M7350/external/compat-wireless/drivers/net/wireless/ath/ath6kl-3.5/txrx.c
2024-09-09 08:57:42 +00:00

3572 lines
87 KiB
C
Executable File

/*
* Copyright (c) 2004-2011 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "core.h"
#include "debug.h"
#include "htc-ops.h"
#include "epping.h"
#include <linux/version.h>
#include "hif-ops.h"
/* 802.1d to AC mapping. Refer pg 57 of WMM-test-plan-v1.2 */
static const u8 up_to_ac[] = {
WMM_AC_BE,
WMM_AC_BK,
WMM_AC_BK,
WMM_AC_BE,
WMM_AC_VI,
WMM_AC_VI,
WMM_AC_VO,
WMM_AC_VO,
};
static int aggr_tx(struct ath6kl_vif *vif, struct ath6kl_sta *sta,
struct sk_buff **skb);
static int aggr_tx_flush(struct ath6kl_vif *vif, struct ath6kl_sta *conn);
static void ath6kl_eapol_handshake_protect(struct ath6kl_vif *vif, bool tx);
static u8 ath6kl_ibss_map_epid(struct sk_buff *skb, struct net_device *dev,
u32 *map_no)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct ethhdr *eth_hdr;
u32 i, ep_map = -1;
u8 *datap;
*map_no = 0;
datap = skb->data;
eth_hdr = (struct ethhdr *) (datap + sizeof(struct wmi_data_hdr));
if (is_multicast_ether_addr(eth_hdr->h_dest))
return ENDPOINT_2;
for (i = 0; i < ar->node_num; i++) {
if (memcmp(eth_hdr->h_dest, ar->node_map[i].mac_addr,
ETH_ALEN) == 0) {
*map_no = i + 1;
ar->node_map[i].tx_pend++;
return ar->node_map[i].ep_id;
}
if ((ep_map == -1) && !ar->node_map[i].tx_pend)
ep_map = i;
}
if (ep_map == -1) {
ep_map = ar->node_num;
ar->node_num++;
if (ar->node_num > MAX_NODE_NUM)
return ENDPOINT_UNUSED;
}
memcpy(ar->node_map[ep_map].mac_addr, eth_hdr->h_dest, ETH_ALEN);
for (i = ENDPOINT_2; i <= ENDPOINT_5; i++) {
if (!ar->tx_pending[i]) {
ar->node_map[ep_map].ep_id = i;
break;
}
/*
* No free endpoint is available, start redistribution on
* the inuse endpoints.
*/
if (i == ENDPOINT_5) {
ar->node_map[ep_map].ep_id = ar->next_ep_id;
ar->next_ep_id++;
if (ar->next_ep_id > ENDPOINT_5)
ar->next_ep_id = ENDPOINT_2;
}
}
*map_no = ep_map + 1;
ar->node_map[ep_map].tx_pend++;
return ar->node_map[ep_map].ep_id;
}
static inline bool _powersave_ap_tx_multicast(struct ath6kl_vif *vif,
struct sk_buff *skb, u32 *flags)
{
u8 ctr = 0;
bool q_mcast = false, ps_queued = false;
int ret;
for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) {
if (vif->sta_list[ctr].sta_flags & STA_PS_SLEEP) {
q_mcast = true;
break;
}
}
ath6kl_dbg(ATH6KL_DBG_POWERSAVE,
"%s: Multicast %d psq_mcast %d\n",
__func__,
q_mcast,
!ath6kl_ps_queue_empty(&vif->psq_mcast));
if (q_mcast) {
/*
* If this transmit is not because of a Dtim Expiry
* q it.
*/
if (!test_bit(DTIM_EXPIRED, &vif->flags)) {
bool is_psq_empty = false;
spin_lock_bh(&vif->psq_mcast_lock);
is_psq_empty = ath6kl_ps_queue_empty(&vif->psq_mcast);
ret = ath6kl_ps_queue_enqueue_data(
&vif->psq_mcast, skb);
spin_unlock_bh(&vif->psq_mcast_lock);
if (ret == 0) {
/*
* If this is the first Mcast pkt getting
* queued indicate to the target to set the
* BitmapControl LSB of the TIM IE.
*/
if (is_psq_empty)
ath6kl_wmi_set_pvb_cmd(vif->ar->wmi,
vif->fw_vif_idx,
MCAST_AID,
1);
} else {
/* drop this packet */
dev_kfree_skb(skb);
}
ps_queued = true;
} else {
/*
* This transmit is because of Dtim expiry.
* Determine if MoreData bit has to be set.
*/
spin_lock_bh(&vif->psq_mcast_lock);
if (!ath6kl_ps_queue_empty(&vif->psq_mcast))
*flags |= WMI_DATA_HDR_FLAGS_MORE;
spin_unlock_bh(&vif->psq_mcast_lock);
}
}
return ps_queued;
}
static inline void __powersave_ap_tx_unicast_sleep(struct ath6kl_vif *vif,
struct ath6kl_sta *conn, struct sk_buff *skb, u32 *flags)
{
struct ethhdr *datap = (struct ethhdr *) skb->data;
bool trigger = false, is_psq_empty = false;
int ret;
if (conn->apsd_info) {
u8 up = 0;
u8 traffic_class;
if (test_bit(WMM_ENABLED, &vif->flags)) {
struct ath6kl_llc_snap_hdr *llc_hdr;
u16 ether_type;
u16 ip_type = IP_ETHERTYPE;
u8 *ip_hdr;
ether_type = datap->h_proto;
if (is_ethertype(be16_to_cpu(ether_type))) {
/* packet is in DIX format */
ip_hdr = (u8 *)(datap + 1);
} else {
/* packet is in 802.3 format */
llc_hdr = (struct ath6kl_llc_snap_hdr *)
(datap + 1);
ether_type = llc_hdr->eth_type;
ip_hdr = (u8 *)(llc_hdr + 1);
}
if (ether_type == cpu_to_be16(ip_type))
up = ath6kl_wmi_determine_user_priority(ip_hdr,
0);
}
traffic_class = up_to_ac[up & 0x7];
if (conn->apsd_info & (1 << traffic_class))
trigger = true;
}
/* Queue the frames if the STA is sleeping */
spin_lock_bh(&conn->lock);
ath6kl_dbg(ATH6KL_DBG_POWERSAVE,
"%s: Unicast aid %d sta_flags %x apsd_info %d"
" psq_data %d psq_mgmt %d traffic %d\n",
__func__,
conn->aid,
conn->sta_flags,
conn->apsd_info,
!ath6kl_ps_queue_empty(&conn->psq_data),
!ath6kl_ps_queue_empty(&conn->psq_mgmt),
trigger);
is_psq_empty = ath6kl_ps_queue_empty(&conn->psq_data) &&
ath6kl_ps_queue_empty(&conn->psq_mgmt);
ret = ath6kl_ps_queue_enqueue_data(&conn->psq_data, skb);
spin_unlock_bh(&conn->lock);
if (ret == 0) {
if (is_psq_empty) {
if (trigger)
ath6kl_wmi_set_apsd_buffered_traffic_cmd(
vif->ar->wmi,
vif->fw_vif_idx,
conn->aid,
1,
0);
/*
* If this is the first pkt getting quened for this STA,
* update the PVB for this STA.
*/
ath6kl_wmi_set_pvb_cmd(vif->ar->wmi,
vif->fw_vif_idx,
conn->aid,
1);
}
} else {
/* drop this packet */
dev_kfree_skb(skb);
}
return;
}
static inline void __powersave_ap_tx_unicast_awake(struct ath6kl_vif *vif,
struct ath6kl_sta *conn, u32 *flags)
{
/*
* This tx is because of a PsPoll or trigger.
* Determine if MoreData bit has to be set
*/
spin_lock_bh(&conn->lock);
ath6kl_dbg(ATH6KL_DBG_POWERSAVE,
"%s: Unicast aid %d sta_flags %x apsd_info %d"
" psq_data %d psq_mgmt %d\n",
__func__,
conn->aid,
conn->sta_flags,
conn->apsd_info,
!ath6kl_ps_queue_empty(&conn->psq_data),
!ath6kl_ps_queue_empty(&conn->psq_mgmt));
if (!ath6kl_ps_queue_empty(&conn->psq_data) ||
!ath6kl_ps_queue_empty(&conn->psq_mgmt))
*flags |= WMI_DATA_HDR_FLAGS_MORE;
if (!(conn->sta_flags & STA_PS_POLLED)) {
/*
* This tx is because of a uAPSD trigger, determine more and
* EOSP bit. Set EOSP is queue is empty or sufficient frames is
* delivered for this trigger
*/
*flags |= WMI_DATA_HDR_FLAGS_TRIGGERED;
if (conn->sta_flags & STA_PS_APSD_EOSP)
*flags |= WMI_DATA_HDR_FLAGS_EOSP;
} else
*flags |= WMI_DATA_HDR_FLAGS_PSPOLLED;
spin_unlock_bh(&conn->lock);
return;
}
static inline bool _powersave_ap_tx_unicast(struct ath6kl_vif *vif,
struct sk_buff *skb, u32 *flags, struct ath6kl_sta **sta)
{
struct ethhdr *datap = (struct ethhdr *) skb->data;
struct ath6kl_sta *conn = NULL;
bool ps_queued = false;
conn = ath6kl_find_sta(vif, datap->h_dest);
if (!conn) {
dev_kfree_skb(skb);
/* Inform the caller that the skb is consumed */
return true;
}
*sta = conn;
if (conn->sta_flags & STA_PS_SLEEP) {
if (!((conn->sta_flags & STA_PS_POLLED) ||
(conn->sta_flags & STA_PS_APSD_TRIGGER))) {
__powersave_ap_tx_unicast_sleep(vif, conn, skb, flags);
ps_queued = true;
} else
__powersave_ap_tx_unicast_awake(vif, conn, flags);
}
return ps_queued;
}
static bool ath6kl_powersave_ap(struct ath6kl_vif *vif, struct sk_buff *skb,
u32 *flags,
struct ath6kl_sta **sta)
{
struct ethhdr *datap = (struct ethhdr *) skb->data;
bool ps_queued = false;
if (is_multicast_ether_addr(datap->h_dest))
ps_queued = _powersave_ap_tx_multicast(vif, skb, flags);
else
ps_queued = _powersave_ap_tx_unicast(vif, skb, flags, sta);
return ps_queued;
}
bool ath6kl_mgmt_powersave_ap(struct ath6kl_vif *vif,
u32 id,
u32 freq,
u32 wait,
const u8 *buf,
size_t len,
bool no_cck,
bool dont_wait_for_ack,
u32 *flags)
{
struct ieee80211_mgmt *mgmt;
struct ath6kl_sta *conn = NULL;
bool ps_queued = false, is_psq_empty = false;
int ret;
mgmt = (struct ieee80211_mgmt *)buf;
if (is_multicast_ether_addr(mgmt->da)) {
return false;
} else {
conn = ath6kl_find_sta(vif, mgmt->da);
if (!conn)
return false;
if (conn->sta_flags & STA_PS_SLEEP) {
if (!(conn->sta_flags & STA_PS_POLLED)) {
/* Queue the frames if the STA is sleeping */
spin_lock_bh(&conn->lock);
ath6kl_dbg(ATH6KL_DBG_POWERSAVE,
"%s: Mgmt aid %d sta_flags %x psq_data %d psq_mgmt %d\n",
__func__, conn->aid, conn->sta_flags,
!ath6kl_ps_queue_empty(&conn->psq_data),
!ath6kl_ps_queue_empty(&conn->psq_mgmt)
);
is_psq_empty = ath6kl_ps_queue_empty(
&conn->psq_data) &&
ath6kl_ps_queue_empty(&conn->psq_mgmt);
ret = ath6kl_ps_queue_enqueue_mgmt(
&conn->psq_mgmt,
buf,
len,
id,
freq,
wait,
no_cck,
dont_wait_for_ack);
spin_unlock_bh(&conn->lock);
if (ret == 0) {
/*
* If this is the first pkt getting
* queued for this STA, update the PVB
* for this STA.
*/
if (is_psq_empty)
ath6kl_wmi_set_pvb_cmd(
vif->ar->wmi,
vif->fw_vif_idx,
conn->aid, 1);
} else {
;
}
ps_queued = true;
} else {
/*
* This tx is because of a PsPoll.
* Determine if MoreData bit has to be set.
*/
spin_lock_bh(&conn->lock);
ath6kl_dbg(ATH6KL_DBG_POWERSAVE,
"%s: Mgmt aid %d sta_flags %x psq_data %d psq_mgmt %d\n",
__func__, conn->aid, conn->sta_flags,
!ath6kl_ps_queue_empty(&conn->psq_data),
!ath6kl_ps_queue_empty(&conn->psq_mgmt)
);
if (!ath6kl_ps_queue_empty(&conn->psq_data) ||
!ath6kl_ps_queue_empty(&conn->psq_mgmt))
*flags |= WMI_DATA_HDR_FLAGS_MORE;
spin_unlock_bh(&conn->lock);
}
}
}
return ps_queued;
}
/* Tx functions */
int ath6kl_control_tx(void *devt, struct sk_buff *skb,
enum htc_endpoint_id eid)
{
struct ath6kl *ar = devt;
int status = 0;
struct ath6kl_cookie *cookie = NULL;
spin_lock_bh(&ar->lock);
ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
"%s: skb=0x%p, len=0x%x eid =%d\n", __func__,
skb, skb->len, eid);
if (test_bit(WMI_CTRL_EP_FULL, &ar->flag) && (eid == ar->ctrl_ep)) {
/*
* Control endpoint is full, don't allocate resources, we
* are just going to drop this packet.
*/
cookie = NULL;
ath6kl_err("wmi ctrl ep full, dropping pkt : 0x%p, len:%d\n",
skb, skb->len);
} else
cookie = ath6kl_alloc_cookie(ar, COOKIE_TYPE_CTRL);
if (cookie == NULL) {
#ifdef ATH6KL_HSIC_RECOVER
if (ar->cookie_ctrl.cookie_fail_in_row >
MAX_COOKIE_FAIL_IN_ROW &&
ar->fw_crash_notify) {
ath6kl_err("control cookie fail %d time reset!\n",
ar->cookie_ctrl.cookie_fail_in_row);
ar->cookie_ctrl.cookie_fail_in_row = 0;
if (!test_and_set_bit(RECOVER_IN_PROCESS, &ar->flag)) {
ath6kl_info("%s schedule recover\n", __func__);
schedule_work(&ar->reset_cover_war_work);
}
}
#endif
spin_unlock_bh(&ar->lock);
status = -ENOMEM;
goto fail_ctrl_tx;
}
ar->tx_pending[eid]++;
if (eid != ar->ctrl_ep)
ar->total_tx_data_pend++;
spin_unlock_bh(&ar->lock);
cookie->skb = skb;
cookie->map_no = 0;
set_htc_pkt_info(cookie->htc_pkt, cookie, skb->data, skb->len,
eid, ATH6KL_CONTROL_PKT_TAG);
cookie->htc_pkt->skb = skb;
/* P2P Flowctrl */
if (ar->conf_flags & ATH6KL_CONF_ENABLE_FLOWCTRL) {
cookie->htc_pkt->connid = ATH6KL_P2P_FLOWCTRL_NULL_CONNID;
cookie->htc_pkt->recycle_count = 0;
}
/*null data's vif since it is not applied */
cookie->htc_pkt->vif = NULL;
/*
* This interface is asynchronous, if there is an error, cleanup
* will happen in the TX completion callback.
