M7350/kernel/drivers/clk/msm/clock-cpu-titanium.c
2024-09-09 08:57:42 +00:00

958 lines
23 KiB
C

/*
* Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/debugfs.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/pm_qos.h>
#include <linux/regulator/consumer.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/clk/msm-clock-generic.h>
#include <linux/suspend.h>
#include <linux/regulator/rpm-smd-regulator.h>
#include <linux/uaccess.h>
#include <soc/qcom/clock-local2.h>
#include <soc/qcom/clock-pll.h>
#include <dt-bindings/clock/msm-clocks-titanium.h>
#include "clock.h"
#define APCS_PLL_MODE 0x0
#define APCS_PLL_L_VAL 0x8
#define APCS_PLL_ALPHA_VAL 0x10
#define APCS_PLL_USER_CTL 0x18
#define APCS_PLL_CONFIG_CTL_LO 0x20
#define APCS_PLL_CONFIG_CTL_HI 0x24
#define APCS_PLL_STATUS 0x28
#define APCS_PLL_TEST_CTL_LO 0x30
#define APCS_PLL_TEST_CTL_HI 0x34
#define UPDATE_CHECK_MAX_LOOPS 5000
#define CCI_RATE(rate) ((rate * 10) / 25)
#define PLL_MODE(x) (*(x)->base + (unsigned long) (x)->mode_reg)
#define GLB_DIAG 0x0b11101c
enum {
APCS_C0_PLL_BASE,
APCS0_DBG_BASE,
N_BASES,
};
static void __iomem *virt_bases[N_BASES];
struct platform_device *cpu_clock_dev;
DEFINE_EXT_CLK(xo_a_clk, NULL);
DEFINE_VDD_REGS_INIT(vdd_pwrcl, 1);
enum {
A53SS_MUX_C0,
A53SS_MUX_C1,
A53SS_MUX_CCI,
A53SS_MUX_NUM,
};
enum vdd_mx_pll_levels {
VDD_MX_OFF,
VDD_MX_SVS,
VDD_MX_NOM,
VDD_MX_TUR,
VDD_MX_NUM,
};
static int vdd_pll_levels[] = {
RPM_REGULATOR_LEVEL_NONE, /* VDD_PLL_OFF */
RPM_REGULATOR_LEVEL_SVS, /* VDD_PLL_SVS */
RPM_REGULATOR_LEVEL_NOM, /* VDD_PLL_NOM */
RPM_REGULATOR_LEVEL_TURBO, /* VDD_PLL_TUR */
};
static DEFINE_VDD_REGULATORS(vdd_pll, VDD_MX_NUM, 1,
vdd_pll_levels, NULL);
#define VDD_MX_HF_FMAX_MAP1(l1, f1) \
.vdd_class = &vdd_pll, \
.fmax = (unsigned long[VDD_MX_NUM]) { \
[VDD_MX_##l1] = (f1), \
}, \
.num_fmax = VDD_MX_NUM
static struct clk_ops clk_ops_variable_rate;
/* Early output of PLL */
static struct pll_clk apcs_hf_pll = {
.mode_reg = (void __iomem *)APCS_PLL_MODE,
.l_reg = (void __iomem *)APCS_PLL_L_VAL,
.alpha_reg = (void __iomem *)APCS_PLL_ALPHA_VAL,
.config_reg = (void __iomem *)APCS_PLL_USER_CTL,
.config_ctl_reg = (void __iomem *)APCS_PLL_CONFIG_CTL_LO,
.config_ctl_hi_reg = (void __iomem *)APCS_PLL_CONFIG_CTL_HI,
.test_ctl_lo_reg = (void __iomem *)APCS_PLL_TEST_CTL_LO,
.test_ctl_hi_reg = (void __iomem *)APCS_PLL_TEST_CTL_HI,
.status_reg = (void __iomem *)APCS_PLL_MODE,
.init_test_ctl = true,
.test_ctl_dbg = true,
.masks = {
.pre_div_mask = BIT(12),
.post_div_mask = BM(9, 8),
.mn_en_mask = BIT(24),
.main_output_mask = BIT(0),
.early_output_mask = BIT(3),
.lock_mask = BIT(31),
},
.vals = {
.post_div_masked = 0x100,
.pre_div_masked = 0x0,
.config_ctl_val = 0x200D4828,
.config_ctl_hi_val = 0x006,
