M7350/wlan/8192es/DriverSrcPkg/Driver/rtl8192cd_92es/OUTSRC/HalPhyRf_AP.c
2024-09-09 08:59:52 +00:00

2505 lines
89 KiB
C
Executable File

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#include "Mp_Precomp.h"
#include "phydm_precomp.h"
#ifndef index_mapping_NUM_88E
#define index_mapping_NUM_88E 15
#endif
//#if(DM_ODM_SUPPORT_TYPE & ODM_WIN)
#define CALCULATE_SWINGTALBE_OFFSET(_offset, _direction, _size, _deltaThermal) \
do {\
for(_offset = 0; _offset < _size; _offset++)\
{\
if(_deltaThermal < thermalThreshold[_direction][_offset])\
{\
if(_offset != 0)\
_offset--;\
break;\
}\
} \
if(_offset >= _size)\
_offset = _size-1;\
} while(0)
void ConfigureTxpowerTrack(
IN PVOID pDM_VOID,
OUT PTXPWRTRACK_CFG pConfig
)
{
PDM_ODM_T pDM_Odm = (PDM_ODM_T)pDM_VOID;
#if RTL8812A_SUPPORT
#if (DM_ODM_SUPPORT_TYPE == ODM_WIN)
//if (IS_HARDWARE_TYPE_8812(pDM_Odm->Adapter))
if(pDM_Odm->SupportICType==ODM_RTL8812)
ConfigureTxpowerTrack_8812A(pConfig);
//else
#endif
#endif
#if RTL8814A_SUPPORT
if(pDM_Odm->SupportICType== ODM_RTL8814A)
ConfigureTxpowerTrack_8814A(pConfig);
#endif
#if RTL8188E_SUPPORT
if(pDM_Odm->SupportICType==ODM_RTL8188E)
ConfigureTxpowerTrack_8188E(pConfig);
#endif
}
#if (RTL8192E_SUPPORT==1)
VOID
ODM_TXPowerTrackingCallback_ThermalMeter_92E(
#if (DM_ODM_SUPPORT_TYPE & ODM_AP)
IN PVOID pDM_VOID
#else
IN PADAPTER Adapter
#endif
)
{
PDM_ODM_T pDM_Odm = (PDM_ODM_T)pDM_VOID;
u1Byte ThermalValue = 0, delta, delta_IQK, delta_LCK, channel, is_decrease, rf_mimo_mode;
u1Byte ThermalValue_AVG_count = 0;
u1Byte OFDM_min_index = 10; //OFDM BB Swing should be less than +2.5dB, which is required by Arthur
s1Byte OFDM_index[2], index ;
u4Byte ThermalValue_AVG = 0, Reg0x18;
u4Byte i = 0, j = 0, rf;
s4Byte value32, CCK_index = 0, ele_A, ele_D, ele_C, X, Y;
prtl8192cd_priv priv = pDM_Odm->priv;
rf_mimo_mode = pDM_Odm->RFType;
//ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("%s:%d rf_mimo_mode:%d\n", __FUNCTION__, __LINE__, rf_mimo_mode));
#ifdef MP_TEST
if ((OPMODE & WIFI_MP_STATE) || priv->pshare->rf_ft_var.mp_specific) {
channel = priv->pshare->working_channel;
if (priv->pshare->mp_txpwr_tracking == FALSE)
return;
} else
#endif
{
channel = (priv->pmib->dot11RFEntry.dot11channel);
}
ThermalValue = (unsigned char)ODM_GetRFReg(pDM_Odm, RF_PATH_A, ODM_RF_T_METER_92E, 0xfc00); //0x42: RF Reg[15:10] 88E
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("\nReadback Thermal Meter = 0x%x pre thermal meter 0x%x EEPROMthermalmeter 0x%x\n", ThermalValue, priv->pshare->ThermalValue, priv->pmib->dot11RFEntry.ther));
switch (rf_mimo_mode) {
case MIMO_1T1R:
rf = 1;
break;
case MIMO_2T2R:
rf = 2;
break;
default:
rf = 2;
break;
}
//Query OFDM path A default setting Bit[31:21]
ele_D = PHY_QueryBBReg(priv, rOFDM0_XATxIQImbalance, bMaskOFDM_D);
for (i = 0; i < OFDM_TABLE_SIZE_92E; i++) {