*/
ath6kl_htc_tx(ar->htc_target, cookie->htc_pkt);
return 0;
fail_ctrl_tx:
dev_kfree_skb(skb);
return status;
}
int ath6kl_data_tx(struct sk_buff *skb, struct net_device *dev,
bool bypass_tx_aggr)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct ath6kl_cookie *cookie = NULL;
enum htc_endpoint_id eid = ENDPOINT_UNUSED;
struct ath6kl_vif *vif = netdev_priv(dev);
u32 map_no = 0;
u16 htc_tag = ATH6KL_DATA_PKT_TAG;
u8 ac = 99 ; /* initialize to unmapped ac */
bool cookie_run_out, chk_adhoc_ps_mapping = false;
u32 wmi_data_flags = 0;
int ret, aggr_tx_status = AGGR_TX_UNKNOW;
struct ath6kl_sta *conn = NULL;
bool cookie_cnt_updated = false;
/* If target is not associated */
if (!test_bit(CONNECTED, &vif->flags) &&
!test_bit(TESTMODE_EPPING, &ar->flag)) {
dev_kfree_skb(skb);
return 0;
}
if (!test_bit(WMI_READY, &ar->flag) &&
!test_bit(TESTMODE_EPPING, &ar->flag)) {
goto fail_tx;
}
if ((ar->conf_flags & ATH6KL_CONF_SKB_DUP) &&
(skb_cloned(skb) || skb_shared(skb))) {
struct sk_buff *nskb;
nskb = skb_copy(skb, GFP_ATOMIC);
if (nskb == NULL)
goto fail_tx;
dev_kfree_skb_any(skb);
skb = nskb;
}
ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
"%s: skb=0x%p, data=0x%p, len=0x%x\n", __func__,
skb, skb->data, skb->len);
/* AP mode Power saving processing */
if (vif->nw_type == AP_NETWORK) {
if (ath6kl_powersave_ap(vif, skb, &wmi_data_flags, &conn))
return 0;
}
if (test_bit(WMI_ENABLED, &ar->flag)) {
if (skb_headroom(skb) < vif->needed_headroom) {
struct sk_buff *tmp_skb = ath6kl_buf_alloc(skb->len);
if (tmp_skb == NULL) {
vif->net_stats.tx_dropped++;
goto fail_tx;
}
skb_put(tmp_skb, skb->len);
memcpy(tmp_skb->data, skb->data, skb->len);
kfree_skb(skb);
skb = tmp_skb;
}
if (ath6kl_wmi_dix_2_dot3(ar->wmi, skb)) {
ath6kl_err("ath6kl_wmi_dix_2_dot3 failed\n");
goto fail_tx;
}
if (ath6kl_wmi_data_hdr_add(ar->wmi, skb, DATA_MSGTYPE,
wmi_data_flags, 0, 0, NULL,
vif->fw_vif_idx)) {
ath6kl_err("wmi_data_hdr_add failed\n");
goto fail_tx;
}
if ((vif->nw_type == ADHOC_NETWORK) &&
ar->ibss_ps_enable && test_bit(CONNECTED, &vif->flags))
chk_adhoc_ps_mapping = true;
else {
/* get the stream mapping */
ret = ath6kl_wmi_implicit_create_pstream(ar->wmi,
vif->fw_vif_idx, skb,
0, test_bit(WMM_ENABLED, &vif->flags),
&ac, &htc_tag);
if (ret)
goto fail_tx;
}
} else if (test_bit(TESTMODE_EPPING, &ar->flag)) {
struct epping_header *epping_hdr;
epping_hdr = (struct epping_header *)skb->data;
if (IS_EPPING_PACKET(epping_hdr)) {
ac = epping_hdr->stream_no_h;
/* some EPPING packets cannot be dropped no matter
* what access class it was sent on. Change the packet
* tag to guarantee it will not get dropped
*/
if (IS_EPING_PACKET_NO_DROP(epping_hdr))
htc_tag = ATH6KL_CONTROL_PKT_TAG;
if (ac == HCI_TRANSPORT_STREAM_NUM) {
goto fail_tx;
} else {
/* The payload of the frame is 32-bit aligned
* and thus the addition of the HTC header will
* mis-align the start of the HTC frame,
* the padding will be stripped off in the
* target */
if (EPPING_ALIGNMENT_PAD > 0)
skb_push(skb, EPPING_ALIGNMENT_PAD);
}
} else {
/* In loopback mode, drop non-loopback packet */
goto fail_tx;
}
} else
goto fail_tx;
if (test_bit(CONNECTED, &vif->flags) &&
(skb->protocol == cpu_to_be16(ETH_P_PAE)))
ath6kl_eapol_handshake_protect(vif, true);
/* TX A-MSDU */
if ((test_bit(AMSDU_ENABLED, &vif->flags)) &&
(!bypass_tx_aggr) &&
(vif->aggr_cntxt->tx_amsdu_enable) &&
(!chk_adhoc_ps_mapping) &&
(vif->nw_type & (INFRA_NETWORK | AP_NETWORK))) {
aggr_tx_status = aggr_tx(vif, conn, &skb);
if (aggr_tx_status == AGGR_TX_OK)
return 0;
else if (aggr_tx_status == AGGR_TX_DROP)
goto fail_tx;
WARN_ON(skb == NULL);
if ((vif->aggr_cntxt->tx_amsdu_seq_pkt) &&
(aggr_tx_status == AGGR_TX_BYPASS))
aggr_tx_flush(vif, conn);
}
spin_lock_bh(&ar->lock);
if (chk_adhoc_ps_mapping)
eid = ath6kl_ibss_map_epid(skb, dev, &map_no);
else
eid = ar->ac2ep_map[ac];
if (eid == 0 || eid == ENDPOINT_UNUSED) {
if ((ac == WMM_NUM_AC) &&
test_bit(TESTMODE_EPPING, &ar->flag)) {
/* for epping testing, the last AC maps to the control
* endpoint
*/
eid = ar->ctrl_ep;
} else {
ath6kl_err("eid %d is not mapped!\n", eid);
spin_unlock_bh(&ar->lock);
goto fail_tx;
}
}
/* allocate resource for this packet */
cookie_run_out = false;
if (htc_tag == ATH6KL_DATA_PKT_TAG) {
if (test_bit(MCC_ENABLED, &ar->flag)) {
if (vif->data_cookie_count <= MAX_VIF_COOKIE_NUM) {
cookie = ath6kl_alloc_cookie(ar,
COOKIE_TYPE_DATA);
}
} else {
cookie = ath6kl_alloc_cookie(ar, COOKIE_TYPE_DATA);
cookie_run_out = ath6kl_cookie_is_almost_full(ar,
COOKIE_TYPE_DATA);
}
if (cookie) {
cookie_cnt_updated = true;
vif->data_cookie_count++;
}
} else
cookie = ath6kl_alloc_cookie(ar, COOKIE_TYPE_CTRL);
/* update counts while the lock is held */
if (cookie) {
ar->tx_pending[eid]++;
ar->total_tx_data_pend++;
ar->cookie_data.cookie_fail_in_row = 0;
} else {
ar->cookie_data.cookie_fail_in_row++;
}
spin_unlock_bh(&ar->lock);
/* CR495283 */
if ((cookie_run_out) &&
(ar->ac_stream_active_num <= 1) &&
(!test_and_set_bit(NETQ_STOPPED, &vif->flags)))
netif_stop_queue(vif->ndev);
if (!cookie)
goto fail_tx;
if (!IS_ALIGNED((unsigned long) skb->data - HTC_HDR_LENGTH, 4) &&
skb_cloned(skb)) {
/*
* We will touch (move the buffer data to align it. Since the
* skb buffer is cloned and not only the header is changed, we
* have to copy it to allow the changes. Since we are copying
* the data here, we may as well align it by reserving suitable
* headroom to avoid the memmove in ath6kl_htc_tx_buf_align().
*/
struct sk_buff *nskb;
nskb = skb_copy_expand(skb, HTC_HDR_LENGTH, 0, GFP_ATOMIC);
if (nskb == NULL)
goto fail_tx;
kfree_skb(skb);
skb = nskb;
}
cookie->skb = skb;
cookie->map_no = map_no;
set_htc_pkt_info(cookie->htc_pkt, cookie, skb->data, skb->len,
eid, htc_tag);
cookie->htc_pkt->skb = skb;
ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, __func__, "tx ",
skb->data, skb->len);
/* P2P Flowctrl */
if (ar->conf_flags & ATH6KL_CONF_ENABLE_FLOWCTRL) {
cookie->htc_pkt->connid =
ath6kl_p2p_flowctrl_get_conn_id(vif, skb);
cookie->htc_pkt->recycle_count = 0;
ret = ath6kl_p2p_flowctrl_tx_schedule_pkt(ar, (void *)cookie);
if (ret == 0) /* Queue it */
return 0;
else if (ret < 0) /* Error, drop it. */
goto fail_tx;
}
cookie->htc_pkt->vif = vif;
ar->tx_on_vif |= (1 << vif->fw_vif_idx);
/*
* HTC interface is asynchronous, if this fails, cleanup will
* happen in the ath6kl_tx_complete callback.
*/
ath6kl_htc_tx(ar->htc_target, cookie->htc_pkt);
return 0;
fail_tx:
dev_kfree_skb(skb);
if (cookie) {
spin_lock_bh(&ar->lock);
if (cookie_cnt_updated)
vif->data_cookie_count--;
ath6kl_free_cookie(ar, cookie);
spin_unlock_bh(&ar->lock);
}
vif->net_stats.tx_dropped++;
vif->net_stats.tx_aborted_errors++;
return 0;
}
int ath6kl_start_tx(struct sk_buff *skb, struct net_device *dev)
{
/* Current design only aggr. the packets sent from the host. */
return ath6kl_data_tx(skb, dev, false);
}
/* indicate tx activity or inactivity on a WMI stream */
void ath6kl_indicate_tx_activity(void *devt, u8 traffic_class, bool active)
{
struct ath6kl *ar = devt;
enum htc_endpoint_id eid;
int i;
u8 num_stream_active;
eid = ar->ac2ep_map[traffic_class];
if (!test_bit(WMI_ENABLED, &ar->flag))
goto notify_htc;
spin_lock_bh(&ar->lock);
ar->ac_stream_active[traffic_class] = active;
if (active) {
/*
* Keep track of the active stream with the highest
* priority.
*/
if (ar->ac_stream_pri_map[traffic_class] >
ar->hiac_stream_active_pri)
/* set the new highest active priority */
ar->hiac_stream_active_pri =
ar->ac_stream_pri_map[traffic_class];
if (ath6kl_htc_change_credit_bypass(ar->htc_target,
traffic_class)) {
struct ath6kl_vif *vif;
vif = ath6kl_vif_first(ar);
spin_unlock_bh(&ar->lock);
if (vif)
ath6kl_wmi_set_credit_bypass(ar->wmi,
vif->fw_vif_idx,
ar->ac2ep_map[WMM_AC_BE], 0, 6);
spin_lock_bh(&ar->lock);
}
} else {
/*
* We may have to search for the next active stream
* that is the highest priority.
*/
if (ar->hiac_stream_active_pri ==
ar->ac_stream_pri_map[traffic_class]) {
/*
* The highest priority stream just went inactive
* reset and search for the "next" highest "active"
* priority stream.
*/
ar->hiac_stream_active_pri = 0;
for (i = 0; i < WMM_NUM_AC; i++) {
if (ar->ac_stream_active[i] &&
(ar->ac_stream_pri_map[i] >
ar->hiac_stream_active_pri))
/*
* Set the new highest active
* priority.
*/
ar->hiac_stream_active_pri =
ar->ac_stream_pri_map[i];
}
}
if (ath6kl_htc_change_credit_bypass(ar->htc_target,
traffic_class)) {
struct ath6kl_vif *vif;
vif = ath6kl_vif_first(ar);
spin_unlock_bh(&ar->lock);
if (vif)
ath6kl_wmi_set_credit_bypass(ar->wmi,
vif->fw_vif_idx,
ar->ac2ep_map[WMM_AC_BE],
1, 1);
spin_lock_bh(&ar->lock);
}
}
/* check the number of active stream */
num_stream_active = 0;
for (i = 0; i < WMM_NUM_AC; i++) {
if (ar->ac_stream_active[i] == true)
num_stream_active++;
}
ar->ac_stream_active_num = num_stream_active;
spin_unlock_bh(&ar->lock);
notify_htc:
/* notify HTC, this may cause credit distribution changes */
ath6kl_htc_indicate_activity_change(ar->htc_target, eid, active);
}
enum htc_send_full_action ath6kl_tx_queue_full(struct htc_target *target,
struct htc_packet *packet)
{
struct ath6kl *ar = target->dev->ar;
struct ath6kl_vif *vif;
enum htc_endpoint_id endpoint = packet->endpoint;
enum htc_send_full_action action = HTC_SEND_FULL_KEEP;
if (test_bit(TESTMODE_EPPING, &ar->flag)) {
int ac;
if (packet->info.tx.tag == ATH6KL_CONTROL_PKT_TAG) {
/* don't drop special control packets */
return HTC_SEND_FULL_KEEP;
}
ac = ar->ep2ac_map[endpoint];
/* for endpoint ping testing drop Best Effort and Background
* if any of the higher priority traffic is active */
if ((ar->ac_stream_active[WMM_AC_VO] ||
ar->ac_stream_active[WMM_AC_BE]) &&
((ac == WMM_AC_BE) || (ac == WMM_AC_BK))) {
return HTC_SEND_FULL_DROP;
} else {
spin_lock_bh(&ar->list_lock);
list_for_each_entry(vif, &ar->vif_list, list) {
/* keep but stop the netqueues */
set_bit(NETQ_STOPPED, &vif->flags);
netif_stop_queue(vif->ndev);
}
spin_unlock_bh(&ar->list_lock);
return HTC_SEND_FULL_KEEP;
}
}
if (endpoint == ar->ctrl_ep) {
/*
* Under normal WMI if this is getting full, then something
* is running rampant the host should not be exhausting the
* WMI queue with too many commands the only exception to
* this is during testing using endpointping.