.test_ctl_hi_val = 0x00004000,
.test_ctl_lo_val = 0x1C000000,
},
.base = &virt_bases[APCS_C0_PLL_BASE],
.max_rate = 2208000000UL,
.min_rate = 652800000UL,
.src_rate = 19200000UL,
.c = {
.parent = &xo_a_clk.c,
.dbg_name = "apcs_hf_pll",
.ops = &clk_ops_variable_rate,
/* MX level of MSM is much higher than of PLL */
VDD_MX_HF_FMAX_MAP1(SVS, 2400000000UL),
CLK_INIT(apcs_hf_pll.c),
},
};
static const char const *mux_names[] = {"c0", "c1", "cci"};
/* Perf Cluster */
static struct mux_div_clk a53ssmux_perf = {
.ops = &rcg_mux_div_ops,
.data = {
.max_div = 32,
.min_div = 2,
.is_half_divider = true,
},
.c = {
.dbg_name = "a53ssmux_perf",
.ops = &clk_ops_mux_div_clk,
CLK_INIT(a53ssmux_perf.c),
},
.div_mask = BM(4, 0),
.src_mask = BM(10, 8) >> 8,
.src_shift = 8,
MUX_SRC_LIST(
{ &apcs_hf_pll.c, 5 }, /* PLL early */
),
};
/* Little Cluster */
static struct mux_div_clk a53ssmux_pwr = {
.ops = &rcg_mux_div_ops,
.data = {
.max_div = 32,
.min_div = 2,
.is_half_divider = true,
},
.c = {
.dbg_name = "a53ssmux_pwr",
.ops = &clk_ops_mux_div_clk,
CLK_INIT(a53ssmux_pwr.c),
},
.div_mask = BM(4, 0),
.src_mask = BM(10, 8) >> 8,
.src_shift = 8,
MUX_SRC_LIST(
{ &apcs_hf_pll.c, 5 }, /* PLL early */
),
};
static struct mux_div_clk ccissmux = {
.ops = &rcg_mux_div_ops,
.data = {
.max_div = 32,
.min_div = 2,
.is_half_divider = true,
},
.c = {
.dbg_name = "ccissmux",
.ops = &clk_ops_mux_div_clk,
CLK_INIT(ccissmux.c),
},
.div_mask = BM(4, 0),
.src_mask = BM(10, 8) >> 8,
.src_shift = 8,
MUX_SRC_LIST(
{ &apcs_hf_pll.c, 5 }, /* PLL early */
),
};
struct cpu_clk_titanium {
u32 cpu_reg_mask;
cpumask_t cpumask;
bool hw_low_power_ctrl;
struct pm_qos_request req;
struct clk c;
bool set_rate_done;
s32 cpu_latency_no_l2_pc_us;
};
static void do_nothing(void *unused) { }
static struct cpu_clk_titanium a53_pwr_clk;
static struct cpu_clk_titanium a53_perf_clk;
static struct cpu_clk_titanium cci_clk;
static inline struct cpu_clk_titanium *to_cpu_clk_titanium(struct clk *c)
{
return container_of(c, struct cpu_clk_titanium, c);
}
static enum handoff cpu_clk_titanium_handoff(struct clk *c)
{
c->rate = clk_get_rate(c->parent);
return HANDOFF_DISABLED_CLK;
}
static long cpu_clk_titanium_round_rate(struct clk *c, unsigned long rate)
{
return clk_round_rate(c->parent, rate);
}
static int cpu_clk_titanium_set_rate(struct clk *c, unsigned long rate)
{
int ret = 0;
struct cpu_clk_titanium *cpuclk = to_cpu_clk_titanium(c);
bool hw_low_power_ctrl = cpuclk->hw_low_power_ctrl;
/*
* If hardware control of the clock tree is enabled during power
* collapse, setup a PM QOS request to prevent power collapse and
* wake up one of the CPUs in this clock domain, to ensure software
* control while the clock rate is being switched.
