REG));
|
|
/* write auth seg configuration */
|
|
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
|
|
/* write auth seg size */
|
|
QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
|
|
|
|
/* write key */
|
|
_byte_stream_to_net_words(ckey32, &req->ckey[0], OTA_KEY_SIZE);
|
|
|
|
for (i = 0; i < key_size_in_word; i++)
|
|
QCE_WRITE_REG(ckey32[i], (pce_dev->iobase +
|
|
(CRYPTO_ENCR_KEY0_REG + i*sizeof(uint32_t))));
|
|
/* write encr seg cfg */
|
|
if (key_stream_mode)
|
|
encr_cfg |= BIT(CRYPTO_F8_KEYSTREAM_ENABLE);
|
|
if (req->direction == QCE_OTA_DIR_DOWNLINK)
|
|
encr_cfg |= BIT(CRYPTO_F8_DIRECTION);
|
|
QCE_WRITE_REG(encr_cfg, pce_dev->iobase +
|
|
CRYPTO_ENCR_SEG_CFG_REG);
|
|
|
|
/* write encr seg start */
|
|
QCE_WRITE_REG((cipher_offset & 0xffff), pce_dev->iobase +
|
|
CRYPTO_ENCR_SEG_START_REG);
|
|
/* write encr seg size */
|
|
QCE_WRITE_REG(cipher_size, pce_dev->iobase +
|
|
CRYPTO_ENCR_SEG_SIZE_REG);
|
|
|
|
/* write seg size */
|
|
QCE_WRITE_REG(req->data_len, pce_dev->iobase +
|
|
CRYPTO_SEG_SIZE_REG);
|
|
|
|
/* write cntr0_iv0 for countC */
|
|
QCE_WRITE_REG(req->count_c, pce_dev->iobase +
|
|
CRYPTO_CNTR0_IV0_REG);
|
|
/* write cntr1_iv1 for nPkts, and bearer */
|
|
if (npkts == 1)
|
|
npkts = 0;
|
|
QCE_WRITE_REG(req->bearer << CRYPTO_CNTR1_IV1_REG_F8_BEARER |
|
|
npkts << CRYPTO_CNTR1_IV1_REG_F8_PKT_CNT,
|
|
pce_dev->iobase + CRYPTO_CNTR1_IV1_REG);
|
|
|
|
/* set little endian configuration before go*/
|
|
QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase +
|
|
CRYPTO_CONFIG_REG));
|
|
/* write go */
|
|
QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
|
|
pce_dev->iobase + CRYPTO_GOPROC_REG);
|
|
/*
|
|
* Ensure previous instructions (setting the GO register)
|
|
* was completed before issuing a DMA transfer request
|
|
*/
|
|
mb();
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int _qce_unlock_other_pipes(struct qce_device *pce_dev, int req_info)
|
|
{
|
|
int rc = 0;
|
|
struct ce_sps_data *pce_sps_data = &pce_dev->ce_request_info
|
|
[req_info].ce_sps;
|
|
|
|
if (pce_dev->no_get_around || pce_dev->support_cmd_dscr == false)
|
|
return rc;
|
|
|
|
rc = sps_transfer_one(pce_dev->ce_bam_info.consumer.pipe,
|
|
GET_PHYS_ADDR(pce_sps_data->
|
|
cmdlistptr.unlock_all_pipes.cmdlist),
|
|
0, NULL, (SPS_IOVEC_FLAG_CMD | SPS_IOVEC_FLAG_UNLOCK));
|
|
if (rc) {
|
|
pr_err("sps_xfr_one() fail rc=%d", rc);
|
|
rc = -EINVAL;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static inline void qce_free_req_info(struct qce_device *pce_dev, int req_info,
|
|
bool is_complete);
|
|
static int _aead_complete(struct qce_device *pce_dev, int req_info)
|
|
{
|
|
struct aead_request *areq;
|
|
unsigned char mac[SHA256_DIGEST_SIZE];
|
|
uint32_t ccm_fail_status = 0;
|
|
uint32_t result_dump_status;
|
|
int32_t result_status = 0;
|
|
struct ce_request_info *preq_info;
|
|
struct ce_sps_data *pce_sps_data;
|
|
qce_comp_func_ptr_t qce_callback;
|
|
|
|
preq_info = &pce_dev->ce_request_info[req_info];
|
|
pce_sps_data = &preq_info->ce_sps;
|
|
qce_callback = preq_info->qce_cb;
|
|
areq = (struct aead_request *) preq_info->areq;
|
|
if (areq->src != areq->dst) {
|
|
qce_dma_unmap_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents,
|
|
DMA_FROM_DEVICE);
|
|
}
|
|
qce_dma_unmap_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
|
|
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
|
|
DMA_TO_DEVICE);
|
|
qce_dma_unmap_sg(pce_dev->pdev, areq->assoc, preq_info->assoc_nents,
|
|
DMA_TO_DEVICE);
|
|
/* check MAC */
|
|
memcpy(mac, (char *)(&pce_sps_data->result->auth_iv[0]),
|
|
SHA256_DIGEST_SIZE);
|
|
|
|
/* read status before unlock */
|
|
if (preq_info->dir == QCE_DECRYPT) {
|
|
if (pce_dev->no_get_around)
|
|
if (pce_dev->no_ccm_mac_status_get_around)
|
|
ccm_fail_status = be32_to_cpu(pce_sps_data->
|
|
result->status);
|
|
else
|
|
ccm_fail_status = be32_to_cpu(pce_sps_data->
|
|
result_null->status);
|
|
else
|
|
ccm_fail_status = readl_relaxed(pce_dev->iobase +
|
|
CRYPTO_STATUS_REG);
|
|
}
|
|
if (_qce_unlock_other_pipes(pce_dev, req_info)) {
|
|
qce_free_req_info(pce_dev, req_info, true);
|
|
qce_callback(areq, mac, NULL, -ENXIO);
|
|
return -ENXIO;
|
|
}
|
|
result_dump_status = be32_to_cpu(pce_sps_data->result->status);
|
|
pce_sps_data->result->status = 0;
|
|
|
|
if (result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR)
|
|
| (1 << CRYPTO_HSD_ERR))) {
|
|
pr_err("aead operation error. Status %x\n", result_dump_status);
|
|
result_status = -ENXIO;
|
|
} else if (pce_sps_data->consumer_status |
|
|
pce_sps_data->producer_status) {
|
|
pr_err("aead sps operation error. sps status %x %x\n",
|
|
pce_sps_data->consumer_status,
|
|
pce_sps_data->producer_status);
|
|
result_status = -ENXIO;
|
|
}
|
|
|
|
if (preq_info->mode == QCE_MODE_CCM) {
|
|
/*
|
|
* Not from result dump, instead, use the status we just
|
|
* read of device for MAC_FAILED.
|
|
*/
|
|
if (result_status == 0 && (preq_info->dir == QCE_DECRYPT) &&
|
|
(ccm_fail_status & (1 << CRYPTO_MAC_FAILED)))
|
|
result_status = -EBADMSG;
|
|
qce_free_req_info(pce_dev, req_info, true);
|
|
qce_callback(areq, mac, NULL, result_status);
|
|
|
|
} else {
|
|
uint32_t ivsize = 0;
|
|
struct crypto_aead *aead;
|
|
unsigned char iv[NUM_OF_CRYPTO_CNTR_IV_REG * CRYPTO_REG_SIZE];
|
|
aead = crypto_aead_reqtfm(areq);
|
|
ivsize = crypto_aead_ivsize(aead);
|
|
if (pce_dev->ce_bam_info.minor_version != 0)
|
|
dma_unmap_single(pce_dev->pdev, preq_info->phy_iv_in,
|
|
ivsize, DMA_TO_DEVICE);
|
|
memcpy(iv, (char *)(pce_sps_data->result->encr_cntr_iv),
|
|
sizeof(iv));
|
|
qce_free_req_info(pce_dev, req_info, true);
|
|
qce_callback(areq, mac, iv, result_status);
|
|
|
|
}
|
|
return 0;
|
|
};
|
|
|
|
static int _sha_complete(struct qce_device *pce_dev, int req_info)
|
|
{
|
|
struct ahash_request *areq;
|
|
unsigned char digest[SHA256_DIGEST_SIZE];
|
|
uint32_t bytecount32[2];
|
|
int32_t result_status = 0;
|
|
uint32_t result_dump_status;
|
|
struct ce_request_info *preq_info;
|
|
struct ce_sps_data *pce_sps_data;
|
|
qce_comp_func_ptr_t qce_callback;
|
|
|
|
preq_info = &pce_dev->ce_request_info[req_info];
|
|
pce_sps_data = &preq_info->ce_sps;
|
|
qce_callback = preq_info->qce_cb;
|
|
areq = (struct ahash_request *) preq_info->areq;
|
|
qce_dma_unmap_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
|
|
DMA_TO_DEVICE);
|
|
memcpy(digest, (char *)(&pce_sps_data->result->auth_iv[0]),
|
|
SHA256_DIGEST_SIZE);
|
|
_byte_stream_to_net_words(bytecount32,
|
|
(unsigned char *)pce_sps_data->result->auth_byte_count,
|
|
2 * CRYPTO_REG_SIZE);
|
|
|
|
if (_qce_unlock_other_pipes(pce_dev, req_info)) {
|
|
qce_free_req_info(pce_dev, req_info, true);
|
|
qce_callback(areq, digest, (char *)bytecount32,
|
|
-ENXIO);
|
|
return -ENXIO;
|
|
}
|
|
|
|
result_dump_status = be32_to_cpu(pce_sps_data->result->status);
|
|
pce_sps_data->result->status = 0;
|
|
if (result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR)
|
|
| (1 << CRYPTO_HSD_ERR))) {
|
|
|
|
pr_err("sha operation error. Status %x\n", result_dump_status);
|
|
result_status = -ENXIO;
|
|
} else if (pce_sps_data->consumer_status) {
|
|
pr_err("sha sps operation error. sps status %x\n",
|
|
pce_sps_data->consumer_status);
|
|
result_status = -ENXIO;
|
|
}
|
|
qce_free_req_info(pce_dev, req_info, true);
|
|
qce_callback(areq, digest, (char *)bytecount32, result_status);
|
|
return 0;
|
|
}
|
|
|
|
static int _f9_complete(struct qce_device *pce_dev, int req_info)
|
|
{
|
|
uint32_t mac_i;
|
|
int32_t result_status = 0;
|
|
uint32_t result_dump_status;
|
|
struct ce_request_info *preq_info;
|
|
struct ce_sps_data *pce_sps_data;
|
|
qce_comp_func_ptr_t qce_callback;
|
|
void *areq;
|
|
|
|
preq_info = &pce_dev->ce_request_info[req_info];
|
|
pce_sps_data = &preq_info->ce_sps;
|
|
qce_callback = preq_info->qce_cb;
|
|
areq = preq_info->areq;
|
|
dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src,
|
|
preq_info->ota_size, DMA_TO_DEVICE);
|
|
_byte_stream_to_net_words(&mac_i,
|
|
(char *)(&pce_sps_data->result->auth_iv[0]),
|
|
CRYPTO_REG_SIZE);
|
|
|
|
if (_qce_unlock_other_pipes(pce_dev, req_info)) {
|
|
qce_free_req_info(pce_dev, req_info, true);
|
|
qce_callback(areq, NULL, NULL, -ENXIO);
|
|
return -ENXIO;
|
|
}
|
|
|
|
result_dump_status = be32_to_cpu(pce_sps_data->result->status);
|
|
pce_sps_data->result->status = 0;
|
|
if (result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR)
|
|
| (1 << CRYPTO_HSD_ERR))) {
|
|
pr_err("f9 operation error. Status %x\n", result_dump_status);
|
|
result_status = -ENXIO;
|
|
} else if (pce_sps_data->consumer_status |
|
|
pce_sps_data->producer_status) {
|
|
pr_err("f9 sps operation error. sps status %x %x\n",
|
|
pce_sps_data->consumer_status,
|
|
pce_sps_data->producer_status);
|
|
result_status = -ENXIO;
|
|
}
|
|
qce_free_req_info(pce_dev, req_info, true);
|
|
qce_callback(areq, (char *)&mac_i, NULL, result_status);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _ablk_cipher_complete(struct qce_device *pce_dev, int req_info)
|
|
{
|
|
struct ablkcipher_request *areq;
|
|
unsigned char iv[NUM_OF_CRYPTO_CNTR_IV_REG * CRYPTO_REG_SIZE];
|
|
int32_t result_status = 0;
|
|
uint32_t result_dump_status;
|
|
struct ce_request_info *preq_info;
|
|
struct ce_sps_data *pce_sps_data;
|
|
qce_comp_func_ptr_t qce_callback;
|
|
|
|
preq_info = &pce_dev->ce_request_info[req_info];
|
|
pce_sps_data = &preq_info->ce_sps;
|
|
qce_callback = preq_info->qce_cb;
|
|
areq = (struct ablkcipher_request *) preq_info->areq;
|
|
if (areq->src != areq->dst) {
|
|
qce_dma_unmap_sg(pce_dev->pdev, areq->dst,
|
|
preq_info->dst_nents, DMA_FROM_DEVICE);
|
|
}
|
|
qce_dma_unmap_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
|
|
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
|
|
DMA_TO_DEVICE);
|
|
|
|
if (_qce_unlock_other_pipes(pce_dev, req_info)) {
|
|
qce_free_req_info(pce_dev, req_info, true);
|
|
qce_callback(areq, NULL, NULL, -ENXIO);
|
|
return -ENXIO;
|
|
}
|
|
result_dump_status = be32_to_cpu(pce_sps_data->result->status);
|
|
pce_sps_data->result->status = 0;
|
|
|
|
if (result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR)
|
|
| (1 << CRYPTO_HSD_ERR))) {
|
|
pr_err("ablk_cipher operation error. Status %x\n",
|
|
result_dump_status);
|
|
result_status = -ENXIO;
|
|
} else if (pce_sps_data->consumer_status |
|
|
pce_sps_data->producer_status) {
|
|
pr_err("ablk_cipher sps operation error. sps status %x %x\n",
|
|
pce_sps_data->consumer_status,
|
|
pce_sps_data->producer_status);
|
|
result_status = -ENXIO;
|
|
}
|
|
|
|
if (preq_info->mode == QCE_MODE_ECB) {
|
|
qce_free_req_info(pce_dev, req_info, true);
|
|
qce_callback(areq, NULL, NULL, pce_sps_data->consumer_status |
|
|
result_status);
|
|
} else {
|
|
if (pce_dev->ce_bam_info.minor_version == 0) {
|
|
if (preq_info->mode == QCE_MODE_CBC) {
|
|
if (preq_info->dir == QCE_DECRYPT)
|
|
memcpy(iv, (char *)preq_info->dec_iv,
|
|
sizeof(iv));
|
|
else
|
|
memcpy(iv, (unsigned char *)
|
|
(sg_virt(areq->src) +
|
|
areq->src->length - 16),
|
|
sizeof(iv));
|
|
}
|
|
if ((preq_info->mode == QCE_MODE_CTR) ||
|
|
(preq_info->mode == QCE_MODE_XTS)) {
|
|
uint32_t num_blk = 0;
|
|
uint32_t cntr_iv3 = 0;
|
|
unsigned long long cntr_iv64 = 0;
|
|
unsigned char *b = (unsigned char *)(&cntr_iv3);
|
|
|
|
memcpy(iv, areq->info, sizeof(iv));
|
|
if (preq_info->mode != QCE_MODE_XTS)
|
|
num_blk = areq->nbytes/16;
|
|
else
|
|
num_blk = 1;
|
|
cntr_iv3 = ((*(iv + 12) << 24) & 0xff000000) |
|
|
(((*(iv + 13)) << 16) & 0xff0000) |
|
|
(((*(iv + 14)) << 8) & 0xff00) |
|
|
(*(iv + 15) & 0xff);
|
|
cntr_iv64 =
|
|
(((unsigned long long)cntr_iv3 &
|
|
(unsigned long long)0xFFFFFFFFULL) +
|
|
(unsigned long long)num_blk) %
|
|
(unsigned long long)(0x100000000ULL);
|
|
|
|
cntr_iv3 = (u32)(cntr_iv64 & 0xFFFFFFFF);
|
|
*(iv + 15) = (char)(*b);
|
|
*(iv + 14) = (char)(*(b + 1));
|
|
*(iv + 13) = (char)(*(b + 2));
|
|
*(iv + 12) = (char)(*(b + 3));
|
|
}
|
|
} else {
|
|
memcpy(iv,
|
|
(char *)(pce_sps_data->result->encr_cntr_iv),
|
|
sizeof(iv));
|
|
}
|
|
qce_free_req_info(pce_dev, req_info, true);
|
|
qce_callback(areq, NULL, iv, result_status);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int _f8_complete(struct qce_device *pce_dev, int req_info)
|
|
{
|
|
int32_t result_status = 0;
|
|
uint32_t result_dump_status;
|
|
uint32_t result_dump_status2;
|
|
struct ce_request_info *preq_info;
|
|
struct ce_sps_data *pce_sps_data;
|
|
qce_comp_func_ptr_t qce_callback;
|
|
void *areq;
|
|
|
|
preq_info = &pce_dev->ce_request_info[req_info];
|
|
pce_sps_data = &preq_info->ce_sps;
|
|
qce_callback = preq_info->qce_cb;
|
|
areq = preq_info->areq;
|
|
if (preq_info->phy_ota_dst)
|
|
dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_dst,
|
|
preq_info->ota_size, DMA_FROM_DEVICE);
|
|
if (preq_info->phy_ota_src)
|
|
dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src,
|
|
preq_info->ota_size, (preq_info->phy_ota_dst) ?
