M7350/kernel/drivers/clk/msm/clock-alpha-pll.c
2024-09-09 08:57:42 +00:00

1220 lines
30 KiB
C

/*
* Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <soc/qcom/clock-alpha-pll.h>
#include <soc/qcom/msm-clock-controller.h>
#include "clock.h"
#define WAIT_MAX_LOOPS 100
#define MODE_REG(pll) (*pll->base + pll->offset + 0x0)
#define LOCK_REG(pll) (*pll->base + pll->offset + 0x0)
#define ACTIVE_REG(pll) (*pll->base + pll->offset + 0x0)
#define UPDATE_REG(pll) (*pll->base + pll->offset + 0x0)
#define L_REG(pll) (*pll->base + pll->offset + 0x4)
#define A_REG(pll) (*pll->base + pll->offset + 0x8)
#define VCO_REG(pll) (*pll->base + pll->offset + 0x10)
#define ALPHA_EN_REG(pll) (*pll->base + pll->offset + 0x10)
#define OUTPUT_REG(pll) (*pll->base + pll->offset + 0x10)
#define VOTE_REG(pll) (*pll->base + pll->fsm_reg_offset)
#define USER_CTL_LO_REG(pll) (*pll->base + pll->offset + 0x10)
#define USER_CTL_HI_REG(pll) (*pll->base + pll->offset + 0x14)
#define CONFIG_CTL_REG(pll) (*pll->base + pll->offset + 0x18)
#define TEST_CTL_LO_REG(pll) (*pll->base + pll->offset + 0x1c)
#define TEST_CTL_HI_REG(pll) (*pll->base + pll->offset + 0x20)
#define PLL_BYPASSNL 0x2
#define PLL_RESET_N 0x4
#define PLL_OUTCTRL 0x1
#define PLL_LATCH_INTERFACE BIT(11)
#define FABIA_CONFIG_CTL_REG(pll) (*pll->base + pll->offset + 0x14)
#define FABIA_USER_CTL_LO_REG(pll) (*pll->base + pll->offset + 0xc)
#define FABIA_USER_CTL_HI_REG(pll) (*pll->base + pll->offset + 0x10)
#define FABIA_TEST_CTL_LO_REG(pll) (*pll->base + pll->offset + 0x1c)
#define FABIA_TEST_CTL_HI_REG(pll) (*pll->base + pll->offset + 0x20)
#define FABIA_L_REG(pll) (*pll->base + pll->offset + 0x4)
#define FABIA_FRAC_REG(pll) (*pll->base + pll->offset + 0x38)
#define FABIA_PLL_OPMODE(pll) (*pll->base + pll->offset + 0x2c)
#define FABIA_PLL_STANDBY 0x0
#define FABIA_PLL_RUN 0x1
#define FABIA_PLL_OUT_MAIN 0x7
#define FABIA_RATE_MARGIN 500
#define FABIA_PLL_ACK_LATCH BIT(29)
#define FABIA_PLL_HW_UPDATE_LOGIC_BYPASS BIT(23)
/*
* Even though 40 bits are present, use only 32 for ease of calculation.
*/
#define ALPHA_REG_BITWIDTH 40
#define ALPHA_BITWIDTH 32
#define FABIA_ALPHA_BITWIDTH 16
/*
* Enable/disable registers could be shared among PLLs when FSM voting
* is used. This lock protects against potential race when multiple
* PLLs are being enabled/disabled together.
*/
static DEFINE_SPINLOCK(alpha_pll_reg_lock);
static unsigned long compute_rate(struct alpha_pll_clk *pll,
u32 l_val, u32 a_val)
{
u64 rate, parent_rate;
int alpha_bw = ALPHA_BITWIDTH;
if (pll->is_fabia)
alpha_bw = FABIA_ALPHA_BITWIDTH;
parent_rate = clk_get_rate(pll->c.parent);
rate = parent_rate * l_val;
rate += (parent_rate * a_val) >> alpha_bw;
return rate;
}
static bool is_locked(struct alpha_pll_clk *pll)
{
u32 reg = readl_relaxed(LOCK_REG(pll));
u32 mask = pll->masks->lock_mask;
return (reg & mask) == mask;
}
static bool is_active(struct alpha_pll_clk *pll)
{
u32 reg = readl_relaxed(ACTIVE_REG(pll));
u32 mask = pll->masks->active_mask;
return (reg & mask) == mask;
}
/*
* Check active_flag if PLL is in FSM mode, otherwise check lock_det
* bit. This function assumes PLLs are already configured to the
* right mode.
*/
static bool update_finish(struct alpha_pll_clk *pll)
{
if (pll->fsm_en_mask)
return is_active(pll);
else
return is_locked(pll);
}
static int wait_for_update(struct alpha_pll_clk *pll)
{
int count;
for (count = WAIT_MAX_LOOPS; count > 0; count--) {
if (update_finish(pll))
break;
udelay(1);
}
if (!count) {
pr_err("%s didn't lock after enabling it!\n", pll->c.dbg_name);
return -EINVAL;
}
return 0;
}
static int __alpha_pll_vote_enable(struct alpha_pll_clk *pll)
{
u32 ena;
ena = readl_relaxed(VOTE_REG(pll));
ena |= pll->fsm_en_mask;
writel_relaxed(ena, VOTE_REG(pll));
mb();
return wait_for_update(pll);
}
static int __alpha_pll_enable(struct alpha_pll_clk *pll, int enable_output)
{
int rc;
u32 mode;
mode = readl_relaxed(MODE_REG(pll));
mode |= PLL_BYPASSNL;
writel_relaxed(mode, MODE_REG(pll));
/*
* H/W requires a 5us delay between disabling the bypass and
* de-asserting the reset.