*/
if (hw_low_power_ctrl) {
memset(&cpuclk->req, 0, sizeof(cpuclk->req));
cpumask_copy(&cpuclk->req.cpus_affine,
(const struct cpumask *)&cpuclk->cpumask);
cpuclk->req.type = PM_QOS_REQ_AFFINE_CORES;
pm_qos_add_request(&cpuclk->req, PM_QOS_CPU_DMA_LATENCY,
cpuclk->cpu_latency_no_l2_pc_us);
smp_call_function_any(&cpuclk->cpumask, do_nothing,
NULL, 1);
}
ret = clk_set_rate(c->parent, rate);
if (!ret) {
/* update the rates of perf & power cluster */
if (c == &a53_pwr_clk.c)
a53_perf_clk.c.rate = rate;
if (c == &a53_perf_clk.c)
a53_pwr_clk.c.rate = rate;
cci_clk.c.rate = CCI_RATE(rate);
}
/* Remove PM QOS request */
if (hw_low_power_ctrl)
pm_qos_remove_request(&cpuclk->req);
return ret;
}
static int cpu_clk_cci_set_rate(struct clk *c, unsigned long rate)
{
int ret = 0;
struct cpu_clk_titanium *cpuclk = to_cpu_clk_titanium(c);
if (cpuclk->set_rate_done)
return ret;
ret = clk_set_rate(c->parent, rate);
if (!ret)
cpuclk->set_rate_done = true;
return ret;
}
static void __iomem *variable_pll_list_registers(struct clk *c, int n,
struct clk_register_data **regs, u32 *size)
{
struct pll_clk *pll = to_pll_clk(c);
static struct clk_register_data data[] = {
{"MODE", 0x0},
{"L", 0x8},
{"ALPHA", 0x10},
{"USER_CTL", 0x18},
{"CONFIG_CTL_LO", 0x20},
{"CONFIG_CTL_HI", 0x24},
{"STATUS", 0x28},
};
if (n)
return ERR_PTR(-EINVAL);
*regs = data;
*size = ARRAY_SIZE(data);
return PLL_MODE(pll);
}
static struct clk_ops clk_ops_cpu = {
.set_rate = cpu_clk_titanium_set_rate,
.round_rate = cpu_clk_titanium_round_rate,
.handoff = cpu_clk_titanium_handoff,
};
static struct clk_ops clk_ops_cci = {
.set_rate = cpu_clk_cci_set_rate,
.round_rate = cpu_clk_titanium_round_rate,
.handoff = cpu_clk_titanium_handoff,
};
static struct cpu_clk_titanium a53_pwr_clk = {
.cpu_reg_mask = 0x3,
.cpu_latency_no_l2_pc_us = 280,
.c = {
.parent = &a53ssmux_pwr.c,
.ops = &clk_ops_cpu,
.vdd_class = &vdd_pwrcl,
.dbg_name = "a53_pwr_clk",
CLK_INIT(a53_pwr_clk.c),
},
};
static struct cpu_clk_titanium a53_perf_clk = {
.cpu_reg_mask = 0x103,
.cpu_latency_no_l2_pc_us = 280,
.c = {
.parent = &a53ssmux_perf.c,
.ops = &clk_ops_cpu,
.vdd_class = &vdd_pwrcl,
.dbg_name = "a53_perf_clk",
CLK_INIT(a53_perf_clk.c),
},
};
static struct cpu_clk_titanium cci_clk = {
.c = {
.parent = &ccissmux.c,
.ops = &clk_ops_cci,
.vdd_class = &vdd_pwrcl,
.dbg_name = "cci_clk",
CLK_INIT(cci_clk.c),
},
};
static struct measure_clk apc0_m_clk = {
.c = {
.ops = &clk_ops_empty,
.dbg_name = "apc0_m_clk",
CLK_INIT(apc0_m_clk.c),
},
};
static struct measure_clk apc1_m_clk = {
.c = {
.ops = &clk_ops_empty,
.dbg_name = "apc1_m_clk",
CLK_INIT(apc1_m_clk.c),
},
};
static struct measure_clk cci_m_clk = {
.c = {