*/
spin_lock_bh(&ar->lock);
set_bit(WMI_CTRL_EP_FULL, &ar->flag);
ath6kl_err("wmi ctrl ep is full\n");
#ifdef ATH6KL_HSIC_RECOVER
if (!test_and_set_bit(RECOVER_IN_PROCESS, &ar->flag) &&
ar->fw_crash_notify) {
ath6kl_info("%s schedule recover work\n", __func__);
schedule_work(&ar->reset_cover_war_work);
}
#endif
spin_unlock_bh(&ar->lock);
return action;
}
if ((packet->info.tx.tag == ATH6KL_CONTROL_PKT_TAG) ||
(packet->info.tx.tag == ATH6KL_PRI_DATA_PKT_TAG))
return action;
/*
* The last MAX_HI_COOKIE_NUM "batch" of cookies are reserved for
* the highest active stream.
*/
if (ar->ac_stream_pri_map[ar->ep2ac_map[endpoint]] <
ar->hiac_stream_active_pri &&
ar->cookie_data.cookie_count <=
target->endpoint[endpoint].tx_drop_packet_threshold){
/*
* Give preference to the highest priority stream by
* dropping the packets which overflowed.
*/
action = HTC_SEND_FULL_DROP;
} else if (ar->vif_max > 1) { /* WAR: EV108182 */
int i, ongoing_tx = 0;
for (i = 0; i < ar->vif_max; i++) {
if (ar->tx_on_vif & (1 << i))
ongoing_tx++;
}
if (ongoing_tx > 1)
return action;
}
/* FIXME: Locking */
spin_lock_bh(&ar->list_lock);
list_for_each_entry(vif, &ar->vif_list, list) {
if (vif->nw_type == ADHOC_NETWORK ||
action != HTC_SEND_FULL_DROP) {
spin_unlock_bh(&ar->list_lock);
if (ath6kl_htc_stop_netif_queue_full(ar->htc_target) ||
vif->nw_type == INFRA_NETWORK ||
ar->ac_stream_active_num == 1) {
set_bit(NETQ_STOPPED, &vif->flags);
netif_stop_queue(vif->ndev);
}
spin_lock_bh(&ar->list_lock);
}
}
spin_unlock_bh(&ar->list_lock);
return action;
}
/* TODO this needs to be looked at */
static void ath6kl_tx_clear_node_map(struct ath6kl_vif *vif,
enum htc_endpoint_id eid, u32 map_no)
{
struct ath6kl *ar = vif->ar;
u32 i;
if (vif->nw_type != ADHOC_NETWORK)
return;
if (!ar->ibss_ps_enable)
return;
if (eid == ar->ctrl_ep)
return;
if (map_no == 0)
return;
map_no--;
ar->node_map[map_no].tx_pend--;
if (ar->node_map[map_no].tx_pend)
return;
if (map_no != (ar->node_num - 1))
return;
for (i = ar->node_num; i > 0; i--) {
if (ar->node_map[i - 1].tx_pend)
break;
memset(&ar->node_map[i - 1], 0,
sizeof(struct ath6kl_node_mapping));
ar->node_num--;
}
}
void ath6kl_tx_complete(struct htc_target *target,
struct list_head *packet_queue)
{
struct ath6kl *ar = target->dev->ar;
struct sk_buff_head skb_queue;
struct htc_packet *packet = NULL;
struct sk_buff *skb;
struct ath6kl_cookie *ath6kl_cookie;
u32 map_no = 0;
int status;
enum htc_endpoint_id eid = 0;
bool wake_event = false;
bool flushing[ATH6KL_VIF_MAX] = {false};
u8 if_idx;
struct ath6kl_vif *vif = NULL;
struct htc_endpoint *endpoint = NULL;
int txq_depth;
skb_queue_head_init(&skb_queue);
/* lock the driver as we update internal state */
spin_lock_bh(&ar->lock);
/* reap completed packets */
while (!list_empty(packet_queue)) {
packet = list_first_entry(packet_queue, struct htc_packet,
list);
list_del(&packet->list);
ath6kl_cookie = (struct ath6kl_cookie *)packet->pkt_cntxt;
if (!ath6kl_cookie)
goto fatal;
status = packet->status;
skb = ath6kl_cookie->skb;
eid = packet->endpoint;
map_no = ath6kl_cookie->map_no;
if (!skb || !skb->data)
goto fatal;
if (eid == ENDPOINT_UNUSED || eid == ENDPOINT_MAX)
goto fatal;
__skb_queue_tail(&skb_queue, skb);
if (!status && (packet->act_len != skb->len))
goto fatal;
ar->tx_pending[eid]--;
if (!test_bit(TESTMODE_EPPING, &ar->flag)) {
if (eid != ar->ctrl_ep)
ar->total_tx_data_pend--;
if (eid == ar->ctrl_ep) {
if (test_bit(WMI_CTRL_EP_FULL, &ar->flag))
clear_bit(WMI_CTRL_EP_FULL, &ar->flag);
if (ar->tx_pending[eid] == 0)
wake_event = true;
}
if (eid == ar->ctrl_ep) {
if_idx = wmi_cmd_hdr_get_if_idx(
(struct wmi_cmd_hdr *) packet->buf);
} else {
if_idx = wmi_data_hdr_get_if_idx(
(struct wmi_data_hdr *) packet->buf);
}
} else {
/* The epping packet is not coming from wmi,
* skip the index retrival, epping assume using the
* first if_idx anyway
*/
if_idx = 0;
}
vif = ath6kl_get_vif_by_index(ar, if_idx);
if (!vif) {
ath6kl_free_cookie(ar, ath6kl_cookie);
continue;
}
ar->tx_on_vif &= ~(1 << if_idx);
if (status) {
if (status == -ECANCELED)
/* a packet was flushed */
flushing[if_idx] = true;
vif->net_stats.tx_errors++;
if (status == -ETXTBSY)
ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
"wmi/tx deepsleep syspend\n");
else if (status != -ENOSPC &&
status != -ECANCELED &&
status != -ENOMEM)
ath6kl_debug("tx complete error: %d\n", status);
ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
"%s: skb=0x%p data=0x%p len=0x%x eid=%d %s\n",
__func__, skb, packet->buf, packet->act_len,
eid, "error!");
} else {
ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
"%s: skb=0x%p data=0x%p len=0x%x eid=%d %s\n",
__func__, skb, packet->buf, packet->act_len,
eid, "OK");
flushing[if_idx] = false;
vif->net_stats.tx_packets++;
vif->net_stats.tx_bytes += skb->len;
}
ath6kl_tx_clear_node_map(vif, eid, map_no);
if (ath6kl_cookie->htc_pkt->info.tx.tag ==
ATH6KL_DATA_PKT_TAG) {
vif->data_cookie_count--;
if (vif->data_cookie_count < 0) {
vif->data_cookie_count = 0;
ath6kl_err("Error, data_cookie_count unsync\n");
}
}
ath6kl_free_cookie(ar, ath6kl_cookie);
if (test_bit(NETQ_STOPPED, &vif->flags))
clear_bit(NETQ_STOPPED, &vif->flags);
}
spin_unlock_bh(&ar->lock);
__skb_queue_purge(&skb_queue);
if (test_bit(MCC_ENABLED, &ar->flag)) {
endpoint = &ar->htc_target->endpoint[eid];
/*if (ar && endpoint && packet && ar->htc_target) {*/
if (endpoint && packet && ar->htc_target) {
struct list_head *tx_queue;
tx_queue = &endpoint->txq;
if (tx_queue && vif && !flushing[vif->fw_vif_idx]) {
spin_lock_bh(&ar->htc_target->tx_lock);
txq_depth = get_queue_depth(tx_queue);
spin_unlock_bh(&ar->htc_target->tx_lock);
if (txq_depth < ATH6KL_P2P_FLOWCTRL_REQ_STEP)
ath6kl_p2p_flowctrl_netif_transition(
ar,
ATH6KL_P2P_FLOWCTRL_NETIF_WAKE);
}
}
} else {
/* FIXME: Locking */
spin_lock_bh(&ar->list_lock);
list_for_each_entry(vif, &ar->vif_list, list) {
if ((test_bit(CONNECTED, &vif->flags) ||
test_bit(TESTMODE_EPPING, &ar->flag)) &&
!flushing[vif->fw_vif_idx]) {
spin_unlock_bh(&ar->list_lock);
netif_wake_queue(vif->ndev);
spin_lock_bh(&ar->list_lock);
}
}
spin_unlock_bh(&ar->list_lock);
}
if (wake_event)
wake_up(&ar->event_wq);
return;
fatal:
WARN_ON(1);
spin_unlock_bh(&ar->lock);
return;
}
static void ath6kl_flush_data_in_ep_by_if(struct ath6kl_vif *vif)
{
struct ath6kl *ar = vif->ar;
struct htc_packet *packet, *tmp_pkt;
struct htc_endpoint *endpoint;
struct list_head *tx_queue, container;
int eid;
INIT_LIST_HEAD(&container);
spin_lock_bh(&ar->htc_target->tx_lock);
for (eid = ENDPOINT_2; eid <= ENDPOINT_5; eid++) {
endpoint = &ar->htc_target->endpoint[eid];
tx_queue = &endpoint->txq;
if (list_empty(tx_queue))
continue;
list_for_each_entry_safe(packet,
tmp_pkt,
tx_queue,
list) {
if (packet->vif != vif)
continue;
list_del(&packet->list);
packet->status = 0;
list_add_tail(
&packet->list,
&container);
}
}
spin_unlock_bh(&ar->htc_target->tx_lock);
ath6kl_tx_complete(ar->htc_target, &container);
return;
}
void ath6kl_tx_data_cleanup_by_if(struct ath6kl_vif *vif)
{
ath6kl_flush_data_in_ep_by_if(vif);
ath6kl_p2p_flowctrl_conn_list_cleanup_by_if(vif);
}
void ath6kl_tx_data_cleanup(struct ath6kl *ar)
{
int i;
/* flush all the data (non-control) streams */
for (i = 0; i < WMM_NUM_AC; i++)
ath6kl_htc_flush_txep(ar->htc_target, ar->ac2ep_map[i],
ATH6KL_DATA_PKT_TAG);
ath6kl_p2p_flowctrl_conn_list_cleanup(ar);
}
/* Rx functions */
#ifdef CONFIG_ANDROID
static void ath6kl_eapol_send(struct work_struct *work)
{
struct ath6kl_vif *vif = NULL;
if (!work)
goto FAILED;
vif = container_of(work, struct ath6kl_vif,
work_eapol_send.work);
if (!vif)
goto FAILED;
spin_lock_bh(&vif->pend_skb_lock);
if (!vif->pend_skb) {
clear_bit(FIRST_EAPOL_PENDSENT, &vif->flags);
spin_unlock_bh(&vif->pend_skb_lock);
goto FAILED;
}
if (!(vif->pend_skb->dev->flags & IFF_UP)) {
dev_kfree_skb(vif->pend_skb);
vif->pend_skb = NULL;
clear_bit(FIRST_EAPOL_PENDSENT, &vif->flags);
spin_unlock_bh(&vif->pend_skb_lock);
return;
}
netif_rx_ni(vif->pend_skb);
vif->pend_skb = NULL;
clear_bit(FIRST_EAPOL_PENDSENT, &vif->flags);
spin_unlock_bh(&vif->pend_skb_lock);
return;
FAILED:
clear_bit(FIRST_EAPOL_PENDSENT, &vif->flags);
ath6kl_err("%s failed\n", __func__);
return;
}
#endif
static void ath6kl_deliver_frames_to_nw_stack(struct net_device *dev,
struct sk_buff *skb)
{
#define ETHERTYPE_IP 0x0800 /* IP protocol */
#define IP_PROTO_UDP 0x11 /* UDP protocol */
struct ath6kl_vif *vif = netdev_priv(dev);
if (!skb)
return;
skb->dev = dev;
if (!(skb->dev->flags & IFF_UP)) {
dev_kfree_skb(skb);
return;
}
/* Handle de-aggregated IntraBss's AMSDU frame here. */
if (vif->nw_type == AP_NETWORK) {
struct ethhdr *datap = (struct ethhdr *) skb->data;
if (ath6kl_find_sta(vif, datap->h_dest)) {
if (vif->intra_bss)
ath6kl_data_tx(skb, dev, true);
else
dev_kfree_skb(skb);
return;
}
}
skb->protocol = eth_type_trans(skb, skb->dev);
if (skb->protocol == cpu_to_be16(ETH_P_PAE)) {
#ifdef CONFIG_ANDROID
struct ath6kl *ar = vif->ar;
if (test_bit(CONNECT_HANDSHAKE_PROTECT, &vif->flags) &&
(ar->wiphy->flags & WIPHY_FLAG_SUPPORTS_FW_ROAM)) {
if (vif->pend_skb != NULL)
ath6kl_flush_pend_skb(vif);
if (test_bit(FIRST_EAPOL_PENDSENT, &vif->flags)) {
vif->pend_skb = skb;
INIT_DELAYED_WORK(&vif->work_eapol_send,
ath6kl_eapol_send);
schedule_delayed_work(&vif->work_eapol_send,
ATH6KL_EAPOL_DELAY_REPORT_IN_HANDSHAKE);
return;
}
} else
#endif
if (test_bit(CONNECTED, &vif->flags))
ath6kl_eapol_handshake_protect(vif, false);
}
/*
#if ((LINUX_VERSION_CODE >= KERNEL_VERSION(3, 2, 0)) && \
(LINUX_VERSION_CODE < KERNEL_VERSION(3, 3, 0)))
*/
#ifdef CONFIG_ATH6KL_UDP_TPUT_WAR
if (skb->protocol == htons(ETHERTYPE_IP)) {
struct ethhdr *eth = eth_hdr(skb);
struct iphdr *ip_hdr =
(struct iphdr *)((u8 *)eth + sizeof(struct ethhdr));
if (ip_hdr->protocol == IP_PROTO_UDP) {
struct sk_buff *new_skb;
new_skb = dev_alloc_skb(skb->len+ETH_HLEN);
/* If we can't allocate a new skb,
* just indicate the original skb.
