430 lines
9.8 KiB
C
430 lines
9.8 KiB
C
#ifndef __ASM_SPINLOCK_H
|
|
#define __ASM_SPINLOCK_H
|
|
|
|
#if __LINUX_ARM_ARCH__ < 6
|
|
#error SMP not supported on pre-ARMv6 CPUs
|
|
#endif
|
|
|
|
#include <asm/processor.h>
|
|
|
|
extern int msm_krait_need_wfe_fixup;
|
|
|
|
/*
|
|
* sev and wfe are ARMv6K extensions. Uniprocessor ARMv6 may not have the K
|
|
* extensions, so when running on UP, we have to patch these instructions away.
|
|
*/
|
|
#define ALT_SMP(smp, up) \
|
|
"9998: " smp "\n" \
|
|
" .pushsection \".alt.smp.init\", \"a\"\n" \
|
|
" .long 9998b\n" \
|
|
" " up "\n" \
|
|
" .popsection\n"
|
|
|
|
#ifdef CONFIG_THUMB2_KERNEL
|
|
#define SEV ALT_SMP("sev.w", "nop.w")
|
|
/*
|
|
* Both instructions given to the ALT_SMP macro need to be the same size, to
|
|
* allow the SMP_ON_UP fixups to function correctly. Hence the explicit encoding
|
|
* specifications.
|
|
*/
|
|
#define WFE() ALT_SMP( \
|
|
"wfe.w", \
|
|
"nop.w" \
|
|
)
|
|
#else
|
|
#define SEV ALT_SMP("sev", "nop")
|
|
#define WFE() ALT_SMP("wfe", "nop")
|
|
#endif
|
|
|
|
/*
|
|
* The fixup involves disabling FIQs during execution of the WFE instruction.
|
|
* This could potentially lead to deadlock if a thread is trying to acquire a
|
|
* spinlock which is being released from an FIQ. This should not be a problem
|
|
* because FIQs are handled by the secure environment and do not directly
|
|
* manipulate spinlocks.
|
|
*/
|
|
#ifdef CONFIG_MSM_KRAIT_WFE_FIXUP
|
|
#define WFE_SAFE(fixup, tmp) \
|
|
" mrs " tmp ", cpsr\n" \
|
|
" cmp " fixup ", #0\n" \
|
|
" wfeeq\n" \
|
|
" beq 10f\n" \
|
|
" cpsid f\n" \
|
|
" mrc p15, 7, " fixup ", c15, c0, 5\n" \
|
|
" bic " fixup ", " fixup ", #0x10000\n" \
|
|
" mcr p15, 7, " fixup ", c15, c0, 5\n" \
|
|
" isb\n" \
|
|
" wfe\n" \
|
|
" orr " fixup ", " fixup ", #0x10000\n" \
|
|
" mcr p15, 7, " fixup ", c15, c0, 5\n" \
|
|
" isb\n" \
|
|
"10: msr cpsr_cf, " tmp "\n"
|
|
#else
|
|
#define WFE_SAFE(fixup, tmp) " wfe\n"
|
|
#endif
|
|
|
|
static inline void dsb_sev(void)
|
|
{
|
|
#if __LINUX_ARM_ARCH__ >= 7
|
|
__asm__ __volatile__ (
|
|
"dsb\n"
|
|
SEV
|
|
);
|
|
#else
|
|
__asm__ __volatile__ (
|
|
"mcr p15, 0, %0, c7, c10, 4\n"
|
|
SEV
|
|
: : "r" (0)
|
|
);
|
|
#endif
|
|
}
|
|
|
|
#ifndef CONFIG_ARM_TICKET_LOCKS
|
|
/*
|
|
* ARMv6 Spin-locking.
|
|
*
|
|
* We exclusively read the old value. If it is zero, we may have
|
|
* won the lock, so we try exclusively storing it. A memory barrier
|
|
* is required after we get a lock, and before we release it, because
|
|
* V6 CPUs are assumed to have weakly ordered memory.