|
|
DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
|
|
|
|
if (_qce_unlock_other_pipes(pce_dev, req_info)) {
|
|
qce_free_req_info(pce_dev, req_info, true);
|
|
qce_callback(areq, NULL, NULL, -ENXIO);
|
|
return -ENXIO;
|
|
}
|
|
result_dump_status = be32_to_cpu(pce_sps_data->result->status);
|
|
result_dump_status2 = be32_to_cpu(pce_sps_data->result->status2);
|
|
|
|
if ((result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR)
|
|
| (1 << CRYPTO_HSD_ERR)))) {
|
|
pr_err(
|
|
"f8 oper error. Dump Sta %x Sta2 %x req %d\n",
|
|
result_dump_status, result_dump_status2, req_info);
|
|
result_status = -ENXIO;
|
|
} else if (pce_sps_data->consumer_status |
|
|
pce_sps_data->producer_status) {
|
|
pr_err("f8 sps operation error. sps status %x %x\n",
|
|
pce_sps_data->consumer_status,
|
|
pce_sps_data->producer_status);
|
|
result_status = -ENXIO;
|
|
}
|
|
pce_sps_data->result->status = 0;
|
|
pce_sps_data->result->status2 = 0;
|
|
qce_free_req_info(pce_dev, req_info, true);
|
|
qce_callback(areq, NULL, NULL, result_status);
|
|
return 0;
|
|
}
|
|
|
|
static void _qce_sps_iovec_count_init(struct qce_device *pce_dev, int req_info)
|
|
{
|
|
struct ce_sps_data *pce_sps_data = &pce_dev->ce_request_info[req_info]
|
|
.ce_sps;
|
|
pce_sps_data->in_transfer.iovec_count = 0;
|
|
pce_sps_data->out_transfer.iovec_count = 0;
|
|
}
|
|
|
|
static void _qce_set_flag(struct sps_transfer *sps_bam_pipe, uint32_t flag)
|
|
{
|
|
struct sps_iovec *iovec;
|
|
|
|
if (sps_bam_pipe->iovec_count == 0)
|
|
return;
|
|
iovec = sps_bam_pipe->iovec + (sps_bam_pipe->iovec_count - 1);
|
|
iovec->flags |= flag;
|
|
}
|
|
|
|
static int _qce_sps_add_data(dma_addr_t paddr, uint32_t len,
|
|
struct sps_transfer *sps_bam_pipe)
|
|
{
|
|
struct sps_iovec *iovec = sps_bam_pipe->iovec +
|
|
sps_bam_pipe->iovec_count;
|
|
uint32_t data_cnt;
|
|
|
|
while (len > 0) {
|
|
if (sps_bam_pipe->iovec_count == QCE_MAX_NUM_DSCR) {
|
|
pr_err("Num of descrptor %d exceed max (%d)",
|
|
sps_bam_pipe->iovec_count,
|
|
(uint32_t)QCE_MAX_NUM_DSCR);
|
|
return -ENOMEM;
|
|
}
|
|
if (len > SPS_MAX_PKT_SIZE)
|
|
data_cnt = SPS_MAX_PKT_SIZE;
|
|
else
|
|
data_cnt = len;
|
|
iovec->size = data_cnt;
|
|
iovec->addr = SPS_GET_LOWER_ADDR(paddr);
|
|
iovec->flags = SPS_GET_UPPER_ADDR(paddr);
|
|
sps_bam_pipe->iovec_count++;
|
|
iovec++;
|
|
paddr += data_cnt;
|
|
len -= data_cnt;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int _qce_sps_add_sg_data(struct qce_device *pce_dev,
|
|
struct scatterlist *sg_src, uint32_t nbytes,
|
|
struct sps_transfer *sps_bam_pipe)
|
|
{
|
|
uint32_t data_cnt, len;
|
|
dma_addr_t addr;
|
|
struct sps_iovec *iovec = sps_bam_pipe->iovec +
|
|
sps_bam_pipe->iovec_count;
|
|
|
|
while (nbytes > 0) {
|
|
len = min(nbytes, sg_dma_len(sg_src));
|
|
nbytes -= len;
|
|
addr = sg_dma_address(sg_src);
|
|
if (pce_dev->ce_bam_info.minor_version == 0)
|
|
len = ALIGN(len, pce_dev->ce_bam_info.ce_burst_size);
|
|
while (len > 0) {
|
|
if (sps_bam_pipe->iovec_count == QCE_MAX_NUM_DSCR) {
|
|
pr_err("Num of descrptor %d exceed max (%d)",
|
|
sps_bam_pipe->iovec_count,
|
|
(uint32_t)QCE_MAX_NUM_DSCR);
|
|
return -ENOMEM;
|
|
}
|
|
if (len > SPS_MAX_PKT_SIZE) {
|
|
data_cnt = SPS_MAX_PKT_SIZE;
|
|
iovec->size = data_cnt;
|
|
iovec->addr = SPS_GET_LOWER_ADDR(addr);
|
|
iovec->flags = SPS_GET_UPPER_ADDR(addr);
|
|
} else {
|
|
data_cnt = len;
|
|
iovec->size = data_cnt;
|
|
iovec->addr = SPS_GET_LOWER_ADDR(addr);
|
|
iovec->flags = SPS_GET_UPPER_ADDR(addr);
|
|
}
|
|
iovec++;
|
|
sps_bam_pipe->iovec_count++;
|
|
addr += data_cnt;
|
|
len -= data_cnt;
|
|
}
|
|
sg_src = scatterwalk_sg_next(sg_src);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int _qce_sps_add_cmd(struct qce_device *pce_dev, uint32_t flag,
|
|
struct qce_cmdlist_info *cmdptr,
|
|
struct sps_transfer *sps_bam_pipe)
|
|
{
|
|
dma_addr_t paddr = GET_PHYS_ADDR(cmdptr->cmdlist);
|
|
struct sps_iovec *iovec = sps_bam_pipe->iovec +
|
|
sps_bam_pipe->iovec_count;
|
|
iovec->size = cmdptr->size;
|
|
iovec->addr = SPS_GET_LOWER_ADDR(paddr);
|
|
iovec->flags = SPS_GET_UPPER_ADDR(paddr) | SPS_IOVEC_FLAG_CMD | flag;
|
|
sps_bam_pipe->iovec_count++;
|
|
if (sps_bam_pipe->iovec_count >= QCE_MAX_NUM_DSCR) {
|
|
pr_err("Num of descrptor %d exceed max (%d)",
|
|
sps_bam_pipe->iovec_count, (uint32_t)QCE_MAX_NUM_DSCR);
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int _qce_sps_transfer(struct qce_device *pce_dev, int req_info)
|
|
{
|
|
int rc = 0;
|
|
unsigned long flags;
|
|
struct ce_sps_data *pce_sps_data;
|
|
|
|
pce_sps_data = &pce_dev->ce_request_info[req_info].ce_sps;
|
|
pce_sps_data->out_transfer.user =
|
|
(void *)((uintptr_t)(CRYPTO_REQ_USER_PAT |
|
|
(unsigned int) req_info));
|
|
pce_sps_data->in_transfer.user =
|
|
(void *)((uintptr_t)(CRYPTO_REQ_USER_PAT |
|
|
(unsigned int) req_info));
|
|
_qce_dump_descr_fifos_dbg(pce_dev, req_info);
|
|
|
|
spin_lock_irqsave(&pce_dev->sps_lock, flags);
|
|
if (pce_sps_data->in_transfer.iovec_count) {
|
|
rc = sps_transfer(pce_dev->ce_bam_info.consumer.pipe,
|
|
&pce_sps_data->in_transfer);
|
|
if (rc) {
|
|
pr_err("sps_xfr() fail (consumer pipe=0x%lx) rc = %d\n",
|
|
(uintptr_t)pce_dev->ce_bam_info.consumer.pipe,
|
|
rc);
|
|
goto ret;
|
|
}
|
|
}
|
|
rc = sps_transfer(pce_dev->ce_bam_info.producer.pipe,
|
|
&pce_sps_data->out_transfer);
|
|
if (rc)
|
|
pr_err("sps_xfr() fail (producer pipe=0x%lx) rc = %d\n",
|
|
(uintptr_t)pce_dev->ce_bam_info.producer.pipe, rc);
|
|
ret:
|
|
if (rc)
|
|
_qce_dump_descr_fifos(pce_dev, req_info);
|
|
spin_unlock_irqrestore(&pce_dev->sps_lock, flags);
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* Allocate and Connect a CE peripheral's SPS endpoint
|
|
*
|
|
* This function allocates endpoint context and
|
|
* connect it with memory endpoint by calling
|
|
* appropriate SPS driver APIs.
|
|
*
|
|
* Also registers a SPS callback function with
|
|
* SPS driver
|
|
*
|
|
* This function should only be called once typically
|
|
* during driver probe.
|
|
*
|
|
* @pce_dev - Pointer to qce_device structure
|
|
* @ep - Pointer to sps endpoint data structure
|
|
* @is_produce - 1 means Producer endpoint
|
|
* 0 means Consumer endpoint
|
|
*
|
|
* @return - 0 if successful else negative value.
|
|
*
|
|
*/
|
|
static int qce_sps_init_ep_conn(struct qce_device *pce_dev,
|
|
struct qce_sps_ep_conn_data *ep,
|
|
bool is_producer)
|
|
{
|
|
int rc = 0;
|
|
struct sps_pipe *sps_pipe_info;
|
|
struct sps_connect *sps_connect_info = &ep->connect;
|
|
struct sps_register_event *sps_event = &ep->event;
|
|
|
|
/* Allocate endpoint context */
|
|
sps_pipe_info = sps_alloc_endpoint();
|
|
if (!sps_pipe_info) {
|
|
pr_err("sps_alloc_endpoint() failed!!! is_producer=%d",
|
|
is_producer);
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
/* Now save the sps pipe handle */
|
|
ep->pipe = sps_pipe_info;
|
|
|
|
/* Get default connection configuration for an endpoint */
|
|
rc = sps_get_config(sps_pipe_info, sps_connect_info);
|
|
if (rc) {
|
|
pr_err("sps_get_config() fail pipe_handle=0x%lx, rc = %d\n",
|
|
(uintptr_t)sps_pipe_info, rc);
|
|
goto get_config_err;
|
|
}
|
|
|
|
/* Modify the default connection configuration */
|
|
if (is_producer) {
|
|
/*
|
|
* For CE producer transfer, source should be
|
|
* CE peripheral where as destination should
|
|
* be system memory.
|
|
*/
|
|
sps_connect_info->source = pce_dev->ce_bam_info.bam_handle;
|
|
sps_connect_info->destination = SPS_DEV_HANDLE_MEM;
|
|
/* Producer pipe will handle this connection */
|
|
sps_connect_info->mode = SPS_MODE_SRC;
|
|
sps_connect_info->options =
|
|
SPS_O_AUTO_ENABLE | SPS_O_DESC_DONE;
|
|
} else {
|
|
/* For CE consumer transfer, source should be
|
|
* system memory where as destination should
|
|
* CE peripheral
|
|
*/
|
|
sps_connect_info->source = SPS_DEV_HANDLE_MEM;
|
|
sps_connect_info->destination = pce_dev->ce_bam_info.bam_handle;
|
|
sps_connect_info->mode = SPS_MODE_DEST;
|
|
sps_connect_info->options =
|
|
SPS_O_AUTO_ENABLE;
|
|
}
|
|
|
|
/* Producer pipe index */
|
|
sps_connect_info->src_pipe_index =
|
|
pce_dev->ce_bam_info.src_pipe_index;
|
|
/* Consumer pipe index */
|
|
sps_connect_info->dest_pipe_index =
|
|
pce_dev->ce_bam_info.dest_pipe_index;
|
|
/* Set pipe group */
|
|
sps_connect_info->lock_group = pce_dev->ce_bam_info.pipe_pair_index;
|
|
sps_connect_info->event_thresh = 0x10;
|
|
/*
|
|
* Max. no of scatter/gather buffers that can
|
|
* be passed by block layer = 32 (NR_SG).
|
|
* Each BAM descritor needs 64 bits (8 bytes).
|
|
* One BAM descriptor is required per buffer transfer.
|
|
* So we would require total 256 (32 * 8) bytes of descriptor FIFO.
|
|
* But due to HW limitation we need to allocate atleast one extra
|
|
* descriptor memory (256 bytes + 8 bytes). But in order to be
|
|
* in power of 2, we are allocating 512 bytes of memory.
|
|
*/
|
|
sps_connect_info->desc.size = QCE_MAX_NUM_DSCR * MAX_QCE_ALLOC_BAM_REQ *
|
|
sizeof(struct sps_iovec);
|
|
if (sps_connect_info->desc.size > MAX_SPS_DESC_FIFO_SIZE)
|
|
sps_connect_info->desc.size = MAX_SPS_DESC_FIFO_SIZE;
|
|
sps_connect_info->desc.base = dma_alloc_coherent(pce_dev->pdev,
|
|
sps_connect_info->desc.size,
|
|
&sps_connect_info->desc.phys_base,
|
|
GFP_KERNEL);
|
|
if (sps_connect_info->desc.base == NULL) {
|
|
rc = -ENOMEM;
|
|
pr_err("Can not allocate coherent memory for sps data\n");
|
|
goto get_config_err;
|
|
}
|
|
|
|
memset(sps_connect_info->desc.base, 0x00, sps_connect_info->desc.size);
|
|
|
|
/* Establish connection between peripheral and memory endpoint */
|
|
rc = sps_connect(sps_pipe_info, sps_connect_info);
|
|
if (rc) {
|
|
pr_err("sps_connect() fail pipe_handle=0x%lx, rc = %d\n",
|
|
(uintptr_t)sps_pipe_info, rc);
|
|
goto sps_connect_err;
|
|
}
|
|
|
|
sps_event->mode = SPS_TRIGGER_CALLBACK;
|
|
sps_event->xfer_done = NULL;
|
|
sps_event->user = (void *)pce_dev;
|
|
if (is_producer) {
|
|
sps_event->options = SPS_O_EOT | SPS_O_DESC_DONE;
|
|
sps_event->callback = _sps_producer_callback;
|
|
rc = sps_register_event(ep->pipe, sps_event);
|
|
if (rc) {
|
|
pr_err("Producer callback registration failed rc=%d\n",
|
|
rc);
|
|
goto sps_connect_err;
|
|
}
|
|
} else {
|
|
sps_event->options = SPS_O_EOT;
|
|
sps_event->callback = NULL;
|
|
}
|
|
|
|
pr_debug("success, %s : pipe_handle=0x%lx, desc fifo base (phy) = 0x%p\n",
|
|
is_producer ? "PRODUCER(RX/OUT)" : "CONSUMER(TX/IN)",
|
|
(uintptr_t)sps_pipe_info, &sps_connect_info->desc.phys_base);
|
|
goto out;
|
|
|
|
sps_connect_err:
|
|
dma_free_coherent(pce_dev->pdev,
|
|
sps_connect_info->desc.size,
|
|
sps_connect_info->desc.base,
|
|
sps_connect_info->desc.phys_base);
|
|
get_config_err:
|
|
sps_free_endpoint(sps_pipe_info);
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* Disconnect and Deallocate a CE peripheral's SPS endpoint
|
|
*
|
|
* This function disconnect endpoint and deallocates
|
|
* endpoint context.
|
|
*
|
|
* This function should only be called once typically
|
|
* during driver remove.
|
|
*
|
|
* @pce_dev - Pointer to qce_device structure
|
|
* @ep - Pointer to sps endpoint data structure
|
|
*
|
|
*/
|
|
static void qce_sps_exit_ep_conn(struct qce_device *pce_dev,
|
|
struct qce_sps_ep_conn_data *ep)
|
|
{
|
|
struct sps_pipe *sps_pipe_info = ep->pipe;
|
|
struct sps_connect *sps_connect_info = &ep->connect;
|
|
|
|
sps_disconnect(sps_pipe_info);
|
|
dma_free_coherent(pce_dev->pdev,
|
|
sps_connect_info->desc.size,
|
|
sps_connect_info->desc.base,
|
|
sps_connect_info->desc.phys_base);
|
|
sps_free_endpoint(sps_pipe_info);
|
|
}
|
|
|
|
static void qce_sps_release_bam(struct qce_device *pce_dev)
|
|
{
|
|
struct bam_registration_info *pbam;
|
|
|
|
mutex_lock(&bam_register_lock);
|
|
pbam = pce_dev->pbam;
|
|
if (pbam == NULL)
|
|
goto ret;
|
|
|
|
pbam->cnt--;
|
|
if (pbam->cnt > 0)
|
|
goto ret;
|
|
|
|
if (pce_dev->ce_bam_info.bam_handle) {
|
|
sps_deregister_bam_device(pce_dev->ce_bam_info.bam_handle);
|
|
|
|
pr_debug("deregister bam handle 0x%lx\n",
|
|
pce_dev->ce_bam_info.bam_handle);
|
|
pce_dev->ce_bam_info.bam_handle = 0;
|
|
}
|
|
iounmap(pbam->bam_iobase);
|
|
pr_debug("delete bam 0x%x\n", pbam->bam_mem);
|
|
list_del(&pbam->qlist);
|
|
kfree(pbam);
|
|
|
|
ret:
|
|
pce_dev->pbam = NULL;
|
|
mutex_unlock(&bam_register_lock);
|
|
}
|
|
|
|
static int qce_sps_get_bam(struct qce_device *pce_dev)
|
|
{
|
|
int rc = 0;
|
|
struct sps_bam_props bam = {0};
|
|
struct bam_registration_info *pbam = NULL;
|
|
struct bam_registration_info *p;
|
|
uint32_t bam_cfg = 0;
|
|
|
|
|
|
mutex_lock(&bam_register_lock);
|
|
|
|
list_for_each_entry(p, &qce50_bam_list, qlist) {
|
|
if (p->bam_mem == pce_dev->bam_mem) {
|
|
pbam = p; /* found */
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (pbam) {
|
|
pr_debug("found bam 0x%x\n", pbam->bam_mem);
|
|
pbam->cnt++;
|
|
pce_dev->ce_bam_info.bam_handle = pbam->handle;
|
|
pce_dev->ce_bam_info.bam_mem = pbam->bam_mem;
|
|
pce_dev->ce_bam_info.bam_iobase = pbam->bam_iobase;
|
|
pce_dev->pbam = pbam;
|
|
pce_dev->support_cmd_dscr = pbam->support_cmd_dscr;
|
|
goto ret;
|
|
}
|
|
|
|
pbam = kzalloc(sizeof(struct bam_registration_info), GFP_KERNEL);
|
|
if (!pbam) {
|
|
pr_err("qce50 Memory allocation of bam FAIL, error %ld\n",
|
|
PTR_ERR(pbam));
|
|
|
|
rc = -ENOMEM;
|
|
goto ret;
|
|
}
|
|
pbam->cnt = 1;
|
|
pbam->bam_mem = pce_dev->bam_mem;
|
|
pbam->bam_iobase = ioremap_nocache(pce_dev->bam_mem,
|
|
pce_dev->bam_mem_size);
|
|
if (!pbam->bam_iobase) {
|
|
kfree(pbam);
|
|
rc = -ENOMEM;
|
|
pr_err("Can not map BAM io memory\n");
|
|
goto ret;
|
|
}
|
|
pce_dev->ce_bam_info.bam_mem = pbam->bam_mem;
|
|
pce_dev->ce_bam_info.bam_iobase = pbam->bam_iobase;
|
|
pbam->handle = 0;
|
|
pr_debug("allocate bam 0x%x\n", pbam->bam_mem);
|
|
bam_cfg = readl_relaxed(pce_dev->ce_bam_info.bam_iobase +
|
|
CRYPTO_BAM_CNFG_BITS_REG);
|
|
pbam->support_cmd_dscr = (bam_cfg & CRYPTO_BAM_CD_ENABLE_MASK) ?
|
|
true : false;
|
|
if (pbam->support_cmd_dscr == false) {
|
|
pr_info("qce50 don't support command descriptor. bam_cfg%x\n",
|
|
bam_cfg);
|
|
pce_dev->no_get_around = false;
|
|
}
|
|
pce_dev->support_cmd_dscr = pbam->support_cmd_dscr;
|
|
|
|
bam.phys_addr = pce_dev->ce_bam_info.bam_mem;
|
|
bam.virt_addr = pce_dev->ce_bam_info.bam_iobase;
|
|
|
|
/*
|
|
* This event thresold value is only significant for BAM-to-BAM
|
|
* transfer. It's ignored for BAM-to-System mode transfer.
|
|
*/
|
|
bam.event_threshold = 0x10; /* Pipe event threshold */
|
|
/*
|
|
* This threshold controls when the BAM publish
|
|
* the descriptor size on the sideband interface.
|
|
* SPS HW will only be used when
|
|
* data transfer size > 64 bytes.
|
|
*/
|
|
bam.summing_threshold = 64;
|
|
/* SPS driver wll handle the crypto BAM IRQ */
|
|
bam.irq = (u32)pce_dev->ce_bam_info.bam_irq;
|
|
/*
|
|
* Set flag to indicate BAM global device control is managed
|
|
* remotely.
|
|
*/
|
|
if ((pce_dev->support_cmd_dscr == false) || (pce_dev->is_shared))
|
|
bam.manage = SPS_BAM_MGR_DEVICE_REMOTE;
|
|
else
|
|
bam.manage = SPS_BAM_MGR_LOCAL;
|
|
|
|
bam.ee = pce_dev->ce_bam_info.bam_ee;
|
|
|
|
pr_debug("bam physical base=0x%lx\n", (uintptr_t)bam.phys_addr);
|
|
pr_debug("bam virtual base=0x%p\n", bam.virt_addr);
|
|
|
|
/* Register CE Peripheral BAM device to SPS driver */
|
|
rc = sps_register_bam_device(&bam, &pbam->handle);
|
|
if (rc) {
|
|
pr_err("sps_register_bam_device() failed! err=%d", rc);
|
|
rc = -EIO;
|
|
iounmap(pbam->bam_iobase);
|
|
kfree(pbam);
|
|
goto ret;
|
|
}
|
|
|
|
pce_dev->pbam = pbam;
|
|
list_add_tail(&pbam->qlist, &qce50_bam_list);
|
|
pce_dev->ce_bam_info.bam_handle = pbam->handle;
|
|
|
|
ret:
|
|
mutex_unlock(&bam_register_lock);
|
|
|
|
return rc;
|
|
}
|
|
/**
|
|
* Initialize SPS HW connected with CE core
|
|
*
|
|
* This function register BAM HW resources with
|
|
* SPS driver and then initialize 2 SPS endpoints
|
|
*
|
|
* This function should only be called once typically
|
|
* during driver probe.
|
|
*
|
|
* @pce_dev - Pointer to qce_device structure
|
|
*
|
|
* @return - 0 if successful else negative value.
|
|
*
|
|
*/
|
|
static int qce_sps_init(struct qce_device *pce_dev)
|
|
{
|
|
int rc = 0;
|
|
|
|
rc = qce_sps_get_bam(pce_dev);
|
|
if (rc)
|
|
return rc;
|
|
pr_debug("BAM device registered. bam_handle=0x%lx\n",
|
|
pce_dev->ce_bam_info.bam_handle);
|
|
|
|
rc = qce_sps_init_ep_conn(pce_dev,
|
|
&pce_dev->ce_bam_info.producer, true);
|
|
if (rc)
|
|
goto sps_connect_producer_err;
|
|
rc = qce_sps_init_ep_conn(pce_dev,
|
|
&pce_dev->ce_bam_info.consumer, false);
|
|
if (rc)
|
|
goto sps_connect_consumer_err;
|
|
|
|
pr_info(" Qualcomm MSM CE-BAM at 0x%016llx irq %d\n",
|
|
(unsigned long long)pce_dev->ce_bam_info.bam_mem,
|
|
(unsigned int)pce_dev->ce_bam_info.bam_irq);
|
|
return rc;
|
|
|
|
sps_connect_consumer_err:
|
|
qce_sps_exit_ep_conn(pce_dev, &pce_dev->ce_bam_info.producer);
|
|
sps_connect_producer_err:
|
|
qce_sps_release_bam(pce_dev);
|
|
return rc;
|
|
}
|
|
|
|
static inline int qce_alloc_req_info(struct qce_device *pce_dev)
|
|
{
|
|
int i;
|
|
int request_index = pce_dev->ce_request_index;
|
|
|
|
for (i = 0; i < MAX_QCE_BAM_REQ; i++) {
|
|
request_index++;
|
|
if (request_index >= MAX_QCE_BAM_REQ)
|
|
request_index = 0;
|
|
if (xchg(&pce_dev->ce_request_info[request_index].