*/
if (new_skb == NULL) {
netif_rx_ni(skb);
} else {
skb_put(new_skb, skb->len+ETH_HLEN);
memcpy(new_skb->data, eth, skb->len+ETH_HLEN);
new_skb->dev = dev;
new_skb->protocol =
eth_type_trans(new_skb, new_skb->dev);
dev_kfree_skb(skb);
netif_rx_ni(new_skb);
}
return;
}
}
#endif
netif_rx_ni(skb);
}
static void ath6kl_alloc_netbufs(struct sk_buff_head *q, u16 num)
{
struct sk_buff *skb;
while (num) {
skb = ath6kl_buf_alloc(ATH6KL_BUFFER_SIZE);
if (!skb) {
ath6kl_err("netbuf allocation failed\n");
return;
}
skb_queue_tail(q, skb);
num--;
}
}
static struct sk_buff *aggr_get_free_skb(struct aggr_conn_info *aggr_conn)
{
struct aggr_info *aggr = aggr_conn->aggr_cntxt;
struct sk_buff *skb = NULL;
WARN_ON(!aggr);
if (skb_queue_len(&aggr->free_q) < (AGGR_NUM_OF_FREE_NETBUFS >> 2))
ath6kl_alloc_netbufs(&aggr->free_q, AGGR_NUM_OF_FREE_NETBUFS);
skb = skb_dequeue(&aggr->free_q);
return skb;
}
void ath6kl_rx_refill(struct htc_target *target, enum htc_endpoint_id endpoint)
{
struct ath6kl *ar = target->dev->ar;
struct sk_buff *skb;
int rx_buf;
int n_buf_refill;
struct htc_packet *packet;
struct list_head queue;
n_buf_refill = ATH6KL_MAX_RX_BUFFERS -
ath6kl_htc_get_rxbuf_num(ar->htc_target, endpoint);
if (n_buf_refill <= 0)
return;
INIT_LIST_HEAD(&queue);
ath6kl_dbg(ATH6KL_DBG_WLAN_RX,
"%s: providing htc with %d buffers at eid=%d\n",
__func__, n_buf_refill, endpoint);
for (rx_buf = 0; rx_buf < n_buf_refill; rx_buf++) {
skb = ath6kl_buf_alloc(ATH6KL_BUFFER_SIZE);
if (!skb)
break;
packet = (struct htc_packet *) skb->head;
if (!IS_ALIGNED((unsigned long) skb->data, 4)) {
size_t len = skb_headlen(skb);
skb->data = PTR_ALIGN(skb->data - 4, 4);
skb_set_tail_pointer(skb, len);
}
set_htc_rxpkt_info(packet, skb, skb->data,
ATH6KL_BUFFER_SIZE, endpoint);
packet->skb = skb;
list_add_tail(&packet->list, &queue);
}
if (!list_empty(&queue))
ath6kl_htc_add_rxbuf_multiple(ar->htc_target, &queue);
}
void ath6kl_refill_amsdu_rxbufs(struct ath6kl *ar, int count)
{
struct htc_packet *packet;
struct sk_buff *skb;
while (count) {
skb = ath6kl_buf_alloc(ATH6KL_AMSDU_BUFFER_SIZE);
if (!skb)
return;
packet = (struct htc_packet *) skb->head;
if (!IS_ALIGNED((unsigned long) skb->data, 4)) {
size_t len = skb_headlen(skb);
skb->data = PTR_ALIGN(skb->data - 4, 4);
skb_set_tail_pointer(skb, len);
}
set_htc_rxpkt_info(packet, skb, skb->data,
ATH6KL_AMSDU_BUFFER_SIZE, 0);
packet->skb = skb;
spin_lock_bh(&ar->lock);
list_add_tail(&packet->list, &ar->amsdu_rx_buffer_queue);
spin_unlock_bh(&ar->lock);
count--;
}
}
/*
* Callback to allocate a receive buffer for a pending packet. We use a
* pre-allocated list of buffers of maximum AMSDU size (4K).
*/
struct htc_packet *ath6kl_alloc_amsdu_rxbuf(struct htc_target *target,
enum htc_endpoint_id endpoint,
int len)
{
struct ath6kl *ar = target->dev->ar;
struct htc_packet *packet = NULL;
struct list_head *pkt_pos;
int refill_cnt = 0, depth = 0;
ath6kl_dbg(ATH6KL_DBG_WLAN_RX, "%s: eid=%d, len:%d\n",
__func__, endpoint, len);
if ((len <= ATH6KL_BUFFER_SIZE) ||
(len > ATH6KL_AMSDU_BUFFER_SIZE))
return NULL;
spin_lock_bh(&ar->lock);
if (list_empty(&ar->amsdu_rx_buffer_queue)) {
spin_unlock_bh(&ar->lock);
refill_cnt = ATH6KL_MAX_AMSDU_RX_BUFFERS;
goto refill_buf;
}
packet = list_first_entry(&ar->amsdu_rx_buffer_queue,
struct htc_packet, list);
list_del(&packet->list);
list_for_each(pkt_pos, &ar->amsdu_rx_buffer_queue)
depth++;
refill_cnt = ATH6KL_MAX_AMSDU_RX_BUFFERS - depth;
spin_unlock_bh(&ar->lock);
/* set actual endpoint ID */
packet->endpoint = endpoint;
refill_buf:
if (refill_cnt >= ATH6KL_AMSDU_REFILL_THRESHOLD)
ath6kl_refill_amsdu_rxbufs(ar, refill_cnt);
return packet;
}
static void aggr_slice_amsdu(struct aggr_conn_info *aggr_conn,
struct rxtid *rxtid, struct sk_buff *skb)
{
struct sk_buff *new_skb;
struct ethhdr *hdr;
u16 frame_8023_len, payload_8023_len, mac_hdr_len, amsdu_len;
u8 *framep;
mac_hdr_len = sizeof(struct ethhdr);
framep = skb->data + mac_hdr_len;
amsdu_len = skb->len - mac_hdr_len;
while (amsdu_len > mac_hdr_len) {
hdr = (struct ethhdr *) framep;
payload_8023_len = ntohs(hdr->h_proto);
if (payload_8023_len < MIN_MSDU_SUBFRAME_PAYLOAD_LEN ||
payload_8023_len > MAX_MSDU_SUBFRAME_PAYLOAD_LEN) {
ath6kl_err("802.3 AMSDU frame bound check failed. len %d\n",
payload_8023_len);
break;
}
frame_8023_len = payload_8023_len + mac_hdr_len;
new_skb = aggr_get_free_skb(aggr_conn);
if (!new_skb) {
ath6kl_err("no buffer available\n");
break;
}
memcpy(new_skb->data, framep, frame_8023_len);
skb_put(new_skb, frame_8023_len);
if (ath6kl_wmi_dot3_2_dix(new_skb)) {
ath6kl_err("dot3_2_dix error\n");
dev_kfree_skb(new_skb);
break;
}
skb_queue_tail(&rxtid->q, new_skb);
/* Is this the last subframe within this aggregate ? */
if ((amsdu_len - frame_8023_len) == 0)
break;
/* Add the length of A-MSDU subframe padding bytes -
* Round to nearest word.
*/
frame_8023_len = ALIGN(frame_8023_len, 4);
framep += frame_8023_len;
amsdu_len -= frame_8023_len;
}
dev_kfree_skb(skb);
}
static void aggr_deque_frms(struct aggr_conn_info *aggr_conn, u8 tid,
u16 seq_no, u8 order)
{
struct sk_buff *skb;
struct rxtid *rxtid;
struct skb_hold_q *node;
u16 idx, idx_end, seq_end;
struct rxtid_stats *stats;
struct net_device *dev;
if (!aggr_conn)
return;
rxtid = AGGR_GET_RXTID(aggr_conn, tid);
stats = AGGR_GET_RXTID_STATS(aggr_conn, tid);
idx = AGGR_WIN_IDX(rxtid->seq_next, rxtid->hold_q_sz);
/*
* idx_end is typically the last possible frame in the window,
* but changes to 'the' seq_no, when BAR comes. If seq_no
* is non-zero, we will go up to that and stop.
* Note: last seq no in current window will occupy the same
* index position as index that is just previous to start.
* An imp point : if win_sz is 7, for seq_no space of 4095,
* then, there would be holes when sequence wrap around occurs.
* Target should judiciously choose the win_sz, based on
* this condition. For 4095, (TID_WINDOW_SZ = 2 x win_sz
* 2, 4, 8, 16 win_sz works fine).
* We must deque from "idx" to "idx_end", including both.
*/
seq_end = seq_no ? seq_no : rxtid->seq_next;
idx_end = AGGR_WIN_IDX(seq_end, rxtid->hold_q_sz);
spin_lock_bh(&rxtid->lock);
do {
node = &rxtid->hold_q[idx];
if ((order == 1) && (!node->skb))
break;
if (node->skb) {
if (node->is_amsdu)
aggr_slice_amsdu(aggr_conn, rxtid, node->skb);
else
skb_queue_tail(&rxtid->q, node->skb);
node->skb = NULL;
} else
stats->num_hole++;
rxtid->seq_next = ATH6KL_NEXT_SEQ_NO(rxtid->seq_next);
idx = AGGR_WIN_IDX(rxtid->seq_next, rxtid->hold_q_sz);
} while (idx != idx_end);
stats->num_delivered += skb_queue_len(&rxtid->q);
WARN_ON(!aggr_conn->dev);
dev = aggr_conn->dev;
while ((skb = skb_dequeue(&rxtid->q)))
ath6kl_deliver_frames_to_nw_stack(dev, skb);
spin_unlock_bh(&rxtid->lock);
}
static bool aggr_process_recv_frm(struct ath6kl *ar,
struct aggr_conn_info *aggr_conn,
u8 tid, u16 seq_no,
bool is_amsdu, struct sk_buff *frame)
{
struct rxtid *rxtid;
struct rxtid_stats *stats;
struct sk_buff *skb;
struct skb_hold_q *node;
u16 idx, st, cur, end;
bool is_queued = false;
u16 extended_end;
bool drop_it = false;
rxtid = AGGR_GET_RXTID(aggr_conn, tid);
stats = AGGR_GET_RXTID_STATS(aggr_conn, tid);
stats->num_into_aggr++;
if (!rxtid->aggr) {
if (is_amsdu) {
struct net_device *dev;
aggr_slice_amsdu(aggr_conn, rxtid, frame);
is_queued = true;
stats->num_amsdu++;
WARN_ON(!aggr_conn->dev);
dev = aggr_conn->dev;
while ((skb = skb_dequeue(&rxtid->q)))
ath6kl_deliver_frames_to_nw_stack(dev,
skb);
}
return is_queued;
}
spin_lock_bh(&rxtid->lock);
if (rxtid->sync_next_seq == true) {
rxtid->seq_next = seq_no;
rxtid->sync_next_seq = false;
}
/* Check the incoming sequence no, if it's in the window */
st = rxtid->seq_next;
cur = seq_no;
end = (st + rxtid->hold_q_sz-1) & ATH6KL_MAX_SEQ_NO;
if (((st < end) && (cur < st || cur > end)) ||
((st > end) && (cur > end) && (cur < st))) {
extended_end = (end + rxtid->hold_q_sz) &
ATH6KL_MAX_SEQ_NO;
if (((end < extended_end) &&
(cur < end || cur > extended_end)) ||
((end > extended_end) && (cur > extended_end) &&
(cur < end))) {
u16 range_val = ((cur-st) & ATH6KL_MAX_SEQ_NO);
ath6kl_dbg(ATH6KL_DBG_AGGR,
"%s[%d] range_val=%d(%d),st=%d,cur=%d,tid=%d\n",
__func__, __LINE__, range_val, (rxtid->hold_q_sz << 1),
st, cur, tid);
if ((range_val >= (rxtid->hold_q_sz << 1)) &&
(range_val <=
(ATH6KL_MAX_SEQ_NO-(rxtid->hold_q_sz << 1)+1))) {
ath6kl_dbg(ATH6KL_DBG_AGGR, "%s[%d] chase seq\n",
__func__, __LINE__);
spin_unlock_bh(&rxtid->lock);
aggr_deque_frms(aggr_conn, tid, 0, 0);
spin_lock_bh(&rxtid->lock);
rxtid->seq_next =
(cur - rxtid->hold_q_sz) &
ATH6KL_MAX_SEQ_NO;
} else {
ath6kl_dbg(ATH6KL_DBG_AGGR, "%s[%d] old seq\n",
__func__, __LINE__);
}
drop_it = true;
} else {
/*
* Dequeue only those frames that are outside the
* new shifted window.
*/
st = (cur - (rxtid->hold_q_sz-1)) & ATH6KL_MAX_SEQ_NO;
spin_unlock_bh(&rxtid->lock);
aggr_deque_frms(aggr_conn, tid, st, 0);
spin_lock_bh(&rxtid->lock);
}
stats->num_oow++;
}
if ((drop_it == true) &&
!(ar->conf_flags & ATH6KL_CONF_DISABLE_RX_AGGR_DROP)) {
dev_kfree_skb(frame);
is_queued = true;
spin_unlock_bh(&rxtid->lock);
return is_queued;
}
idx = AGGR_WIN_IDX(seq_no, rxtid->hold_q_sz);
node = &rxtid->hold_q[idx];
/*
* Is the cur frame duplicate or something beyond our window(hold_q
* -> which is 2x, already)?
*
* 1. Duplicate is easy - drop incoming frame.
* 2. Not falling in current sliding window.
* 2a. is the frame_seq_no preceding current tid_seq_no?
* -> drop the frame. perhaps sender did not get our ACK.
* this is taken care of above.
* 2b. is the frame_seq_no beyond window(st, TID_WINDOW_SZ);
* -> Taken care of it above, by moving window forward.
*/
dev_kfree_skb(node->skb);
stats->num_dups++;
node->skb = frame;
is_queued = true;
node->is_amsdu = is_amsdu;
node->seq_no = seq_no;
if (node->is_amsdu)
stats->num_amsdu++;
else
stats->num_mpdu++;
spin_unlock_bh(&rxtid->lock);
aggr_deque_frms(aggr_conn, tid, 0, 1);
spin_lock_bh(&rxtid->lock);
if (rxtid->tid_timer_scheduled &&
rxtid->timerwait_seq_num != rxtid->seq_next) {
del_timer(&rxtid->tid_timer);
rxtid->tid_timer_scheduled = false;
rxtid->continuous_count = 0;
}
if (!rxtid->tid_timer_scheduled) {
for (idx = 0 ; idx < rxtid->hold_q_sz; idx++) {
if (rxtid->hold_q[idx].skb) {
rxtid->issue_timer_seq =
rxtid->hold_q[idx].seq_no;
/*
* There is a frame in the queue and no
* timer so start a timer to ensure that
* the frame doesn't remain stuck
* forever.
*/
rxtid->tid_timer_scheduled = true;
rxtid->timerwait_seq_num = rxtid->seq_next;
rxtid->continuous_count++;
mod_timer(&rxtid->tid_timer,
(jiffies +
msecs_to_jiffies(
aggr_conn->tid_timeout_setting[tid])));
break;
}
}
}
spin_unlock_bh(&rxtid->lock);
return is_queued;
}
void ath6kl_uapsd_trigger_frame_rx(struct ath6kl_vif *vif,
struct ath6kl_sta *conn)
{
bool is_psq_empty;
bool is_psq_empty_at_start;
u32 num_frames_to_deliver;
struct ath6kl_ps_buf_desc *ps_buf;
/* If the APSD q for this STA is not empty, dequeue and send a pkt from
* the head of the q. Also update the More data bit in the WMI_DATA_HDR
* if there are more pkts for this STA in the APSD q. If there are
* no more pkts for this STA, update the APSD bitmap for this STA.