*/
mb();
udelay(5);
mode |= PLL_RESET_N;
writel_relaxed(mode, MODE_REG(pll));
rc = wait_for_update(pll);
if (rc < 0)
return rc;
/* Enable PLL output. */
if (enable_output) {
mode |= PLL_OUTCTRL;
writel_relaxed(mode, MODE_REG(pll));
}
/* Ensure that the write above goes through before returning. */
mb();
return 0;
}
static void setup_alpha_pll_values(u64 a_val, u32 l_val, u32 vco_val,
struct alpha_pll_clk *pll)
{
struct alpha_pll_masks *masks = pll->masks;
u32 regval;
a_val = a_val << (ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH);
writel_relaxed(l_val, L_REG(pll));
__iowrite32_copy(A_REG(pll), &a_val, 2);
if (vco_val != UINT_MAX) {
regval = readl_relaxed(VCO_REG(pll));
regval &= ~(masks->vco_mask << masks->vco_shift);
regval |= vco_val << masks->vco_shift;
writel_relaxed(regval, VCO_REG(pll));
}
regval = readl_relaxed(ALPHA_EN_REG(pll));
regval |= masks->alpha_en_mask;
writel_relaxed(regval, ALPHA_EN_REG(pll));
}
static int alpha_pll_enable(struct clk *c)
{
struct alpha_pll_clk *pll = to_alpha_pll_clk(c);
unsigned long flags;
int rc;
if (unlikely(!pll->inited))
__init_alpha_pll(c);
spin_lock_irqsave(&alpha_pll_reg_lock, flags);
if (pll->fsm_en_mask)
rc = __alpha_pll_vote_enable(pll);
else
rc = __alpha_pll_enable(pll, true);
spin_unlock_irqrestore(&alpha_pll_reg_lock, flags);
return rc;
}
static int __calibrate_alpha_pll(struct alpha_pll_clk *pll);
static int dyna_alpha_pll_enable(struct clk *c)
{
struct alpha_pll_clk *pll = to_alpha_pll_clk(c);
unsigned long flags;
int rc;
if (unlikely(!pll->inited))
__init_alpha_pll(c);
spin_lock_irqsave(&alpha_pll_reg_lock, flags);
if (pll->slew)
__calibrate_alpha_pll(pll);
if (pll->fsm_en_mask)
rc = __alpha_pll_vote_enable(pll);
else
rc = __alpha_pll_enable(pll, true);
spin_unlock_irqrestore(&alpha_pll_reg_lock, flags);
return rc;
}
#define PLL_OFFLINE_REQ_BIT BIT(7)
#define PLL_FSM_ENA_BIT BIT(20)
#define PLL_OFFLINE_ACK_BIT BIT(28)
#define PLL_ACTIVE_FLAG BIT(30)
static int alpha_pll_enable_hwfsm(struct clk *c)
{
u32 mode;
struct alpha_pll_clk *pll = to_alpha_pll_clk(c);
/* Re-enable HW FSM mode, clear OFFLINE request */
mode = readl_relaxed(MODE_REG(pll));
mode |= PLL_FSM_ENA_BIT;
mode &= ~PLL_OFFLINE_REQ_BIT;
writel_relaxed(mode, MODE_REG(pll));
/* Make sure enable request goes through before waiting for update */
mb();
if (wait_for_update(pll) < 0)
panic("PLL %s failed to lock", c->dbg_name);
return 0;
}
static void alpha_pll_disable_hwfsm(struct clk *c)
{
u32 mode;
struct alpha_pll_clk *pll = to_alpha_pll_clk(c);
/* Request PLL_OFFLINE and wait for ack */
mode = readl_relaxed(MODE_REG(pll));
writel_relaxed(mode | PLL_OFFLINE_REQ_BIT, MODE_REG(pll));
while (!(readl_relaxed(MODE_REG(pll)) & PLL_OFFLINE_ACK_BIT))
;
/* Disable HW FSM */
mode = readl_relaxed(MODE_REG(pll));
mode &= ~PLL_FSM_ENA_BIT;
if (pll->offline_bit_workaround)
mode &= ~PLL_OFFLINE_REQ_BIT;
writel_relaxed(mode, MODE_REG(pll));
while (readl_relaxed(MODE_REG(pll)) & PLL_ACTIVE_FLAG)
;
}
static void __alpha_pll_vote_disable(struct alpha_pll_clk *pll)
{
u32 ena;
ena = readl_relaxed(VOTE_REG(pll));
ena &= ~pll->fsm_en_mask;
writel_relaxed(ena, VOTE_REG(pll));
}
static void __alpha_pll_disable(struct alpha_pll_clk *pll)
{
u32 mode;
mode = readl_relaxed(MODE_REG(pll));
mode &= ~PLL_OUTCTRL;
writel_relaxed(mode, MODE_REG(pll));
/* Delay of 2 output clock ticks required until output is disabled */
mb();
udelay(1);
mode &= ~(PLL_BYPASSNL | PLL_RESET_N);