if (ele_D == (OFDMSwingTable_92E[i] >> 22)) {
OFDM_index[0] = (unsigned char)i;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("PathA 0xC80[31:22] = 0x%x, OFDM_index=%d\n", ele_D, OFDM_index[0]));
break;
}
}
//Query OFDM path B default setting
if (rf_mimo_mode == MIMO_2T2R) {
ele_D = PHY_QueryBBReg(priv, rOFDM0_XBTxIQImbalance, bMaskOFDM_D);
for (i = 0; i < OFDM_TABLE_SIZE_92E; i++) {
if (ele_D == (OFDMSwingTable_92E[i] >> 22)) {
OFDM_index[1] = (unsigned char)i;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("PathB 0xC88[31:22] = 0x%x, OFDM_index=%d\n", ele_D, OFDM_index[1]));
break;
}
}
}
/* calculate average thermal meter */
{
priv->pshare->ThermalValue_AVG_88XX[priv->pshare->ThermalValue_AVG_index_88XX] = ThermalValue;
priv->pshare->ThermalValue_AVG_index_88XX++;
if (priv->pshare->ThermalValue_AVG_index_88XX == AVG_THERMAL_NUM_88XX)
priv->pshare->ThermalValue_AVG_index_88XX = 0;
for (i = 0; i < AVG_THERMAL_NUM_88XX; i++) {
if (priv->pshare->ThermalValue_AVG_88XX[i]) {
ThermalValue_AVG += priv->pshare->ThermalValue_AVG_88XX[i];
ThermalValue_AVG_count++;
}
}
if (ThermalValue_AVG_count) {
ThermalValue = (unsigned char)(ThermalValue_AVG / ThermalValue_AVG_count);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("AVG Thermal Meter = 0x%x \n", ThermalValue));
}
}
/* Initialize */
if (!priv->pshare->ThermalValue) {
priv->pshare->ThermalValue = priv->pmib->dot11RFEntry.ther;
priv->pshare->ThermalValue_IQK = ThermalValue;
priv->pshare->ThermalValue_LCK = ThermalValue;
}
if (ThermalValue != priv->pshare->ThermalValue) {
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("\n******** START POWER TRACKING ********\n"));
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("\nReadback Thermal Meter = 0x%x pre thermal meter 0x%x EEPROMthermalmeter 0x%x\n", ThermalValue, priv->pshare->ThermalValue, priv->pmib->dot11RFEntry.ther));
delta = RTL_ABS(ThermalValue, priv->pmib->dot11RFEntry.ther);
delta_IQK = RTL_ABS(ThermalValue, priv->pshare->ThermalValue_IQK);
delta_LCK = RTL_ABS(ThermalValue, priv->pshare->ThermalValue_LCK);
is_decrease = ((ThermalValue < priv->pmib->dot11RFEntry.ther) ? 1 : 0);
#ifdef _TRACKING_TABLE_FILE
if (priv->pshare->rf_ft_var.pwr_track_file) {
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("Diff: (%s)%d ==> get index from table : %d)\n", (is_decrease?"-":"+"), delta, get_tx_tracking_index(priv, channel, i, delta, is_decrease, 0)));
if (is_decrease) {
for (i = 0; i < rf; i++) {
OFDM_index[i] = priv->pshare->OFDM_index0[i] + get_tx_tracking_index(priv, channel, i, delta, is_decrease, 0);
OFDM_index[i] = ((OFDM_index[i] > (OFDM_TABLE_SIZE_92E- 1)) ? (OFDM_TABLE_SIZE_92E - 1) : OFDM_index[i]);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,(">>> decrese power ---> new OFDM_INDEX:%d (%d + %d)\n", OFDM_index[i], priv->pshare->OFDM_index0[i], get_tx_tracking_index(priv, channel, i, delta, is_decrease, 0)));