|
|
*
|
|
* Unlocked value: 0
|
|
* Locked value: 1
|
|
*/
|
|
|
|
#define arch_spin_is_locked(x) ((x)->lock != 0)
|
|
#define arch_spin_unlock_wait(lock) \
|
|
do { while (arch_spin_is_locked(lock)) cpu_relax(); } while (0)
|
|
|
|
#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
|
|
|
|
static inline void arch_spin_lock(arch_spinlock_t *lock)
|
|
{
|
|
unsigned long tmp, fixup = msm_krait_need_wfe_fixup;
|
|
|
|
__asm__ __volatile__(
|
|
"1: ldrex %[tmp], [%[lock]]\n"
|
|
" teq %[tmp], #0\n"
|
|
" beq 2f\n"
|
|
WFE_SAFE("%[fixup]", "%[tmp]")
|
|
"2:\n"
|
|
" strexeq %[tmp], %[bit0], [%[lock]]\n"
|
|
" teqeq %[tmp], #0\n"
|
|
" bne 1b"
|
|
: [tmp] "=&r" (tmp), [fixup] "+r" (fixup)
|
|
: [lock] "r" (&lock->lock), [bit0] "r" (1)
|
|
: "cc");
|
|
|
|
smp_mb();
|
|
}
|
|
|
|
static inline int arch_spin_trylock(arch_spinlock_t *lock)
|
|
{
|
|
unsigned long tmp;
|
|
|
|
__asm__ __volatile__(
|
|
" ldrex %0, [%1]\n"
|
|
" teq %0, #0\n"
|
|
" strexeq %0, %2, [%1]"
|
|
: "=&r" (tmp)
|
|
: "r" (&lock->lock), "r" (1)
|
|
: "cc");
|
|
|
|
if (tmp == 0) {
|
|
smp_mb();
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static inline void arch_spin_unlock(arch_spinlock_t *lock)
|
|
{
|
|
smp_mb();
|
|
|
|
__asm__ __volatile__(
|
|
" str %1, [%0]\n"
|
|
:
|
|
: "r" (&lock->lock), "r" (0)
|
|
: "cc");
|
|
|
|
dsb_sev();
|
|
}
|
|
#else
|
|
/*
|
|
* ARM Ticket spin-locking
|
|
*
|
|
* Ticket locks are conceptually two parts, one indicating the current head of
|
|
* the queue, and the other indicating the current tail. The lock is acquired
|
|
* by atomically noting the tail and incrementing it by one (thus adding
|
|
* ourself to the queue and noting our position), then waiting until the head
|
|
* becomes equal to the the initial value of the tail.
|
|
*
|
|
* Unlocked value: 0
|
|
* Locked value: now_serving != next_ticket
|
|
*
|
|
* 31 17 16 15 14 0
|
|
* +----------------------------------------------------+
|
|
* | now_serving | next_ticket |
|
|
* +----------------------------------------------------+
|
|
*/
|
|
|
|
#define TICKET_SHIFT 16
|
|
#define TICKET_BITS 16
|
|
#define TICKET_MASK 0xFFFF
|
|
|
|
#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
|
|
|
|
static inline void arch_spin_lock(arch_spinlock_t *lock)
|
|
{
|
|
unsigned long tmp, ticket, next_ticket;
|
|
unsigned long fixup = msm_krait_need_wfe_fixup;
|
|
|
|
/* Grab the next ticket and wait for it to be "served" */
|
|
__asm__ __volatile__(
|
|
"1: ldrex %[ticket], [%[lockaddr]]\n"
|
|
" uadd16 %[next_ticket], %[ticket], %[val1]\n"
|
|
" strex %[tmp], %[next_ticket], [%[lockaddr]]\n"
|
|
" teq %[tmp], #0\n"
|
|
" bne 1b\n"
|
|
" uxth %[ticket], %[ticket]\n"
|
|
"2:\n"
|
|
#ifdef CONFIG_CPU_32v6K
|
|
" beq 3f\n"
|
|