writel_relaxed(mode, MODE_REG(pll));
}
static void alpha_pll_disable(struct clk *c)
{
struct alpha_pll_clk *pll = to_alpha_pll_clk(c);
unsigned long flags;
spin_lock_irqsave(&alpha_pll_reg_lock, flags);
if (pll->fsm_en_mask)
__alpha_pll_vote_disable(pll);
else
__alpha_pll_disable(pll);
spin_unlock_irqrestore(&alpha_pll_reg_lock, flags);
}
static void dyna_alpha_pll_disable(struct clk *c)
{
struct alpha_pll_clk *pll = to_alpha_pll_clk(c);
unsigned long flags;
spin_lock_irqsave(&alpha_pll_reg_lock, flags);
if (pll->fsm_en_mask)
__alpha_pll_vote_disable(pll);
else
__alpha_pll_disable(pll);
spin_unlock_irqrestore(&alpha_pll_reg_lock, flags);
}
static u32 find_vco(struct alpha_pll_clk *pll, unsigned long rate)
{
unsigned long i;
struct alpha_pll_vco_tbl *v = pll->vco_tbl;
for (i = 0; i < pll->num_vco; i++) {
if (rate >= v[i].min_freq && rate <= v[i].max_freq)
return v[i].vco_val;
}
return -EINVAL;
}
static unsigned long __calc_values(struct alpha_pll_clk *pll,
unsigned long rate, int *l_val, u64 *a_val, bool round_up)
{
u32 parent_rate;
u64 remainder;
u64 quotient;
unsigned long freq_hz;
int alpha_bw = ALPHA_BITWIDTH;
parent_rate = clk_get_rate(pll->c.parent);
quotient = rate;
remainder = do_div(quotient, parent_rate);
*l_val = quotient;
if (!remainder) {
*a_val = 0;
return rate;
}
if (pll->is_fabia)
alpha_bw = FABIA_ALPHA_BITWIDTH;
/* Upper ALPHA_BITWIDTH bits of Alpha */
quotient = remainder << alpha_bw;
remainder = do_div(quotient, parent_rate);
if (remainder && round_up)
quotient++;
*a_val = quotient;
freq_hz = compute_rate(pll, *l_val, *a_val);
return freq_hz;
}
static unsigned long round_rate_down(struct alpha_pll_clk *pll,
unsigned long rate, int *l_val, u64 *a_val)
{
return __calc_values(pll, rate, l_val, a_val, false);
}
static unsigned long round_rate_up(struct alpha_pll_clk *pll,
unsigned long rate, int *l_val, u64 *a_val)
{
return __calc_values(pll, rate, l_val, a_val, true);
}
static bool dynamic_update_finish(struct alpha_pll_clk *pll)
{
u32 reg = readl_relaxed(UPDATE_REG(pll));
u32 mask = pll->masks->update_mask;
return (reg & mask) == 0;
}
static int wait_for_dynamic_update(struct alpha_pll_clk *pll)
{
int count;
for (count = WAIT_MAX_LOOPS; count > 0; count--) {
if (dynamic_update_finish(pll))
break;
udelay(1);
}
if (!count) {
pr_err("%s didn't latch after updating it!\n", pll->c.dbg_name);
return -EINVAL;
}
return 0;
}
static int dyna_alpha_pll_dynamic_update(struct alpha_pll_clk *pll)
{
struct alpha_pll_masks *masks = pll->masks;
u32 regval;
int rc;
regval = readl_relaxed(UPDATE_REG(pll));
regval |= masks->update_mask;
writel_relaxed(regval, UPDATE_REG(pll));
rc = wait_for_dynamic_update(pll);
if (rc < 0)
return rc;
/*
* HPG mandates a wait of at least 570ns before polling the LOCK
* detect bit. Have a delay of 1us just to be safe.
*/
mb();
udelay(1);
rc = wait_for_update(pll);
if (rc < 0)
return rc;
return 0;
}
static int alpha_pll_set_rate(struct clk *c, unsigned long rate);
static int dyna_alpha_pll_set_rate(struct clk *c, unsigned long rate)
{
struct alpha_pll_clk *pll = to_alpha_pll_clk(c);
unsigned long freq_hz, flags;
u32 l_val, vco_val;
u64 a_val;
int ret;
freq_hz = round_rate_up(pll, rate, &l_val, &a_val);
if (freq_hz != rate) {
pr_err("alpha_pll: Call clk_set_rate with rounded rates!\n");
return -EINVAL;
}
vco_val = find_vco(pll, freq_hz);
/*
* Dynamic pll update will not support switching frequencies across
* vco ranges. In those cases fall back to normal alpha set rate.