*/
num_frames_to_deliver = (conn->apsd_info >> 4) & 0xF;
/* Number of frames to send in a service period is indicated by
* the station in the QOS_INFO of the association request
* If it is zero, send all frames
*/
if (!num_frames_to_deliver)
num_frames_to_deliver = 0xFFFF;
spin_lock_bh(&conn->lock);
ath6kl_dbg(ATH6KL_DBG_POWERSAVE,
"%s: TriggerRx aid %d sta_flags %x apsd_info %d psq_data %d psq_mgmt %d\n",
__func__, conn->aid, conn->sta_flags, conn->apsd_info,
!ath6kl_ps_queue_empty(&conn->psq_data),
!ath6kl_ps_queue_empty(&conn->psq_mgmt));
is_psq_empty = ath6kl_ps_queue_empty(&conn->psq_data) &&
ath6kl_ps_queue_empty(&conn->psq_mgmt);
spin_unlock_bh(&conn->lock);
is_psq_empty_at_start = is_psq_empty;
while ((!is_psq_empty) && (num_frames_to_deliver)) {
spin_lock_bh(&conn->lock);
if (!ath6kl_ps_queue_empty(&conn->psq_mgmt)) {
struct ieee80211_mgmt *mgmt;
ps_buf = ath6kl_ps_queue_dequeue(&conn->psq_mgmt);
is_psq_empty = ath6kl_ps_queue_empty(&conn->psq_data) &&
ath6kl_ps_queue_empty(&conn->psq_mgmt);
spin_unlock_bh(&conn->lock);
/* Set the STA flag to Trigger delivery,
* so that the frame will go out
*/
conn->sta_flags |= STA_PS_APSD_TRIGGER;
num_frames_to_deliver--;
/* Last frame in the service period,
* set EOSP or queue empty
*/
if ((is_psq_empty) ||
(!num_frames_to_deliver))
conn->sta_flags |= STA_PS_APSD_EOSP;
mgmt = (struct ieee80211_mgmt *) ps_buf->buf;
if (ps_buf->buf + ps_buf->len >=
mgmt->u.probe_resp.variable &&
ieee80211_is_probe_resp(mgmt->frame_control))
ath6kl_wmi_send_go_probe_response_cmd(
vif->ar->wmi,
vif,
ps_buf->buf,
ps_buf->len,
ps_buf->freq);
else
ath6kl_wmi_send_action_cmd(vif->ar->wmi,
vif->fw_vif_idx,
ps_buf->id,
ps_buf->freq,
ps_buf->wait,
ps_buf->buf,
ps_buf->len);
kfree(ps_buf);
conn->sta_flags &= ~(STA_PS_APSD_TRIGGER);
conn->sta_flags &= ~(STA_PS_APSD_EOSP);
} else {
ps_buf = ath6kl_ps_queue_dequeue(&conn->psq_data);
is_psq_empty = ath6kl_ps_queue_empty(&conn->psq_data) &&
ath6kl_ps_queue_empty(&conn->psq_mgmt);
spin_unlock_bh(&conn->lock);
if (ps_buf) {
/* Set the STA flag to Trigger delivery,
* so that the frame will go out
*/
conn->sta_flags |= STA_PS_APSD_TRIGGER;
num_frames_to_deliver--;
/* Last frame in the service period,
* set EOSP or queue empty
*/
if ((is_psq_empty) ||
(!num_frames_to_deliver))
conn->sta_flags |= STA_PS_APSD_EOSP;
WARN_ON(!ps_buf->skb);
ath6kl_data_tx(ps_buf->skb, vif->ndev, true);
kfree(ps_buf);
conn->sta_flags &= ~(STA_PS_APSD_TRIGGER);
conn->sta_flags &= ~(STA_PS_APSD_EOSP);
}
}
}
if (is_psq_empty) {
ath6kl_wmi_set_pvb_cmd(vif->ar->wmi,
vif->fw_vif_idx, conn->aid, 0);
if (is_psq_empty_at_start)
ath6kl_wmi_set_apsd_buffered_traffic_cmd(vif->ar->wmi,
vif->fw_vif_idx, conn->aid, 0,
WMI_AP_APSD_NO_DELIVERY_FRAMES_FOR_THIS_TRIGGER
);
else
ath6kl_wmi_set_apsd_buffered_traffic_cmd(vif->ar->wmi,
vif->fw_vif_idx, conn->aid, 0,
0);
}
return;
}
static inline struct ath6kl_sta *_powersave_ap_rx(struct ath6kl_vif *vif,
struct sk_buff *skb, int len,
bool ps_state, bool trigger_state)
{
struct ath6kl *ar = vif->ar;
struct ath6kl_sta *conn;
struct ethhdr *datap = NULL;
bool prev_ps;
int min_hdr_len;
datap = (struct ethhdr *) (skb->data);
conn = ath6kl_find_sta(vif, datap->h_source);
if (!conn) {
dev_kfree_skb(skb);
return NULL;
}
/*
* If there is a change in PS state of the STA, take appropriate steps:
*
* 1. If Sleep-->Awake, flush the psq for the STA and clear the PVB.
* 2. If Awake-->Sleep, Starting queueing frames the STA.
*/
prev_ps = !!(conn->sta_flags & STA_PS_SLEEP);
ath6kl_dbg(ATH6KL_DBG_POWERSAVE,
"%s: aid %d sta_flags %x prev_ps %d"
" ps_state %d is_trigger %d [%d]\n",
__func__,
conn->aid,
conn->sta_flags,
prev_ps,
ps_state,
trigger_state,
len);
if (ps_state) {
conn->sta_flags |= STA_PS_SLEEP;
if (!prev_ps) {
aggr_tx_flush(vif , conn);
ath6kl_ps_queue_age_start(conn);
}
} else {
conn->sta_flags &= ~STA_PS_SLEEP;
if (prev_ps)
ath6kl_ps_queue_age_stop(conn);
}
if (conn->sta_flags & STA_PS_SLEEP) {
/* Accept trigger only when the station is in sleep */
if (trigger_state)
ath6kl_uapsd_trigger_frame_rx(vif, conn);
}
if (prev_ps ^ !!(conn->sta_flags & STA_PS_SLEEP)) {
if (!(conn->sta_flags & STA_PS_SLEEP)) {
struct ath6kl_ps_buf_desc *ps_buf;
bool is_psq_empty_at_start;
struct ieee80211_mgmt *mgmt;
spin_lock_bh(&conn->lock);
ath6kl_dbg(ATH6KL_DBG_POWERSAVE,
"%s: psq_data %d psq_mgmt %d\n",
__func__,
!ath6kl_ps_queue_empty(&conn->psq_data),
!ath6kl_ps_queue_empty(&conn->psq_mgmt));
is_psq_empty_at_start =
ath6kl_ps_queue_empty(&conn->psq_data) &&
ath6kl_ps_queue_empty(&conn->psq_mgmt);
while ((ps_buf = ath6kl_ps_queue_dequeue(
&conn->psq_mgmt)) != NULL) {
spin_unlock_bh(&conn->lock);
mgmt = (struct ieee80211_mgmt *) ps_buf->buf;
if ((ps_buf->buf + ps_buf->len >=
mgmt->u.probe_resp.variable) &&
ieee80211_is_probe_resp(
mgmt->frame_control))
ath6kl_wmi_send_go_probe_response_cmd(
ar->wmi,
vif,
ps_buf->buf,
ps_buf->len,
ps_buf->freq);
else
ath6kl_wmi_send_action_cmd(
ar->wmi,
vif->fw_vif_idx,
ps_buf->id,
ps_buf->freq,
ps_buf->wait,
ps_buf->buf,
ps_buf->len);
kfree(ps_buf);
spin_lock_bh(&conn->lock);
}
while ((ps_buf = ath6kl_ps_queue_dequeue(
&conn->psq_data)) != NULL) {
spin_unlock_bh(&conn->lock);
WARN_ON(!ps_buf->skb);
ath6kl_data_tx(ps_buf->skb,
vif->ndev, true);
kfree(ps_buf);
spin_lock_bh(&conn->lock);
}
spin_unlock_bh(&conn->lock);
if (!is_psq_empty_at_start)
ath6kl_wmi_set_apsd_buffered_traffic_cmd(
ar->wmi,
vif->fw_vif_idx,
conn->aid,
0,
0);
/* Clear the PVB for this STA */
ath6kl_wmi_set_pvb_cmd(ar->wmi,
vif->fw_vif_idx,
conn->aid,
0);
}
}
min_hdr_len = sizeof(struct ethhdr) +
sizeof(struct wmi_data_hdr) +
sizeof(struct ath6kl_llc_snap_hdr);
/* drop NULL data frames here */
if ((len < min_hdr_len) ||
(len > WMI_MAX_AMSDU_RX_DATA_FRAME_LENGTH)) {
dev_kfree_skb(skb);
return NULL;
}
return conn;
}
void ath6kl_rx(struct htc_target *target, struct htc_packet *packet)
{
struct ath6kl *ar = target->dev->ar;
struct sk_buff *skb = packet->pkt_cntxt;
struct wmi_rx_meta_v2 *meta;
struct wmi_data_hdr *dhdr;
int min_hdr_len;
u8 meta_type, dot11_hdr = 0;
u8 pad_before_data_start;
int status = packet->status;
enum htc_endpoint_id ept = packet->endpoint;
bool is_amsdu;
struct ath6kl_sta *conn = NULL;
struct sk_buff *skb1 = NULL;
struct ethhdr *datap = NULL;
struct ath6kl_vif *vif;
u16 seq_no;
u8 tid, if_idx;
ath6kl_dbg(ATH6KL_DBG_WLAN_RX,
"%s: ar=0x%p eid=%d, skb=0x%p, data=0x%p, len=0x%x status:%d",
__func__, ar, ept, skb, packet->buf,
packet->act_len, status);
if (status || !(skb->data + HTC_HDR_LENGTH)) {
dev_kfree_skb(skb);
return;
}
skb_put(skb, packet->act_len + HTC_HDR_LENGTH);
skb_pull(skb, HTC_HDR_LENGTH);
if (!test_bit(TESTMODE_EPPING, &ar->flag)) {
if (ept == ar->ctrl_ep) {
if_idx =
wmi_cmd_hdr_get_if_idx(
(struct wmi_cmd_hdr *) skb->data);
} else {
if_idx =
wmi_data_hdr_get_if_idx(
(struct wmi_data_hdr *) skb->data);
}
} else {
/* The epping packet is not coming from wmi, skip the index
* retrival, epping assume using the first if_idx anyway
*/
if_idx = 0;
}
vif = ath6kl_get_vif_by_index(ar, if_idx);
if (!vif) {
dev_kfree_skb(skb);
return;
}
/*
* Take lock to protect buffer counts and adaptive power throughput
* state.
*/
vif->net_stats.rx_packets++;
vif->net_stats.rx_bytes += packet->act_len;
ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, __func__, "rx ",
skb->data, skb->len);
skb->dev = vif->ndev;
if (!test_bit(WMI_ENABLED, &ar->flag)) {
if (EPPING_ALIGNMENT_PAD > 0)
skb_pull(skb, EPPING_ALIGNMENT_PAD);
ath6kl_deliver_frames_to_nw_stack(vif->ndev, skb);
return;
}
ath6kl_check_wow_status(ar);
if (ept == ar->ctrl_ep) {
ath6kl_wmi_control_rx(ar->wmi, skb);
return;
}
min_hdr_len = sizeof(struct ethhdr) + sizeof(struct wmi_data_hdr) +
sizeof(struct ath6kl_llc_snap_hdr);
dhdr = (struct wmi_data_hdr *) skb->data;
is_amsdu = wmi_data_hdr_is_amsdu(dhdr) ? true : false;
tid = wmi_data_hdr_get_up(dhdr);
seq_no = wmi_data_hdr_get_seqno(dhdr);
meta_type = wmi_data_hdr_get_meta(dhdr);
dot11_hdr = wmi_data_hdr_get_dot11(dhdr);
pad_before_data_start =
(le16_to_cpu(dhdr->info3) >> WMI_DATA_HDR_PAD_BEFORE_DATA_SHIFT)
& WMI_DATA_HDR_PAD_BEFORE_DATA_MASK;
packet->act_len -= pad_before_data_start;
/*
* In the case of AP mode we may receive NULL data frames
* that do not have LLC hdr. They are 16 bytes in size.
* Allow these frames in the AP mode.
*/
if (vif->nw_type != AP_NETWORK &&
((packet->act_len < min_hdr_len) ||
(packet->act_len > WMI_MAX_AMSDU_RX_DATA_FRAME_LENGTH))) {
ath6kl_info("frame len is too short or too long\n");
vif->net_stats.rx_errors++;
vif->net_stats.rx_length_errors++;
dev_kfree_skb(skb);
return;
}
skb_pull(skb, sizeof(struct wmi_data_hdr));
switch (meta_type) {
case WMI_META_VERSION_1:
skb_pull(skb, sizeof(struct wmi_rx_meta_v1));
break;
case WMI_META_VERSION_2:
meta = (struct wmi_rx_meta_v2 *) skb->data;
meta->csum = le16_to_cpu(meta->csum);
if (meta->csum_flags & 0x1) {
skb->ip_summed = CHECKSUM_COMPLETE;
skb->csum = (__force __wsum) meta->csum;
}
skb_pull(skb, sizeof(struct wmi_rx_meta_v2));
break;
default:
break;
}
skb_pull(skb, pad_before_data_start);
if (dot11_hdr)
status = ath6kl_wmi_dot11_hdr_remove(ar->wmi, skb);
else if (!is_amsdu)
status = ath6kl_wmi_dot3_2_dix(skb);
if (status) {
/*
* Drop frames that could not be processed (lack of
* memory, etc.)
*/
dev_kfree_skb(skb);
return;
}
/* Get the Power save state of the STA */
if (vif->nw_type == AP_NETWORK) {
bool ps_state, trigger_state;
ps_state = !!((dhdr->info >> WMI_DATA_HDR_PS_SHIFT) &
WMI_DATA_HDR_PS_MASK);
trigger_state = WMI_DATA_HDR_IS_TRIGGER(dhdr);
conn = _powersave_ap_rx(vif,
skb, packet->act_len,
ps_state, trigger_state);
if (conn == NULL)
return;
}
if (!(vif->ndev->flags & IFF_UP)) {
dev_kfree_skb(skb);
return;
}
if (vif->nw_type == AP_NETWORK) {
datap = (struct ethhdr *) skb->data;
if (is_multicast_ether_addr(datap->h_dest))
/*
* Bcast/Mcast frames should be sent to the
* OS stack as well as on the air.
*/
skb1 = skb_copy(skb, GFP_ATOMIC);
else {
/*
* Search for a connected STA with dstMac
* as the Mac address. If found send the
* frame to it on the air else send the
* frame up the stack.