|
|
in_use, true) == false) {
|
|
pce_dev->ce_request_index = request_index;
|
|
return request_index;
|
|
}
|
|
}
|
|
pr_warn("pcedev %d no reqs available no_of_queued_req %d\n",
|
|
pce_dev->dev_no, pce_dev->no_of_queued_req);
|
|
return -EBUSY;
|
|
}
|
|
|
|
static inline void qce_free_req_info(struct qce_device *pce_dev, int req_info,
|
|
bool is_complete)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pce_dev->lock, flags);
|
|
pce_dev->ce_request_info[req_info].xfer_type = QCE_XFER_TYPE_LAST;
|
|
if (xchg(&pce_dev->ce_request_info[req_info].in_use, false) == true) {
|
|
if (req_info < MAX_QCE_BAM_REQ && is_complete)
|
|
pce_dev->no_of_queued_req--;
|
|
} else
|
|
pr_warn("request info %d free already\n", req_info);
|
|
spin_unlock_irqrestore(&pce_dev->lock, flags);
|
|
}
|
|
|
|
static void print_notify_debug(struct sps_event_notify *notify)
|
|
{
|
|
phys_addr_t addr =
|
|
DESC_FULL_ADDR((phys_addr_t) notify->data.transfer.iovec.flags,
|
|
notify->data.transfer.iovec.addr);
|
|
pr_debug("sps ev_id=%d, addr=0x%pa, size=0x%x, flags=0x%x user=0x%p\n",
|
|
notify->event_id, &addr,
|
|
notify->data.transfer.iovec.size,
|
|
notify->data.transfer.iovec.flags,
|
|
notify->data.transfer.user);
|
|
}
|
|
|
|
static void _qce_req_complete(struct qce_device *pce_dev, unsigned int req_info)
|
|
{
|
|
struct ce_request_info *preq_info;
|
|
|
|
preq_info = &pce_dev->ce_request_info[req_info];
|
|
|
|
switch (preq_info->xfer_type) {
|
|
case QCE_XFER_CIPHERING:
|
|
_ablk_cipher_complete(pce_dev, req_info);
|
|
break;
|
|
case QCE_XFER_HASHING:
|
|
_sha_complete(pce_dev, req_info);
|
|
break;
|
|
case QCE_XFER_AEAD:
|
|
_aead_complete(pce_dev, req_info);
|
|
break;
|
|
case QCE_XFER_F8:
|
|
_f8_complete(pce_dev, req_info);
|
|
break;
|
|
case QCE_XFER_F9:
|
|
_f9_complete(pce_dev, req_info);
|
|
break;
|
|
default:
|
|
qce_free_req_info(pce_dev, req_info, true);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void qce_multireq_timeout(unsigned long data)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *)data;
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
int last_seq;
|
|
|
|
last_seq = atomic_read(&pce_dev->bunch_cmd_seq);
|
|
if (last_seq == 0 ||
|
|
last_seq != atomic_read(&pce_dev->last_intr_seq)) {
|
|
atomic_set(&pce_dev->last_intr_seq, last_seq);
|
|
mod_timer(&(pce_dev->timer), (jiffies + DELAY_IN_JIFFIES));
|
|
return;
|
|
}
|
|
/* last bunch mode command time out */
|
|
spin_lock_irqsave(&pce_dev->lock, flags);
|
|
del_timer(&(pce_dev->timer));
|
|
pce_dev->mode = IN_INTERRUPT_MODE;
|
|
pce_dev->qce_stats.no_of_timeouts++;
|
|
pr_debug("pcedev %d mode switch to INTR\n", pce_dev->dev_no);
|
|
spin_unlock_irqrestore(&pce_dev->lock, flags);
|
|
|
|
ret = qce_dummy_req(pce_dev);
|
|
if (ret)
|
|
pr_warn("pcedev %d: Failed to insert dummy req\n",
|
|
pce_dev->dev_no);
|
|
}
|
|
|
|
void qce_get_driver_stats(void *handle)
|
|
{
|
|
unsigned long flags;
|
|
struct qce_device *pce_dev = (struct qce_device *) handle;
|
|
|
|
if (!_qce50_disp_stats)
|
|
return;
|
|
spin_lock_irqsave(&pce_dev->lock, flags);
|
|
pr_info("Engine %d timeout occuured %d\n", pce_dev->dev_no,
|
|
pce_dev->qce_stats.no_of_timeouts);
|
|
pr_info("Engine %d dummy request inserted %d\n", pce_dev->dev_no,
|
|
pce_dev->qce_stats.no_of_dummy_reqs);
|
|
if (pce_dev->mode)
|
|
pr_info("Engine %d is in BUNCH MODE\n", pce_dev->dev_no);
|
|
else
|
|
pr_info("Engine %d is in INTERRUPT MODE\n", pce_dev->dev_no);
|
|
pr_info("Engine %d outstanding request %d\n", pce_dev->dev_no,
|
|
pce_dev->no_of_queued_req);
|
|
spin_unlock_irqrestore(&pce_dev->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(qce_get_driver_stats);
|
|
|
|
void qce_clear_driver_stats(void *handle)
|
|
{
|
|
unsigned long flags;
|
|
struct qce_device *pce_dev = (struct qce_device *) handle;
|
|
|
|
spin_lock_irqsave(&pce_dev->lock, flags);
|
|
pce_dev->qce_stats.no_of_timeouts = 0;
|
|
pce_dev->qce_stats.no_of_dummy_reqs = 0;
|
|
spin_unlock_irqrestore(&pce_dev->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(qce_clear_driver_stats);
|
|
|
|
static void _sps_producer_callback(struct sps_event_notify *notify)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *)
|
|
((struct sps_event_notify *)notify)->user;
|
|
int rc = 0;
|
|
unsigned int req_info;
|
|
struct ce_sps_data *pce_sps_data;
|
|
struct ce_request_info *preq_info;
|
|
unsigned long flags;
|
|
|
|
print_notify_debug(notify);
|
|
|
|
req_info = (unsigned int)((uintptr_t)notify->data.transfer.user);
|
|
if ((req_info & 0xffff0000) != CRYPTO_REQ_USER_PAT) {
|
|
pr_warn("request information %d out of range\n", req_info);
|
|
return;
|
|
}
|
|
|
|
req_info = req_info & 0x00ff;
|
|
if (req_info < 0 || req_info >= MAX_QCE_ALLOC_BAM_REQ) {
|
|
pr_warn("request information %d out of range\n", req_info);
|
|
return;
|
|
}
|
|
|
|
preq_info = &pce_dev->ce_request_info[req_info];
|
|
|
|
pce_sps_data = &preq_info->ce_sps;
|
|
if ((preq_info->xfer_type == QCE_XFER_CIPHERING ||
|
|
preq_info->xfer_type == QCE_XFER_AEAD) &&
|
|
pce_sps_data->producer_state == QCE_PIPE_STATE_IDLE) {
|
|
pce_sps_data->producer_state = QCE_PIPE_STATE_COMP;
|
|
pce_sps_data->out_transfer.iovec_count = 0;
|
|
_qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump),
|
|
CRYPTO_RESULT_DUMP_SIZE,
|
|
&pce_sps_data->out_transfer);
|
|
_qce_set_flag(&pce_sps_data->out_transfer,
|
|
SPS_IOVEC_FLAG_INT);
|
|
spin_lock_irqsave(&pce_dev->sps_lock, flags);
|
|
rc = sps_transfer(pce_dev->ce_bam_info.producer.pipe,
|
|
&pce_sps_data->out_transfer);
|
|
spin_unlock_irqrestore(&pce_dev->sps_lock, flags);
|
|
if (rc) {
|
|
pr_err("sps_xfr() fail (producer pipe=0x%lx) rc = %d\n",
|
|
(uintptr_t)pce_dev->ce_bam_info.producer.pipe,
|
|
rc);
|
|
}
|
|
return;
|
|
}
|
|
|
|
_qce_req_complete(pce_dev, req_info);
|
|
}
|
|
|
|
/**
|
|
* De-initialize SPS HW connected with CE core
|
|
*
|
|
* This function deinitialize SPS endpoints and then
|
|
* deregisters BAM resources from SPS driver.
|
|
*
|
|
* This function should only be called once typically
|
|
* during driver remove.
|
|
*
|
|
* @pce_dev - Pointer to qce_device structure
|
|
*
|
|
*/
|
|
static void qce_sps_exit(struct qce_device *pce_dev)
|
|
{
|
|
qce_sps_exit_ep_conn(pce_dev, &pce_dev->ce_bam_info.consumer);
|
|
qce_sps_exit_ep_conn(pce_dev, &pce_dev->ce_bam_info.producer);
|
|
qce_sps_release_bam(pce_dev);
|
|
}
|
|
|
|
static void qce_add_cmd_element(struct qce_device *pdev,
|
|
struct sps_command_element **cmd_ptr, u32 addr,
|
|
u32 data, struct sps_command_element **populate)
|
|
{
|
|
(*cmd_ptr)->addr = (uint32_t)(addr + pdev->phy_iobase);
|
|
(*cmd_ptr)->command = 0;
|
|
(*cmd_ptr)->data = data;
|
|
(*cmd_ptr)->mask = 0xFFFFFFFF;
|
|
(*cmd_ptr)->reserved = 0;
|
|
if (populate != NULL)
|
|
*populate = *cmd_ptr;
|
|
(*cmd_ptr)++;
|
|
}
|
|
|
|
static int _setup_cipher_aes_cmdlistptrs(struct qce_device *pdev, int cri_index,
|
|
unsigned char **pvaddr, enum qce_cipher_mode_enum mode,
|
|
bool key_128)
|
|
{
|
|
struct sps_command_element *ce_vaddr;
|
|
uintptr_t ce_vaddr_start;
|
|
struct qce_cmdlistptr_ops *cmdlistptr;
|
|
struct qce_cmdlist_info *pcl_info = NULL;
|
|
int i = 0;
|
|
uint32_t encr_cfg = 0;
|
|
uint32_t key_reg = 0;
|
|
uint32_t xts_key_reg = 0;
|
|
uint32_t iv_reg = 0;
|
|
|
|
cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
|
|
*pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
|
|
pdev->ce_bam_info.ce_burst_size);
|
|
ce_vaddr = (struct sps_command_element *)(*pvaddr);
|
|
ce_vaddr_start = (uintptr_t)(*pvaddr);
|
|
/*
|
|
* Designate chunks of the allocated memory to various
|
|
* command list pointers related to AES cipher operations defined
|
|
* in ce_cmdlistptrs_ops structure.
|
|
*/
|
|
switch (mode) {
|
|
case QCE_MODE_CBC:
|
|
case QCE_MODE_CTR:
|
|
if (key_128 == true) {
|
|
cmdlistptr->cipher_aes_128_cbc_ctr.cmdlist =
|
|
(uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->cipher_aes_128_cbc_ctr);
|
|
if (mode == QCE_MODE_CBC)
|
|
encr_cfg = pdev->reg.encr_cfg_aes_cbc_128;
|
|
else
|
|
encr_cfg = pdev->reg.encr_cfg_aes_ctr_128;
|
|
iv_reg = 4;
|
|
key_reg = 4;
|
|
xts_key_reg = 0;
|
|
} else {
|
|
cmdlistptr->cipher_aes_256_cbc_ctr.cmdlist =
|
|
(uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->cipher_aes_256_cbc_ctr);
|
|
|
|
if (mode == QCE_MODE_CBC)
|
|
encr_cfg = pdev->reg.encr_cfg_aes_cbc_256;
|
|
else
|
|
encr_cfg = pdev->reg.encr_cfg_aes_ctr_256;
|
|
iv_reg = 4;
|
|
key_reg = 8;
|
|
xts_key_reg = 0;
|
|
}
|
|
break;
|
|
case QCE_MODE_ECB:
|
|
if (key_128 == true) {
|
|
cmdlistptr->cipher_aes_128_ecb.cmdlist =
|
|
(uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->cipher_aes_128_ecb);
|
|
|
|
encr_cfg = pdev->reg.encr_cfg_aes_ecb_128;
|
|
iv_reg = 0;
|
|
key_reg = 4;
|
|
xts_key_reg = 0;
|
|
} else {
|
|
cmdlistptr->cipher_aes_256_ecb.cmdlist =
|
|
(uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->cipher_aes_256_ecb);
|
|
|
|
encr_cfg = pdev->reg.encr_cfg_aes_ecb_256;
|
|
iv_reg = 0;
|
|
key_reg = 8;
|
|
xts_key_reg = 0;
|
|
}
|
|
break;
|
|
case QCE_MODE_XTS:
|
|
if (key_128 == true) {
|
|
cmdlistptr->cipher_aes_128_xts.cmdlist =
|
|
(uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->cipher_aes_128_xts);
|
|
|
|
encr_cfg = pdev->reg.encr_cfg_aes_xts_128;
|
|
iv_reg = 4;
|
|
key_reg = 4;
|
|
xts_key_reg = 4;
|
|
} else {
|
|
cmdlistptr->cipher_aes_256_xts.cmdlist =
|
|
(uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->cipher_aes_256_xts);
|
|
|
|
encr_cfg = pdev->reg.encr_cfg_aes_xts_256;
|
|
iv_reg = 4;
|
|
key_reg = 8;
|
|
xts_key_reg = 8;
|
|
}
|
|
break;
|
|
default:
|
|
pr_err("Unknown mode of operation %d received, exiting now\n",
|
|
mode);
|
|
return -EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* clear status register */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
|
|
&pcl_info->seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
|
|
&pcl_info->encr_seg_cfg);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
|
|
&pcl_info->encr_seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
|
|
&pcl_info->encr_seg_start);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG,
|
|
(uint32_t)0xffffffff, &pcl_info->encr_mask);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG0,
|
|
(uint32_t)0xffffffff, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG1,
|
|
(uint32_t)0xffffffff, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG2,
|
|
(uint32_t)0xffffffff, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0,
|
|
&pcl_info->auth_seg_cfg);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
|
|
&pcl_info->encr_key);
|
|
for (i = 1; i < key_reg; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
if (xts_key_reg) {
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_XTS_KEY0_REG,
|
|
0, &pcl_info->encr_xts_key);
|
|
for (i = 1; i < xts_key_reg; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_ENCR_XTS_KEY0_REG +
|
|
i * sizeof(uint32_t)), 0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
CRYPTO_ENCR_XTS_DU_SIZE_REG, 0,
|
|
&pcl_info->encr_xts_du_size);
|
|
}
|
|
if (iv_reg) {
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
|
|
&pcl_info->encr_cntr_iv);
|
|
for (i = 1; i < iv_reg; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
}
|
|
/* Add dummy to align size to burst-size multiple */
|
|
if (mode == QCE_MODE_XTS) {
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
|
|
0, &pcl_info->auth_seg_size);
|
|
} else {
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
|
|
0, &pcl_info->auth_seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG,
|
|
0, &pcl_info->auth_seg_size);
|
|
}
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
pdev->reg.crypto_cfg_le, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
|
|
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
|
|
&pcl_info->go_proc);
|
|
|
|
pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
|
|
*pvaddr = (unsigned char *) ce_vaddr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _setup_cipher_des_cmdlistptrs(struct qce_device *pdev, int cri_index,
|
|
unsigned char **pvaddr, enum qce_cipher_alg_enum alg,
|
|
bool mode_cbc)
|
|
{
|
|
|
|
struct sps_command_element *ce_vaddr;
|
|
uintptr_t ce_vaddr_start;
|
|
struct qce_cmdlistptr_ops *cmdlistptr;
|
|
struct qce_cmdlist_info *pcl_info = NULL;
|
|
int i = 0;
|
|
uint32_t encr_cfg = 0;
|
|
uint32_t key_reg = 0;
|
|
uint32_t iv_reg = 0;
|
|
|
|
cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
|
|
*pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
|
|
pdev->ce_bam_info.ce_burst_size);
|
|
ce_vaddr = (struct sps_command_element *)(*pvaddr);
|
|
ce_vaddr_start = (uintptr_t)(*pvaddr);
|
|
|
|
/*
|
|
* Designate chunks of the allocated memory to various
|
|
* command list pointers related to cipher operations defined
|
|
* in ce_cmdlistptrs_ops structure.
|
|
*/
|
|
switch (alg) {
|
|
case CIPHER_ALG_DES:
|
|
if (mode_cbc) {
|
|
cmdlistptr->cipher_des_cbc.cmdlist =
|
|
(uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->cipher_des_cbc);
|
|
|
|
|
|
encr_cfg = pdev->reg.encr_cfg_des_cbc;
|
|
iv_reg = 2;
|
|
key_reg = 2;
|
|
} else {
|
|
cmdlistptr->cipher_des_ecb.cmdlist =
|
|
(uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->cipher_des_ecb);
|
|
|
|
encr_cfg = pdev->reg.encr_cfg_des_ecb;
|
|
iv_reg = 0;
|
|
key_reg = 2;
|
|
}
|
|
break;
|
|
case CIPHER_ALG_3DES:
|
|
if (mode_cbc) {
|
|
cmdlistptr->cipher_3des_cbc.cmdlist =
|
|
(uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->cipher_3des_cbc);
|
|
|
|
encr_cfg = pdev->reg.encr_cfg_3des_cbc;
|
|
iv_reg = 2;
|
|
key_reg = 6;
|
|
} else {
|
|
cmdlistptr->cipher_3des_ecb.cmdlist =
|
|
(uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->cipher_3des_ecb);
|
|
|
|
encr_cfg = pdev->reg.encr_cfg_3des_ecb;
|
|
iv_reg = 0;
|
|
key_reg = 6;
|
|
}
|
|
break;
|
|
default:
|
|
pr_err("Unknown algorithms %d received, exiting now\n", alg);
|
|
return -EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* clear status register */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
|
|
&pcl_info->seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
|
|
&pcl_info->encr_seg_cfg);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
|
|
&pcl_info->encr_seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
|
|
&pcl_info->encr_seg_start);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0,
|
|
&pcl_info->auth_seg_cfg);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
|
|
&pcl_info->encr_key);
|
|
for (i = 1; i < key_reg; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
if (iv_reg) {
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
|
|
&pcl_info->encr_cntr_iv);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR1_IV1_REG, 0,
|
|
NULL);
|
|
}
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
pdev->reg.crypto_cfg_le, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
|
|
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
|
|
&pcl_info->go_proc);
|
|
|
|
pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
|
|
*pvaddr = (unsigned char *) ce_vaddr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _setup_cipher_null_cmdlistptrs(struct qce_device *pdev,
|
|
int cri_index, unsigned char **pvaddr)
|
|
{
|
|
struct sps_command_element *ce_vaddr;
|
|
uintptr_t ce_vaddr_start;
|
|
struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_request_info
|
|
[cri_index].ce_sps.cmdlistptr;
|
|
struct qce_cmdlist_info *pcl_info = NULL;
|
|
|
|
*pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
|
|
pdev->ce_bam_info.ce_burst_size);
|
|
ce_vaddr_start = (uintptr_t)(*pvaddr);
|
|
ce_vaddr = (struct sps_command_element *)(*pvaddr);
|
|
|
|
cmdlistptr->cipher_null.cmdlist = (uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->cipher_null);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG,
|
|
pdev->ce_bam_info.ce_burst_size, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG,
|
|
pdev->reg.encr_cfg_aes_ecb_128, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
|
|
NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
|
|
NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
|
|
NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
|
|
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
|
|
&pcl_info->go_proc);
|
|
|
|
pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
|
|
*pvaddr = (unsigned char *) ce_vaddr;
|
|
return 0;
|
|
}
|
|
|
|
static int _setup_auth_cmdlistptrs(struct qce_device *pdev, int cri_index,
|
|
unsigned char **pvaddr, enum qce_hash_alg_enum alg,
|
|
bool key_128)
|
|
{
|
|
struct sps_command_element *ce_vaddr;
|
|
uintptr_t ce_vaddr_start;
|
|
struct qce_cmdlistptr_ops *cmdlistptr;
|
|
struct qce_cmdlist_info *pcl_info = NULL;
|
|
int i = 0;
|
|
uint32_t key_reg = 0;
|
|
uint32_t auth_cfg = 0;
|
|
uint32_t iv_reg = 0;
|
|
|
|
cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
|
|
*pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
|
|
pdev->ce_bam_info.ce_burst_size);
|
|
ce_vaddr_start = (uintptr_t)(*pvaddr);
|
|
ce_vaddr = (struct sps_command_element *)(*pvaddr);
|
|
|
|
/*
|
|
* Designate chunks of the allocated memory to various
|
|
* command list pointers related to authentication operations
|
|
* defined in ce_cmdlistptrs_ops structure.