.ops = &clk_ops_empty,
.dbg_name = "cci_m_clk",
CLK_INIT(cci_m_clk.c),
},
};
static struct mux_clk cpu_debug_ter_mux = {
.ops = &mux_reg_ops,
.mask = 0x3,
.shift = 8,
MUX_SRC_LIST(
{ &apc0_m_clk.c, 0},
{ &apc1_m_clk.c, 1},
{ &cci_m_clk.c, 2},
),
.base = &virt_bases[APCS0_DBG_BASE],
.c = {
.dbg_name = "cpu_debug_ter_mux",
.ops = &clk_ops_gen_mux,
CLK_INIT(cpu_debug_ter_mux.c),
},
};
static struct mux_clk cpu_debug_sec_mux = {
.ops = &mux_reg_ops,
.mask = 0x7,
.shift = 12,
MUX_SRC_LIST(
{ &cpu_debug_ter_mux.c, 0},
),
MUX_REC_SRC_LIST(
&cpu_debug_ter_mux.c,
),
.base = &virt_bases[APCS0_DBG_BASE],
.c = {
.dbg_name = "cpu_debug_sec_mux",
.ops = &clk_ops_gen_mux,
CLK_INIT(cpu_debug_sec_mux.c),
},
};
static struct mux_clk cpu_debug_pri_mux = {
.ops = &mux_reg_ops,
.mask = 0x3,
.shift = 16,
MUX_SRC_LIST(
{ &cpu_debug_sec_mux.c, 0},
),
MUX_REC_SRC_LIST(
&cpu_debug_sec_mux.c,
),
.base = &virt_bases[APCS0_DBG_BASE],
.c = {
.dbg_name = "cpu_debug_pri_mux",
.ops = &clk_ops_gen_mux,
CLK_INIT(cpu_debug_pri_mux.c),
},
};
static struct clk_lookup cpu_clocks_titanium[] = {
/* PLL */
CLK_LIST(apcs_hf_pll),
/* Muxes */
CLK_LIST(a53ssmux_perf),
CLK_LIST(a53ssmux_pwr),
CLK_LIST(ccissmux),
/* CPU clocks */
CLK_LIST(a53_perf_clk),
CLK_LIST(a53_pwr_clk),
CLK_LIST(cci_clk),
/* debug clocks */
CLK_LIST(apc0_m_clk),
CLK_LIST(apc1_m_clk),
CLK_LIST(cci_m_clk),
CLK_LIST(cpu_debug_pri_mux),
};
static struct mux_div_clk *cpussmux[] = { &a53ssmux_pwr, &a53ssmux_perf,
&ccissmux };
static struct cpu_clk_titanium *cpuclk[] = { &a53_pwr_clk, &a53_perf_clk,
&cci_clk};
static struct clk *logical_cpu_to_clk(int cpu)
{
struct device_node *cpu_node = of_get_cpu_node(cpu, NULL);
u32 reg;
if (cpu_node && !of_property_read_u32(cpu_node, "reg", &reg)) {
if ((reg | a53_pwr_clk.cpu_reg_mask) ==
a53_pwr_clk.cpu_reg_mask)
return &a53_pwr_clk.c;
if ((reg | a53_perf_clk.cpu_reg_mask) ==
a53_perf_clk.cpu_reg_mask)
return &a53_perf_clk.c;
}
return NULL;
}
static int add_opp(struct clk *c, struct device *dev, unsigned long max_rate)
{
unsigned long rate = 0;
int level;
int uv;
long ret;
bool first = true;
int j = 1;
while (1) {
rate = c->fmax[j++];
level = find_vdd_level(c, rate);
if (level <= 0) {
pr_warn("clock-cpu: no corner for %lu.\n", rate);
return -EINVAL;
}
uv = c->vdd_class->vdd_uv[level];
if (uv < 0) {
pr_warn("clock-cpu: no uv for %lu.\n", rate);
return -EINVAL;
}
ret = dev_pm_opp_add(dev, rate, uv);
if (ret) {
pr_warn("clock-cpu: failed to add OPP for %lu\n", rate);
return ret;
}
/*
* The OPP pair for the lowest and highest frequency for
* each device that we're populating. This is important since
* this information will be used by thermal mitigation and the
* scheduler.