WFE_SAFE("%[fixup]", "%[tmp]")
|
|
"3:\n"
|
|
#endif
|
|
" ldr %[tmp], [%[lockaddr]]\n"
|
|
" cmp %[ticket], %[tmp], lsr #16\n"
|
|
" bne 2b"
|
|
: [ticket]"=&r" (ticket), [tmp]"=&r" (tmp),
|
|
[next_ticket]"=&r" (next_ticket), [fixup]"+r" (fixup)
|
|
: [lockaddr]"r" (&lock->lock), [val1]"r" (1)
|
|
: "cc");
|
|
smp_mb();
|
|
}
|
|
|
|
static inline int arch_spin_trylock(arch_spinlock_t *lock)
|
|
{
|
|
unsigned long tmp, ticket, next_ticket;
|
|
|
|
/* Grab lock if now_serving == next_ticket and access is exclusive */
|
|
__asm__ __volatile__(
|
|
" ldrex %[ticket], [%[lockaddr]]\n"
|
|
" ror %[tmp], %[ticket], #16\n"
|
|
" eors %[tmp], %[tmp], %[ticket]\n"
|
|
" bne 1f\n"
|
|
" uadd16 %[next_ticket], %[ticket], %[val1]\n"
|
|
" strex %[tmp], %[next_ticket], [%[lockaddr]]\n"
|
|
"1:"
|
|
: [ticket]"=&r" (ticket), [tmp]"=&r" (tmp),
|
|
[next_ticket]"=&r" (next_ticket)
|
|
: [lockaddr]"r" (&lock->lock), [val1]"r" (1)
|
|
: "cc");
|
|
if (!tmp)
|
|
smp_mb();
|
|
return !tmp;
|
|
}
|
|
|
|
static inline void arch_spin_unlock(arch_spinlock_t *lock)
|
|
{
|
|
unsigned long ticket, tmp;
|
|
|
|
smp_mb();
|
|
|
|
/* Bump now_serving by 1 */
|
|
__asm__ __volatile__(
|
|
"1: ldrex %[ticket], [%[lockaddr]]\n"
|
|
" uadd16 %[ticket], %[ticket], %[serving1]\n"
|
|
" strex %[tmp], %[ticket], [%[lockaddr]]\n"
|
|
" teq %[tmp], #0\n"
|
|
" bne 1b"
|
|
: [ticket]"=&r" (ticket), [tmp]"=&r" (tmp)
|
|
: [lockaddr]"r" (&lock->lock), [serving1]"r" (0x00010000)
|
|
: "cc");
|
|
dsb_sev();
|
|
}
|
|
|
|
static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
|
|
{
|
|
unsigned long ticket, tmp, fixup = msm_krait_need_wfe_fixup;
|
|
|
|
/* Wait for now_serving == next_ticket */
|
|
__asm__ __volatile__(
|
|
#ifdef CONFIG_CPU_32v6K
|
|
" cmpne %[lockaddr], %[lockaddr]\n"
|
|
"1:\n"
|
|
" beq 2f\n"
|
|
WFE_SAFE("%[fixup]", "%[tmp]")
|
|
"2:\n"
|
|
#else
|
|
"1:\n"
|
|
#endif
|
|
" ldr %[ticket], [%[lockaddr]]\n"
|
|
" eor %[ticket], %[ticket], %[ticket], lsr #16\n"
|
|
" uxth %[ticket], %[ticket]\n"
|
|
" cmp %[ticket], #0\n"
|
|
" bne 1b"
|
|
: [ticket]"=&r" (ticket), [tmp]"=&r" (tmp),
|
|
[fixup]"+r" (fixup)
|
|
: [lockaddr]"r" (&lock->lock)
|
|
: "cc");
|
|
}
|
|
|
|
static inline int arch_spin_is_locked(arch_spinlock_t *lock)
|
|
{
|
|
unsigned long tmp = ACCESS_ONCE(lock->lock);
|
|
return (((tmp >> TICKET_SHIFT) ^ tmp) & TICKET_MASK) != 0;
|
|
}
|
|
|
|
static inline int arch_spin_is_contended(arch_spinlock_t *lock)
|
|
{
|
|
unsigned long tmp = ACCESS_ONCE(lock->lock);
|
|
return ((tmp - (tmp >> TICKET_SHIFT)) & TICKET_MASK) > 1;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* RWLOCKS
|
|
*
|
|
*
|
|
* Write locks are easy - we just set bit 31. When unlocking, we can
|
|
* just write zero since the lock is exclusively held.