|
|
*/
|
|
switch (alg) {
|
|
case QCE_HASH_SHA1:
|
|
cmdlistptr->auth_sha1.cmdlist = (uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->auth_sha1);
|
|
|
|
auth_cfg = pdev->reg.auth_cfg_sha1;
|
|
iv_reg = 5;
|
|
|
|
/* clear status register */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
|
|
0, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
|
|
|
|
break;
|
|
case QCE_HASH_SHA256:
|
|
cmdlistptr->auth_sha256.cmdlist = (uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->auth_sha256);
|
|
|
|
auth_cfg = pdev->reg.auth_cfg_sha256;
|
|
iv_reg = 8;
|
|
|
|
/* clear status register */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
|
|
0, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
|
|
/* 1 dummy write */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
|
|
0, NULL);
|
|
break;
|
|
case QCE_HASH_SHA1_HMAC:
|
|
cmdlistptr->auth_sha1_hmac.cmdlist = (uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->auth_sha1_hmac);
|
|
|
|
auth_cfg = pdev->reg.auth_cfg_hmac_sha1;
|
|
key_reg = 16;
|
|
iv_reg = 5;
|
|
|
|
/* clear status register */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
|
|
0, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
|
|
break;
|
|
case QCE_HASH_SHA256_HMAC:
|
|
cmdlistptr->auth_sha256_hmac.cmdlist = (uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->auth_sha256_hmac);
|
|
|
|
auth_cfg = pdev->reg.auth_cfg_hmac_sha256;
|
|
key_reg = 16;
|
|
iv_reg = 8;
|
|
|
|
/* clear status register */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0,
|
|
NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
|
|
/* 1 dummy write */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
|
|
0, NULL);
|
|
break;
|
|
case QCE_HASH_AES_CMAC:
|
|
if (key_128 == true) {
|
|
cmdlistptr->auth_aes_128_cmac.cmdlist =
|
|
(uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->auth_aes_128_cmac);
|
|
|
|
auth_cfg = pdev->reg.auth_cfg_cmac_128;
|
|
key_reg = 4;
|
|
} else {
|
|
cmdlistptr->auth_aes_256_cmac.cmdlist =
|
|
(uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->auth_aes_256_cmac);
|
|
|
|
auth_cfg = pdev->reg.auth_cfg_cmac_256;
|
|
key_reg = 8;
|
|
}
|
|
|
|
/* clear status register */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0,
|
|
NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
|
|
/* 1 dummy write */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
|
|
0, NULL);
|
|
break;
|
|
default:
|
|
pr_err("Unknown algorithms %d received, exiting now\n", alg);
|
|
return -EINVAL;
|
|
break;
|
|
}
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
|
|
&pcl_info->seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, 0,
|
|
&pcl_info->encr_seg_cfg);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
|
|
auth_cfg, &pcl_info->auth_seg_cfg);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
|
|
&pcl_info->auth_seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
|
|
&pcl_info->auth_seg_start);
|
|
|
|
if (alg == QCE_HASH_AES_CMAC) {
|
|
/* reset auth iv, bytecount and key registers */
|
|
for (i = 0; i < 16; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
for (i = 0; i < 16; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)),
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
|
|
0, NULL);
|
|
} else {
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_IV0_REG, 0,
|
|
&pcl_info->auth_iv);
|
|
for (i = 1; i < iv_reg; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)),
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
|
|
0, &pcl_info->auth_bytecount);
|
|
}
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG, 0, NULL);
|
|
|
|
if (key_reg) {
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
CRYPTO_AUTH_KEY0_REG, 0, &pcl_info->auth_key);
|
|
for (i = 1; i < key_reg; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)),
|
|
0, NULL);
|
|
}
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
pdev->reg.crypto_cfg_le, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
|
|
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
|
|
&pcl_info->go_proc);
|
|
|
|
pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
|
|
*pvaddr = (unsigned char *) ce_vaddr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _setup_aead_cmdlistptrs(struct qce_device *pdev,
|
|
int cri_index,
|
|
unsigned char **pvaddr,
|
|
uint32_t alg,
|
|
uint32_t mode,
|
|
uint32_t key_size,
|
|
bool sha1)
|
|
{
|
|
struct sps_command_element *ce_vaddr;
|
|
uintptr_t ce_vaddr_start;
|
|
struct qce_cmdlistptr_ops *cmdlistptr;
|
|
struct qce_cmdlist_info *pcl_info = NULL;
|
|
uint32_t key_reg;
|
|
uint32_t iv_reg;
|
|
uint32_t i;
|
|
uint32_t enciv_in_word;
|
|
uint32_t encr_cfg;
|
|
|
|
cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
|
|
*pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
|
|
pdev->ce_bam_info.ce_burst_size);
|
|
|
|
ce_vaddr_start = (uintptr_t)(*pvaddr);
|
|
ce_vaddr = (struct sps_command_element *)(*pvaddr);
|
|
|
|
switch (alg) {
|
|
|
|
case CIPHER_ALG_DES:
|
|
|
|
switch (mode) {
|
|
|
|
case QCE_MODE_CBC:
|
|
if (sha1) {
|
|
cmdlistptr->aead_hmac_sha1_cbc_des.cmdlist =
|
|
(uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->
|
|
aead_hmac_sha1_cbc_des);
|
|
} else {
|
|
cmdlistptr->aead_hmac_sha256_cbc_des.cmdlist =
|
|
(uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->
|
|
aead_hmac_sha256_cbc_des);
|
|
}
|
|
encr_cfg = pdev->reg.encr_cfg_des_cbc;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
};
|
|
|
|
enciv_in_word = 2;
|
|
|
|
break;
|
|
|
|
case CIPHER_ALG_3DES:
|
|
switch (mode) {
|
|
|
|
case QCE_MODE_CBC:
|
|
if (sha1) {
|
|
cmdlistptr->aead_hmac_sha1_cbc_3des.cmdlist =
|
|
(uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->
|
|
aead_hmac_sha1_cbc_3des);
|
|
} else {
|
|
cmdlistptr->aead_hmac_sha256_cbc_3des.cmdlist =
|
|
(uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->
|
|
aead_hmac_sha256_cbc_3des);
|
|
}
|
|
encr_cfg = pdev->reg.encr_cfg_3des_cbc;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
};
|
|
|
|
enciv_in_word = 2;
|
|
|
|
break;
|
|
|
|
case CIPHER_ALG_AES:
|
|
switch (mode) {
|
|
|
|
case QCE_MODE_CBC:
|
|
if (key_size == AES128_KEY_SIZE) {
|
|
if (sha1) {
|
|
cmdlistptr->
|
|
aead_hmac_sha1_cbc_aes_128.
|
|
cmdlist = (uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->
|
|
aead_hmac_sha1_cbc_aes_128);
|
|
} else {
|
|
cmdlistptr->
|
|
aead_hmac_sha256_cbc_aes_128.
|
|
cmdlist = (uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->
|
|
aead_hmac_sha256_cbc_aes_128);
|
|
}
|
|
encr_cfg = pdev->reg.encr_cfg_aes_cbc_128;
|
|
} else if (key_size == AES256_KEY_SIZE) {
|
|
if (sha1) {
|
|
cmdlistptr->
|
|
aead_hmac_sha1_cbc_aes_256.
|
|
cmdlist = (uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->
|
|
aead_hmac_sha1_cbc_aes_256);
|
|
} else {
|
|
cmdlistptr->
|
|
aead_hmac_sha256_cbc_aes_256.
|
|
cmdlist = (uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->
|
|
aead_hmac_sha256_cbc_aes_256);
|
|
}
|
|
encr_cfg = pdev->reg.encr_cfg_aes_cbc_256;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
};
|
|
|
|
enciv_in_word = 4;
|
|
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
};
|
|
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
|
|
|
|
|
|
key_reg = key_size/sizeof(uint32_t);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
|
|
&pcl_info->encr_key);
|
|
for (i = 1; i < key_reg; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
|
|
if (mode != QCE_MODE_ECB) {
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
|
|
&pcl_info->encr_cntr_iv);
|
|
for (i = 1; i < enciv_in_word; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
};
|
|
|
|
if (sha1)
|
|
iv_reg = 5;
|
|
else
|
|
iv_reg = 8;
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_IV0_REG, 0,
|
|
&pcl_info->auth_iv);
|
|
for (i = 1; i < iv_reg; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)),
|
|
0, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
|
|
0, &pcl_info->auth_bytecount);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG, 0, NULL);
|
|
|
|
key_reg = SHA_HMAC_KEY_SIZE/sizeof(uint32_t);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_KEY0_REG, 0,
|
|
&pcl_info->auth_key);
|
|
for (i = 1; i < key_reg; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)), 0, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
|
|
&pcl_info->seg_size);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
|
|
&pcl_info->encr_seg_cfg);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
|
|
&pcl_info->encr_seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
|
|
&pcl_info->encr_seg_start);
|
|
|
|
if (sha1)
|
|
qce_add_cmd_element(
|
|
pdev,
|
|
&ce_vaddr,
|
|
CRYPTO_AUTH_SEG_CFG_REG,
|
|
pdev->reg.auth_cfg_aead_sha1_hmac,
|
|
&pcl_info->auth_seg_cfg);
|
|
else
|
|
qce_add_cmd_element(
|
|
pdev,
|
|
&ce_vaddr,
|
|
CRYPTO_AUTH_SEG_CFG_REG,
|
|
pdev->reg.auth_cfg_aead_sha256_hmac,
|
|
&pcl_info->auth_seg_cfg);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
|
|
&pcl_info->auth_seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
|
|
&pcl_info->auth_seg_start);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
pdev->reg.crypto_cfg_le, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
|
|
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
|
|
&pcl_info->go_proc);
|
|
|
|
pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
|
|
*pvaddr = (unsigned char *) ce_vaddr;
|
|
return 0;
|
|
}
|
|
|
|
static int _setup_aead_ccm_cmdlistptrs(struct qce_device *pdev, int cri_index,
|
|
unsigned char **pvaddr, bool key_128)
|
|
{
|
|
struct sps_command_element *ce_vaddr;
|
|
uintptr_t ce_vaddr_start;
|
|
struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_request_info
|
|
[cri_index].ce_sps.cmdlistptr;
|
|
struct qce_cmdlist_info *pcl_info = NULL;
|
|
int i = 0;
|
|
uint32_t encr_cfg = 0;
|
|
uint32_t auth_cfg = 0;
|
|
uint32_t key_reg = 0;
|
|
|
|
*pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
|
|
pdev->ce_bam_info.ce_burst_size);
|
|
ce_vaddr_start = (uintptr_t)(*pvaddr);
|
|
ce_vaddr = (struct sps_command_element *)(*pvaddr);
|
|
|
|
/*
|
|
* Designate chunks of the allocated memory to various
|
|
* command list pointers related to aead operations
|
|
* defined in ce_cmdlistptrs_ops structure.
|
|
*/
|
|
if (key_128 == true) {
|
|
cmdlistptr->aead_aes_128_ccm.cmdlist =
|
|
(uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->aead_aes_128_ccm);
|
|
|
|
auth_cfg = pdev->reg.auth_cfg_aes_ccm_128;
|
|
encr_cfg = pdev->reg.encr_cfg_aes_ccm_128;
|
|
key_reg = 4;
|
|
} else {
|
|
|
|
cmdlistptr->aead_aes_256_ccm.cmdlist =
|
|
(uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->aead_aes_256_ccm);
|
|
|
|
auth_cfg = pdev->reg.auth_cfg_aes_ccm_256;
|
|
encr_cfg = pdev->reg.encr_cfg_aes_ccm_256;
|
|
|
|
key_reg = 8;
|
|
}
|
|
|
|
/* clear status register */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, 0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
|
|
NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
|
|
&pcl_info->seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG,
|
|
encr_cfg, &pcl_info->encr_seg_cfg);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
|
|
&pcl_info->encr_seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
|
|
&pcl_info->encr_seg_start);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG,
|
|
(uint32_t)0xffffffff, &pcl_info->encr_mask);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG0,
|
|
(uint32_t)0xffffffff, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG1,
|
|
(uint32_t)0xffffffff, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG2,
|
|
(uint32_t)0xffffffff, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
|
|
auth_cfg, &pcl_info->auth_seg_cfg);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
|
|
&pcl_info->auth_seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
|
|
&pcl_info->auth_seg_start);
|
|
/* reset auth iv, bytecount and key registers */
|
|
for (i = 0; i < 8; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG,
|
|
0, NULL);
|
|
for (i = 0; i < 16; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
/* set auth key */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_KEY0_REG, 0,
|
|
&pcl_info->auth_key);
|
|
for (i = 1; i < key_reg; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
/* set NONCE info */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_INFO_NONCE0_REG, 0,
|
|
&pcl_info->auth_nonce_info);
|
|
for (i = 1; i < 4; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_AUTH_INFO_NONCE0_REG +
|
|
i * sizeof(uint32_t)), 0, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
|
|
&pcl_info->encr_key);
|
|
for (i = 1; i < key_reg; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
|
|
&pcl_info->encr_cntr_iv);
|
|
for (i = 1; i < 4; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_CCM_INT_CNTR0_REG, 0,
|
|
&pcl_info->encr_ccm_cntr_iv);
|
|
for (i = 1; i < 4; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_ENCR_CCM_INT_CNTR0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
pdev->reg.crypto_cfg_le, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
|
|
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
|
|
&pcl_info->go_proc);
|
|
|
|
pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
|
|
*pvaddr = (unsigned char *) ce_vaddr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _setup_f8_cmdlistptrs(struct qce_device *pdev, int cri_index,
|
|
unsigned char **pvaddr, enum qce_ota_algo_enum alg)
|
|
{
|
|
struct sps_command_element *ce_vaddr;
|
|
uintptr_t ce_vaddr_start;
|
|
struct qce_cmdlistptr_ops *cmdlistptr;
|
|
struct qce_cmdlist_info *pcl_info = NULL;
|
|
int i = 0;
|
|
uint32_t encr_cfg = 0;
|
|
uint32_t key_reg = 4;
|
|
|
|
cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
|
|
*pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
|
|
pdev->ce_bam_info.ce_burst_size);
|
|
ce_vaddr = (struct sps_command_element *)(*pvaddr);
|
|
ce_vaddr_start = (uintptr_t)(*pvaddr);
|
|
|
|
/*
|
|
* Designate chunks of the allocated memory to various
|
|
* command list pointers related to f8 cipher algorithm defined
|
|
* in ce_cmdlistptrs_ops structure.
|
|
*/
|
|
|
|
switch (alg) {
|
|
case QCE_OTA_ALGO_KASUMI:
|
|
cmdlistptr->f8_kasumi.cmdlist = (uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->f8_kasumi);
|
|
encr_cfg = pdev->reg.encr_cfg_kasumi;
|
|
break;
|
|
|
|
case QCE_OTA_ALGO_SNOW3G:
|
|
default:
|
|
cmdlistptr->f8_snow3g.cmdlist = (uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->f8_snow3g);
|
|
encr_cfg = pdev->reg.encr_cfg_snow3g;
|
|
break;
|
|
}
|
|
/* clear status register */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
|
|
0, NULL);
|
|
/* set config to big endian */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
|
|
&pcl_info->seg_size);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
|
|
&pcl_info->encr_seg_cfg);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
|
|
&pcl_info->encr_seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
|
|
&pcl_info->encr_seg_start);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0,
|
|
&pcl_info->auth_seg_cfg);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
|
|
0, &pcl_info->auth_seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG,
|
|
0, &pcl_info->auth_seg_start);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
|
|
&pcl_info->encr_key);
|
|
for (i = 1; i < key_reg; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
|
|
&pcl_info->encr_cntr_iv);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR1_IV1_REG, 0,
|
|
NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
pdev->reg.crypto_cfg_le, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
|
|
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
|
|
&pcl_info->go_proc);
|
|
|
|
pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
|
|
*pvaddr = (unsigned char *) ce_vaddr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _setup_f9_cmdlistptrs(struct qce_device *pdev, int cri_index,
|
|
unsigned char **pvaddr, enum qce_ota_algo_enum alg)
|
|
{
|
|
struct sps_command_element *ce_vaddr;
|
|
uintptr_t ce_vaddr_start;
|
|
struct qce_cmdlistptr_ops *cmdlistptr;
|
|
struct qce_cmdlist_info *pcl_info = NULL;
|
|
int i = 0;
|
|
uint32_t auth_cfg = 0;
|
|
uint32_t iv_reg = 0;
|
|
|
|
cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
|
|
*pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
|
|
pdev->ce_bam_info.ce_burst_size);
|
|
ce_vaddr_start = (uintptr_t)(*pvaddr);
|
|
ce_vaddr = (struct sps_command_element *)(*pvaddr);
|
|
|
|
/*
|
|
* Designate chunks of the allocated memory to various
|
|
* command list pointers related to authentication operations
|
|
* defined in ce_cmdlistptrs_ops structure.
|
|
*/
|
|
switch (alg) {
|
|
case QCE_OTA_ALGO_KASUMI:
|
|
cmdlistptr->f9_kasumi.cmdlist = (uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->f9_kasumi);
|
|
auth_cfg = pdev->reg.auth_cfg_kasumi;
|
|
break;
|
|
|
|
case QCE_OTA_ALGO_SNOW3G:
|
|
default:
|
|
cmdlistptr->f9_snow3g.cmdlist = (uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->f9_snow3g);
|
|
auth_cfg = pdev->reg.auth_cfg_snow3g;
|
|
};
|
|
|
|
/* clear status register */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
|
|
0, NULL);
|
|
/* set config to big endian */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
|
|
|
|
iv_reg = 5;
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
|
|
&pcl_info->seg_size);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, 0,
|
|
&pcl_info->encr_seg_cfg);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
|
|
auth_cfg, &pcl_info->auth_seg_cfg);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
|
|
&pcl_info->auth_seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
|
|
&pcl_info->auth_seg_start);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_IV0_REG, 0,
|
|
&pcl_info->auth_iv);
|
|
for (i = 1; i < iv_reg; i++) {
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)),
|
|
0, NULL);
|
|
}
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
|
|
0, &pcl_info->auth_bytecount);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG, 0, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
pdev->reg.crypto_cfg_le, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
|
|
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
|
|
&pcl_info->go_proc);
|
|
|
|
pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
|
|
*pvaddr = (unsigned char *) ce_vaddr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _setup_unlock_pipe_cmdlistptrs(struct qce_device *pdev,
|
|
int cri_index, unsigned char **pvaddr)
|
|
{
|
|
struct sps_command_element *ce_vaddr;
|
|
uintptr_t ce_vaddr_start = (uintptr_t)(*pvaddr);
|
|
struct qce_cmdlistptr_ops *cmdlistptr;
|
|
struct qce_cmdlist_info *pcl_info = NULL;
|
|
|
|
cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
|
|
*pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
|
|
pdev->ce_bam_info.ce_burst_size);
|
|
ce_vaddr = (struct sps_command_element *)(*pvaddr);
|
|
cmdlistptr->unlock_all_pipes.cmdlist = (uintptr_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->unlock_all_pipes);
|
|
|
|
/*
|
|
* Designate chunks of the allocated memory to command list
|
|
* to unlock pipes.
|
|
*/
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
CRYPTO_CONFIG_RESET, NULL);
|
|
pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
|
|
*pvaddr = (unsigned char *) ce_vaddr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qce_setup_cmdlistptrs(struct qce_device *pdev, int cri_index,
|
|
unsigned char **pvaddr)
|
|
{
|
|
struct sps_command_element *ce_vaddr =
|
|
(struct sps_command_element *)(*pvaddr);
|
|
/*
|
|
* Designate chunks of the allocated memory to various
|
|
* command list pointers related to operations defined
|
|
* in ce_cmdlistptrs_ops structure.