*/
if ((rate >= max_rate) || first) {
if (first)
first = false;
else
break;
}
}
return 0;
}
static void print_opp_table(int a53_pwr_cpu, int a53_perf_cpu)
{
struct dev_pm_opp *oppfmax, *oppfmin;
unsigned long apc0_fmax =
a53_pwr_clk.c.fmax[a53_pwr_clk.c.num_fmax - 1];
unsigned long apc0_fmin = a53_pwr_clk.c.fmax[1];
rcu_read_lock();
oppfmax = dev_pm_opp_find_freq_exact(get_cpu_device(a53_pwr_cpu),
apc0_fmax, true);
oppfmin = dev_pm_opp_find_freq_exact(get_cpu_device(a53_pwr_cpu),
apc0_fmin, true);
/*
* One time information during boot. Important to know that this looks
* sane since it can eventually make its way to the scheduler.
*/
pr_info("clock_cpu: a53 C0: OPP voltage for %lu: %ld\n", apc0_fmin,
dev_pm_opp_get_voltage(oppfmin));
pr_info("clock_cpu: a53 C0: OPP voltage for %lu: %ld\n", apc0_fmax,
dev_pm_opp_get_voltage(oppfmax));
oppfmax = dev_pm_opp_find_freq_exact(get_cpu_device(a53_perf_cpu),
apc0_fmax, true);
oppfmin = dev_pm_opp_find_freq_exact(get_cpu_device(a53_perf_cpu),
apc0_fmin, true);
pr_info("clock_cpu: a53 C1: OPP voltage for %lu: %lu\n", apc0_fmin,
dev_pm_opp_get_voltage(oppfmin));
pr_info("clock_cpu: a53 C2: OPP voltage for %lu: %lu\n", apc0_fmax,
dev_pm_opp_get_voltage(oppfmax));
rcu_read_unlock();
}
static void populate_opp_table(struct platform_device *pdev)
{
unsigned long apc0_fmax;
int cpu, a53_pwr_cpu, a53_perf_cpu;
apc0_fmax = a53_pwr_clk.c.fmax[a53_pwr_clk.c.num_fmax - 1];
for_each_possible_cpu(cpu) {
if (logical_cpu_to_clk(cpu) == &a53_pwr_clk.c) {
a53_pwr_cpu = cpu;
WARN(add_opp(&a53_pwr_clk.c, get_cpu_device(cpu),
apc0_fmax),
"Failed to add OPP levels for %d\n", cpu);
}
if (logical_cpu_to_clk(cpu) == &a53_perf_clk.c) {
a53_perf_cpu = cpu;
WARN(add_opp(&a53_perf_clk.c, get_cpu_device(cpu),
apc0_fmax),
"Failed to add OPP levels for %d\n", cpu);
}
}
/* One time print during bootup */
pr_info("clock-cpu-titanium: OPP tables populated (cpu %d and %d)\n",
a53_pwr_cpu, a53_perf_cpu);
print_opp_table(a53_pwr_cpu, a53_perf_cpu);
}
static int of_get_fmax_vdd_class(struct platform_device *pdev, struct clk *c,
char *prop_name)
{
struct device_node *of = pdev->dev.of_node;
int prop_len, i;
struct clk_vdd_class *vdd = c->vdd_class;
u32 *array;
if (!of_find_property(of, prop_name, &prop_len)) {
dev_err(&pdev->dev, "missing %s\n", prop_name);
return -EINVAL;
}
prop_len /= sizeof(u32);
if (prop_len % 2) {
dev_err(&pdev->dev, "bad length %d\n", prop_len);
return -EINVAL;
}
prop_len /= 2;
vdd->level_votes = devm_kzalloc(&pdev->dev,
prop_len * sizeof(*vdd->level_votes),
GFP_KERNEL);
if (!vdd->level_votes)