*/
struct ath6kl_sta *to_conn = NULL;
if (is_amsdu)
goto rx_aggr_process;
to_conn = ath6kl_find_sta(vif, datap->h_dest);
if (to_conn && vif->intra_bss) {
skb1 = skb;
skb = NULL;
} else if (to_conn && !vif->intra_bss) {
dev_kfree_skb(skb);
skb = NULL;
}
}
if (skb1)
ath6kl_data_tx(skb1, vif->ndev, true);
if (skb == NULL) {
/* nothing to deliver up the stack */
return;
}
#ifdef ATHTST_SUPPORT
/* record each connected sta rssi */
if (conn->avg_data_rssi == 0) {
if ((dhdr->rssi) >= RSSI_LPF_THRESHOLD)
conn->avg_data_rssi = ATH_RSSI_IN(dhdr->rssi);
} else {
ATH_RSSI_LPF(conn->avg_data_rssi, dhdr->rssi);
}
#endif
}
#ifdef ATHTST_SUPPORT
if (vif->nw_type != AP_NETWORK) {
conn = &vif->sta_list[0];
/* record each connected sta rssi */
if (conn->avg_data_rssi == 0) {
if ((dhdr->rssi) >= RSSI_LPF_THRESHOLD)
conn->avg_data_rssi = ATH_RSSI_IN(dhdr->rssi);
} else {
ATH_RSSI_LPF(conn->avg_data_rssi, dhdr->rssi);
}
}
#endif
if (vif->nw_type != AP_NETWORK)
conn = &vif->sta_list[0];
rx_aggr_process:
datap = (struct ethhdr *) skb->data;
if ((is_unicast_ether_addr(datap->h_dest) ||
(vif->nw_type == AP_NETWORK)) &&
aggr_process_recv_frm(ar, conn->aggr_conn_cntxt, tid,
seq_no, is_amsdu, skb))
/* aggregation code will handle the skb */
return;
ath6kl_deliver_frames_to_nw_stack(vif->ndev, skb);
}
static void aggr_tx_progressive(struct txtid *txtid, bool tx_timeout)
{
struct ath6kl_vif *vif = txtid->vif;
struct aggr_info *aggr = vif->aggr_cntxt;
unsigned long now = jiffies;
/* Only support STA mode now */
if (vif->nw_type != INFRA_NETWORK)
return;
txtid->last_num_amsdu++;
if (tx_timeout)
txtid->last_num_timeout++;
/* Check it every AGGR_TX_PROG_CHECK_INTVAL */
if (aggr->tx_amsdu_progressive &&
((txtid->last_check_time == 0) ||
(now - txtid->last_check_time > AGGR_TX_PROG_CHECK_INTVAL))) {
/*
* Change to high speed when mass of AMSDUs & most of it
* are not-timeout case.
* Back to normal speed when bit of AMSDUs & most of it
* are timeout case.
*/
if (!aggr->tx_amsdu_progressive_hispeed) {
if ((txtid->last_num_amsdu > AGGR_TX_PROG_HS_THRESH) &&
(txtid->last_num_timeout <
(txtid->last_num_amsdu >>
AGGR_TX_PROG_HS_FACTOR))) {
aggr->tx_amsdu_progressive_hispeed = true;
aggr_tx_config(vif,
aggr->tx_amsdu_seq_pkt,
true,
AGGR_TX_PROG_HS_MAX_NUM,
AGGR_TX_MAX_PDU_SIZE,
AGGR_TX_PROG_HS_TIMEOUT);
ath6kl_dbg(ATH6KL_DBG_WLAN_TX_AMSDU,
"%s: AMSDU change to high speed %d %d\n",
__func__,
txtid->last_num_amsdu,
txtid->last_num_timeout);
}
} else if (aggr->tx_amsdu_progressive_hispeed) {
if ((txtid->last_num_amsdu < AGGR_TX_PROG_NS_THRESH) &&
(txtid->last_num_timeout >
(txtid->last_num_amsdu >>
AGGR_TX_PROG_NS_FACTOR))) {
aggr->tx_amsdu_progressive_hispeed = false;
aggr_tx_config(vif,
aggr->tx_amsdu_seq_pkt,
true,
AGGR_TX_MAX_NUM,
AGGR_TX_MAX_PDU_SIZE,
AGGR_TX_TIMEOUT);
ath6kl_dbg(ATH6KL_DBG_WLAN_TX_AMSDU,
"%s: AMSDU back to normal speed %d %d\n",
__func__,
txtid->last_num_amsdu,
txtid->last_num_timeout);
}
}
/* reset the counters */
txtid->last_num_amsdu = 0;
txtid->last_num_timeout = 0;
/* Update to current time */
txtid->last_check_time = now;
}
return;
}
static void aggr_tx_reset_aggr(struct txtid *txtid, bool free_buf,
bool timer_stop)
{
/* Need protected by tid->lock. */
if (timer_stop)
del_timer(&txtid->timer);
if ((free_buf) &&
(txtid->amsdu_skb))
dev_kfree_skb(txtid->amsdu_skb);
txtid->amsdu_skb = NULL;
txtid->amsdu_start = NULL;
txtid->amsdu_cnt = 0;
txtid->amsdu_len = 0;
txtid->amsdu_lastpdu_len = 0;
return;
}
static void aggr_tx_delete_tid_state(struct aggr_conn_info *aggr_conn, u8 tid)
{
struct txtid *txtid;
struct aggr_info *aggr = aggr_conn->aggr_cntxt;
txtid = AGGR_GET_TXTID(aggr_conn, tid);
spin_lock_bh(&txtid->lock);
txtid->aid = 0;
txtid->max_aggr_sz = 0;
aggr_tx_reset_aggr(txtid, true, true);
txtid->num_pdu = 0;
txtid->num_amsdu = 0;
txtid->num_timeout = 0;
txtid->num_flush = 0;
txtid->num_tx_null = 0;
txtid->num_overflow = 0;
txtid->last_check_time = 0;
txtid->last_num_amsdu = 0;
txtid->last_num_timeout = 0;
if (aggr->tx_amsdu_progressive_hispeed) {
aggr->tx_amsdu_progressive_hispeed = false;
aggr_tx_config(aggr->vif,
aggr->tx_amsdu_seq_pkt,
true,
AGGR_TX_MAX_NUM,
AGGR_TX_MAX_PDU_SIZE,
AGGR_TX_TIMEOUT);
ath6kl_dbg(ATH6KL_DBG_WLAN_TX_AMSDU,
"%s: AMSDU reset to normal speed\n",
__func__);
}
spin_unlock_bh(&txtid->lock);
return;
}
static int aggr_tx(struct ath6kl_vif *vif, struct ath6kl_sta *sta,
struct sk_buff **skb)
{
#define ETHERTYPE_IP 0x0800 /* IP protocol */
#define IP_PROTO_TCP 0x6 /* TCP protocol */
struct ethhdr *eth_hdr;
struct ath6kl_llc_snap_hdr *llc_hdr;
struct aggr_info *aggr;
struct txtid *txtid;
int pdu_len, subframe_len;
int hdr_len = /*WMI_MAX_TX_META_SZ + */sizeof(struct wmi_data_hdr);
pdu_len = (*skb)->len - hdr_len;
aggr = vif->aggr_cntxt;
/*
* Only aggr IP/TCP frames, focus on small TCP-ACK frams.
* Bypass multicast and non-IP/TCP frames.
*
* Reserved 14 bytes 802.3 header ahead of A-MSDU frame for target
* to transfer to 802.11 header.
*/
if (pdu_len > aggr->tx_amsdu_max_pdu_len)
return AGGR_TX_BYPASS;
eth_hdr = (struct ethhdr *)((*skb)->data + hdr_len);
if (is_multicast_ether_addr(eth_hdr->h_dest))
return AGGR_TX_BYPASS;
llc_hdr = (struct ath6kl_llc_snap_hdr *)((*skb)->data + hdr_len +
sizeof(struct ethhdr));
if (llc_hdr->eth_type == htons(ETHERTYPE_IP)) {
struct iphdr *ip_hdr = (struct iphdr *)((u8 *)eth_hdr +
sizeof(struct ethhdr) +
sizeof(struct ath6kl_llc_snap_hdr));
u8 usr_pri = ath6kl_wmi_determine_user_priority(((u8 *) llc_hdr) +
sizeof(struct ath6kl_llc_snap_hdr), 0);
if ((ip_hdr->protocol == IP_PROTO_TCP) &&
(usr_pri < WMI_VOICE_USER_PRIORITY)) {
struct ath6kl_sta *conn;
if (!sta)
conn = ath6kl_find_sta(vif, eth_hdr->h_dest);
else {
/* Only in AP mode and we already know the
* station.
*/
WARN_ON(vif->nw_type != AP_NETWORK);
conn = sta;
}
ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, __func__,
"aggr tx ", (*skb)->data, (*skb)->len);
if (conn) {
struct sk_buff *amsdu_skb;
struct wmi_data_hdr *wmi_hdr =
(struct wmi_data_hdr *)((u8 *)eth_hdr -
sizeof(struct wmi_data_hdr));
u16 info2_tmp;
/* Not allow TX-AMSDU during STA sleep. */
if ((vif->nw_type == AP_NETWORK) &&
(conn->sta_flags & (STA_PS_SLEEP |
STA_PS_POLLED |
STA_PS_APSD_TRIGGER))) {
ath6kl_dbg(ATH6KL_DBG_WLAN_TX_AMSDU,
"%s: STA is in sleep state, aid %d sta_flags %x\n",
__func__,
conn->aid,
conn->sta_flags);
return AGGR_TX_BYPASS;
}
txtid = AGGR_GET_TXTID(conn->aggr_conn_cntxt,
((wmi_hdr->info >> WMI_DATA_HDR_UP_SHIFT) &
WMI_DATA_HDR_UP_MASK));
spin_lock_bh(&txtid->lock);
if (!txtid->max_aggr_sz) {
spin_unlock_bh(&txtid->lock);
return AGGR_TX_BYPASS;
}
amsdu_skb = txtid->amsdu_skb;
if (amsdu_skb == NULL) {
amsdu_skb =
dev_alloc_skb(AGGR_TX_MAX_AGGR_SIZE);
if (amsdu_skb == NULL) {
spin_unlock_bh(&txtid->lock);
return AGGR_TX_BYPASS;
}
/* Change to A-MSDU type */
info2_tmp = le16_to_cpu(wmi_hdr->info2);
info2_tmp |= (WMI_DATA_HDR_AMSDU_MASK <<
WMI_DATA_HDR_AMSDU_SHIFT);
wmi_hdr->info2 = cpu_to_le16(info2_tmp);
/* Clone meta-data & WMI-header. */
memcpy(amsdu_skb->data - hdr_len,
(*skb)->data, hdr_len);
aggr_tx_reset_aggr(txtid, false, true);
txtid->amsdu_skb = amsdu_skb;
txtid->amsdu_start = amsdu_skb->data;
amsdu_skb->data +=
sizeof(struct ethhdr);
/* Start tx timeout timer */
mod_timer(&txtid->timer, jiffies +
msecs_to_jiffies(
aggr->tx_amsdu_timeout));
} else {
if ((txtid->amsdu_len + pdu_len) >
aggr->tx_amsdu_max_aggr_len) {
txtid->num_overflow++;
spin_unlock_bh(&txtid->lock);
ath6kl_dbg(
ATH6KL_DBG_WLAN_TX_AMSDU,
"%s: AMSDU overflow, pdu_len=%d, amsdu_cnt=%d, amsdu_len=%d\n",
__func__,
pdu_len,
txtid->amsdu_cnt,
amsdu_skb->len);
return AGGR_TX_BYPASS;
}
}
/* Zero padding */
subframe_len = roundup(pdu_len, 4);
memset(amsdu_skb->data +
subframe_len - 4, 0, 4);
/* Append PDU to A-MSDU */
memcpy(amsdu_skb->data, eth_hdr, pdu_len);
amsdu_skb->len += subframe_len;
amsdu_skb->data += subframe_len;
ath6kl_dbg(ATH6KL_DBG_WLAN_TX_AMSDU,
"%s: subframe_len=%d, tid=%d, amsdu_cnt=%d, amsdu_len=%d\n",
__func__, subframe_len,
((wmi_hdr->info>>WMI_DATA_HDR_UP_SHIFT)
& WMI_DATA_HDR_UP_MASK),
txtid->amsdu_cnt, amsdu_skb->len);
txtid->amsdu_cnt++;
txtid->amsdu_lastpdu_len = pdu_len;
txtid->amsdu_len += subframe_len;
dev_kfree_skb(*skb);
*skb = NULL;
if (txtid->amsdu_cnt >=
aggr->tx_amsdu_max_aggr_num) {
/* No padding in last MSDU */
if (pdu_len & 0x3)
amsdu_skb->len -=
(4 - (pdu_len & 0x3));
/* Update A-MSDU frame header */
eth_hdr =
(struct ethhdr *)txtid->amsdu_start;
if (vif->nw_type == INFRA_NETWORK) {
memcpy(eth_hdr->h_dest,
vif->bssid, ETH_ALEN);
memcpy(eth_hdr->h_source,
vif->ndev->dev_addr, ETH_ALEN);
} else {
memcpy(eth_hdr->h_dest,
conn->mac, ETH_ALEN);
memcpy(eth_hdr->h_source,
vif->ndev->dev_addr,
ETH_ALEN);
}
eth_hdr->h_proto =
htons(amsdu_skb->len);
/* Correct final skb's data and length.