|
|
*/
|
|
ce_vaddr =
|
|
(struct sps_command_element *)ALIGN(((uintptr_t) ce_vaddr),
|
|
pdev->ce_bam_info.ce_burst_size);
|
|
*pvaddr = (unsigned char *) ce_vaddr;
|
|
|
|
_setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_CBC,
|
|
true);
|
|
_setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_CTR,
|
|
true);
|
|
_setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_ECB,
|
|
true);
|
|
_setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_XTS,
|
|
true);
|
|
_setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_CBC,
|
|
false);
|
|
_setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_CTR,
|
|
false);
|
|
_setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_ECB,
|
|
false);
|
|
_setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_XTS,
|
|
false);
|
|
|
|
_setup_cipher_des_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_DES,
|
|
true);
|
|
_setup_cipher_des_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_DES,
|
|
false);
|
|
_setup_cipher_des_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_3DES,
|
|
true);
|
|
_setup_cipher_des_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_3DES,
|
|
false);
|
|
|
|
_setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_SHA1,
|
|
false);
|
|
_setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_SHA256,
|
|
false);
|
|
|
|
_setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_SHA1_HMAC,
|
|
false);
|
|
_setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_SHA256_HMAC,
|
|
false);
|
|
|
|
_setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_AES_CMAC,
|
|
true);
|
|
_setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_AES_CMAC,
|
|
false);
|
|
|
|
_setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_DES,
|
|
QCE_MODE_CBC, DES_KEY_SIZE, true);
|
|
_setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_3DES,
|
|
QCE_MODE_CBC, DES3_EDE_KEY_SIZE, true);
|
|
_setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_AES,
|
|
QCE_MODE_CBC, AES128_KEY_SIZE, true);
|
|
_setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_AES,
|
|
QCE_MODE_CBC, AES256_KEY_SIZE, true);
|
|
_setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_DES,
|
|
QCE_MODE_CBC, DES_KEY_SIZE, false);
|
|
_setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_3DES,
|
|
QCE_MODE_CBC, DES3_EDE_KEY_SIZE, false);
|
|
_setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_AES,
|
|
QCE_MODE_CBC, AES128_KEY_SIZE, false);
|
|
_setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_AES,
|
|
QCE_MODE_CBC, AES256_KEY_SIZE, false);
|
|
|
|
_setup_cipher_null_cmdlistptrs(pdev, cri_index, pvaddr);
|
|
|
|
_setup_aead_ccm_cmdlistptrs(pdev, cri_index, pvaddr, true);
|
|
_setup_aead_ccm_cmdlistptrs(pdev, cri_index, pvaddr, false);
|
|
_setup_f8_cmdlistptrs(pdev, cri_index, pvaddr, QCE_OTA_ALGO_KASUMI);
|
|
_setup_f8_cmdlistptrs(pdev, cri_index, pvaddr, QCE_OTA_ALGO_SNOW3G);
|
|
_setup_f9_cmdlistptrs(pdev, cri_index, pvaddr, QCE_OTA_ALGO_KASUMI);
|
|
_setup_f9_cmdlistptrs(pdev, cri_index, pvaddr, QCE_OTA_ALGO_SNOW3G);
|
|
_setup_unlock_pipe_cmdlistptrs(pdev, cri_index, pvaddr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qce_setup_ce_sps_data(struct qce_device *pce_dev)
|
|
{
|
|
unsigned char *vaddr;
|
|
int i;
|
|
|
|
vaddr = pce_dev->coh_vmem;
|
|
vaddr = (unsigned char *)ALIGN(((uintptr_t)vaddr),
|
|
pce_dev->ce_bam_info.ce_burst_size);
|
|
for (i = 0; i < MAX_QCE_ALLOC_BAM_REQ; i++) {
|
|
/* Allow for 256 descriptor (cmd and data) entries per pipe */
|
|
pce_dev->ce_request_info[i].ce_sps.in_transfer.iovec =
|
|
(struct sps_iovec *)vaddr;
|
|
pce_dev->ce_request_info[i].ce_sps.in_transfer.iovec_phys =
|
|
(uintptr_t)GET_PHYS_ADDR(vaddr);
|
|
vaddr += QCE_MAX_NUM_DSCR * sizeof(struct sps_iovec);
|
|
|
|
pce_dev->ce_request_info[i].ce_sps.out_transfer.iovec =
|
|
(struct sps_iovec *)vaddr;
|
|
pce_dev->ce_request_info[i].ce_sps.out_transfer.iovec_phys =
|
|
(uintptr_t)GET_PHYS_ADDR(vaddr);
|
|
vaddr += QCE_MAX_NUM_DSCR * sizeof(struct sps_iovec);
|
|
|
|
if (pce_dev->support_cmd_dscr)
|
|
qce_setup_cmdlistptrs(pce_dev, i, &vaddr);
|
|
vaddr = (unsigned char *)ALIGN(((uintptr_t)vaddr),
|
|
pce_dev->ce_bam_info.ce_burst_size);
|
|
pce_dev->ce_request_info[i].ce_sps.result_dump =
|
|
(uintptr_t)vaddr;
|
|
pce_dev->ce_request_info[i].ce_sps.result_dump_phy =
|
|
GET_PHYS_ADDR((uintptr_t)vaddr);
|
|
pce_dev->ce_request_info[i].ce_sps.result =
|
|
(struct ce_result_dump_format *)vaddr;
|
|
vaddr += CRYPTO_RESULT_DUMP_SIZE;
|
|
|
|
pce_dev->ce_request_info[i].ce_sps.result_dump_null =
|
|
(uintptr_t)vaddr;
|
|
pce_dev->ce_request_info[i].ce_sps.result_dump_null_phy =
|
|
GET_PHYS_ADDR((uintptr_t)vaddr);
|
|
pce_dev->ce_request_info[i].ce_sps.result_null =
|
|
(struct ce_result_dump_format *)vaddr;
|
|
vaddr += CRYPTO_RESULT_DUMP_SIZE;
|
|
|
|
pce_dev->ce_request_info[i].ce_sps.ignore_buffer =
|
|
(uintptr_t)vaddr;
|
|
vaddr += pce_dev->ce_bam_info.ce_burst_size * 2;
|
|
}
|
|
pce_dev->dummyreq.in_buf = (uint8_t *)vaddr;
|
|
vaddr += DUMMY_REQ_DATA_LEN;
|
|
if ((vaddr - pce_dev->coh_vmem) > pce_dev->memsize)
|
|
panic("qce50: Not enough coherent memory. Allocate %x , need %lx\n",
|
|
pce_dev->memsize, (uintptr_t)vaddr -
|
|
(uintptr_t)pce_dev->coh_vmem);
|
|
return 0;
|
|
}
|
|
|
|
static int qce_init_ce_cfg_val(struct qce_device *pce_dev)
|
|
{
|
|
uint32_t beats = (pce_dev->ce_bam_info.ce_burst_size >> 3) - 1;
|
|
uint32_t pipe_pair = pce_dev->ce_bam_info.pipe_pair_index;
|
|
|
|
pce_dev->reg.crypto_cfg_be = (beats << CRYPTO_REQ_SIZE) |
|
|
BIT(CRYPTO_MASK_DOUT_INTR) | BIT(CRYPTO_MASK_DIN_INTR) |
|
|
BIT(CRYPTO_MASK_OP_DONE_INTR) | (0 << CRYPTO_HIGH_SPD_EN_N) |
|
|
(pipe_pair << CRYPTO_PIPE_SET_SELECT);
|
|
|
|
pce_dev->reg.crypto_cfg_le =
|
|
(pce_dev->reg.crypto_cfg_be | CRYPTO_LITTLE_ENDIAN_MASK);
|
|
|
|
/* Initialize encr_cfg register for AES alg */
|
|
pce_dev->reg.encr_cfg_aes_cbc_128 =
|
|
(CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
|
|
(CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE);
|
|
|
|
pce_dev->reg.encr_cfg_aes_cbc_256 =
|
|
(CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
|
|
(CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE);
|
|
|
|
pce_dev->reg.encr_cfg_aes_ctr_128 =
|
|
(CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
|
|
(CRYPTO_ENCR_MODE_CTR << CRYPTO_ENCR_MODE);
|
|
|
|
pce_dev->reg.encr_cfg_aes_ctr_256 =
|
|
(CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
|
|
(CRYPTO_ENCR_MODE_CTR << CRYPTO_ENCR_MODE);
|
|
|
|
pce_dev->reg.encr_cfg_aes_xts_128 =
|
|
(CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
|
|
(CRYPTO_ENCR_MODE_XTS << CRYPTO_ENCR_MODE);
|
|
|
|
pce_dev->reg.encr_cfg_aes_xts_256 =
|
|
(CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
|
|
(CRYPTO_ENCR_MODE_XTS << CRYPTO_ENCR_MODE);
|
|
|
|
pce_dev->reg.encr_cfg_aes_ecb_128 =
|
|
(CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
|
|
(CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE);
|
|
|
|
pce_dev->reg.encr_cfg_aes_ecb_256 =
|
|
(CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
|
|
(CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE);
|
|
|
|
pce_dev->reg.encr_cfg_aes_ccm_128 =
|
|
(CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
|
|
(CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE)|
|
|
(CRYPTO_LAST_CCM_XFR << CRYPTO_LAST_CCM);
|
|
|
|
pce_dev->reg.encr_cfg_aes_ccm_256 =
|
|
(CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
|
|
(CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE) |
|
|
(CRYPTO_LAST_CCM_XFR << CRYPTO_LAST_CCM);
|
|
|
|
/* Initialize encr_cfg register for DES alg */
|
|
pce_dev->reg.encr_cfg_des_ecb =
|
|
(CRYPTO_ENCR_KEY_SZ_DES << CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) |
|
|
(CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE);
|
|
|
|
pce_dev->reg.encr_cfg_des_cbc =
|
|
(CRYPTO_ENCR_KEY_SZ_DES << CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) |
|
|
(CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE);
|
|
|
|
pce_dev->reg.encr_cfg_3des_ecb =
|
|
(CRYPTO_ENCR_KEY_SZ_3DES << CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) |
|
|
(CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE);
|
|
|
|
pce_dev->reg.encr_cfg_3des_cbc =
|
|
(CRYPTO_ENCR_KEY_SZ_3DES << CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) |
|
|
(CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE);
|
|
|
|
/* Initialize encr_cfg register for kasumi/snow3g alg */
|
|
pce_dev->reg.encr_cfg_kasumi =
|
|
(CRYPTO_ENCR_ALG_KASUMI << CRYPTO_ENCR_ALG);
|
|
|
|
pce_dev->reg.encr_cfg_snow3g =
|
|
(CRYPTO_ENCR_ALG_SNOW_3G << CRYPTO_ENCR_ALG);
|
|
|
|
/* Initialize auth_cfg register for CMAC alg */
|
|
pce_dev->reg.auth_cfg_cmac_128 =
|
|
(1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
|
|
(CRYPTO_AUTH_MODE_CMAC << CRYPTO_AUTH_MODE)|
|
|
(CRYPTO_AUTH_SIZE_ENUM_16_BYTES << CRYPTO_AUTH_SIZE) |
|
|
(CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
|
|
(CRYPTO_AUTH_KEY_SZ_AES128 << CRYPTO_AUTH_KEY_SIZE);
|
|
|
|
pce_dev->reg.auth_cfg_cmac_256 =
|
|
(1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
|
|
(CRYPTO_AUTH_MODE_CMAC << CRYPTO_AUTH_MODE)|
|
|
(CRYPTO_AUTH_SIZE_ENUM_16_BYTES << CRYPTO_AUTH_SIZE) |
|
|
(CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
|
|
(CRYPTO_AUTH_KEY_SZ_AES256 << CRYPTO_AUTH_KEY_SIZE);
|
|
|
|
/* Initialize auth_cfg register for HMAC alg */
|
|
pce_dev->reg.auth_cfg_hmac_sha1 =
|
|
(CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
|
|
(CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) |
|
|
(CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
|
|
(CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
|
|
|
|
pce_dev->reg.auth_cfg_hmac_sha256 =
|
|
(CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
|
|
(CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE) |
|
|
(CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
|
|
(CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
|
|
|
|
/* Initialize auth_cfg register for SHA1/256 alg */
|
|
pce_dev->reg.auth_cfg_sha1 =
|
|
(CRYPTO_AUTH_MODE_HASH << CRYPTO_AUTH_MODE)|
|
|
(CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) |
|
|
(CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
|
|
(CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
|
|
|
|
pce_dev->reg.auth_cfg_sha256 =
|
|
(CRYPTO_AUTH_MODE_HASH << CRYPTO_AUTH_MODE)|
|
|
(CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE) |
|
|
(CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
|
|
(CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
|
|
|
|
/* Initialize auth_cfg register for AEAD alg */
|
|
pce_dev->reg.auth_cfg_aead_sha1_hmac =
|
|
(CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
|
|
(CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) |
|
|
(CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
|
|
(1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST);
|
|
|
|
pce_dev->reg.auth_cfg_aead_sha256_hmac =
|
|
(CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
|
|
(CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE) |
|
|
(CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
|
|
(1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST);
|
|
|
|
pce_dev->reg.auth_cfg_aes_ccm_128 =
|
|
(1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
|
|
(CRYPTO_AUTH_MODE_CCM << CRYPTO_AUTH_MODE)|
|
|
(CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
|
|
(CRYPTO_AUTH_KEY_SZ_AES128 << CRYPTO_AUTH_KEY_SIZE) |
|
|
((MAX_NONCE/sizeof(uint32_t)) << CRYPTO_AUTH_NONCE_NUM_WORDS);
|
|
pce_dev->reg.auth_cfg_aes_ccm_128 &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
|
|
|
|
pce_dev->reg.auth_cfg_aes_ccm_256 =
|
|
(1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
|
|
(CRYPTO_AUTH_MODE_CCM << CRYPTO_AUTH_MODE)|
|
|
(CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
|
|
(CRYPTO_AUTH_KEY_SZ_AES256 << CRYPTO_AUTH_KEY_SIZE) |
|
|
((MAX_NONCE/sizeof(uint32_t)) << CRYPTO_AUTH_NONCE_NUM_WORDS);
|
|
pce_dev->reg.auth_cfg_aes_ccm_256 &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
|
|
|
|
/* Initialize auth_cfg register for kasumi/snow3g */
|
|
pce_dev->reg.auth_cfg_kasumi =
|
|
(CRYPTO_AUTH_ALG_KASUMI << CRYPTO_AUTH_ALG) |
|
|
BIT(CRYPTO_FIRST) | BIT(CRYPTO_LAST);
|
|
pce_dev->reg.auth_cfg_snow3g =
|
|
(CRYPTO_AUTH_ALG_SNOW3G << CRYPTO_AUTH_ALG) |
|
|
BIT(CRYPTO_FIRST) | BIT(CRYPTO_LAST);
|
|
return 0;
|
|
}
|
|
|
|
static void _qce_ccm_get_around_input(struct qce_device *pce_dev,
|
|
struct ce_request_info *preq_info, enum qce_cipher_dir_enum dir)
|
|
{
|
|
struct qce_cmdlist_info *cmdlistinfo;
|
|
struct ce_sps_data *pce_sps_data;
|
|
|
|
pce_sps_data = &preq_info->ce_sps;
|
|
if ((dir == QCE_DECRYPT) && pce_dev->no_get_around &&
|
|
!(pce_dev->no_ccm_mac_status_get_around)) {
|
|
cmdlistinfo = &pce_sps_data->cmdlistptr.cipher_null;
|
|
_qce_sps_add_cmd(pce_dev, 0, cmdlistinfo,
|
|
&pce_sps_data->in_transfer);
|
|
_qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->ignore_buffer),
|
|
pce_dev->ce_bam_info.ce_burst_size,
|
|
&pce_sps_data->in_transfer);
|
|
_qce_set_flag(&pce_sps_data->in_transfer,
|
|
SPS_IOVEC_FLAG_EOT | SPS_IOVEC_FLAG_NWD);
|
|
}
|
|
}
|
|
|
|
static void _qce_ccm_get_around_output(struct qce_device *pce_dev,
|
|
struct ce_request_info *preq_info, enum qce_cipher_dir_enum dir)
|
|
{
|
|
struct ce_sps_data *pce_sps_data;
|
|
|
|
pce_sps_data = &preq_info->ce_sps;
|
|
|
|
if ((dir == QCE_DECRYPT) && pce_dev->no_get_around &&
|
|
!(pce_dev->no_ccm_mac_status_get_around)) {
|
|
_qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->ignore_buffer),
|
|
pce_dev->ce_bam_info.ce_burst_size,
|
|
&pce_sps_data->out_transfer);
|
|
_qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump_null),
|
|
CRYPTO_RESULT_DUMP_SIZE, &pce_sps_data->out_transfer);
|
|
}
|
|
}
|
|
|
|
/* QCE_DUMMY_REQ */
|
|
static void qce_dummy_complete(void *cookie, unsigned char *digest,
|
|
unsigned char *authdata, int ret)
|
|
{
|
|
if (!cookie)
|
|
pr_err("invalid cookie\n");
|
|
}
|
|
|
|
static int qce_dummy_req(struct qce_device *pce_dev)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (!(xchg(&pce_dev->ce_request_info[DUMMY_REQ_INDEX].
|
|
in_use, true) == false))
|
|
return -EBUSY;
|
|
ret = qce_process_sha_req(pce_dev, NULL);
|
|
pce_dev->qce_stats.no_of_dummy_reqs++;
|
|
return ret;
|
|
}
|
|
|
|
static int select_mode(struct qce_device *pce_dev,
|
|
struct ce_request_info *preq_info)
|
|
{
|
|
unsigned long flags;
|
|
struct ce_sps_data *pce_sps_data = &preq_info->ce_sps;
|
|
|
|
if (!pce_dev->no_get_around) {
|
|
_qce_set_flag(&pce_sps_data->out_transfer, SPS_IOVEC_FLAG_INT);
|
|
return 0;
|
|
}
|
|
|
|
spin_lock_irqsave(&pce_dev->lock, flags);
|
|
pce_dev->no_of_queued_req++;
|
|
if (pce_dev->mode == IN_INTERRUPT_MODE) {
|
|
if (pce_dev->no_of_queued_req >= MAX_BUNCH_MODE_REQ) {
|
|
pce_dev->mode = IN_BUNCH_MODE;
|
|
pr_debug("pcedev %d mode switch to BUNCH\n",
|
|
pce_dev->dev_no);
|
|
_qce_set_flag(&pce_sps_data->out_transfer,
|
|
SPS_IOVEC_FLAG_INT);
|
|
pce_dev->intr_cadence = 0;
|
|
atomic_set(&pce_dev->bunch_cmd_seq, 1);
|
|
atomic_set(&pce_dev->last_intr_seq, 1);
|
|
mod_timer(&(pce_dev->timer),
|
|
(jiffies + DELAY_IN_JIFFIES));
|
|
} else {
|
|
_qce_set_flag(&pce_sps_data->out_transfer,
|
|
SPS_IOVEC_FLAG_INT);
|
|
}
|
|
} else {
|
|
pce_dev->intr_cadence++;
|
|
if (pce_dev->intr_cadence >= SET_INTR_AT_REQ) {
|
|
_qce_set_flag(&pce_sps_data->out_transfer,
|
|
SPS_IOVEC_FLAG_INT);
|
|
pce_dev->intr_cadence = 0;
|
|
atomic_set(&pce_dev->bunch_cmd_seq, 0);
|
|
atomic_set(&pce_dev->last_intr_seq, 0);
|
|
} else {
|
|
atomic_inc(&pce_dev->bunch_cmd_seq);
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&pce_dev->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _qce_aead_ccm_req(void *handle, struct qce_req *q_req)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *) handle;
|
|
struct aead_request *areq = (struct aead_request *) q_req->areq;
|
|
uint32_t authsize = q_req->authsize;
|
|
uint32_t totallen_in, out_len;
|
|
uint32_t hw_pad_out = 0;
|
|
int rc = 0;
|
|
int ce_burst_size;
|
|
struct qce_cmdlist_info *cmdlistinfo = NULL;
|
|
int req_info = -1;
|
|
struct ce_request_info *preq_info;
|
|
struct ce_sps_data *pce_sps_data;
|
|
|
|
req_info = qce_alloc_req_info(pce_dev);
|
|
if (req_info < 0)
|
|
return -EBUSY;
|
|
preq_info = &pce_dev->ce_request_info[req_info];
|
|
pce_sps_data = &preq_info->ce_sps;
|
|
|
|
ce_burst_size = pce_dev->ce_bam_info.ce_burst_size;
|
|
totallen_in = areq->cryptlen + areq->assoclen;
|
|
if (q_req->dir == QCE_ENCRYPT) {
|
|
q_req->cryptlen = areq->cryptlen;
|
|
out_len = areq->cryptlen + authsize;
|
|
hw_pad_out = ALIGN(authsize, ce_burst_size) - authsize;
|
|
} else {
|
|
q_req->cryptlen = areq->cryptlen - authsize;
|
|
out_len = q_req->cryptlen;
|
|
hw_pad_out = authsize;
|
|
}
|
|
|
|
/*
|
|
* For crypto 5.0 that has burst size alignment requirement
|
|
* for data descritpor,
|
|
* the agent above(qcrypto) prepares the src scatter list with
|
|
* memory starting with associated data, followed by
|
|
* data stream to be ciphered.