return -ENOMEM;
vdd->vdd_uv = devm_kzalloc(&pdev->dev, prop_len * sizeof(int),
GFP_KERNEL);
if (!vdd->vdd_uv)
return -ENOMEM;
c->fmax = devm_kzalloc(&pdev->dev, prop_len * sizeof(unsigned long),
GFP_KERNEL);
if (!c->fmax)
return -ENOMEM;
array = devm_kzalloc(&pdev->dev,
prop_len * sizeof(u32) * 2, GFP_KERNEL);
if (!array)
return -ENOMEM;
of_property_read_u32_array(of, prop_name, array, prop_len * 2);
for (i = 0; i < prop_len; i++) {
c->fmax[i] = array[2 * i];
vdd->vdd_uv[i] = array[2 * i + 1];
}
devm_kfree(&pdev->dev, array);
vdd->num_levels = prop_len;
vdd->cur_level = prop_len;
vdd->use_max_uV = true;
c->num_fmax = prop_len;
return 0;
}
static void get_speed_bin(struct platform_device *pdev, int *bin,
int *version)
{
struct resource *res;
void __iomem *base;
u32 pte_efuse;
*bin = 0;
*version = 0;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "efuse");
if (!res) {
dev_info(&pdev->dev,
"No speed/PVS binning available. Defaulting to 0!\n");
return;
}
base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
if (!base) {
dev_warn(&pdev->dev,
"Unable to read efuse data. Defaulting to 0!\n");
return;
}
pte_efuse = readl_relaxed(base);
devm_iounmap(&pdev->dev, base);
*bin = (pte_efuse >> 8) & 0x7;
dev_info(&pdev->dev, "Speed bin: %d PVS Version: %d\n", *bin,
*version);
}
static int cpu_parse_devicetree(struct platform_device *pdev)
{
struct resource *res;
int mux_id = 0;
char rcg_name[] = "xxx-mux";
char pll_name[] = "xxx-pll";
struct clk *c;
res = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "c0-pll");
if (!res) {
dev_err(&pdev->dev, "missing %s\n", pll_name);
return -EINVAL;
}
virt_bases[APCS_C0_PLL_BASE] = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!virt_bases[APCS_C0_PLL_BASE]) {
dev_err(&pdev->dev, "ioremap failed for %s\n",
pll_name);
return -ENOMEM;
}
for (mux_id = 0; mux_id < A53SS_MUX_NUM; mux_id++) {
snprintf(rcg_name, ARRAY_SIZE(rcg_name), "%s-mux",
mux_names[mux_id]);
res = platform_get_resource_byname(pdev,
IORESOURCE_MEM, rcg_name);
if (!res) {
dev_err(&pdev->dev, "missing %s\n", rcg_name);
return -EINVAL;
}
cpussmux[mux_id]->base = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!cpussmux[mux_id]->base) {
dev_err(&pdev->dev, "ioremap failed for %s\n",
rcg_name);
return -ENOMEM;
}
}
/* PLL core logic */
vdd_pll.regulator[0] = devm_regulator_get(&pdev->dev,
"vdd-mx");
if (IS_ERR(vdd_pll.regulator[0])) {
dev_err(&pdev->dev, "Get vdd-mx regulator!!!\n");
if (PTR_ERR(vdd_pll.regulator[0]) != -EPROBE_DEFER)
dev_err(&pdev->dev,
"Unable to get vdd-mx regulator!!!\n");