*/
if (pll->current_vco_val != vco_val) {
ret = alpha_pll_set_rate(c, rate);
if (!ret)
pll->current_vco_val = vco_val;
else
return ret;
return 0;
}
spin_lock_irqsave(&c->lock, flags);
a_val = a_val << (ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH);
writel_relaxed(l_val, L_REG(pll));
__iowrite32_copy(A_REG(pll), &a_val, 2);
/* Ensure that the write above goes through before proceeding. */
mb();
if (c->count)
dyna_alpha_pll_dynamic_update(pll);
spin_unlock_irqrestore(&c->lock, flags);
return 0;
}
/*
* Slewing plls should be bought up at frequency which is in the middle of the
* desired VCO range. So after bringing up the pll at calibration freq, set it
* back to desired frequency(that was set by previous clk_set_rate).
*/
static int __calibrate_alpha_pll(struct alpha_pll_clk *pll)
{
unsigned long calibration_freq, freq_hz;
struct alpha_pll_vco_tbl *vco_tbl = pll->vco_tbl;
u64 a_val;
u32 l_val, vco_val;
int rc;
vco_val = find_vco(pll, pll->c.rate);
if (IS_ERR_VALUE(vco_val)) {
pr_err("alpha pll: not in a valid vco range\n");
return -EINVAL;
}
/*
* As during slewing plls vco_sel won't be allowed to change, vco table
* should have only one entry table, i.e. index = 0, find the
* calibration frequency.
*/
calibration_freq = (vco_tbl[0].min_freq +
vco_tbl[0].max_freq)/2;
freq_hz = round_rate_up(pll, calibration_freq, &l_val, &a_val);
if (freq_hz != calibration_freq) {
pr_err("alpha_pll: call clk_set_rate with rounded rates!\n");
return -EINVAL;
}
setup_alpha_pll_values(a_val, l_val, vco_tbl->vco_val, pll);
/* Bringup the pll at calibration frequency */
rc = __alpha_pll_enable(pll, false);
if (rc) {
pr_err("alpha pll calibration failed\n");
return rc;
}
/*
* PLL is already running at calibration frequency.
* So slew pll to the previously set frequency.
*/
pr_debug("pll %s: setting back to required rate %lu\n", pll->c.dbg_name,
pll->c.rate);
freq_hz = round_rate_up(pll, pll->c.rate, &l_val, &a_val);
setup_alpha_pll_values(a_val, l_val, UINT_MAX, pll);
dyna_alpha_pll_dynamic_update(pll);
return 0;
}
static int alpha_pll_set_rate(struct clk *c, unsigned long rate)
{
struct alpha_pll_clk *pll = to_alpha_pll_clk(c);
struct alpha_pll_masks *masks = pll->masks;
unsigned long flags, freq_hz;
u32 regval, l_val;
int vco_val;
u64 a_val;
freq_hz = round_rate_up(pll, rate, &l_val, &a_val);
if (freq_hz != rate) {
pr_err("alpha_pll: Call clk_set_rate with rounded rates!\n");
return -EINVAL;
}
vco_val = find_vco(pll, freq_hz);
if (IS_ERR_VALUE(vco_val)) {
pr_err("alpha pll: not in a valid vco range\n");
return -EINVAL;
}
/*
* Ensure PLL is off before changing rate. For optimization reasons,
* assume no downstream clock is actively using it. No support
* for dynamic update at the moment.
*/
spin_lock_irqsave(&c->lock, flags);
if (c->count)
c->ops->disable(c);
a_val = a_val << (ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH);
writel_relaxed(l_val, L_REG(pll));
__iowrite32_copy(A_REG(pll), &a_val, 2);
if (masks->vco_mask) {
regval = readl_relaxed(VCO_REG(pll));
regval &= ~(masks->vco_mask << masks->vco_shift);
regval |= vco_val << masks->vco_shift;
writel_relaxed(regval, VCO_REG(pll));
}
regval = readl_relaxed(ALPHA_EN_REG(pll));
regval |= masks->alpha_en_mask;
writel_relaxed(regval, ALPHA_EN_REG(pll));
if (c->count)
c->ops->enable(c);
spin_unlock_irqrestore(&c->lock, flags);
return 0;
}
static long alpha_pll_round_rate(struct clk *c, unsigned long rate)
{
struct alpha_pll_clk *pll = to_alpha_pll_clk(c);
struct alpha_pll_vco_tbl *v = pll->vco_tbl;
int ret;
u32 l_val;
unsigned long freq_hz;
u64 a_val;
int i;
if (pll->no_prepared_reconfig && c->prepare_count)
return -EINVAL;
freq_hz = round_rate_up(pll, rate, &l_val, &a_val);
if (pll->is_fabia) {
if (rate < pll->min_supported_freq)
return pll->min_supported_freq;
return freq_hz;
}
ret = find_vco(pll, freq_hz);
if (!IS_ERR_VALUE(ret))
return freq_hz;
freq_hz = 0;
for (i = 0; i < pll->num_vco; i++) {
if (is_better_rate(rate, freq_hz, v[i].min_freq))
freq_hz = v[i].min_freq;
if (is_better_rate(rate, freq_hz, v[i].max_freq))
freq_hz = v[i].max_freq;
}
if (!freq_hz)
return -EINVAL;
return freq_hz;
}
static void update_vco_tbl(struct alpha_pll_clk *pll)
{
int i, l_val;
u64 a_val;
unsigned long hz;
/* Round vco limits to valid rates */
for (i = 0; i < pll->num_vco; i++) {
hz = round_rate_up(pll, pll->vco_tbl[i].min_freq, &l_val,
&a_val);
pll->vco_tbl[i].min_freq = hz;
hz = round_rate_down(pll, pll->vco_tbl[i].max_freq, &l_val,
&a_val);
pll->vco_tbl[i].max_freq = hz;
}
}
/*
* Program bias count to be 0x6 (corresponds to 5us), and lock count
* bits to 0 (check lock_det for locking).