CCK_index = priv->pshare->CCK_index0 + get_tx_tracking_index(priv, channel, i, delta, is_decrease, 1);
CCK_index = ((CCK_index > (CCK_TABLE_SIZE_92E - 1)) ? (CCK_TABLE_SIZE_92E - 1) : CCK_index);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,(">>> Decrese power ---> new CCK_INDEX:%d (%d + %d)\n", CCK_index, priv->pshare->CCK_index0, get_tx_tracking_index(priv, channel, i, delta, is_decrease, 1)));
}
} else {
for (i = 0; i < rf; i++) {
OFDM_index[i] = priv->pshare->OFDM_index0[i] - get_tx_tracking_index(priv, channel, i, delta, is_decrease, 0);
OFDM_index[i] = ((OFDM_index[i] < OFDM_min_index) ? OFDM_min_index : OFDM_index[i]);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,(">>> Increse power ---> new OFDM_INDEX:%d (%d - %d)\n", OFDM_index[i], priv->pshare->OFDM_index0[i], get_tx_tracking_index(priv, channel, i, delta, is_decrease, 0)));
CCK_index = priv->pshare->CCK_index0 - get_tx_tracking_index(priv, channel, i, delta, is_decrease, 1);
CCK_index = ((CCK_index < 0 )? 0 : CCK_index);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,(">>> Increse power ---> new CCK_INDEX:%d (%d - %d)\n", CCK_index, priv->pshare->CCK_index0, get_tx_tracking_index(priv, channel, i, delta, is_decrease, 1)));
}
}
}
#endif //CFG_TRACKING_TABLE_FILE
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("OFDMSwingTable_92E[(unsigned int)OFDM_index[0]] = %x \n",OFDMSwingTable_92E[(unsigned int)OFDM_index[0]]));
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("OFDMSwingTable_92E[(unsigned int)OFDM_index[1]] = %x \n",OFDMSwingTable_92E[(unsigned int)OFDM_index[1]]));
//Adujst OFDM Ant_A according to IQK result
ele_D = (OFDMSwingTable_92E[(unsigned int)OFDM_index[0]] & 0xFFC00000) >> 22;
X = priv->pshare->RegE94;
Y = priv->pshare->RegE9C;
if (X != 0) {
if ((X & 0x00000200) != 0)
X = X | 0xFFFFFC00;
ele_A = ((X * ele_D) >> 8) & 0x000003FF;
//new element C = element D x Y
if ((Y & 0x00000200) != 0)
Y = Y | 0xFFFFFC00;
ele_C = ((Y * ele_D) >> 8) & 0x000003FF;
//wirte new elements A, C, D to regC80 and regC94, element B is always 0
value32 = (ele_D << 22) | ((ele_C & 0x3F) << 16) | ele_A;
PHY_SetBBReg(priv, rOFDM0_XATxIQImbalance, bMaskDWord, value32);
value32 = (ele_C&0x000003C0)>>6;
PHY_SetBBReg(priv, rOFDM0_XCTxAFE, bMaskH4Bits, value32);
value32 = ((X * ele_D)>>7)&0x01;
PHY_SetBBReg(priv, rOFDM0_ECCAThreshold, BIT(24), value32);
} else {
PHY_SetBBReg(priv, rOFDM0_XATxIQImbalance, bMaskDWord, OFDMSwingTable_92E[(unsigned int)OFDM_index[0]]);
PHY_SetBBReg(priv, rOFDM0_XCTxAFE, bMaskH4Bits, 0x00);
PHY_SetBBReg(priv, rOFDM0_ECCAThreshold, BIT(24), 0x00);
}
set_CCK_swing_index(priv, CCK_index);
if (rf == 2) {
ele_D = (OFDMSwingTable_92E[(unsigned int)OFDM_index[1]] & 0xFFC00000) >> 22;
X = priv->pshare->RegEB4;