return PTR_ERR(vdd_pll.regulator[0]);
}
vdd_pwrcl.regulator[0] = devm_regulator_get(&pdev->dev,
"vdd-cl");
if (IS_ERR(vdd_pwrcl.regulator[0])) {
dev_err(&pdev->dev, "Get vdd-pwrcl regulator!!!\n");
if (PTR_ERR(vdd_pwrcl.regulator[0]) != -EPROBE_DEFER)
dev_err(&pdev->dev, "Unable to get the cluster vreg\n");
return PTR_ERR(vdd_pwrcl.regulator[0]);
}
/* Sources of the PLL */
c = devm_clk_get(&pdev->dev, "xo_a");
if (IS_ERR(c)) {
if (PTR_ERR(c) != -EPROBE_DEFER)
dev_err(&pdev->dev, "Unable to get xo (rc = %ld)!\n",
PTR_ERR(c));
return PTR_ERR(c);
}
xo_a_clk.c.parent = c;
return 0;
}
static int clock_cpu_probe(struct platform_device *pdev)
{
int speed_bin, version, rc, cpu, mux_id;
char prop_name[] = "qcom,speedX-bin-vX-XXX";
unsigned long a53rate, ccirate;
get_speed_bin(pdev, &speed_bin, &version);
rc = cpu_parse_devicetree(pdev);
if (rc)
return rc;
snprintf(prop_name, ARRAY_SIZE(prop_name),
"qcom,speed%d-bin-v%d-cl",
speed_bin, version);
for (mux_id = 0; mux_id < A53SS_MUX_CCI; mux_id++) {
rc = of_get_fmax_vdd_class(pdev, &cpuclk[mux_id]->c,
prop_name);
if (rc) {
dev_err(&pdev->dev, "Loading safe voltage plan %s!\n",
prop_name);
snprintf(prop_name, ARRAY_SIZE(prop_name),
"qcom,speed0-bin-v0-cl");
rc = of_get_fmax_vdd_class(pdev, &cpuclk[mux_id]->c,
prop_name);
if (rc) {
dev_err(&pdev->dev, "safe voltage plan load failed for clusters\n");
return rc;
}
}
}
snprintf(prop_name, ARRAY_SIZE(prop_name),
"qcom,speed%d-bin-v%d-cci", speed_bin, version);
rc = of_get_fmax_vdd_class(pdev, &cpuclk[mux_id]->c, prop_name);
if (rc) {
dev_err(&pdev->dev, "Loading safe voltage plan %s!\n",
prop_name);
snprintf(prop_name, ARRAY_SIZE(prop_name),
"qcom,speed0-bin-v0-cci");
rc = of_get_fmax_vdd_class(pdev, &cpuclk[mux_id]->c,
prop_name);
if (rc) {
dev_err(&pdev->dev, "safe voltage plan load failed for CCI\n");
return rc;
}
}
/* Debug Mux */
virt_bases[APCS0_DBG_BASE] = devm_ioremap(&pdev->dev, GLB_DIAG, SZ_8);
if (!virt_bases[APCS0_DBG_BASE]) {
dev_err(&pdev->dev, "Failed to ioremap GLB_DIAG registers\n");
return -ENOMEM;
}
rc = of_msm_clock_register(pdev->dev.of_node,
cpu_clocks_titanium, ARRAY_SIZE(cpu_clocks_titanium));
if (rc) {
dev_err(&pdev->dev, "msm_clock_register failed\n");
return rc;
}
rc = clock_rcgwr_init(pdev);
if (rc)
dev_err(&pdev->dev, "Failed to init RCGwR\n");
/*
* We don't want the CPU clocks to be turned off at late init
* if CPUFREQ or HOTPLUG configs are disabled. So, bump up the
* refcount of these clocks. Any cpufreq/hotplug manager can assume
* that the clocks have already been prepared and enabled by the time
* they take over.