*/
static void __set_fsm_mode(void __iomem *mode_reg)
{
u32 regval = readl_relaxed(mode_reg);
/* De-assert reset to FSM */
regval &= ~BIT(21);
writel_relaxed(regval, mode_reg);
/* Program bias count */
regval &= ~BM(19, 14);
regval |= BVAL(19, 14, 0x6);
writel_relaxed(regval, mode_reg);
/* Program lock count */
regval &= ~BM(13, 8);
regval |= BVAL(13, 8, 0x0);
writel_relaxed(regval, mode_reg);
/* Enable PLL FSM voting */
regval |= BIT(20);
writel_relaxed(regval, mode_reg);
}
static bool is_fsm_mode(void __iomem *mode_reg)
{
return !!(readl_relaxed(mode_reg) & BIT(20));
}
void __init_alpha_pll(struct clk *c)
{
struct alpha_pll_clk *pll = to_alpha_pll_clk(c);
struct alpha_pll_masks *masks = pll->masks;
u32 regval;
if (pll->config_ctl_val)
writel_relaxed(pll->config_ctl_val, CONFIG_CTL_REG(pll));
if (masks->output_mask && pll->enable_config) {
regval = readl_relaxed(OUTPUT_REG(pll));
regval &= ~masks->output_mask;
regval |= pll->enable_config;
writel_relaxed(regval, OUTPUT_REG(pll));
}
if (masks->post_div_mask) {
regval = readl_relaxed(USER_CTL_LO_REG(pll));
regval &= ~masks->post_div_mask;
regval |= pll->post_div_config;
writel_relaxed(regval, USER_CTL_LO_REG(pll));
}
if (pll->slew) {
regval = readl_relaxed(USER_CTL_HI_REG(pll));
regval &= ~PLL_LATCH_INTERFACE;
writel_relaxed(regval, USER_CTL_HI_REG(pll));
}
if (masks->test_ctl_lo_mask) {
regval = readl_relaxed(TEST_CTL_LO_REG(pll));
regval &= ~masks->test_ctl_lo_mask;
regval |= pll->test_ctl_lo_val;
writel_relaxed(regval, TEST_CTL_LO_REG(pll));
}
if (masks->test_ctl_hi_mask) {
regval = readl_relaxed(TEST_CTL_HI_REG(pll));
regval &= ~masks->test_ctl_hi_mask;
regval |= pll->test_ctl_hi_val;
writel_relaxed(regval, TEST_CTL_HI_REG(pll));
}
if (pll->fsm_en_mask)
__set_fsm_mode(MODE_REG(pll));
pll->inited = true;
}
static enum handoff alpha_pll_handoff(struct clk *c)
{
struct alpha_pll_clk *pll = to_alpha_pll_clk(c);
struct alpha_pll_masks *masks = pll->masks;
u64 a_val;
u32 alpha_en, l_val;
update_vco_tbl(pll);
if (!is_locked(pll)) {
if (c->rate && alpha_pll_set_rate(c, c->rate))
WARN(1, "%s: Failed to configure rate\n", c->dbg_name);
__init_alpha_pll(c);
return HANDOFF_DISABLED_CLK;
} else if (pll->fsm_en_mask && !is_fsm_mode(MODE_REG(pll))) {
WARN(1, "%s should be in FSM mode but is not\n", c->dbg_name);
}
l_val = readl_relaxed(L_REG(pll));
/* read u64 in two steps to satisfy alignment constraint */
a_val = readl_relaxed(A_REG(pll) + 0x4);
a_val = a_val << 32 | readl_relaxed(A_REG(pll));
/* get upper 32 bits */
a_val = a_val >> (ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH);
alpha_en = readl_relaxed(ALPHA_EN_REG(pll));
alpha_en &= masks->alpha_en_mask;
if (!alpha_en)
a_val = 0;
c->rate = compute_rate(pll, l_val, a_val);
/*
* Unconditionally vote for the PLL; it might be on because of
* another master's vote.