Y = priv->pshare->RegEBC;
if (X != 0) {
if ((X & 0x00000200) != 0) //consider minus
X = X | 0xFFFFFC00;
ele_A = ((X * ele_D) >> 8) & 0x000003FF;
//new element C = element D x Y
if ((Y & 0x00000200) != 0)
Y = Y | 0xFFFFFC00;
ele_C = ((Y * ele_D) >> 8) & 0x00003FF;
//wirte new elements A, C, D to regC88 and regC9C, element B is always 0
value32 = (ele_D << 22) | ((ele_C & 0x3F) << 16) | ele_A;
PHY_SetBBReg(priv, rOFDM0_XBTxIQImbalance, bMaskDWord, value32);
value32 = (ele_C & 0x000003C0) >> 6;
PHY_SetBBReg(priv, rOFDM0_XDTxAFE, bMaskH4Bits, value32);
value32 = ((X * ele_D) >> 7) & 0x01;
PHY_SetBBReg(priv, rOFDM0_ECCAThreshold, BIT(28), value32);
} else {
PHY_SetBBReg(priv, rOFDM0_XBTxIQImbalance, bMaskDWord, OFDMSwingTable_92E[(unsigned int)OFDM_index[1]]);
PHY_SetBBReg(priv, rOFDM0_XDTxAFE, bMaskH4Bits, 0x00);
PHY_SetBBReg(priv, rOFDM0_ECCAThreshold, BIT(28), 0x00);
}
}
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD, ("0xc80 = 0x%x \n", PHY_QueryBBReg(priv, rOFDM0_XATxIQImbalance, bMaskDWord)));
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD, ("0xc88 = 0x%x \n", PHY_QueryBBReg(priv, rOFDM0_XBTxIQImbalance, bMaskDWord)));
if (delta_IQK > 3) {
priv->pshare->ThermalValue_IQK = ThermalValue;
#ifdef MP_TEST
if (!(priv->pshare->rf_ft_var.mp_specific && (OPMODE & (WIFI_MP_CTX_BACKGROUND | WIFI_MP_CTX_PACKET))))
#endif
PHY_IQCalibrate_8192E(pDM_Odm,false);
}
if (delta_LCK > 8) {
RTL_W8(0x522, 0xff);
Reg0x18 = PHY_QueryRFReg(priv, RF_PATH_A, 0x18, bMask20Bits, 1);
PHY_SetRFReg(priv, RF_PATH_A, 0xB4, BIT(14), 1);
PHY_SetRFReg(priv, RF_PATH_A, 0x18, BIT(15), 1);
delay_ms(1);
PHY_SetRFReg(priv, RF_PATH_A, 0xB4, BIT(14), 0);
PHY_SetRFReg(priv, RF_PATH_A, 0x18, bMask20Bits, Reg0x18);
RTL_W8(0x522, 0x0);
priv->pshare->ThermalValue_LCK = ThermalValue;
}
}
//update thermal meter value
priv->pshare->ThermalValue = ThermalValue;
for (i = 0 ; i < rf ; i++)
priv->pshare->OFDM_index[i] = OFDM_index[i];
priv->pshare->CCK_index = CCK_index;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD, ("\n******** END:%s() ********\n", __FUNCTION__));
}
#endif
#if (RTL8814A_SUPPORT ==1)
VOID
ODM_TXPowerTrackingCallback_ThermalMeter_JaguarSeries2(
#if (DM_ODM_SUPPORT_TYPE & ODM_AP)
IN PVOID pDM_VOID
#else
IN PADAPTER Adapter
#endif
)
{
PDM_ODM_T pDM_Odm = (PDM_ODM_T)pDM_VOID;
u1Byte ThermalValue = 0, delta, delta_LCK, delta_IQK, channel, is_increase;
u1Byte ThermalValue_AVG_count = 0, p = 0, i = 0;
u4Byte ThermalValue_AVG = 0, Reg0x18;
u4Byte BBSwingReg[4] = {rA_TxScale_Jaguar,rB_TxScale_Jaguar,rC_TxScale_Jaguar2,rD_TxScale_Jaguar2};
s4Byte ele_D;
u4Byte BBswingIdx;
prtl8192cd_priv priv = pDM_Odm->priv;
TXPWRTRACK_CFG c;
BOOLEAN bTSSIenable = FALSE;
PODM_RF_CAL_T pRFCalibrateInfo = &(pDM_Odm->RFCalibrateInfo);
//4 1. The following TWO tables decide the final index of OFDM/CCK swing table.