|
|
*/
|
|
|
|
static inline void arch_write_lock(arch_rwlock_t *rw)
|
|
{
|
|
unsigned long tmp, fixup = msm_krait_need_wfe_fixup;
|
|
|
|
__asm__ __volatile__(
|
|
"1: ldrex %[tmp], [%[lock]]\n"
|
|
" teq %[tmp], #0\n"
|
|
" beq 2f\n"
|
|
WFE_SAFE("%[fixup]", "%[tmp]")
|
|
"2:\n"
|
|
" strexeq %[tmp], %[bit31], [%[lock]]\n"
|
|
" teq %[tmp], #0\n"
|
|
" bne 1b"
|
|
: [tmp] "=&r" (tmp), [fixup] "+r" (fixup)
|
|
: [lock] "r" (&rw->lock), [bit31] "r" (0x80000000)
|
|
: "cc");
|
|
|
|
smp_mb();
|
|
}
|
|
|
|
static inline int arch_write_trylock(arch_rwlock_t *rw)
|
|
{
|
|
unsigned long tmp;
|
|
|
|
__asm__ __volatile__(
|
|
"1: ldrex %0, [%1]\n"
|
|
" teq %0, #0\n"
|
|
" strexeq %0, %2, [%1]"
|
|
: "=&r" (tmp)
|
|
: "r" (&rw->lock), "r" (0x80000000)
|
|
: "cc");
|
|
|
|
if (tmp == 0) {
|
|
smp_mb();
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static inline void arch_write_unlock(arch_rwlock_t *rw)
|
|
{
|
|
smp_mb();
|
|
|
|
__asm__ __volatile__(
|
|
"str %1, [%0]\n"
|
|
:
|
|
: "r" (&rw->lock), "r" (0)
|
|
: "cc");
|
|
|
|
dsb_sev();
|
|
}
|
|
|
|
/* write_can_lock - would write_trylock() succeed? */
|
|
#define arch_write_can_lock(x) ((x)->lock == 0)
|
|
|
|
/*
|
|
* Read locks are a bit more hairy:
|
|
* - Exclusively load the lock value.
|
|
* - Increment it.
|
|
* - Store new lock value if positive, and we still own this location.
|
|
* If the value is negative, we've already failed.
|
|
* - If we failed to store the value, we want a negative result.
|
|
* - If we failed, try again.
|
|
* Unlocking is similarly hairy. We may have multiple read locks
|
|
* currently active. However, we know we won't have any write
|
|
* locks.
|
|
*/
|
|
static inline void arch_read_lock(arch_rwlock_t *rw)
|
|
{
|
|
unsigned long tmp, tmp2, fixup = msm_krait_need_wfe_fixup;
|
|
|
|
__asm__ __volatile__(
|
|
"1: ldrex %[tmp], [%[lock]]\n"
|
|
" adds %[tmp], %[tmp], #1\n"
|
|
" strexpl %[tmp2], %[tmp], [%[lock]]\n"
|
|
" bpl 2f\n"
|
|
WFE_SAFE("%[fixup]", "%[tmp]")
|
|
"2:\n"
|
|
" rsbpls %[tmp], %[tmp2], #0\n"
|
|
" bmi 1b"
|
|
: [tmp] "=&r" (tmp), [tmp2] "=&r" (tmp2), [fixup] "+r" (fixup)
|
|
: [lock] "r" (&rw->lock)
|
|
: "cc");
|
|
|
|
smp_mb();
|
|
}
|
|
|
|
static inline void arch_read_unlock(arch_rwlock_t *rw)
|
|
{
|
|
unsigned long tmp, tmp2;
|
|
|
|
smp_mb();
|
|
|
|
__asm__ __volatile__(
|
|
"1: ldrex %0, [%2]\n"
|
|
" sub %0, %0, #1\n"
|
|
" strex %1, %0, [%2]\n"
|
|
" teq %1, #0\n"
|
|
" bne 1b"
|
|
: "=&r" (tmp), "=&r" (tmp2)
|
|
: "r" (&rw->lock)
|
|
: "cc");
|
|
|
|
if (tmp == 0)
|
|
dsb_sev();
|
|
}
|
|
|
|
static inline int arch_read_trylock(arch_rwlock_t *rw)
|
|
{
|
|
unsigned long tmp, tmp2 = 1;
|
|
|
|
__asm__ __volatile__(
|
|
"1: ldrex %0, [%2]\n"
|
|
" adds %0, %0, #1\n"
|
|
" strexpl %1, %0, [%2]\n"
|
|
: "=&r" (tmp), "+r" (tmp2)
|
|
: "r" (&rw->lock)
|
|
: "cc");
|
|
|
|
smp_mb();
|
|
return tmp2 == 0;
|
|
}
|
|
|
|
/* read_can_lock - would read_trylock() succeed? */
|
|
#define arch_read_can_lock(x) ((x)->lock < 0x80000000)
|
|
|
|
#define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
|
|
#define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
|
|
|
|
#define arch_spin_relax(lock) cpu_relax()
|
|
#define arch_read_relax(lock) cpu_relax()
|
|
#define arch_write_relax(lock) cpu_relax()
|
|
|
|
#endif /* __ASM_SPINLOCK_H */
|