*/
if (pll->fsm_en_mask)
__alpha_pll_vote_enable(pll);
return HANDOFF_ENABLED_CLK;
}
static void __iomem *alpha_pll_list_registers(struct clk *clk, int n,
struct clk_register_data **regs, u32 *size)
{
struct alpha_pll_clk *pll = to_alpha_pll_clk(clk);
static struct clk_register_data data[] = {
{"PLL_MODE", 0x0},
{"PLL_L_VAL", 0x4},
{"PLL_ALPHA_VAL", 0x8},
{"PLL_ALPHA_VAL_U", 0xC},
{"PLL_USER_CTL", 0x10},
{"PLL_CONFIG_CTL", 0x18},
};
if (n)
return ERR_PTR(-EINVAL);
*regs = data;
*size = ARRAY_SIZE(data);
return MODE_REG(pll);
}
static int __fabia_alpha_pll_enable(struct alpha_pll_clk *pll)
{
int rc;
u32 mode;
/* Disable PLL output */
mode = readl_relaxed(MODE_REG(pll));
mode &= ~PLL_OUTCTRL;
writel_relaxed(mode, MODE_REG(pll));
/* Set operation mode to STANDBY */
writel_relaxed(FABIA_PLL_STANDBY, FABIA_PLL_OPMODE(pll));
/* PLL should be in STANDBY mode before continuing */
mb();
/* Bring PLL out of reset */
mode = readl_relaxed(MODE_REG(pll));
mode |= PLL_RESET_N;
writel_relaxed(mode, MODE_REG(pll));
/* Set operation mode to RUN */
writel_relaxed(FABIA_PLL_RUN, FABIA_PLL_OPMODE(pll));
rc = wait_for_update(pll);
if (rc < 0)
return rc;
/* Enable the main PLL output */
mode = readl_relaxed(FABIA_USER_CTL_LO_REG(pll));
mode |= FABIA_PLL_OUT_MAIN;
writel_relaxed(mode, FABIA_USER_CTL_LO_REG(pll));
/* Enable PLL outputs */
mode = readl_relaxed(MODE_REG(pll));
mode |= PLL_OUTCTRL;
writel_relaxed(mode, MODE_REG(pll));
/* Ensure that the write above goes through before returning. */
mb();
return 0;
}
static int fabia_alpha_pll_enable(struct clk *c)
{
struct alpha_pll_clk *pll = to_alpha_pll_clk(c);
unsigned long flags;
int rc;
spin_lock_irqsave(&alpha_pll_reg_lock, flags);
if (pll->fsm_en_mask)
rc = __alpha_pll_vote_enable(pll);
else
rc = __fabia_alpha_pll_enable(pll);
spin_unlock_irqrestore(&alpha_pll_reg_lock, flags);
return rc;
}
static void __fabia_alpha_pll_disable(struct alpha_pll_clk *pll)
{
u32 mode;
/* Disable PLL outputs */
mode = readl_relaxed(MODE_REG(pll));
mode &= ~PLL_OUTCTRL;
writel_relaxed(mode, MODE_REG(pll));
/* Disable the main PLL output */
mode = readl_relaxed(FABIA_USER_CTL_LO_REG(pll));
mode &= ~FABIA_PLL_OUT_MAIN;
writel_relaxed(mode, FABIA_USER_CTL_LO_REG(pll));
/* Place PLL is the OFF state */
mode = readl_relaxed(MODE_REG(pll));
mode &= ~PLL_RESET_N;
writel_relaxed(mode, MODE_REG(pll));
/* Place the PLL mode in STANDBY */
writel_relaxed(FABIA_PLL_STANDBY, FABIA_PLL_OPMODE(pll));
}
static void fabia_alpha_pll_disable(struct clk *c)
{
struct alpha_pll_clk *pll = to_alpha_pll_clk(c);
unsigned long flags;
spin_lock_irqsave(&alpha_pll_reg_lock, flags);
if (pll->fsm_en_mask)
__alpha_pll_vote_disable(pll);
else
__fabia_alpha_pll_disable(pll);
spin_unlock_irqrestore(&alpha_pll_reg_lock, flags);
}
static int fabia_alpha_pll_set_rate(struct clk *c, unsigned long rate)
{
struct alpha_pll_clk *pll = to_alpha_pll_clk(c);
unsigned long flags, freq_hz;
u32 regval, l_val;
u64 a_val;
freq_hz = round_rate_up(pll, rate, &l_val, &a_val);
if (freq_hz > rate + FABIA_RATE_MARGIN || freq_hz < rate) {
pr_err("%s: Call clk_set_rate with rounded rates!\n",
c->dbg_name);
return -EINVAL;
}
spin_lock_irqsave(&c->lock, flags);
/* Set the new L value */
writel_relaxed(l_val, FABIA_L_REG(pll));
writel_relaxed(a_val, FABIA_FRAC_REG(pll));
/* Latch the input to the PLL */
regval = readl_relaxed(MODE_REG(pll));
regval |= pll->masks->update_mask;
writel_relaxed(regval, MODE_REG(pll));
/* Wait for 2 reference cycle before checking ACK bit */
udelay(1);
if (!(readl_relaxed(MODE_REG(pll)) & FABIA_PLL_ACK_LATCH)) {
pr_err("%s: PLL latch failed. Leaving PLL disabled\n",