|
|
* The destination scatter list is pointing to the same
|
|
* data area as source.
|
|
*/
|
|
if (pce_dev->ce_bam_info.minor_version == 0)
|
|
preq_info->src_nents = count_sg(areq->src, totallen_in);
|
|
else
|
|
preq_info->src_nents = count_sg(areq->src, areq->cryptlen);
|
|
|
|
preq_info->assoc_nents = count_sg(areq->assoc, areq->assoclen);
|
|
|
|
/* associated data input */
|
|
qce_dma_map_sg(pce_dev->pdev, areq->assoc, preq_info->assoc_nents,
|
|
DMA_TO_DEVICE);
|
|
/* cipher input */
|
|
qce_dma_map_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
|
|
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
|
|
DMA_TO_DEVICE);
|
|
/* cipher + mac output for encryption */
|
|
if (areq->src != areq->dst) {
|
|
if (pce_dev->ce_bam_info.minor_version == 0)
|
|
/*
|
|
* The destination scatter list is pointing to the same
|
|
* data area as src.
|
|
* Note, the associated data will be pass-through
|
|
* at the begining of destination area.
|
|
*/
|
|
preq_info->dst_nents = count_sg(areq->dst,
|
|
out_len + areq->assoclen);
|
|
else
|
|
preq_info->dst_nents = count_sg(areq->dst, out_len);
|
|
|
|
qce_dma_map_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents,
|
|
DMA_FROM_DEVICE);
|
|
} else {
|
|
preq_info->dst_nents = preq_info->src_nents;
|
|
}
|
|
|
|
if (pce_dev->support_cmd_dscr) {
|
|
cmdlistinfo = _ce_get_cipher_cmdlistinfo(pce_dev, req_info,
|
|
q_req);
|
|
if (cmdlistinfo == NULL) {
|
|
pr_err("Unsupported cipher algorithm %d, mode %d\n",
|
|
q_req->alg, q_req->mode);
|
|
qce_free_req_info(pce_dev, req_info, false);
|
|
return -EINVAL;
|
|
}
|
|
/* set up crypto device */
|
|
rc = _ce_setup_cipher(pce_dev, q_req, totallen_in,
|
|
areq->assoclen, cmdlistinfo);
|
|
} else {
|
|
/* set up crypto device */
|
|
rc = _ce_setup_cipher_direct(pce_dev, q_req, totallen_in,
|
|
areq->assoclen);
|
|
}
|
|
|
|
if (rc < 0)
|
|
goto bad;
|
|
|
|
preq_info->mode = q_req->mode;
|
|
|
|
/* setup for callback, and issue command to bam */
|
|
preq_info->areq = q_req->areq;
|
|
preq_info->qce_cb = q_req->qce_cb;
|
|
preq_info->dir = q_req->dir;
|
|
|
|
/* setup xfer type for producer callback handling */
|
|
preq_info->xfer_type = QCE_XFER_AEAD;
|
|
|
|
_qce_sps_iovec_count_init(pce_dev, req_info);
|
|
|
|
if (pce_dev->support_cmd_dscr)
|
|
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo,
|
|
&pce_sps_data->in_transfer);
|
|
|
|
if (pce_dev->ce_bam_info.minor_version == 0) {
|
|
if (_qce_sps_add_sg_data(pce_dev, areq->src, totallen_in,
|
|
&pce_sps_data->in_transfer))
|
|
goto bad;
|
|
|
|
_qce_set_flag(&pce_sps_data->in_transfer,
|
|
SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
|
|
|
|
/*
|
|
* The destination data should be big enough to
|
|
* include CCM padding.
|
|
*/
|
|
if (_qce_sps_add_sg_data(pce_dev, areq->dst, out_len +
|
|
areq->assoclen + hw_pad_out,
|
|
&pce_sps_data->out_transfer))
|
|
goto bad;
|
|
if (totallen_in > SPS_MAX_PKT_SIZE) {
|
|
_qce_set_flag(&pce_sps_data->out_transfer,
|
|
SPS_IOVEC_FLAG_INT);
|
|
pce_sps_data->producer_state = QCE_PIPE_STATE_IDLE;
|
|
} else {
|
|
if (_qce_sps_add_data(GET_PHYS_ADDR(
|
|
pce_sps_data->result_dump),
|
|
CRYPTO_RESULT_DUMP_SIZE,
|
|
&pce_sps_data->out_transfer))
|
|
goto bad;
|
|
_qce_set_flag(&pce_sps_data->out_transfer,
|
|
SPS_IOVEC_FLAG_INT);
|
|
pce_sps_data->producer_state = QCE_PIPE_STATE_COMP;
|
|
}
|
|
} else {
|
|
if (_qce_sps_add_sg_data(pce_dev, areq->assoc, areq->assoclen,
|
|
&pce_sps_data->in_transfer))
|
|
goto bad;
|
|
if (_qce_sps_add_sg_data(pce_dev, areq->src, areq->cryptlen,
|
|
&pce_sps_data->in_transfer))
|
|
goto bad;
|
|
_qce_set_flag(&pce_sps_data->in_transfer,
|
|
SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
|
|
|
|
_qce_ccm_get_around_input(pce_dev, preq_info, q_req->dir);
|
|
|
|
if (pce_dev->no_get_around)
|
|
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
|
|
&pce_sps_data->cmdlistptr.unlock_all_pipes,
|
|
&pce_sps_data->in_transfer);
|
|
|
|
/* Pass through to ignore associated data*/
|
|
if (_qce_sps_add_data(
|
|
GET_PHYS_ADDR(pce_sps_data->ignore_buffer),
|
|
areq->assoclen,
|
|
&pce_sps_data->out_transfer))
|
|
goto bad;
|
|
if (_qce_sps_add_sg_data(pce_dev, areq->dst, out_len,
|
|
&pce_sps_data->out_transfer))
|
|
goto bad;
|
|
/* Pass through to ignore hw_pad (padding of the MAC data) */
|
|
if (_qce_sps_add_data(
|
|
GET_PHYS_ADDR(pce_sps_data->ignore_buffer),
|
|
hw_pad_out, &pce_sps_data->out_transfer))
|
|
goto bad;
|
|
if (pce_dev->no_get_around ||
|
|
totallen_in <= SPS_MAX_PKT_SIZE) {
|
|
if (_qce_sps_add_data(
|
|
GET_PHYS_ADDR(pce_sps_data->result_dump),
|
|
CRYPTO_RESULT_DUMP_SIZE,
|
|
&pce_sps_data->out_transfer))
|
|
goto bad;
|
|
pce_sps_data->producer_state = QCE_PIPE_STATE_COMP;
|
|
} else {
|
|
pce_sps_data->producer_state = QCE_PIPE_STATE_IDLE;
|
|
}
|
|
|
|
_qce_ccm_get_around_output(pce_dev, preq_info, q_req->dir);
|
|
|
|
select_mode(pce_dev, preq_info);
|
|
}
|
|
rc = _qce_sps_transfer(pce_dev, req_info);
|
|
if (rc)
|
|
goto bad;
|
|
return 0;
|
|
|
|
bad:
|
|
if (preq_info->assoc_nents) {
|
|
qce_dma_unmap_sg(pce_dev->pdev, areq->assoc,
|
|
preq_info->assoc_nents, DMA_TO_DEVICE);
|
|
}
|
|
if (preq_info->src_nents) {
|
|
qce_dma_unmap_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
|
|
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
|
|
DMA_TO_DEVICE);
|
|
}
|
|
if (areq->src != areq->dst) {
|
|
qce_dma_unmap_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents,
|
|
DMA_FROM_DEVICE);
|
|
}
|
|
qce_free_req_info(pce_dev, req_info, false);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int _qce_suspend(void *handle)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *)handle;
|
|
struct sps_pipe *sps_pipe_info;
|
|
|
|
if (handle == NULL)
|
|
return -ENODEV;
|
|
|
|
qce_enable_clk(pce_dev);
|
|
|
|
sps_pipe_info = pce_dev->ce_bam_info.consumer.pipe;
|
|
sps_disconnect(sps_pipe_info);
|
|
|
|
sps_pipe_info = pce_dev->ce_bam_info.producer.pipe;
|
|
sps_disconnect(sps_pipe_info);
|
|
|
|
qce_disable_clk(pce_dev);
|
|
return 0;
|
|
}
|
|
|
|
static int _qce_resume(void *handle)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *)handle;
|
|
struct sps_pipe *sps_pipe_info;
|
|
struct sps_connect *sps_connect_info;
|
|
int rc;
|
|
|
|
if (handle == NULL)
|
|
return -ENODEV;
|
|
|
|
qce_enable_clk(pce_dev);
|
|
|
|
sps_pipe_info = pce_dev->ce_bam_info.consumer.pipe;
|
|
sps_connect_info = &pce_dev->ce_bam_info.consumer.connect;
|
|
memset(sps_connect_info->desc.base, 0x00, sps_connect_info->desc.size);
|
|
rc = sps_connect(sps_pipe_info, sps_connect_info);
|
|
if (rc) {
|
|
pr_err("sps_connect() fail pipe_handle=0x%lx, rc = %d\n",
|
|
(uintptr_t)sps_pipe_info, rc);
|
|
return rc;
|
|
}
|
|
sps_pipe_info = pce_dev->ce_bam_info.producer.pipe;
|
|
sps_connect_info = &pce_dev->ce_bam_info.producer.connect;
|
|
memset(sps_connect_info->desc.base, 0x00, sps_connect_info->desc.size);
|
|
rc = sps_connect(sps_pipe_info, sps_connect_info);
|
|
if (rc)
|
|
pr_err("sps_connect() fail pipe_handle=0x%lx, rc = %d\n",
|
|
(uintptr_t)sps_pipe_info, rc);
|
|
|
|
rc = sps_register_event(sps_pipe_info,
|
|
&pce_dev->ce_bam_info.producer.event);
|
|
if (rc)
|
|
pr_err("Producer callback registration failed rc = %d\n", rc);
|
|
|
|
qce_disable_clk(pce_dev);
|
|
return rc;
|
|
}
|
|
|
|
struct qce_pm_table qce_pm_table = {_qce_suspend, _qce_resume};
|
|
EXPORT_SYMBOL(qce_pm_table);
|
|
|
|
int qce_aead_req(void *handle, struct qce_req *q_req)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *)handle;
|
|
struct aead_request *areq;
|
|
uint32_t authsize;
|
|
struct crypto_aead *aead;
|
|
uint32_t ivsize;
|
|
uint32_t totallen;
|
|
int rc = 0;
|
|
struct qce_cmdlist_info *cmdlistinfo = NULL;
|
|
int req_info = -1;
|
|
struct ce_sps_data *pce_sps_data;
|
|
struct ce_request_info *preq_info;
|
|
|
|
if (q_req->mode == QCE_MODE_CCM)
|
|
return _qce_aead_ccm_req(handle, q_req);
|
|
|
|
req_info = qce_alloc_req_info(pce_dev);
|
|
if (req_info < 0)
|
|
return -EBUSY;
|
|
preq_info = &pce_dev->ce_request_info[req_info];
|
|
pce_sps_data = &preq_info->ce_sps;
|
|
areq = (struct aead_request *) q_req->areq;
|
|
aead = crypto_aead_reqtfm(areq);
|
|
ivsize = crypto_aead_ivsize(aead);
|
|
q_req->ivsize = ivsize;
|
|
authsize = q_req->authsize;
|
|
if (q_req->dir == QCE_ENCRYPT)
|
|
q_req->cryptlen = areq->cryptlen;
|
|
else
|
|
q_req->cryptlen = areq->cryptlen - authsize;
|
|
|
|
totallen = q_req->cryptlen + areq->assoclen + ivsize;
|
|
|
|
if (pce_dev->support_cmd_dscr) {
|
|
cmdlistinfo = _ce_get_aead_cmdlistinfo(pce_dev,
|
|
req_info, q_req);
|
|
if (cmdlistinfo == NULL) {
|
|
pr_err("Unsupported aead ciphering algorithm %d, mode %d, ciphering key length %d, auth digest size %d\n",
|
|
q_req->alg, q_req->mode, q_req->encklen,
|
|
q_req->authsize);
|
|
qce_free_req_info(pce_dev, req_info, false);
|
|
return -EINVAL;
|
|
}
|
|
/* set up crypto device */
|
|
rc = _ce_setup_aead(pce_dev, q_req, totallen,
|
|
areq->assoclen + ivsize, cmdlistinfo);
|
|
if (rc < 0) {
|
|
qce_free_req_info(pce_dev, req_info, false);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
preq_info->assoc_nents = count_sg(areq->assoc, areq->assoclen);
|
|
|
|
/*
|
|
* For crypto 5.0 that has burst size alignment requirement
|
|
* for data descritpor,
|
|
* the agent above(qcrypto) prepares the src scatter list with
|
|
* memory starting with associated data, followed by
|
|
* iv, and data stream to be ciphered.
|
|
*/
|
|
if (pce_dev->ce_bam_info.minor_version == 0)
|
|
preq_info->src_nents = count_sg(areq->src, totallen);
|
|
else
|
|
preq_info->src_nents = count_sg(areq->src, q_req->cryptlen);
|
|
|
|
preq_info->phy_iv_in = 0;
|
|
|
|
/* associated data input */
|
|
qce_dma_map_sg(pce_dev->pdev, areq->assoc, preq_info->assoc_nents,
|
|
DMA_TO_DEVICE);
|
|
/* cipher input */
|
|
qce_dma_map_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
|
|
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
|
|
DMA_TO_DEVICE);
|
|
/* cipher output for encryption */
|
|
if (areq->src != areq->dst) {
|
|
if (pce_dev->ce_bam_info.minor_version == 0)
|
|
/*
|
|
* The destination scatter list is pointing to the same
|
|
* data area as source.
|
|
*/
|
|
preq_info->dst_nents = count_sg(areq->dst, totallen);
|
|
else
|
|
preq_info->dst_nents = count_sg(areq->dst,
|
|
q_req->cryptlen);
|
|
|
|
qce_dma_map_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents,
|
|
DMA_FROM_DEVICE);
|
|
}
|
|
|
|
|
|
/* cipher iv for input */
|
|
if (pce_dev->ce_bam_info.minor_version != 0)
|
|
preq_info->phy_iv_in = dma_map_single(pce_dev->pdev, q_req->iv,
|
|
ivsize, DMA_TO_DEVICE);
|
|
|
|
/* setup for callback, and issue command to bam */
|
|
preq_info->areq = q_req->areq;
|
|
preq_info->qce_cb = q_req->qce_cb;
|
|
preq_info->dir = q_req->dir;
|
|
|
|
/* setup xfer type for producer callback handling */
|
|
preq_info->xfer_type = QCE_XFER_AEAD;
|
|
|
|
_qce_sps_iovec_count_init(pce_dev, req_info);
|
|
|
|
if (pce_dev->support_cmd_dscr) {
|
|
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo,
|
|
&pce_sps_data->in_transfer);
|
|
} else {
|
|
rc = _ce_setup_aead_direct(pce_dev, q_req, totallen,
|
|
areq->assoclen + ivsize);
|
|
if (rc)
|
|
goto bad;
|
|
}
|
|
|
|
preq_info->mode = q_req->mode;
|
|
|
|
if (pce_dev->ce_bam_info.minor_version == 0) {
|
|
if (_qce_sps_add_sg_data(pce_dev, areq->src, totallen,
|
|
&pce_sps_data->in_transfer))
|
|
goto bad;
|
|
|
|
_qce_set_flag(&pce_sps_data->in_transfer,
|
|
SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
|
|
|
|
if (_qce_sps_add_sg_data(pce_dev, areq->dst, totallen,
|
|
&pce_sps_data->out_transfer))
|
|
goto bad;
|
|
if (totallen > SPS_MAX_PKT_SIZE) {
|
|
_qce_set_flag(&pce_sps_data->out_transfer,
|
|
SPS_IOVEC_FLAG_INT);
|
|
pce_sps_data->producer_state = QCE_PIPE_STATE_IDLE;
|
|
} else {
|
|
if (_qce_sps_add_data(GET_PHYS_ADDR(
|
|
pce_sps_data->result_dump),
|
|
CRYPTO_RESULT_DUMP_SIZE,
|
|
&pce_sps_data->out_transfer))
|
|
goto bad;
|
|
_qce_set_flag(&pce_sps_data->out_transfer,
|
|
SPS_IOVEC_FLAG_INT);
|
|
pce_sps_data->producer_state = QCE_PIPE_STATE_COMP;
|
|
}
|
|
} else {
|
|
if (_qce_sps_add_sg_data(pce_dev, areq->assoc, areq->assoclen,
|
|
&pce_sps_data->in_transfer))
|
|
goto bad;
|
|
if (_qce_sps_add_data((uint32_t)preq_info->phy_iv_in, ivsize,
|
|
&pce_sps_data->in_transfer))
|
|
goto bad;
|
|
if (_qce_sps_add_sg_data(pce_dev, areq->src, q_req->cryptlen,
|
|
&pce_sps_data->in_transfer))
|
|
goto bad;
|
|
_qce_set_flag(&pce_sps_data->in_transfer,
|
|
SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
|
|
|
|
if (pce_dev->no_get_around)
|
|
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
|
|
&pce_sps_data->cmdlistptr.unlock_all_pipes,
|
|
&pce_sps_data->in_transfer);
|
|
|
|
/* Pass through to ignore associated + iv data*/
|
|
if (_qce_sps_add_data(
|
|
GET_PHYS_ADDR(pce_sps_data->ignore_buffer),
|
|
(ivsize + areq->assoclen),
|
|
&pce_sps_data->out_transfer))
|
|
goto bad;
|
|
if (_qce_sps_add_sg_data(pce_dev, areq->dst, q_req->cryptlen,
|
|
&pce_sps_data->out_transfer))
|
|
goto bad;
|
|
|
|
if (pce_dev->no_get_around || totallen <= SPS_MAX_PKT_SIZE) {
|
|
if (_qce_sps_add_data(
|
|
GET_PHYS_ADDR(pce_sps_data->result_dump),
|
|
CRYPTO_RESULT_DUMP_SIZE,
|
|
&pce_sps_data->out_transfer))
|
|
goto bad;
|
|
pce_sps_data->producer_state = QCE_PIPE_STATE_COMP;
|
|
} else {
|
|
pce_sps_data->producer_state = QCE_PIPE_STATE_IDLE;
|
|
}
|
|
select_mode(pce_dev, preq_info);
|
|
}
|
|
rc = _qce_sps_transfer(pce_dev, req_info);
|
|
if (rc)
|
|
goto bad;
|
|
return 0;
|
|
|
|
bad:
|
|
if (preq_info->assoc_nents)
|
|
qce_dma_unmap_sg(pce_dev->pdev, areq->assoc,
|
|
preq_info->assoc_nents, DMA_TO_DEVICE);
|
|
if (preq_info->src_nents)
|
|
qce_dma_unmap_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
|
|
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
|
|
DMA_TO_DEVICE);
|
|
if (areq->src != areq->dst)
|
|
qce_dma_unmap_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents,
|
|
DMA_FROM_DEVICE);
|
|
if (preq_info->phy_iv_in)
|
|
dma_unmap_single(pce_dev->pdev, preq_info->phy_iv_in,
|
|
ivsize, DMA_TO_DEVICE);
|
|
qce_free_req_info(pce_dev, req_info, false);
|
|
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(qce_aead_req);
|
|
|
|
int qce_ablk_cipher_req(void *handle, struct qce_req *c_req)
|
|
{
|
|
int rc = 0;
|
|
struct qce_device *pce_dev = (struct qce_device *) handle;
|
|
struct ablkcipher_request *areq = (struct ablkcipher_request *)
|
|
c_req->areq;
|
|
struct qce_cmdlist_info *cmdlistinfo = NULL;
|
|
int req_info = -1;
|
|
struct ce_sps_data *pce_sps_data;
|
|
struct ce_request_info *preq_info;
|
|
|
|
req_info = qce_alloc_req_info(pce_dev);
|
|
if (req_info < 0)
|
|
return -EBUSY;
|
|
preq_info = &pce_dev->ce_request_info[req_info];
|
|
pce_sps_data = &preq_info->ce_sps;
|
|
|
|
preq_info->src_nents = 0;
|
|
preq_info->dst_nents = 0;
|
|
|
|
/* cipher input */
|
|
preq_info->src_nents = count_sg(areq->src, areq->nbytes);
|
|
|
|
qce_dma_map_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
|
|
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
|
|
DMA_TO_DEVICE);
|
|
/* cipher output */
|
|
if (areq->src != areq->dst) {
|
|
preq_info->dst_nents = count_sg(areq->dst, areq->nbytes);
|
|
qce_dma_map_sg(pce_dev->pdev, areq->dst,
|
|
preq_info->dst_nents, DMA_FROM_DEVICE);
|
|
} else {
|
|
preq_info->dst_nents = preq_info->src_nents;
|
|
}
|
|
preq_info->dir = c_req->dir;
|
|
if ((pce_dev->ce_bam_info.minor_version == 0) &&
|
|
(preq_info->dir == QCE_DECRYPT) &&
|
|
(c_req->mode == QCE_MODE_CBC)) {
|
|
memcpy(preq_info->dec_iv, (unsigned char *)
|
|
sg_virt(areq->src) + areq->src->length - 16,
|
|
NUM_OF_CRYPTO_CNTR_IV_REG * CRYPTO_REG_SIZE);
|
|
}
|
|
|
|
/* set up crypto device */
|
|
if (pce_dev->support_cmd_dscr) {
|
|
cmdlistinfo = _ce_get_cipher_cmdlistinfo(pce_dev,
|
|
req_info, c_req);
|
|
if (cmdlistinfo == NULL) {
|
|
pr_err("Unsupported cipher algorithm %d, mode %d\n",
|
|
c_req->alg, c_req->mode);
|
|
qce_free_req_info(pce_dev, req_info, false);
|
|
return -EINVAL;
|
|
}
|
|
rc = _ce_setup_cipher(pce_dev, c_req, areq->nbytes, 0,
|
|
cmdlistinfo);
|
|
} else {
|
|
rc = _ce_setup_cipher_direct(pce_dev, c_req, areq->nbytes, 0);
|
|
}
|
|
if (rc < 0)
|
|
goto bad;
|
|
|
|
preq_info->mode = c_req->mode;
|
|
|
|
/* setup for client callback, and issue command to BAM */
|
|
preq_info->areq = areq;
|
|
preq_info->qce_cb = c_req->qce_cb;
|
|
|
|
/* setup xfer type for producer callback handling */
|
|
preq_info->xfer_type = QCE_XFER_CIPHERING;
|
|
|
|
_qce_sps_iovec_count_init(pce_dev, req_info);
|
|
if (pce_dev->support_cmd_dscr)
|
|
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo,
|
|
&pce_sps_data->in_transfer);
|
|
if (_qce_sps_add_sg_data(pce_dev, areq->src, areq->nbytes,
|
|
&pce_sps_data->in_transfer))
|
|
goto bad;
|
|
_qce_set_flag(&pce_sps_data->in_transfer,
|
|
SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
|
|
|
|
if (pce_dev->no_get_around)
|
|
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
|
|
&pce_sps_data->cmdlistptr.unlock_all_pipes,
|
|
&pce_sps_data->in_transfer);
|
|
|
|
if (_qce_sps_add_sg_data(pce_dev, areq->dst, areq->nbytes,
|
|
&pce_sps_data->out_transfer))
|
|
goto bad;
|
|
if (pce_dev->no_get_around || areq->nbytes <= SPS_MAX_PKT_SIZE) {
|
|
pce_sps_data->producer_state = QCE_PIPE_STATE_COMP;
|
|
if (_qce_sps_add_data(
|
|
GET_PHYS_ADDR(pce_sps_data->result_dump),
|
|
CRYPTO_RESULT_DUMP_SIZE,
|
|
&pce_sps_data->out_transfer))
|
|
goto bad;
|
|
} else {
|
|
pce_sps_data->producer_state = QCE_PIPE_STATE_IDLE;
|
|
}
|
|
|
|
select_mode(pce_dev, preq_info);
|
|
|
|
rc = _qce_sps_transfer(pce_dev, req_info);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
return 0;
|
|
bad:
|
|
if (areq->src != areq->dst) {
|
|
if (preq_info->dst_nents) {
|
|
qce_dma_unmap_sg(pce_dev->pdev, areq->dst,
|
|
preq_info->dst_nents, DMA_FROM_DEVICE);
|
|
}
|
|
}
|
|
if (preq_info->src_nents) {
|
|
qce_dma_unmap_sg(pce_dev->pdev, areq->src,
|
|
preq_info->src_nents,
|
|
(areq->src == areq->dst) ?