*/
amsdu_skb->len +=
(hdr_len + sizeof(struct ethhdr));
amsdu_skb->data =
txtid->amsdu_start - hdr_len;
ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES,
__func__, "aggr-tx ",
amsdu_skb->data,
amsdu_skb->len);
/* update stat. */
txtid->num_amsdu++;
txtid->num_pdu += txtid->amsdu_cnt;
*skb = amsdu_skb;
aggr_tx_reset_aggr(txtid, false, true);
aggr_tx_progressive(txtid, false);
spin_unlock_bh(&txtid->lock);
return AGGR_TX_DONE;
} else {
spin_unlock_bh(&txtid->lock);
return AGGR_TX_OK;
}
} else
return AGGR_TX_DROP;
}
}
return AGGR_TX_BYPASS;
}
static int aggr_tx_tid(struct txtid *txtid, bool timer_stop)
{
struct ath6kl_vif *vif = txtid->vif;
struct ath6kl *ar = vif->ar;
struct ath6kl_cookie *cookie = NULL;
enum htc_endpoint_id eid;
struct wmi_data_hdr *wmi_hdr;
struct sk_buff *amsdu_skb, *skb = NULL;
struct ethhdr *eth_hdr;
int ac;
int hdr_len = /*WMI_MAX_TX_META_SZ + */sizeof(struct wmi_data_hdr);
spin_lock_bh(&txtid->lock);
amsdu_skb = txtid->amsdu_skb;
if (amsdu_skb == NULL) {
txtid->num_tx_null++;
spin_unlock_bh(&txtid->lock);
return -EINVAL;
}
if (timer_stop)
txtid->num_flush++;
else
txtid->num_timeout++;
ath6kl_dbg(ATH6KL_DBG_WLAN_TX_AMSDU,
"%s: amsdu_skb=0x%p, data=0x%p, len=0x%x, amsdu_cnt=%d\n",
__func__,
amsdu_skb, amsdu_skb->data,
amsdu_skb->len, txtid->amsdu_cnt);
/* No padding in last MSDU */
if (txtid->amsdu_lastpdu_len & 0x3)
amsdu_skb->len -= (4 - (txtid->amsdu_lastpdu_len & 0x3));
/* Update A-MSDU frame header */
eth_hdr = (struct ethhdr *)txtid->amsdu_start;
if (vif->nw_type == INFRA_NETWORK) {
memcpy(eth_hdr->h_dest, vif->bssid, ETH_ALEN);
memcpy(eth_hdr->h_source, vif->ndev->dev_addr, ETH_ALEN);
} else {
struct ath6kl_sta *conn = ath6kl_find_sta_by_aid(vif, txtid->aid);
if (conn) {
memcpy(eth_hdr->h_dest, conn->mac, ETH_ALEN);
memcpy(eth_hdr->h_source, vif->ndev->dev_addr, ETH_ALEN);
} else {
aggr_tx_reset_aggr(txtid, true, timer_stop);
spin_unlock_bh(&txtid->lock);
ath6kl_err("aggr_tx_tid error, no STA found, AID = %d\n",
txtid->aid);
return -EINVAL;
}
}
eth_hdr->h_proto = htons(amsdu_skb->len);
/* Correct final skb's data and length. */
amsdu_skb->len += (hdr_len + sizeof(struct ethhdr));
amsdu_skb->data = txtid->amsdu_start - hdr_len;
/* update stat. */
txtid->num_amsdu++;
txtid->num_pdu += txtid->amsdu_cnt;
skb = amsdu_skb;
aggr_tx_reset_aggr(txtid, false, timer_stop);
aggr_tx_progressive(txtid, !timer_stop);
spin_unlock_bh(&txtid->lock);
spin_lock_bh(&ar->lock);
wmi_hdr = (struct wmi_data_hdr *)
(skb->data + hdr_len - sizeof(struct wmi_data_hdr));
ac = up_to_ac[(wmi_hdr->info >> WMI_DATA_HDR_UP_SHIFT) &
WMI_DATA_HDR_UP_MASK];
eid = ar->ac2ep_map[ac];
ath6kl_dbg(ATH6KL_DBG_WLAN_TX_AMSDU,
"%s: eid=%d, ac=%d\n", __func__, eid, ac);
if (eid == 0 || eid == ENDPOINT_UNUSED) {
ath6kl_err("eid %d is not mapped!\n", eid);
spin_unlock_bh(&ar->lock);
goto fail_tx;
}
/* allocate resource for this packet */
cookie = ath6kl_alloc_cookie(ar, COOKIE_TYPE_DATA);
if (!cookie) {
spin_unlock_bh(&ar->lock);
goto fail_tx;
}
vif->data_cookie_count++;
/* update counts while the lock is held */
ar->tx_pending[eid]++;
ar->total_tx_data_pend++;
spin_unlock_bh(&ar->lock);
cookie->skb = skb;
cookie->map_no = 0;
set_htc_pkt_info(cookie->htc_pkt, cookie, skb->data, skb->len,
eid, ATH6KL_DATA_PKT_TAG);
cookie->htc_pkt->skb = skb;
ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, __func__, "aggr-tx ",
skb->data, skb->len);
/* P2P Flowctrl */
if (ar->conf_flags & ATH6KL_CONF_ENABLE_FLOWCTRL) {
int ret;
cookie->htc_pkt->connid =
ath6kl_p2p_flowctrl_get_conn_id(vif, skb);
cookie->htc_pkt->recycle_count = 0;
ret = ath6kl_p2p_flowctrl_tx_schedule_pkt(ar, (void *)cookie);
if (ret == 0) /* Queue it */
return 0;
else if (ret < 0) /* Error, drop it. */
goto fail_tx;
}
cookie->htc_pkt->vif = vif;
ar->tx_on_vif |= (1 << vif->fw_vif_idx);
/*
* HTC interface is asynchronous, if this fails, cleanup will
* happen in the ath6kl_tx_complete callback.
*/
ath6kl_htc_tx(ar->htc_target, cookie->htc_pkt);
return 0;
fail_tx:
dev_kfree_skb(skb);
if (cookie) {
spin_lock_bh(&ar->lock);
vif->data_cookie_count--;
ath6kl_free_cookie(ar, cookie);
spin_unlock_bh(&ar->lock);
}
vif->net_stats.tx_dropped++;
vif->net_stats.tx_aborted_errors++;
return -EINVAL;
}
static void aggr_tx_timeout(unsigned long arg)
{
struct txtid *txtid = (struct txtid *)arg;
ath6kl_dbg(ATH6KL_DBG_WLAN_TX_AMSDU,
"%s: aid %d, tid %d", __func__, txtid->aid, txtid->tid);
aggr_tx_tid(txtid, false);
return;
}
static int aggr_tx_flush(struct ath6kl_vif *vif, struct ath6kl_sta *conn)
{
int tid;
if (conn == NULL) {
if (vif->nw_type == INFRA_NETWORK)
conn = &vif->sta_list[0];
else if (vif->nw_type == AP_NETWORK)
return 0;
else
BUG_ON(1);
}
/* In AP mode, these packages will be queued in target side. */
for (tid = (NUM_OF_TIDS - 1); tid >= 0; tid--) {
struct txtid *txtid =
AGGR_GET_TXTID(conn->aggr_conn_cntxt, tid);
ath6kl_dbg(ATH6KL_DBG_WLAN_TX_AMSDU,
"%s: flush sta aid %d\n", __func__, conn->aid);
aggr_tx_tid(txtid, true);
}
return 0;
}
void aggr_tx_connect_event(struct ath6kl_vif *vif,
u8 beacon_ie_len,
u8 assoc_req_len,
u8 assoc_resp_len,
u8 *assoc_info) {
u8 *pie, *peie;
struct ieee80211_ht_cap *ht_cap_ie = NULL;
bool uapsd = false;
if (vif->nw_type != INFRA_NETWORK)
return;
if ((vif->bssid[0] == 0x00) &&
(vif->bssid[1] == 0x15) &&
(vif->bssid[2] == 0xff)) {
/* AssocResp IEs */
pie = assoc_info + beacon_ie_len + assoc_req_len +
(sizeof(u16) * 3); /* capinfo + status code + associd */
peie = assoc_info + beacon_ie_len +
assoc_req_len + assoc_resp_len;
while (pie < peie) {
switch (*pie) {
case WLAN_EID_HT_CAPABILITY:
if (pie[1] >= sizeof(struct ieee80211_ht_cap))
ht_cap_ie =
(struct ieee80211_ht_cap *)(pie + 2);
break;
case WLAN_EID_VENDOR_SPECIFIC:
if (pie[1] == 24) {
if (pie[2] == 0x00 &&
pie[3] == 0x50 &&
pie[4] == 0xf2 &&
pie[5] == 0x02 &&
pie[8] == 0x80)
uapsd = true;
}
break;
}
pie += pie[1] + 2;
}
if (uapsd && ht_cap_ie) {
if ((ht_cap_ie->cap_info & IEEE80211_HT_CAP_SGI_20) &&
!(ht_cap_ie->cap_info & IEEE80211_HT_CAP_SGI_40)) {
vif->aggr_cntxt->tx_amsdu_stick_onoff =
AGGR_TX_STICK_OFF;
ath6kl_dbg(ATH6KL_DBG_WLAN_TX_AMSDU,
"tx amsdu WAR\n");
}
}
}
return;
}
/*
* For the continuous un-received packets, wait timer will be divided by 2
* I.E. pkt#1, pkt#2, pkt#3 don't receive,
* the pkt#1 will wait tid_timeout_setting
* the pkt#2 will wait tid_timeout_setting / 2
* the pkt#3 will wait tid_timeout_setting / 4
* If more than ATH6KL_MAX_WAIT_CONTINUOUS_PKT, move to the first
* un-continuous un-received packets
*/
static void aggr_timeout(unsigned long arg)
{
u8 j;
struct rxtid *rxtid = (struct rxtid *) arg;
struct aggr_conn_info *aggr_conn = rxtid->aggr_conn;
struct rxtid_stats *stats;
u32 tid_next_timeout =
aggr_conn->tid_timeout_setting[rxtid->tid];
stats = AGGR_GET_RXTID_STATS(aggr_conn, rxtid->tid);
if (!rxtid->aggr || !rxtid->tid_timer_scheduled)
return;
spin_lock_bh(&rxtid->lock);
if (rxtid->timerwait_seq_num == rxtid->seq_next) {
stats->num_timeouts++;
ath6kl_dbg(ATH6KL_DBG_AGGR,
"aggr timeout (st %d end %d)(tid=%d)\n",
rxtid->seq_next,
((rxtid->seq_next + rxtid->hold_q_sz-1) &
ATH6KL_MAX_SEQ_NO), rxtid->tid);
spin_unlock_bh(&rxtid->lock);
aggr_deque_frms(aggr_conn, rxtid->tid,
((rxtid->timerwait_seq_num + 1) &
ATH6KL_MAX_SEQ_NO) , 0);
/* inorder packet that after time-out packet!! */
aggr_deque_frms(aggr_conn, rxtid->tid, 0 , 1);
if (rxtid->seq_next ==
((rxtid->timerwait_seq_num + 1) &
ATH6KL_MAX_SEQ_NO)) {
/* Continus hole */
if (rxtid->continuous_count >=
ATH6KL_MAX_WAIT_CONTINUOUS_PKT) {
aggr_deque_frms(aggr_conn, rxtid->tid,
((rxtid->issue_timer_seq + 1) &
ATH6KL_MAX_SEQ_NO) , 0);
/* inorder packet that after time-out packet!! */
aggr_deque_frms(aggr_conn, rxtid->tid, 0 , 1);
rxtid->continuous_count = 0;
}
} else {
rxtid->continuous_count = 0;
}
spin_lock_bh(&rxtid->lock);
}
rxtid->tid_timer_scheduled = false;
if (rxtid->hold_q) {
for (j = 0; j < rxtid->hold_q_sz; j++) {
if (rxtid->hold_q[j].skb) {
rxtid->issue_timer_seq =
rxtid->hold_q[j].seq_no;
rxtid->timerwait_seq_num = rxtid->seq_next;
rxtid->tid_timer_scheduled = true;
rxtid->continuous_count++;
break;
}
}
}
if (rxtid->continuous_count > 1) {
if (rxtid->continuous_count <=
ATH6KL_MAX_WAIT_CONTINUOUS_PKT) {
tid_next_timeout = tid_next_timeout /
((rxtid->continuous_count - 1) * 2);
ath6kl_dbg(ATH6KL_DBG_AGGR,
"aggr continuous hole timeout count %d\n",
rxtid->continuous_count);
} else {
ath6kl_dbg(ATH6KL_DBG_AGGR,
"aggr continuous hole count %d larger than 3?\n",
rxtid->continuous_count);
rxtid->continuous_count = 0;
}
}
if (rxtid->tid_timer_scheduled) {
mod_timer(&rxtid->tid_timer,
jiffies + msecs_to_jiffies(tid_next_timeout));
}
spin_unlock_bh(&rxtid->lock);
}
static void aggr_delete_tid_state(struct aggr_conn_info *aggr_conn, u8 tid)
{
struct rxtid *rxtid;
struct rxtid_stats *stats;
if (!aggr_conn || tid >= NUM_OF_TIDS)
return;
rxtid = AGGR_GET_RXTID(aggr_conn, tid);
stats = AGGR_GET_RXTID_STATS(aggr_conn, tid);
if (rxtid->aggr)
aggr_deque_frms(aggr_conn, tid, 0, 0);
spin_lock_bh(&rxtid->lock);
rxtid->aggr = false;
rxtid->win_sz = 0;
rxtid->seq_next = 0;
rxtid->hold_q_sz = 0;
kfree(rxtid->hold_q);
rxtid->hold_q = NULL;
spin_unlock_bh(&rxtid->lock);
memset(stats, 0, sizeof(struct rxtid_stats));
}
void aggr_recv_addba_req_evt(struct ath6kl_vif *vif, u8 tid, u16 seq_no,
u8 win_sz)
{
struct aggr_conn_info *aggr_conn;
struct rxtid *rxtid;
struct rxtid_stats *stats;
struct ath6kl_sta *conn;
u16 hold_q_size;
u8 conn_tid, conn_aid;
conn_tid = AGGR_BA_EVT_GET_TID(tid);
conn_aid = AGGR_BA_EVT_GET_CONNID(tid);
conn = ath6kl_find_sta_by_aid(vif, conn_aid);
if (conn_tid >= NUM_OF_TIDS) {
WARN_ON(1);
return;
}
if (conn != NULL) {
WARN_ON(!conn->aggr_conn_cntxt);
aggr_conn = conn->aggr_conn_cntxt;
rxtid = AGGR_GET_RXTID(aggr_conn, conn_tid);
stats = AGGR_GET_RXTID_STATS(aggr_conn, conn_tid);
if (win_sz < AGGR_WIN_SZ_MIN || win_sz > AGGR_WIN_SZ_MAX)
ath6kl_dbg(ATH6KL_DBG_WLAN_RX, "%s: win_sz %d, tid %d, aid %d\n",
__func__, win_sz, conn_tid, conn_aid);
if (rxtid->aggr)
aggr_delete_tid_state(aggr_conn, conn_tid);
spin_lock_bh(&rxtid->lock);
rxtid->seq_next = seq_no;
hold_q_size = TID_WINDOW_SZ(win_sz) * sizeof(struct skb_hold_q);
rxtid->hold_q = kzalloc(hold_q_size, GFP_ATOMIC);
if (!rxtid->hold_q) {
spin_unlock_bh(&rxtid->lock);
return;
}