c->dbg_name);
goto ret;
}
/* Return latch input to 0 */
regval = readl_relaxed(MODE_REG(pll));
regval &= ~pll->masks->update_mask;
writel_relaxed(regval, MODE_REG(pll));
ret:
spin_unlock_irqrestore(&c->lock, flags);
return 0;
}
void __init_fabia_alpha_pll(struct clk *c)
{
struct alpha_pll_clk *pll = to_alpha_pll_clk(c);
struct alpha_pll_masks *masks = pll->masks;
u32 regval;
if (pll->config_ctl_val)
writel_relaxed(pll->config_ctl_val, FABIA_CONFIG_CTL_REG(pll));
if (masks->output_mask && pll->enable_config) {
regval = readl_relaxed(FABIA_USER_CTL_LO_REG(pll));
regval &= ~masks->output_mask;
regval |= pll->enable_config;
writel_relaxed(regval, FABIA_USER_CTL_LO_REG(pll));
}
if (masks->post_div_mask) {
regval = readl_relaxed(FABIA_USER_CTL_LO_REG(pll));
regval &= ~masks->post_div_mask;
regval |= pll->post_div_config;
writel_relaxed(regval, FABIA_USER_CTL_LO_REG(pll));
}
if (pll->slew) {
regval = readl_relaxed(FABIA_USER_CTL_HI_REG(pll));
regval &= ~PLL_LATCH_INTERFACE;
writel_relaxed(regval, FABIA_USER_CTL_HI_REG(pll));
}
if (masks->test_ctl_lo_mask) {
regval = readl_relaxed(FABIA_TEST_CTL_LO_REG(pll));
regval &= ~masks->test_ctl_lo_mask;
regval |= pll->test_ctl_lo_val;
writel_relaxed(regval, FABIA_TEST_CTL_LO_REG(pll));
}
if (masks->test_ctl_hi_mask) {
regval = readl_relaxed(FABIA_TEST_CTL_HI_REG(pll));
regval &= ~masks->test_ctl_hi_mask;
regval |= pll->test_ctl_hi_val;
writel_relaxed(regval, FABIA_TEST_CTL_HI_REG(pll));
}
if (pll->fsm_en_mask)
__set_fsm_mode(MODE_REG(pll));
pll->inited = true;
}
static enum handoff fabia_alpha_pll_handoff(struct clk *c)
{
struct alpha_pll_clk *pll = to_alpha_pll_clk(c);
u64 a_val;
u32 l_val, regval;
/* Set the PLL_HW_UPDATE_LOGIC_BYPASS bit before continuing */
regval = readl_relaxed(MODE_REG(pll));
regval |= FABIA_PLL_HW_UPDATE_LOGIC_BYPASS;
writel_relaxed(regval, MODE_REG(pll));
if (!is_locked(pll)) {
if (c->rate && fabia_alpha_pll_set_rate(c, c->rate))
WARN(1, "%s: Failed to configure rate\n", c->dbg_name);
__init_alpha_pll(c);
return HANDOFF_DISABLED_CLK;
} else if (pll->fsm_en_mask && !is_fsm_mode(MODE_REG(pll))) {
WARN(1, "%s should be in FSM mode but is not\n", c->dbg_name);
}
l_val = readl_relaxed(FABIA_L_REG(pll));
a_val = readl_relaxed(FABIA_FRAC_REG(pll));
c->rate = compute_rate(pll, l_val, a_val);
/*
* Unconditionally vote for the PLL; it might be on because of
* another master's vote.
*/
if (pll->fsm_en_mask)
__alpha_pll_vote_enable(pll);
return HANDOFF_ENABLED_CLK;
}
struct clk_ops clk_ops_alpha_pll = {
.enable = alpha_pll_enable,
.disable = alpha_pll_disable,
.round_rate = alpha_pll_round_rate,
.set_rate = alpha_pll_set_rate,
.handoff = alpha_pll_handoff,
.list_registers = alpha_pll_list_registers,
};
struct clk_ops clk_ops_alpha_pll_hwfsm = {
.enable = alpha_pll_enable_hwfsm,
.disable = alpha_pll_disable_hwfsm,
.round_rate = alpha_pll_round_rate,
.set_rate = alpha_pll_set_rate,
.handoff = alpha_pll_handoff,
.list_registers = alpha_pll_list_registers,
};
struct clk_ops clk_ops_fixed_alpha_pll = {
.enable = alpha_pll_enable,
.disable = alpha_pll_disable,
.handoff = alpha_pll_handoff,
.list_registers = alpha_pll_list_registers,
};
struct clk_ops clk_ops_fixed_fabia_alpha_pll = {
.enable = fabia_alpha_pll_enable,
.disable = fabia_alpha_pll_disable,
.handoff = fabia_alpha_pll_handoff,
};
struct clk_ops clk_ops_fabia_alpha_pll = {
.enable = fabia_alpha_pll_enable,
.disable = fabia_alpha_pll_disable,
.round_rate = alpha_pll_round_rate,
.set_rate = fabia_alpha_pll_set_rate,
.handoff = fabia_alpha_pll_handoff,
};
struct clk_ops clk_ops_dyna_alpha_pll = {
.enable = dyna_alpha_pll_enable,
.disable = dyna_alpha_pll_disable,