|
|
DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
|
|
}
|
|
qce_free_req_info(pce_dev, req_info, false);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(qce_ablk_cipher_req);
|
|
|
|
int qce_process_sha_req(void *handle, struct qce_sha_req *sreq)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *) handle;
|
|
int rc;
|
|
|
|
struct ahash_request *areq;
|
|
struct qce_cmdlist_info *cmdlistinfo = NULL;
|
|
int req_info = -1;
|
|
struct ce_sps_data *pce_sps_data;
|
|
struct ce_request_info *preq_info;
|
|
bool is_dummy = false;
|
|
|
|
if (!sreq) {
|
|
sreq = &(pce_dev->dummyreq.sreq);
|
|
req_info = DUMMY_REQ_INDEX;
|
|
is_dummy = true;
|
|
} else {
|
|
req_info = qce_alloc_req_info(pce_dev);
|
|
if (req_info < 0)
|
|
return -EBUSY;
|
|
}
|
|
|
|
areq = (struct ahash_request *)sreq->areq;
|
|
preq_info = &pce_dev->ce_request_info[req_info];
|
|
pce_sps_data = &preq_info->ce_sps;
|
|
|
|
preq_info->src_nents = count_sg(sreq->src, sreq->size);
|
|
qce_dma_map_sg(pce_dev->pdev, sreq->src, preq_info->src_nents,
|
|
DMA_TO_DEVICE);
|
|
|
|
if (pce_dev->support_cmd_dscr) {
|
|
cmdlistinfo = _ce_get_hash_cmdlistinfo(pce_dev, req_info, sreq);
|
|
if (cmdlistinfo == NULL) {
|
|
pr_err("Unsupported hash algorithm %d\n", sreq->alg);
|
|
qce_free_req_info(pce_dev, req_info, false);
|
|
return -EINVAL;
|
|
}
|
|
rc = _ce_setup_hash(pce_dev, sreq, cmdlistinfo);
|
|
} else {
|
|
rc = _ce_setup_hash_direct(pce_dev, sreq);
|
|
}
|
|
if (rc < 0)
|
|
goto bad;
|
|
|
|
preq_info->areq = areq;
|
|
preq_info->qce_cb = sreq->qce_cb;
|
|
|
|
/* setup xfer type for producer callback handling */
|
|
preq_info->xfer_type = QCE_XFER_HASHING;
|
|
|
|
_qce_sps_iovec_count_init(pce_dev, req_info);
|
|
|
|
if (pce_dev->support_cmd_dscr)
|
|
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo,
|
|
&pce_sps_data->in_transfer);
|
|
if (_qce_sps_add_sg_data(pce_dev, areq->src, areq->nbytes,
|
|
&pce_sps_data->in_transfer))
|
|
goto bad;
|
|
|
|
/* always ensure there is input data. ZLT does not work for bam-ndp */
|
|
if (!areq->nbytes)
|
|
_qce_sps_add_data(
|
|
GET_PHYS_ADDR(pce_sps_data->ignore_buffer),
|
|
pce_dev->ce_bam_info.ce_burst_size,
|
|
&pce_sps_data->in_transfer);
|
|
_qce_set_flag(&pce_sps_data->in_transfer,
|
|
SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
|
|
if (pce_dev->no_get_around)
|
|
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
|
|
&pce_sps_data->cmdlistptr.unlock_all_pipes,
|
|
&pce_sps_data->in_transfer);
|
|
|
|
if (_qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump),
|
|
CRYPTO_RESULT_DUMP_SIZE,
|
|
&pce_sps_data->out_transfer))
|
|
goto bad;
|
|
|
|
if (is_dummy)
|
|
_qce_set_flag(&pce_sps_data->out_transfer, SPS_IOVEC_FLAG_INT);
|
|
else
|
|
select_mode(pce_dev, preq_info);
|
|
rc = _qce_sps_transfer(pce_dev, req_info);
|
|
if (rc)
|
|
goto bad;
|
|
return 0;
|
|
bad:
|
|
if (preq_info->src_nents) {
|
|
qce_dma_unmap_sg(pce_dev->pdev, sreq->src,
|
|
preq_info->src_nents, DMA_TO_DEVICE);
|
|
}
|
|
qce_free_req_info(pce_dev, req_info, false);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(qce_process_sha_req);
|
|
|
|
int qce_f8_req(void *handle, struct qce_f8_req *req,
|
|
void *cookie, qce_comp_func_ptr_t qce_cb)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *) handle;
|
|
bool key_stream_mode;
|
|
dma_addr_t dst;
|
|
int rc;
|
|
struct qce_cmdlist_info *cmdlistinfo;
|
|
int req_info = -1;
|
|
struct ce_request_info *preq_info;
|
|
struct ce_sps_data *pce_sps_data;
|
|
|
|
req_info = qce_alloc_req_info(pce_dev);
|
|
if (req_info < 0)
|
|
return -EBUSY;
|
|
preq_info = &pce_dev->ce_request_info[req_info];
|
|
pce_sps_data = &preq_info->ce_sps;
|
|
|
|
switch (req->algorithm) {
|
|
case QCE_OTA_ALGO_KASUMI:
|
|
cmdlistinfo = &pce_sps_data->cmdlistptr.f8_kasumi;
|
|
break;
|
|
case QCE_OTA_ALGO_SNOW3G:
|
|
cmdlistinfo = &pce_sps_data->cmdlistptr.f8_snow3g;
|
|
break;
|
|
default:
|
|
qce_free_req_info(pce_dev, req_info, false);
|
|
return -EINVAL;
|
|
};
|
|
|
|
key_stream_mode = (req->data_in == NULL);
|
|
|
|
/* don't support key stream mode */
|
|
|
|
if (key_stream_mode || (req->bearer >= QCE_OTA_MAX_BEARER)) {
|
|
qce_free_req_info(pce_dev, req_info, false);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* F8 cipher input */
|
|
preq_info->phy_ota_src = dma_map_single(pce_dev->pdev,
|
|
req->data_in, req->data_len,
|
|
(req->data_in == req->data_out) ?
|
|
DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
|
|
|
|
/* F8 cipher output */
|
|
if (req->data_in != req->data_out) {
|
|
dst = dma_map_single(pce_dev->pdev, req->data_out,
|
|
req->data_len, DMA_FROM_DEVICE);
|
|
preq_info->phy_ota_dst = dst;
|
|
} else {
|
|
/* in place ciphering */
|
|
dst = preq_info->phy_ota_src;
|
|
preq_info->phy_ota_dst = 0;
|
|
}
|
|
preq_info->ota_size = req->data_len;
|
|
|
|
|
|
/* set up crypto device */
|
|
if (pce_dev->support_cmd_dscr)
|
|
rc = _ce_f8_setup(pce_dev, req, key_stream_mode, 1, 0,
|
|
req->data_len, cmdlistinfo);
|
|
else
|
|
rc = _ce_f8_setup_direct(pce_dev, req, key_stream_mode, 1, 0,
|
|
req->data_len);
|
|
if (rc < 0)
|
|
goto bad;
|
|
|
|
/* setup for callback, and issue command to sps */
|
|
preq_info->areq = cookie;
|
|
preq_info->qce_cb = qce_cb;
|
|
|
|
/* setup xfer type for producer callback handling */
|
|
preq_info->xfer_type = QCE_XFER_F8;
|
|
|
|
_qce_sps_iovec_count_init(pce_dev, req_info);
|
|
|
|
if (pce_dev->support_cmd_dscr)
|
|
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo,
|
|
&pce_sps_data->in_transfer);
|
|
|
|
_qce_sps_add_data((uint32_t)preq_info->phy_ota_src, req->data_len,
|
|
&pce_sps_data->in_transfer);
|
|
|
|
_qce_set_flag(&pce_sps_data->in_transfer,
|
|
SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
|
|
|
|
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
|
|
&pce_sps_data->cmdlistptr.unlock_all_pipes,
|
|
&pce_sps_data->in_transfer);
|
|
|
|
_qce_sps_add_data((uint32_t)dst, req->data_len,
|
|
&pce_sps_data->out_transfer);
|
|
|
|
_qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump),
|
|
CRYPTO_RESULT_DUMP_SIZE,
|
|
&pce_sps_data->out_transfer);
|
|
|
|
select_mode(pce_dev, preq_info);
|
|
|
|
rc = _qce_sps_transfer(pce_dev, req_info);
|
|
if (rc)
|
|
goto bad;
|
|
return 0;
|
|
bad:
|
|
if (preq_info->phy_ota_dst != 0)
|
|
dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_dst,
|
|
req->data_len, DMA_FROM_DEVICE);
|
|
if (preq_info->phy_ota_src != 0)
|
|
dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src,
|
|
req->data_len,
|
|
(req->data_in == req->data_out) ?
|
|
DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
|
|
qce_free_req_info(pce_dev, req_info, false);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(qce_f8_req);
|
|
|
|
int qce_f8_multi_pkt_req(void *handle, struct qce_f8_multi_pkt_req *mreq,
|
|
void *cookie, qce_comp_func_ptr_t qce_cb)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *) handle;
|
|
uint16_t num_pkt = mreq->num_pkt;
|
|
uint16_t cipher_start = mreq->cipher_start;
|
|
uint16_t cipher_size = mreq->cipher_size;
|
|
struct qce_f8_req *req = &mreq->qce_f8_req;
|
|
uint32_t total;
|
|
dma_addr_t dst = 0;
|
|
int rc = 0;
|
|
struct qce_cmdlist_info *cmdlistinfo;
|
|
int req_info = -1;
|
|
struct ce_request_info *preq_info;
|
|
struct ce_sps_data *pce_sps_data;
|
|
|
|
req_info = qce_alloc_req_info(pce_dev);
|
|
if (req_info < 0)
|
|
return -EBUSY;
|
|
preq_info = &pce_dev->ce_request_info[req_info];
|
|
pce_sps_data = &preq_info->ce_sps;
|
|
|
|
switch (req->algorithm) {
|
|
case QCE_OTA_ALGO_KASUMI:
|
|
cmdlistinfo = &pce_sps_data->cmdlistptr.f8_kasumi;
|
|
break;
|
|
case QCE_OTA_ALGO_SNOW3G:
|
|
cmdlistinfo = &pce_sps_data->cmdlistptr.f8_snow3g;
|
|
break;
|
|
default:
|
|
qce_free_req_info(pce_dev, req_info, false);
|
|
return -EINVAL;
|
|
};
|
|
|
|
total = num_pkt * req->data_len;
|
|
|
|
/* F8 cipher input */
|
|
preq_info->phy_ota_src = dma_map_single(pce_dev->pdev,
|
|
req->data_in, total,
|
|
(req->data_in == req->data_out) ?
|
|
DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
|
|
|
|
/* F8 cipher output */
|
|
if (req->data_in != req->data_out) {
|
|
dst = dma_map_single(pce_dev->pdev, req->data_out, total,
|
|
DMA_FROM_DEVICE);
|
|
preq_info->phy_ota_dst = dst;
|
|
} else {
|
|
/* in place ciphering */
|
|
dst = preq_info->phy_ota_src;
|
|
preq_info->phy_ota_dst = 0;
|
|
}
|
|
|
|
preq_info->ota_size = total;
|
|
|
|
/* set up crypto device */
|
|
if (pce_dev->support_cmd_dscr)
|
|
rc = _ce_f8_setup(pce_dev, req, false, num_pkt, cipher_start,
|
|
cipher_size, cmdlistinfo);
|
|
else
|
|
rc = _ce_f8_setup_direct(pce_dev, req, false, num_pkt,
|
|
cipher_start, cipher_size);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
/* setup for callback, and issue command to sps */
|
|
preq_info->areq = cookie;
|
|
preq_info->qce_cb = qce_cb;
|
|
|
|
/* setup xfer type for producer callback handling */
|
|
preq_info->xfer_type = QCE_XFER_F8;
|
|
|
|
_qce_sps_iovec_count_init(pce_dev, req_info);
|
|
|
|
if (pce_dev->support_cmd_dscr)
|
|
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo,
|
|
&pce_sps_data->in_transfer);
|
|
|
|
_qce_sps_add_data((uint32_t)preq_info->phy_ota_src, total,
|
|
&pce_sps_data->in_transfer);
|
|
_qce_set_flag(&pce_sps_data->in_transfer,
|
|
SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
|
|
|
|
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
|
|
&pce_sps_data->cmdlistptr.unlock_all_pipes,
|
|
&pce_sps_data->in_transfer);
|
|
|
|
_qce_sps_add_data((uint32_t)dst, total,
|
|
&pce_sps_data->out_transfer);
|
|
|
|
_qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump),
|
|
CRYPTO_RESULT_DUMP_SIZE,
|
|
&pce_sps_data->out_transfer);
|
|
|
|
select_mode(pce_dev, preq_info);
|
|
|
|
rc = _qce_sps_transfer(pce_dev, req_info);
|
|
|
|
if (rc == 0)
|
|
return 0;
|
|
bad:
|
|
if (preq_info->phy_ota_dst)
|
|
dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_dst, total,
|
|
DMA_FROM_DEVICE);
|
|
dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src, total,
|
|
(req->data_in == req->data_out) ?