rxtid->win_sz = win_sz;
rxtid->hold_q_sz = TID_WINDOW_SZ(win_sz);
if (!skb_queue_empty(&rxtid->q)) {
spin_unlock_bh(&rxtid->lock);
return;
}
rxtid->aggr = true;
rxtid->sync_next_seq = true;
spin_unlock_bh(&rxtid->lock);
}
}
void aggr_recv_addba_resp_evt(struct ath6kl_vif *vif, u8 tid,
u16 amsdu_sz, u8 status)
{
struct aggr_conn_info *aggr_conn;
struct txtid *txtid;
struct ath6kl_sta *conn;
u8 i, conn_tid, conn_aid;
conn_tid = AGGR_BA_EVT_GET_TID(tid);
conn_aid = AGGR_BA_EVT_GET_CONNID(tid);
conn = ath6kl_find_sta_by_aid(vif, conn_aid);
if (conn_tid >= NUM_OF_TIDS) {
WARN_ON(1);
return;
}
if (conn != NULL) {
WARN_ON(!conn->aggr_conn_cntxt);
ath6kl_dbg(ATH6KL_DBG_WMI, "%s: amsdu_sz %d, tid %d, aid %d, status %d\n",
__func__, amsdu_sz, conn_tid, conn_aid, status);
aggr_conn = conn->aggr_conn_cntxt;
txtid = AGGR_GET_TXTID(aggr_conn, conn_tid);
spin_lock_bh(&txtid->lock);
txtid->aid = conn_aid;
if (status == 0)
txtid->max_aggr_sz = amsdu_sz;
else
txtid->max_aggr_sz = 0;
/* 0 means disable */
if (!txtid->max_aggr_sz)
aggr_tx_reset_aggr(txtid, true, true);
spin_unlock_bh(&txtid->lock);
if (vif->nw_type != AP_NETWORK) {
vif->aggr_cntxt->tx_amsdu_enable = false;
for (i = 0; i < NUM_OF_TIDS; i++) {
txtid = AGGR_GET_TXTID(aggr_conn, i);
if (txtid->max_aggr_sz) {
vif->aggr_cntxt->tx_amsdu_enable = true;
break;
}
}
}
if (vif->nw_type == INFRA_NETWORK) {
if ((txtid->max_aggr_sz) &&
(vif->aggr_cntxt->tx_amsdu_stick_onoff ==
AGGR_TX_STICK_OFF)) {
txtid->max_aggr_sz = 0;
ath6kl_dbg(ATH6KL_DBG_WLAN_TX_AMSDU,
"Stick tx amsdu from ON to OFF\n");
} else if ((txtid->max_aggr_sz == 0) &&
(vif->aggr_cntxt->tx_amsdu_stick_onoff ==
AGGR_TX_STICK_ON)) {
txtid->max_aggr_sz = 4096;
ath6kl_dbg(ATH6KL_DBG_WLAN_TX_AMSDU,
"Stick tx amsdu from OFF to ON\n");
}
}
}
}
void aggr_tx_config(struct ath6kl_vif *vif,
bool tx_amsdu_seq_pkt,
bool tx_amsdu_progressive,
u8 tx_amsdu_max_aggr_num,
u16 tx_amsdu_max_pdu_len,
u16 tx_amsdu_timeout)
{
if ((vif) &&
(vif->aggr_cntxt)) {
struct aggr_info *aggr = vif->aggr_cntxt;
aggr->tx_amsdu_seq_pkt = tx_amsdu_seq_pkt;
if (!tx_amsdu_progressive &&
aggr->tx_amsdu_progressive)
aggr->tx_amsdu_progressive_hispeed = false;
else if (tx_amsdu_progressive &&
!aggr->tx_amsdu_progressive) {
; /* TODO : reset all last_XXXX in txtid */
}
aggr->tx_amsdu_progressive = tx_amsdu_progressive;
if (tx_amsdu_timeout == 0)
tx_amsdu_timeout = AGGR_TX_TIMEOUT;
aggr->tx_amsdu_timeout = tx_amsdu_timeout;
if (tx_amsdu_max_pdu_len == 0)
tx_amsdu_max_pdu_len = AGGR_TX_MAX_PDU_SIZE;
else if (tx_amsdu_max_pdu_len < AGGR_TX_MIN_PDU_SIZE)
tx_amsdu_max_pdu_len = AGGR_TX_MIN_PDU_SIZE;
if (tx_amsdu_max_pdu_len > (aggr->tx_amsdu_max_aggr_len / 2))
tx_amsdu_max_pdu_len =
(aggr->tx_amsdu_max_aggr_len / 2);
aggr->tx_amsdu_max_pdu_len = tx_amsdu_max_pdu_len;
if (tx_amsdu_max_aggr_num == 0)
tx_amsdu_max_aggr_num = AGGR_TX_MAX_NUM;
else if (tx_amsdu_max_aggr_num < 2)
tx_amsdu_max_aggr_num = 2;
aggr->tx_amsdu_max_aggr_num = tx_amsdu_max_aggr_num;
ath6kl_dbg(ATH6KL_DBG_WLAN_TX_AMSDU,
"%s: aggr-conf, vif%d, pdu_len=%d, aggr_num=%d timeout=%d, seq_pkt=%d, prog=%d\n",
__func__,
vif->fw_vif_idx,
aggr->tx_amsdu_max_pdu_len,
aggr->tx_amsdu_max_aggr_num,
aggr->tx_amsdu_timeout,
aggr->tx_amsdu_seq_pkt,
aggr->tx_amsdu_progressive);
}
return;
}
void aggr_config(struct ath6kl_vif *vif,
u16 rx_aggr_timeout)
{
if ((vif) &&
(vif->aggr_cntxt)) {
struct aggr_info *aggr = vif->aggr_cntxt;
if (rx_aggr_timeout == 0)
rx_aggr_timeout = AGGR_RX_TIMEOUT;
aggr->rx_aggr_timeout = rx_aggr_timeout;
}
return;
}
struct aggr_info *aggr_init(struct ath6kl_vif *vif)
{
struct aggr_info *aggr = NULL;
aggr = kzalloc(sizeof(struct aggr_info), GFP_KERNEL);
if (!aggr) {
ath6kl_err("failed to alloc memory for aggr_module\n");
return NULL;
}
aggr->vif = vif;
skb_queue_head_init(&aggr->free_q);
ath6kl_alloc_netbufs(&aggr->free_q, AGGR_NUM_OF_FREE_NETBUFS);
aggr->rx_aggr_timeout = AGGR_RX_TIMEOUT;
aggr->tx_amsdu_enable = true;
aggr->tx_amsdu_seq_pkt = true;
aggr->tx_amsdu_progressive = true;
aggr->tx_amsdu_max_aggr_num = AGGR_TX_MAX_NUM;
aggr->tx_amsdu_max_aggr_len = AGGR_TX_MAX_AGGR_SIZE - 100;
aggr->tx_amsdu_max_pdu_len = AGGR_TX_MAX_PDU_SIZE;
aggr->tx_amsdu_timeout = AGGR_TX_TIMEOUT;
aggr->tx_amsdu_stick_onoff = AGGR_TX_STICK_NONE;
/* Always enable host-based A-MSDU. */
set_bit(AMSDU_ENABLED, &vif->flags);
return aggr;
}
struct aggr_conn_info *aggr_init_conn(struct ath6kl_vif *vif)
{
struct aggr_conn_info *aggr_conn = NULL;
struct rxtid *rxtid;
struct txtid *txtid;
u8 i;
aggr_conn = kzalloc(sizeof(struct aggr_conn_info), GFP_KERNEL);
if (!aggr_conn) {
ath6kl_err("failed to alloc memory for aggr_node\n");
return NULL;
}
aggr_conn->aggr_sz = AGGR_SZ_DEFAULT;
aggr_conn->aggr_cntxt = vif->aggr_cntxt;
aggr_conn->dev = vif->ndev;
for (i = 0; i < NUM_OF_TIDS; i++) {
rxtid = AGGR_GET_RXTID(aggr_conn, i);
rxtid->aggr = false;
skb_queue_head_init(&rxtid->q);
spin_lock_init(&rxtid->lock);
rxtid->aggr_conn = aggr_conn;
rxtid->tid = i;
init_timer(&rxtid->tid_timer);
rxtid->tid_timer.function = aggr_timeout;
rxtid->tid_timer.data = (unsigned long) rxtid;
rxtid->tid_timer_scheduled = false;
switch (up_to_ac[i]) {
case WMM_AC_BK:
aggr_conn->tid_timeout_setting[i] = AGGR_RX_TIMEOUT;
break;
case WMM_AC_BE:
aggr_conn->tid_timeout_setting[i] = AGGR_RX_TIMEOUT;
break;
case WMM_AC_VI:
aggr_conn->tid_timeout_setting[i] = AGGR_RX_TIMEOUT;
break;
case WMM_AC_VO:
aggr_conn->tid_timeout_setting[i] = AGGR_RX_TIMEOUT_VO;
break;
}
/* TX A-MSDU */
txtid = AGGR_GET_TXTID(aggr_conn, i);
txtid->tid = i;
txtid->vif = vif;
init_timer(&txtid->timer);
txtid->timer.function = aggr_tx_timeout;
txtid->timer.data = (unsigned long)txtid;
spin_lock_init(&txtid->lock);
}
return aggr_conn;
}
void aggr_recv_delba_req_evt(struct ath6kl_vif *vif, u8 tid, u8 initiator)
{
struct aggr_conn_info *aggr_conn;
struct rxtid *rxtid;
struct txtid *txtid;
struct ath6kl_sta *conn;
u8 conn_tid, conn_aid;
conn_tid = AGGR_BA_EVT_GET_TID(tid);
conn_aid = AGGR_BA_EVT_GET_CONNID(tid);
conn = ath6kl_find_sta_by_aid(vif, conn_aid);
if (conn != NULL) {
WARN_ON(!conn->aggr_conn_cntxt);
aggr_conn = conn->aggr_conn_cntxt;
if (initiator == 1) {
/* no aggr tx */
txtid = AGGR_GET_TXTID(aggr_conn, conn_tid);
if (txtid)
aggr_tx_delete_tid_state(aggr_conn, conn_tid);
} else {
rxtid = AGGR_GET_RXTID(aggr_conn, conn_tid);
if (rxtid->aggr)
aggr_delete_tid_state(aggr_conn, conn_tid);
}
}
}
void aggr_reset_state(struct aggr_conn_info *aggr_conn)
{
struct ath6kl_vif *vif = aggr_conn->aggr_cntxt->vif;
u8 tid;
for (tid = 0; tid < NUM_OF_TIDS; tid++) {
aggr_delete_tid_state(aggr_conn, tid);
aggr_tx_delete_tid_state(aggr_conn, tid);
}
if (vif->nw_type != AP_NETWORK)
aggr_conn->aggr_cntxt->tx_amsdu_enable = false;
if (vif->nw_type == INFRA_NETWORK)
aggr_conn->aggr_cntxt->tx_amsdu_stick_onoff =
AGGR_TX_STICK_NONE;
ath6kl_dbg(ATH6KL_DBG_WLAN_TX_AMSDU, "%s: tx_amsdu_enable %d\n",
__func__, aggr_conn->aggr_cntxt->tx_amsdu_enable);
return;
}
/* clean up our amsdu buffer list */
void ath6kl_cleanup_amsdu_rxbufs(struct ath6kl *ar)
{
struct htc_packet *packet, *tmp_pkt;
spin_lock_bh(&ar->lock);
if (list_empty(&ar->amsdu_rx_buffer_queue)) {
spin_unlock_bh(&ar->lock);
return;
}
list_for_each_entry_safe(packet, tmp_pkt, &ar->amsdu_rx_buffer_queue,
list) {
list_del(&packet->list);
spin_unlock_bh(&ar->lock);
dev_kfree_skb(packet->pkt_cntxt);
spin_lock_bh(&ar->lock);
}
spin_unlock_bh(&ar->lock);
}
void aggr_module_destroy(struct aggr_info *aggr)
{
if (!aggr)
return;
skb_queue_purge(&aggr->free_q);
kfree(aggr);
}
void aggr_module_destroy_conn(struct aggr_conn_info *aggr_conn)
{
struct rxtid *rxtid;
struct txtid *txtid;
u8 i, k;
if (!aggr_conn)
return;
for (i = 0; i < NUM_OF_TIDS; i++) {
rxtid = AGGR_GET_RXTID(aggr_conn, i);
if (rxtid->tid_timer_scheduled) {
del_timer(&rxtid->tid_timer);
rxtid->tid_timer_scheduled = false;
rxtid->continuous_count = 0;
}
if (rxtid->hold_q) {
for (k = 0; k < rxtid->hold_q_sz; k++)
dev_kfree_skb(rxtid->hold_q[k].skb);
kfree(rxtid->hold_q);
}
skb_queue_purge(&rxtid->q);
/* TX A-MSDU */
txtid = AGGR_GET_TXTID(aggr_conn, i);
spin_lock_bh(&txtid->lock);
aggr_tx_reset_aggr(txtid, true, true);
spin_unlock_bh(&txtid->lock);
}
kfree(aggr_conn);
}
void ath6kl_indicate_wmm_schedule_change(void *devt, bool change)
{
struct ath6kl *ar = devt;
int change_for_stream_pri = 0;
change_for_stream_pri =
ath6kl_htc_wmm_schedule_change(ar->htc_target, change);
if (change_for_stream_pri != 0) {
if (change == true) {
/* change the priority order for BE and VI */
ar->ac_stream_pri_map[WMM_AC_BE] = 2;
ar->ac_stream_pri_map[WMM_AC_VI] = 1;
} else {
ar->ac_stream_pri_map[WMM_AC_BE] = 1;
ar->ac_stream_pri_map[WMM_AC_VI] = 2;
}
}
}
void ath6kl_flush_pend_skb(struct ath6kl_vif *vif)
{
spin_lock_bh(&vif->pend_skb_lock);
if (!vif->pend_skb) {
spin_unlock_bh(&vif->pend_skb_lock);
return;
}
if (!(vif->pend_skb->dev->flags & IFF_UP))
dev_kfree_skb_any(vif->pend_skb);
else
netif_rx_ni(vif->pend_skb);
vif->pend_skb = NULL;
clear_bit(FIRST_EAPOL_PENDSENT, &vif->flags);
spin_unlock_bh(&vif->pend_skb_lock);
}
static void ath6kl_eapol_handshake_protect(struct ath6kl_vif *vif, bool tx)
{
struct ath6kl *ar = vif->ar;
struct ath6kl_vif *tmp;
int i;
/*
* In some system, continuous scan and connection behavior
* happened at the same time. Ex, in Android, if the user
* keep in WiFi site-survey page.
* To avoid scan let EAPOL frame lost or timeout and
* here preempt scan for a while when transmit/receive
* EAPOL frame.
*/
set_bit(EAPOL_HANDSHAKE_PROTECT, &ar->flag);
ar->eapol_shprotect_vif |= (1 << vif->fw_vif_idx);
mod_timer(&ar->eapol_shprotect_timer,
jiffies + ATH6KL_SCAN_PREEMPT_IN_HANDSHAKE);
for (i = 0; i < ar->vif_max; i++) {
tmp = ath6kl_get_vif_by_index(ar, i);
if (tmp && tmp->scan_req) {
ath6kl_info("%s EAPOL on-going, vif %d\n",
(tx ? "TX" : "RX"),
tmp->fw_vif_idx);
del_timer(&tmp->vifscan_timer);
ath6kl_wmi_abort_scan_cmd(ar->wmi,
tmp->fw_vif_idx);
cfg80211_scan_done(tmp->scan_req, true);
#ifdef USB_AUTO_SUSPEND
if (ath6kl_hif_auto_pm_get_usage_cnt(ar) == 0) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG |
ATH6KL_DBG_EXT_AUTOPM,
"%s: warnning refcnt=0, my=%d/%d\n",
__func__,
ar->auto_pm_cnt,
ar->auto_pm_fail_cnt);
} else
ath6kl_hif_auto_pm_enable(ar);
#endif
tmp->scan_req = NULL;
clear_bit(SCANNING, &tmp->flags);
}
}
return;
}