pu1Byte deltaSwingTableIdx_TUP_A = NULL, deltaSwingTableIdx_TDOWN_A = NULL;
pu1Byte deltaSwingTableIdx_TUP_B = NULL, deltaSwingTableIdx_TDOWN_B = NULL;
//for 8814 add by Yu Chen
pu1Byte deltaSwingTableIdx_TUP_C = NULL, deltaSwingTableIdx_TDOWN_C = NULL;
pu1Byte deltaSwingTableIdx_TUP_D = NULL, deltaSwingTableIdx_TDOWN_D = NULL;
#ifdef MP_TEST
if ((OPMODE & WIFI_MP_STATE) || priv->pshare->rf_ft_var.mp_specific) {
channel = priv->pshare->working_channel;
if (priv->pshare->mp_txpwr_tracking == FALSE)
return;
} else
#endif
{
channel = (priv->pmib->dot11RFEntry.dot11channel);
}
ConfigureTxpowerTrack(pDM_Odm, &c);
pRFCalibrateInfo->DefaultOfdmIndex = priv->pshare->OFDM_index0[ODM_RF_PATH_A];
(*c.GetDeltaSwingTable)(pDM_Odm, (pu1Byte*)&deltaSwingTableIdx_TUP_A, (pu1Byte*)&deltaSwingTableIdx_TDOWN_A,
(pu1Byte*)&deltaSwingTableIdx_TUP_B, (pu1Byte*)&deltaSwingTableIdx_TDOWN_B);
if(pDM_Odm->SupportICType & ODM_RTL8814A) // for 8814 path C & D
(*c.GetDeltaSwingTable8814only)(pDM_Odm, (pu1Byte*)&deltaSwingTableIdx_TUP_C, (pu1Byte*)&deltaSwingTableIdx_TDOWN_C,
(pu1Byte*)&deltaSwingTableIdx_TUP_D, (pu1Byte*)&deltaSwingTableIdx_TDOWN_D);
ThermalValue = (u1Byte)ODM_GetRFReg(pDM_Odm, ODM_RF_PATH_A, c.ThermalRegAddr, 0xfc00); //0x42: RF Reg[15:10] 88E
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("\nReadback Thermal Meter = 0x%x, pre thermal meter 0x%x, EEPROMthermalmeter 0x%x\n", ThermalValue, pDM_Odm->RFCalibrateInfo.ThermalValue, priv->pmib->dot11RFEntry.ther));
/* Initialize */
if (!pDM_Odm->RFCalibrateInfo.ThermalValue) {
pDM_Odm->RFCalibrateInfo.ThermalValue = priv->pmib->dot11RFEntry.ther;
}
if (!pDM_Odm->RFCalibrateInfo.ThermalValue_LCK) {
pDM_Odm->RFCalibrateInfo.ThermalValue_LCK = priv->pmib->dot11RFEntry.ther;
}
if (!pDM_Odm->RFCalibrateInfo.ThermalValue_IQK) {
pDM_Odm->RFCalibrateInfo.ThermalValue_IQK = priv->pmib->dot11RFEntry.ther;
}
bTSSIenable = (BOOLEAN)ODM_GetRFReg(pDM_Odm, ODM_RF_PATH_A, rRF_TxGainOffset, BIT7); // check TSSI enable
//4 Query OFDM BB swing default setting Bit[31:21]
for(p = ODM_RF_PATH_A ; p < c.RfPathCount ; p++)
{
ele_D = ODM_GetBBReg(pDM_Odm, BBSwingReg[p], 0xffe00000);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("0x%x:0x%x ([31:21] = 0x%x)\n", BBSwingReg[p], ODM_GetBBReg(pDM_Odm, BBSwingReg[p], bMaskDWord), ele_D));
for (BBswingIdx = 0; BBswingIdx < TXSCALE_TABLE_SIZE; BBswingIdx++) {//4
if (ele_D == TxScalingTable_Jaguar[BBswingIdx]) {
pDM_Odm->RFCalibrateInfo.OFDM_index[p] = (u1Byte)BBswingIdx;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("OFDM_index[%d]=%d\n",p, pDM_Odm->RFCalibrateInfo.OFDM_index[p]));
break;
}
}
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD, ("KfreeOffset[%d]=%d\n",p, pRFCalibrateInfo->KfreeOffset[p]));
}
/* calculate average thermal meter */
pDM_Odm->RFCalibrateInfo.ThermalValue_AVG[pDM_Odm->RFCalibrateInfo.ThermalValue_AVG_index] = ThermalValue;
pDM_Odm->RFCalibrateInfo.ThermalValue_AVG_index++;
if(pDM_Odm->RFCalibrateInfo.ThermalValue_AVG_index == c.AverageThermalNum) //Average times = c.AverageThermalNum
pDM_Odm->RFCalibrateInfo.ThermalValue_AVG_index = 0;
for(i = 0; i < c.AverageThermalNum; i++)
{
if(pDM_Odm->RFCalibrateInfo.ThermalValue_AVG[i])
{
ThermalValue_AVG += pDM_Odm->RFCalibrateInfo.ThermalValue_AVG[i];
ThermalValue_AVG_count++;
}
}
if(ThermalValue_AVG_count) //Calculate Average ThermalValue after average enough times
{
ThermalValue = (u1Byte)(ThermalValue_AVG / ThermalValue_AVG_count);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("AVG Thermal Meter = 0x%X, EEPROMthermalmeter = 0x%X\n", ThermalValue, priv->pmib->dot11RFEntry.ther));
}
//4 Calculate delta, delta_LCK, delta_IQK.