|
|
DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
|
|
qce_free_req_info(pce_dev, req_info, false);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(qce_f8_multi_pkt_req);
|
|
|
|
int qce_f9_req(void *handle, struct qce_f9_req *req, void *cookie,
|
|
qce_comp_func_ptr_t qce_cb)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *) handle;
|
|
int rc;
|
|
struct qce_cmdlist_info *cmdlistinfo;
|
|
int req_info = -1;
|
|
struct ce_sps_data *pce_sps_data;
|
|
struct ce_request_info *preq_info;
|
|
|
|
req_info = qce_alloc_req_info(pce_dev);
|
|
if (req_info < 0)
|
|
return -EBUSY;
|
|
preq_info = &pce_dev->ce_request_info[req_info];
|
|
pce_sps_data = &preq_info->ce_sps;
|
|
switch (req->algorithm) {
|
|
case QCE_OTA_ALGO_KASUMI:
|
|
cmdlistinfo = &pce_sps_data->cmdlistptr.f9_kasumi;
|
|
break;
|
|
case QCE_OTA_ALGO_SNOW3G:
|
|
cmdlistinfo = &pce_sps_data->cmdlistptr.f9_snow3g;
|
|
break;
|
|
default:
|
|
qce_free_req_info(pce_dev, req_info, false);
|
|
return -EINVAL;
|
|
};
|
|
|
|
preq_info->phy_ota_src = dma_map_single(pce_dev->pdev, req->message,
|
|
req->msize, DMA_TO_DEVICE);
|
|
|
|
preq_info->ota_size = req->msize;
|
|
|
|
if (pce_dev->support_cmd_dscr)
|
|
rc = _ce_f9_setup(pce_dev, req, cmdlistinfo);
|
|
else
|
|
rc = _ce_f9_setup_direct(pce_dev, req);
|
|
if (rc < 0)
|
|
goto bad;
|
|
|
|
/* setup for callback, and issue command to sps */
|
|
preq_info->areq = cookie;
|
|
preq_info->qce_cb = qce_cb;
|
|
|
|
/* setup xfer type for producer callback handling */
|
|
preq_info->xfer_type = QCE_XFER_F9;
|
|
|
|
_qce_sps_iovec_count_init(pce_dev, req_info);
|
|
if (pce_dev->support_cmd_dscr)
|
|
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo,
|
|
&pce_sps_data->in_transfer);
|
|
_qce_sps_add_data((uint32_t)preq_info->phy_ota_src, req->msize,
|
|
&pce_sps_data->in_transfer);
|
|
_qce_set_flag(&pce_sps_data->in_transfer,
|
|
SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
|
|
|
|
_qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
|
|
&pce_sps_data->cmdlistptr.unlock_all_pipes,
|
|
&pce_sps_data->in_transfer);
|
|
|
|
_qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump),
|
|
CRYPTO_RESULT_DUMP_SIZE,
|
|
&pce_sps_data->out_transfer);
|
|
|
|
select_mode(pce_dev, preq_info);
|
|
|
|
rc = _qce_sps_transfer(pce_dev, req_info);
|
|
if (rc)
|
|
goto bad;
|
|
return 0;
|
|
bad:
|
|
dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src,
|
|
req->msize, DMA_TO_DEVICE);
|
|
qce_free_req_info(pce_dev, req_info, false);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(qce_f9_req);
|
|
|
|
static int __qce_get_device_tree_data(struct platform_device *pdev,
|
|
struct qce_device *pce_dev)
|
|
{
|
|
struct resource *resource;
|
|
int rc = 0;
|
|
|
|
pce_dev->is_shared = of_property_read_bool((&pdev->dev)->of_node,
|
|
"qcom,ce-hw-shared");
|
|
pce_dev->support_hw_key = of_property_read_bool((&pdev->dev)->of_node,
|
|
"qcom,ce-hw-key");
|
|
|
|
pce_dev->use_sw_aes_cbc_ecb_ctr_algo =
|
|
of_property_read_bool((&pdev->dev)->of_node,
|
|
"qcom,use-sw-aes-cbc-ecb-ctr-algo");
|
|
pce_dev->use_sw_aead_algo =
|
|
of_property_read_bool((&pdev->dev)->of_node,
|
|
"qcom,use-sw-aead-algo");
|
|
pce_dev->use_sw_aes_xts_algo =
|
|
of_property_read_bool((&pdev->dev)->of_node,
|
|
"qcom,use-sw-aes-xts-algo");
|
|
pce_dev->use_sw_ahash_algo =
|
|
of_property_read_bool((&pdev->dev)->of_node,
|
|
"qcom,use-sw-ahash-algo");
|
|
pce_dev->use_sw_hmac_algo =
|
|
of_property_read_bool((&pdev->dev)->of_node,
|
|
"qcom,use-sw-hmac-algo");
|
|
pce_dev->use_sw_aes_ccm_algo =
|
|
of_property_read_bool((&pdev->dev)->of_node,
|
|
"qcom,use-sw-aes-ccm-algo");
|
|
pce_dev->support_clk_mgmt_sus_res = of_property_read_bool(
|
|
(&pdev->dev)->of_node, "qcom,clk-mgmt-sus-res");
|
|
pce_dev->support_only_core_src_clk = of_property_read_bool(
|
|
(&pdev->dev)->of_node, "qcom,support-core-clk-only");
|
|
|
|
if (of_property_read_u32((&pdev->dev)->of_node,
|
|
"qcom,bam-pipe-pair",
|
|
&pce_dev->ce_bam_info.pipe_pair_index)) {
|
|
pr_err("Fail to get bam pipe pair information.\n");
|
|
return -EINVAL;
|
|
}
|
|
if (of_property_read_u32((&pdev->dev)->of_node,
|
|
"qcom,ce-device",
|
|
&pce_dev->ce_bam_info.ce_device)) {
|
|
pr_err("Fail to get CE device information.\n");
|
|
return -EINVAL;
|
|
}
|
|
if (of_property_read_u32((&pdev->dev)->of_node,
|
|
"qcom,ce-hw-instance",
|
|
&pce_dev->ce_bam_info.ce_hw_instance)) {
|
|
pr_err("Fail to get CE hw instance information.\n");
|
|
return -EINVAL;
|
|
}
|
|
if (of_property_read_u32((&pdev->dev)->of_node,
|
|
"qcom,bam-ee",
|
|
&pce_dev->ce_bam_info.bam_ee)) {
|
|
pr_info("BAM Apps EE is not defined, setting to default 1\n");
|
|
pce_dev->ce_bam_info.bam_ee = 1;
|
|
}
|
|
if (of_property_read_u32((&pdev->dev)->of_node,
|
|
"qcom,ce-opp-freq",
|
|
&pce_dev->ce_opp_freq_hz)) {
|
|
pr_info("CE operating frequency is not defined, setting to default 100MHZ\n");
|
|
pce_dev->ce_opp_freq_hz = CE_CLK_100MHZ;
|
|
}
|
|
pce_dev->ce_bam_info.dest_pipe_index =
|
|
2 * pce_dev->ce_bam_info.pipe_pair_index;
|
|
pce_dev->ce_bam_info.src_pipe_index =
|
|
pce_dev->ce_bam_info.dest_pipe_index + 1;
|
|
|
|
resource = platform_get_resource_byname(pdev, IORESOURCE_MEM,
|
|
"crypto-base");
|
|
if (resource) {
|
|
pce_dev->phy_iobase = resource->start;
|
|
pce_dev->iobase = ioremap_nocache(resource->start,
|
|
resource_size(resource));
|
|
if (!pce_dev->iobase) {
|
|
pr_err("Can not map CRYPTO io memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
} else {
|
|
pr_err("CRYPTO HW mem unavailable.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
resource = platform_get_resource_byname(pdev, IORESOURCE_MEM,
|
|
"crypto-bam-base");
|
|
if (resource) {
|
|
pce_dev->bam_mem = resource->start;
|
|
pce_dev->bam_mem_size = resource_size(resource);
|
|
} else {
|
|
pr_err("CRYPTO BAM mem unavailable.\n");
|
|
rc = -ENODEV;
|
|
goto err_getting_bam_info;
|
|
}
|
|
|
|
resource = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
|
|
if (resource) {
|
|
pce_dev->ce_bam_info.bam_irq = resource->start;
|
|
} else {
|
|
pr_err("CRYPTO BAM IRQ unavailable.\n");
|
|
goto err_dev;
|
|
}
|
|
return rc;
|
|
err_dev:
|
|
if (pce_dev->ce_bam_info.bam_iobase)
|
|
iounmap(pce_dev->ce_bam_info.bam_iobase);
|
|
|
|
err_getting_bam_info:
|
|
if (pce_dev->iobase)
|
|
iounmap(pce_dev->iobase);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int __qce_init_clk(struct qce_device *pce_dev)
|
|
{
|
|
int rc = 0;
|
|
|
|
pce_dev->ce_core_src_clk = clk_get(pce_dev->pdev, "core_clk_src");
|
|
if (!IS_ERR(pce_dev->ce_core_src_clk)) {
|
|
rc = clk_set_rate(pce_dev->ce_core_src_clk,
|
|
pce_dev->ce_opp_freq_hz);
|
|
if (rc) {
|
|
pr_err("Unable to set the core src clk @%uMhz.\n",
|
|
pce_dev->ce_opp_freq_hz/CE_CLK_DIV);
|
|
goto exit_put_core_src_clk;
|
|
}
|
|
} else {
|
|
if (pce_dev->support_only_core_src_clk) {
|
|
rc = PTR_ERR(pce_dev->ce_core_src_clk);
|
|
pce_dev->ce_core_src_clk = NULL;
|
|
pr_err("Unable to get CE core src clk\n");
|
|
return rc;
|
|
} else {
|
|
pr_warn("Unable to get CE core src clk, set to NULL\n");
|
|
pce_dev->ce_core_src_clk = NULL;
|
|
}
|
|
}
|
|
|
|
if (pce_dev->support_only_core_src_clk) {
|
|
pce_dev->ce_core_clk = NULL;
|
|
pce_dev->ce_clk = NULL;
|
|
pce_dev->ce_bus_clk = NULL;
|
|
} else {
|
|
pce_dev->ce_core_clk = clk_get(pce_dev->pdev, "core_clk");
|
|
if (IS_ERR(pce_dev->ce_core_clk)) {
|
|
rc = PTR_ERR(pce_dev->ce_core_clk);
|
|
pr_err("Unable to get CE core clk\n");
|
|
goto exit_put_core_src_clk;
|
|
}
|
|
pce_dev->ce_clk = clk_get(pce_dev->pdev, "iface_clk");
|
|
if (IS_ERR(pce_dev->ce_clk)) {
|
|
rc = PTR_ERR(pce_dev->ce_clk);
|
|
pr_err("Unable to get CE interface clk\n");
|
|
goto exit_put_core_clk;
|
|
}
|
|
|
|
pce_dev->ce_bus_clk = clk_get(pce_dev->pdev, "bus_clk");
|
|
if (IS_ERR(pce_dev->ce_bus_clk)) {
|
|
rc = PTR_ERR(pce_dev->ce_bus_clk);
|
|
pr_err("Unable to get CE BUS interface clk\n");
|
|
goto exit_put_iface_clk;
|
|
}
|
|
}
|
|
return rc;
|
|
|
|
exit_put_iface_clk:
|
|
if (pce_dev->ce_clk)
|
|
clk_put(pce_dev->ce_clk);
|
|
exit_put_core_clk:
|
|
if (pce_dev->ce_core_clk)
|
|
clk_put(pce_dev->ce_core_clk);
|
|
exit_put_core_src_clk:
|
|
if (pce_dev->ce_core_src_clk)
|
|
clk_put(pce_dev->ce_core_src_clk);
|
|
pr_err("Unable to init CE clks, rc = %d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
static void __qce_deinit_clk(struct qce_device *pce_dev)
|
|
{
|
|
if (pce_dev->ce_bus_clk)
|
|
clk_put(pce_dev->ce_bus_clk);
|
|
if (pce_dev->ce_clk)
|
|
clk_put(pce_dev->ce_clk);
|
|
if (pce_dev->ce_core_clk)
|
|
clk_put(pce_dev->ce_core_clk);
|
|
if (pce_dev->ce_core_src_clk)
|
|
clk_put(pce_dev->ce_core_src_clk);
|
|
}
|
|
|
|
int qce_enable_clk(void *handle)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *)handle;
|
|
int rc = 0;
|
|
|
|
if (pce_dev->ce_core_src_clk) {
|
|
rc = clk_prepare_enable(pce_dev->ce_core_src_clk);
|
|
if (rc) {
|
|
pr_err("Unable to enable/prepare CE core src clk\n");
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
if (pce_dev->support_only_core_src_clk)
|
|
return rc;
|
|
|
|
if (pce_dev->ce_core_clk) {
|
|
rc = clk_prepare_enable(pce_dev->ce_core_clk);
|
|
if (rc) {
|
|
pr_err("Unable to enable/prepare CE core clk\n");
|
|
goto exit_disable_core_src_clk;
|
|
}
|
|
}
|
|
|
|
if (pce_dev->ce_clk) {
|
|
rc = clk_prepare_enable(pce_dev->ce_clk);
|
|
if (rc) {
|
|
pr_err("Unable to enable/prepare CE iface clk\n");
|
|
goto exit_disable_core_clk;
|
|
}
|
|
}
|
|
|
|
if (pce_dev->ce_bus_clk) {
|
|
rc = clk_prepare_enable(pce_dev->ce_bus_clk);
|
|
if (rc) {
|
|
pr_err("Unable to enable/prepare CE BUS clk\n");
|
|
goto exit_disable_ce_clk;
|
|
}
|
|
}
|
|
return rc;
|
|
|
|
exit_disable_ce_clk:
|
|
if (pce_dev->ce_clk)
|
|
clk_disable_unprepare(pce_dev->ce_clk);
|
|
exit_disable_core_clk:
|
|
if (pce_dev->ce_core_clk)
|
|
clk_disable_unprepare(pce_dev->ce_core_clk);
|
|
exit_disable_core_src_clk:
|
|
if (pce_dev->ce_core_src_clk)
|
|
clk_disable_unprepare(pce_dev->ce_core_src_clk);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(qce_enable_clk);
|
|
|
|
int qce_disable_clk(void *handle)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *) handle;
|
|
int rc = 0;
|
|
|
|
if (pce_dev->ce_bus_clk)
|
|
clk_disable_unprepare(pce_dev->ce_bus_clk);
|
|
if (pce_dev->ce_clk)
|
|
clk_disable_unprepare(pce_dev->ce_clk);
|
|
if (pce_dev->ce_core_clk)
|
|
clk_disable_unprepare(pce_dev->ce_core_clk);
|
|
if (pce_dev->ce_core_src_clk)
|
|
clk_disable_unprepare(pce_dev->ce_core_src_clk);
|
|
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(qce_disable_clk);
|
|
|
|
/* dummy req setup */
|
|
static int setup_dummy_req(struct qce_device *pce_dev)
|
|
{
|
|
char *input =
|
|
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopqopqrpqrs";
|
|
int len = DUMMY_REQ_DATA_LEN;
|
|
|
|
memcpy(pce_dev->dummyreq.in_buf, input, len);
|
|
sg_set_buf(&pce_dev->dummyreq.sg, pce_dev->dummyreq.in_buf, len);
|
|
sg_mark_end(&pce_dev->dummyreq.sg);
|
|
|
|
pce_dev->dummyreq.sreq.alg = QCE_HASH_SHA1;
|
|
pce_dev->dummyreq.sreq.qce_cb = qce_dummy_complete;
|
|
pce_dev->dummyreq.sreq.src = &pce_dev->dummyreq.sg;
|
|
pce_dev->dummyreq.sreq.auth_data[0] = 0;
|
|
pce_dev->dummyreq.sreq.auth_data[1] = 0;
|
|
pce_dev->dummyreq.sreq.auth_data[2] = 0;
|
|
pce_dev->dummyreq.sreq.auth_data[3] = 0;
|
|
pce_dev->dummyreq.sreq.first_blk = 1;
|
|
pce_dev->dummyreq.sreq.last_blk = 1;
|
|
pce_dev->dummyreq.sreq.size = len;
|
|
pce_dev->dummyreq.sreq.areq = &pce_dev->dummyreq.areq;
|
|
pce_dev->dummyreq.sreq.flags = 0;
|
|
pce_dev->dummyreq.sreq.authkey = NULL;
|
|
|
|
pce_dev->dummyreq.areq.src = pce_dev->dummyreq.sreq.src;
|
|
pce_dev->dummyreq.areq.nbytes = pce_dev->dummyreq.sreq.size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* crypto engine open function. */
|
|
void *qce_open(struct platform_device *pdev, int *rc)
|
|
{
|
|
struct qce_device *pce_dev;
|
|
int i;
|
|
static int pcedev_no = 1;
|
|
|
|
pce_dev = kzalloc(sizeof(struct qce_device), GFP_KERNEL);
|
|
if (!pce_dev) {
|
|
*rc = -ENOMEM;
|
|
pr_err("Can not allocate memory: %d\n", *rc);
|
|
return NULL;
|
|
}
|
|
pce_dev->pdev = &pdev->dev;
|
|
|
|
mutex_lock(&qce_iomap_mutex);
|
|
if (pdev->dev.of_node) {
|
|
*rc = __qce_get_device_tree_data(pdev, pce_dev);
|
|
if (*rc)
|
|
goto err_pce_dev;
|
|
} else {
|
|
*rc = -EINVAL;
|
|
pr_err("Device Node not found.\n");
|
|
goto err_pce_dev;
|
|
}
|
|
|
|
for (i = 0; i < MAX_QCE_ALLOC_BAM_REQ; i++)
|
|
pce_dev->ce_request_info[i].in_use = false;
|
|
pce_dev->ce_request_index = 0;
|
|
|
|
pce_dev->memsize = 10 * PAGE_SIZE * MAX_QCE_ALLOC_BAM_REQ;
|
|
pce_dev->coh_vmem = dma_alloc_coherent(pce_dev->pdev,
|
|
pce_dev->memsize, &pce_dev->coh_pmem, GFP_KERNEL);
|
|
if (pce_dev->coh_vmem == NULL) {
|
|
*rc = -ENOMEM;
|
|
pr_err("Can not allocate coherent memory for sps data\n");
|
|
goto err_iobase;
|
|
}
|
|
|
|
*rc = __qce_init_clk(pce_dev);
|
|
if (*rc)
|
|
goto err_mem;
|
|
*rc = qce_enable_clk(pce_dev);
|
|
if (*rc)
|
|
goto err_enable_clk;
|
|
|
|
if (_probe_ce_engine(pce_dev)) {
|
|
*rc = -ENXIO;
|
|
goto err;
|
|
}
|
|
*rc = 0;
|
|
|
|
qce_init_ce_cfg_val(pce_dev);
|
|
*rc = qce_sps_init(pce_dev);
|
|
if (*rc)
|
|
goto err;
|
|
qce_setup_ce_sps_data(pce_dev);
|
|
qce_disable_clk(pce_dev);
|
|
setup_dummy_req(pce_dev);
|
|
spin_lock_init(&pce_dev->lock);
|
|
spin_lock_init(&pce_dev->sps_lock);
|
|
pce_dev->no_of_queued_req = 0;
|
|
pce_dev->mode = IN_INTERRUPT_MODE;
|
|
init_timer(&(pce_dev->timer));
|
|
pce_dev->timer.function = qce_multireq_timeout;
|
|
pce_dev->timer.data = (unsigned long)pce_dev;
|
|
pce_dev->timer.expires = jiffies + DELAY_IN_JIFFIES;
|
|
pce_dev->intr_cadence = 0;
|
|
pce_dev->dev_no = pcedev_no;
|
|
pcedev_no++;
|
|
mutex_unlock(&qce_iomap_mutex);
|
|
return pce_dev;
|
|
err:
|
|
qce_disable_clk(pce_dev);
|
|
|
|
err_enable_clk:
|
|
__qce_deinit_clk(pce_dev);
|
|
|
|
err_mem:
|
|
if (pce_dev->coh_vmem)
|
|
dma_free_coherent(pce_dev->pdev, pce_dev->memsize,
|
|
pce_dev->coh_vmem, pce_dev->coh_pmem);
|
|
err_iobase:
|
|
if (pce_dev->iobase)
|
|
iounmap(pce_dev->iobase);
|
|
err_pce_dev:
|
|
mutex_unlock(&qce_iomap_mutex);
|
|
kfree(pce_dev);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(qce_open);
|
|
|
|
/* crypto engine close function. */
|
|
int qce_close(void *handle)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *) handle;
|
|
|
|
if (handle == NULL)
|
|
return -ENODEV;
|
|
|
|
mutex_lock(&qce_iomap_mutex);
|
|
qce_enable_clk(pce_dev);
|
|
qce_sps_exit(pce_dev);
|
|
|
|
if (pce_dev->iobase)
|
|
iounmap(pce_dev->iobase);
|
|
if (pce_dev->coh_vmem)
|
|
dma_free_coherent(pce_dev->pdev, pce_dev->memsize,
|
|
pce_dev->coh_vmem, pce_dev->coh_pmem);
|
|
|
|
qce_disable_clk(pce_dev);
|
|
__qce_deinit_clk(pce_dev);
|
|
mutex_unlock(&qce_iomap_mutex);
|
|
kfree(handle);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(qce_close);
|
|
|
|
#define OTA_SUPPORT_MASK (1 << CRYPTO_ENCR_SNOW3G_SEL |\
|
|
1 << CRYPTO_ENCR_KASUMI_SEL |\
|
|
1 << CRYPTO_AUTH_SNOW3G_SEL |\
|
|
1 << CRYPTO_AUTH_KASUMI_SEL)
|
|
|
|
int qce_hw_support(void *handle, struct ce_hw_support *ce_support)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *)handle;
|
|
|
|
if (ce_support == NULL)
|
|
return -EINVAL;
|
|
|
|
ce_support->sha1_hmac_20 = false;
|
|
ce_support->sha1_hmac = false;
|
|
ce_support->sha256_hmac = false;
|
|
ce_support->sha_hmac = true;
|
|
ce_support->cmac = true;
|
|
ce_support->aes_key_192 = false;
|
|
ce_support->aes_xts = true;
|
|
if ((pce_dev->engines_avail & OTA_SUPPORT_MASK) == OTA_SUPPORT_MASK)
|
|
ce_support->ota = true;
|
|
else
|
|
ce_support->ota = false;
|
|
ce_support->bam = true;
|
|
ce_support->is_shared = (pce_dev->is_shared == 1) ? true : false;
|
|
ce_support->hw_key = pce_dev->support_hw_key;
|
|
ce_support->aes_ccm = true;
|
|
ce_support->clk_mgmt_sus_res = pce_dev->support_clk_mgmt_sus_res;
|
|
if (pce_dev->ce_bam_info.minor_version)
|
|
ce_support->aligned_only = false;
|
|
else
|
|
ce_support->aligned_only = true;
|
|
|
|
ce_support->use_sw_aes_cbc_ecb_ctr_algo =
|
|
pce_dev->use_sw_aes_cbc_ecb_ctr_algo;
|
|
ce_support->use_sw_aead_algo =
|
|
pce_dev->use_sw_aead_algo;
|
|
ce_support->use_sw_aes_xts_algo =
|
|
pce_dev->use_sw_aes_xts_algo;
|
|
ce_support->use_sw_ahash_algo =
|
|
pce_dev->use_sw_ahash_algo;
|
|
ce_support->use_sw_hmac_algo =
|
|
pce_dev->use_sw_hmac_algo;
|
|
ce_support->use_sw_aes_ccm_algo =
|
|
pce_dev->use_sw_aes_ccm_algo;
|
|
ce_support->ce_device = pce_dev->ce_bam_info.ce_device;
|
|
ce_support->ce_hw_instance = pce_dev->ce_bam_info.ce_hw_instance;
|
|
if (pce_dev->no_get_around)
|
|
ce_support->max_request = MAX_QCE_BAM_REQ;
|
|
else
|
|
ce_support->max_request = 1;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(qce_hw_support);
|
|
|
|
void qce_dump_req(void *handle)
|
|
{
|
|
int i;
|
|
struct qce_device *pce_dev = (struct qce_device *)handle;
|
|
|
|
for (i = 0; i < MAX_QCE_BAM_REQ; i++) {
|
|
pr_info("qce_dump_req %d %d\n", i,
|
|
pce_dev->ce_request_info[i].in_use);
|
|
if (pce_dev->ce_request_info[i].in_use == true)
|
|
_qce_dump_descr_fifos(pce_dev, i);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(qce_dump_req);
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_DESCRIPTION("Crypto Engine driver");
|