.round_rate = alpha_pll_round_rate,
.set_rate = dyna_alpha_pll_set_rate,
.handoff = alpha_pll_handoff,
.list_registers = alpha_pll_list_registers,
};
static struct alpha_pll_masks masks_20nm_p = {
.lock_mask = BIT(31),
.active_mask = BIT(30),
.vco_mask = BM(21, 20) >> 20,
.vco_shift = 20,
.alpha_en_mask = BIT(24),
.output_mask = 0xF,
.post_div_mask = 0xF00,
};
static struct alpha_pll_vco_tbl vco_20nm_p[] = {
VCO(3, 250000000, 500000000),
VCO(2, 500000000, 1000000000),
VCO(1, 1000000000, 1500000000),
VCO(0, 1500000000, 2000000000),
};
static struct alpha_pll_masks masks_20nm_t = {
.lock_mask = BIT(31),
.alpha_en_mask = BIT(24),
.output_mask = 0xf,
};
static struct alpha_pll_vco_tbl vco_20nm_t[] = {
VCO(0, 500000000, 1250000000),
};
static struct alpha_pll_clk *alpha_pll_dt_parser(struct device *dev,
struct device_node *np)
{
struct alpha_pll_clk *pll;
struct msmclk_data *drv;
pll = devm_kzalloc(dev, sizeof(*pll), GFP_KERNEL);
if (!pll) {
dt_err(np, "memory alloc failure\n");
return ERR_PTR(-ENOMEM);
}
if (of_property_read_u32(np, "qcom,base-offset", &pll->offset)) {
dt_err(np, "missing qcom,base-offset\n");
return ERR_PTR(-EINVAL);
}
/* Optional property */
of_property_read_u32(np, "qcom,post-div-config",
&pll->post_div_config);
pll->masks = devm_kzalloc(dev, sizeof(*pll->masks), GFP_KERNEL);
if (!pll->masks) {
dt_err(np, "memory alloc failure\n");
return ERR_PTR(-ENOMEM);
}
if (of_device_is_compatible(np, "qcom,fixed-alpha-pll-20p") ||
of_device_is_compatible(np, "qcom,alpha-pll-20p")) {
*pll->masks = masks_20nm_p;
pll->vco_tbl = vco_20nm_p;
pll->num_vco = ARRAY_SIZE(vco_20nm_p);
} else if (of_device_is_compatible(np, "qcom,fixed-alpha-pll-20t") ||
of_device_is_compatible(np, "qcom,alpha-pll-20t")) {
*pll->masks = masks_20nm_t;
pll->vco_tbl = vco_20nm_t;
pll->num_vco = ARRAY_SIZE(vco_20nm_t);
} else {
dt_err(np, "unexpected compatible string\n");
return ERR_PTR(-EINVAL);
}
drv = msmclk_parse_phandle(dev, np->parent->phandle);
if (IS_ERR_OR_NULL(drv))
return ERR_CAST(drv);
pll->base = &drv->base;
return pll;
}
static void *variable_rate_alpha_pll_dt_parser(struct device *dev,
struct device_node *np)
{
struct alpha_pll_clk *pll;
pll = alpha_pll_dt_parser(dev, np);
if (IS_ERR(pll))
return pll;
/* Optional Property */
of_property_read_u32(np, "qcom,output-enable", &pll->enable_config);
pll->c.ops = &clk_ops_alpha_pll;
return msmclk_generic_clk_init(dev, np, &pll->c);
}
static void *fixed_rate_alpha_pll_dt_parser(struct device *dev,
struct device_node *np)
{
struct alpha_pll_clk *pll;
int rc;
u32 val;
pll = alpha_pll_dt_parser(dev, np);
if (IS_ERR(pll))
return pll;
rc = of_property_read_u32(np, "qcom,pll-config-rate", &val);
if (rc) {
dt_err(np, "missing qcom,pll-config-rate\n");
return ERR_PTR(-EINVAL);
}
pll->c.rate = val;
rc = of_property_read_u32(np, "qcom,output-enable",
&pll->enable_config);
if (rc) {
dt_err(np, "missing qcom,output-enable\n");
return ERR_PTR(-EINVAL);
}
/* Optional Property */
rc = of_property_read_u32(np, "qcom,fsm-en-bit", &val);
if (!rc) {
rc = of_property_read_u32(np, "qcom,fsm-en-offset",
&pll->fsm_reg_offset);
if (rc) {
dt_err(np, "missing qcom,fsm-en-offset\n");
return ERR_PTR(-EINVAL);
}
pll->fsm_en_mask = BIT(val);
}
pll->c.ops = &clk_ops_fixed_alpha_pll;
return msmclk_generic_clk_init(dev, np, &pll->c);
}
MSMCLK_PARSER(fixed_rate_alpha_pll_dt_parser, "qcom,fixed-alpha-pll-20p", 0);
MSMCLK_PARSER(fixed_rate_alpha_pll_dt_parser, "qcom,fixed-alpha-pll-20t", 1);
MSMCLK_PARSER(variable_rate_alpha_pll_dt_parser, "qcom,alpha-pll-20p", 0);
MSMCLK_PARSER(variable_rate_alpha_pll_dt_parser, "qcom,alpha-pll-20t", 1);