delta = RTL_ABS(ThermalValue, priv->pmib->dot11RFEntry.ther);
delta_LCK = RTL_ABS(ThermalValue, pDM_Odm->RFCalibrateInfo.ThermalValue_LCK);
delta_IQK = RTL_ABS(ThermalValue, pDM_Odm->RFCalibrateInfo.ThermalValue_IQK);
is_increase = ((ThermalValue < priv->pmib->dot11RFEntry.ther) ? 0 : 1);
//4 if necessary, do LCK.
if (!(pDM_Odm->SupportICType & ODM_RTL8821)) {
if (delta_LCK > c.Threshold_IQK) {
ODM_RT_TRACE(pDM_Odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD, ("delta_LCK(%d) >= Threshold_IQK(%d)\n", delta_LCK, c.Threshold_IQK));
pDM_Odm->RFCalibrateInfo.ThermalValue_LCK = ThermalValue;
if (c.PHY_LCCalibrate)
(*c.PHY_LCCalibrate)(pDM_Odm);
}
}
if (delta_IQK > c.Threshold_IQK)
{
panic_printk("%s(%d)\n", __FUNCTION__, __LINE__);
ODM_RT_TRACE(pDM_Odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD, ("delta_IQK(%d) >= Threshold_IQK(%d)\n", delta_IQK, c.Threshold_IQK));
pDM_Odm->RFCalibrateInfo.ThermalValue_IQK = ThermalValue;
if(c.DoIQK)
(*c.DoIQK)(pDM_Odm, TRUE, 0, 0);
}
if(!priv->pmib->dot11RFEntry.ther) /*Don't do power tracking since no calibrated thermal value*/
return;
//4 Do Power Tracking
if(bTSSIenable == TRUE)
{
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("**********Enter PURE TSSI MODE**********\n"));
for (p = ODM_RF_PATH_A; p < c.RfPathCount; p++)
(*c.ODM_TxPwrTrackSetPwr)(pDM_Odm, TSSI_MODE, p, 0);
}
else if (ThermalValue != pDM_Odm->RFCalibrateInfo.ThermalValue)
{
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("\n******** START POWER TRACKING ********\n"));
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("\nReadback Thermal Meter = 0x%x pre thermal meter 0x%x EEPROMthermalmeter 0x%x\n", ThermalValue, pDM_Odm->RFCalibrateInfo.ThermalValue, priv->pmib->dot11RFEntry.ther));
#ifdef _TRACKING_TABLE_FILE
if (priv->pshare->rf_ft_var.pwr_track_file)
{
if (is_increase) // thermal is higher than base
{
for (p = ODM_RF_PATH_A; p < c.RfPathCount; p++)
{
switch(p)
{
case ODM_RF_PATH_B:
ODM_RT_TRACE(pDM_Odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("deltaSwingTableIdx_TUP_B[%d] = %d\n", delta, deltaSwingTableIdx_TUP_B[delta]));
pRFCalibrateInfo->Absolute_OFDMSwingIdx[p] = deltaSwingTableIdx_TUP_B[delta]; // Record delta swing for mix mode power tracking
ODM_RT_TRACE(pDM_Odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("******Temp is higher and pDM_Odm->Absolute_OFDMSwingIdx[ODM_RF_PATH_B] = %d\n", pRFCalibrateInfo->Absolute_OFDMSwingIdx[p]));
break;
case ODM_RF_PATH_C:
ODM_RT_TRACE(pDM_Odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("deltaSwingTableIdx_TUP_C[%d] = %d\n", delta, deltaSwingTableIdx_TUP_C[delta]));
pRFCalibrateInfo->Absolute_OFDMSwingIdx[p] = deltaSwingTableIdx_TUP_C[delta]; // Record delta swing for mix mode power tracking
ODM_RT_TRACE(pDM_Odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("******Temp is higher and pDM_Odm->Absolute_OFDMSwingIdx[ODM_RF_PATH_C] = %d\n", pRFCalibrateInfo->Absolute_OFDMSwingIdx[p]));