*/
get_online_cpus();
for_each_online_cpu(cpu) {
WARN(clk_prepare_enable(&cci_clk.c),
"Unable to Turn on CCI clock");
WARN(clk_prepare_enable(logical_cpu_to_clk(cpu)),
"Unable to turn on CPU clock for %d\n", cpu);
}
/* ccirate = HFPLL_rate/(2.5) */
ccirate = CCI_RATE(apcs_hf_pll.c.rate);
rc = clk_set_rate(&cci_clk.c, ccirate);
if (rc)
dev_err(&pdev->dev, "Can't set safe rate for CCI\n");
a53rate = clk_get_rate(&a53_pwr_clk.c);
pr_debug("Rate of A53 Pwr %ld, APCS PLL rate %ld\n", a53rate,
apcs_hf_pll.c.rate);
if (!a53rate) {
dev_err(&pdev->dev, "Unknown a53 rate. Setting safe rate, rate %ld\n",
apcs_hf_pll.c.rate);
rc = clk_set_rate(&a53_pwr_clk.c, apcs_hf_pll.c.rate);
if (rc)
dev_err(&pdev->dev, "Can't set pwr safe rate\n");
}
rc = clk_set_rate(&a53_perf_clk.c, apcs_hf_pll.c.rate);
if (rc)
dev_err(&pdev->dev, "Can't set perf safe rate\n");
put_online_cpus();
populate_opp_table(pdev);
rc = of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
if (rc)
return rc;
for_each_possible_cpu(cpu) {
if (logical_cpu_to_clk(cpu) == &a53_pwr_clk.c)
cpumask_set_cpu(cpu, &a53_pwr_clk.cpumask);
if (logical_cpu_to_clk(cpu) == &a53_perf_clk.c)
cpumask_set_cpu(cpu, &a53_perf_clk.cpumask);
}
a53_pwr_clk.hw_low_power_ctrl = true;
a53_perf_clk.hw_low_power_ctrl = true;
return 0;
}
static struct of_device_id clock_cpu_match_table[] = {
{.compatible = "qcom,cpu-clock-titanium"},
{}
};
static struct platform_driver clock_cpu_driver = {
.probe = clock_cpu_probe,
.driver = {
.name = "cpu-clock-titanium",
.of_match_table = clock_cpu_match_table,
.owner = THIS_MODULE,
},
};
static int __init clock_cpu_init(void)
{
return platform_driver_register(&clock_cpu_driver);
}
arch_initcall(clock_cpu_init);
#define APCS_HF_PLL_BASE 0xb116000
#define APCS_ALIAS1_CMD_RCGR 0xb011050
#define APCS_ALIAS1_CFG_OFF 0x4
#define APCS_ALIAS1_CORE_CBCR_OFF 0x8
#define SRC_SEL 0x5
#define SRC_DIV 0x1
unsigned long pwrcl_early_boot_rate = 883200000;
static int __init cpu_clock_pwr_init(void)
{
void __iomem *base;
int regval = 0;
struct device_node *ofnode = of_find_compatible_node(NULL, NULL,
"qcom,cpu-clock-titanium");
if (!ofnode)
return 0;
/* Initialize the PLLs */
virt_bases[APCS_C0_PLL_BASE] = ioremap_nocache(APCS_HF_PLL_BASE, SZ_1K);
clk_ops_variable_rate = clk_ops_variable_rate_pll_hwfsm;
clk_ops_variable_rate.list_registers = variable_pll_list_registers;
__variable_rate_pll_init(&apcs_hf_pll.c);
apcs_hf_pll.c.ops->set_rate(&apcs_hf_pll.c, pwrcl_early_boot_rate);
clk_ops_variable_rate_pll.enable(&apcs_hf_pll.c);
base = ioremap_nocache(APCS_ALIAS1_CMD_RCGR, SZ_8);
regval = readl_relaxed(base);
/* Source GPLL0 and at the rate of GPLL0 */
regval = (SRC_SEL << 8) | SRC_DIV; /* 0x501 */
writel_relaxed(regval, base + APCS_ALIAS1_CFG_OFF);
/* Make sure src sel and src div is set before update bit */
mb();
/* update bit */
regval = readl_relaxed(base);
regval |= BIT(0);
writel_relaxed(regval, base);
/* Make sure src sel and src div is set before update bit */
mb();
/* Enable the branch */
regval = readl_relaxed(base + APCS_ALIAS1_CORE_CBCR_OFF);
regval |= BIT(0);
writel_relaxed(regval, base + APCS_ALIAS1_CORE_CBCR_OFF);
/* Branch enable should be complete */
mb();
iounmap(base);
pr_info("Power clocks configured\n");
return 0;
}
early_initcall(cpu_clock_pwr_init);