break;
case ODM_RF_PATH_D:
ODM_RT_TRACE(pDM_Odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("deltaSwingTableIdx_TUP_D[%d] = %d\n", delta, deltaSwingTableIdx_TUP_D[delta]));
pRFCalibrateInfo->Absolute_OFDMSwingIdx[p] = deltaSwingTableIdx_TUP_D[delta]; // Record delta swing for mix mode power tracking
ODM_RT_TRACE(pDM_Odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("******Temp is higher and pDM_Odm->Absolute_OFDMSwingIdx[ODM_RF_PATH_D] = %d\n", pRFCalibrateInfo->Absolute_OFDMSwingIdx[p]));
break;
default:
ODM_RT_TRACE(pDM_Odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("deltaSwingTableIdx_TUP_A[%d] = %d\n", delta, deltaSwingTableIdx_TUP_A[delta]));
pRFCalibrateInfo->Absolute_OFDMSwingIdx[p] = deltaSwingTableIdx_TUP_A[delta]; // Record delta swing for mix mode power tracking
ODM_RT_TRACE(pDM_Odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("******Temp is higher and pDM_Odm->Absolute_OFDMSwingIdx[ODM_RF_PATH_A] = %d\n", pRFCalibrateInfo->Absolute_OFDMSwingIdx[p]));
break;
}
}
}
else // thermal is lower than base
{
for (p = ODM_RF_PATH_A; p < c.RfPathCount; p++)
{
switch(p)
{
case ODM_RF_PATH_B:
ODM_RT_TRACE(pDM_Odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("deltaSwingTableIdx_TDOWN_B[%d] = %d\n", delta, deltaSwingTableIdx_TDOWN_B[delta]));
pRFCalibrateInfo->Absolute_OFDMSwingIdx[p] = -1 * deltaSwingTableIdx_TDOWN_B[delta]; // Record delta swing for mix mode power tracking
ODM_RT_TRACE(pDM_Odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("******Temp is lower and pDM_Odm->Absolute_OFDMSwingIdx[ODM_RF_PATH_B] = %d\n", pRFCalibrateInfo->Absolute_OFDMSwingIdx[p]));
break;
case ODM_RF_PATH_C:
ODM_RT_TRACE(pDM_Odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("deltaSwingTableIdx_TDOWN_C[%d] = %d\n", delta, deltaSwingTableIdx_TDOWN_C[delta]));
pRFCalibrateInfo->Absolute_OFDMSwingIdx[p] = -1 * deltaSwingTableIdx_TDOWN_C[delta]; // Record delta swing for mix mode power tracking
ODM_RT_TRACE(pDM_Odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("******Temp is lower and pDM_Odm->Absolute_OFDMSwingIdx[ODM_RF_PATH_C] = %d\n", pRFCalibrateInfo->Absolute_OFDMSwingIdx[p]));
break;
case ODM_RF_PATH_D:
ODM_RT_TRACE(pDM_Odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("deltaSwingTableIdx_TDOWN_D[%d] = %d\n", delta, deltaSwingTableIdx_TDOWN_D[delta]));
pRFCalibrateInfo->Absolute_OFDMSwingIdx[p] = -1 * deltaSwingTableIdx_TDOWN_D[delta]; // Record delta swing for mix mode power tracking
ODM_RT_TRACE(pDM_Odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("******Temp is lower and pDM_Odm->Absolute_OFDMSwingIdx[ODM_RF_PATH_D] = %d\n", pRFCalibrateInfo->Absolute_OFDMSwingIdx[p]));
break;
default:
ODM_RT_TRACE(pDM_Odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("deltaSwingTableIdx_TDOWN_A[%d] = %d\n", delta, deltaSwingTableIdx_TDOWN_A[delta]));
pRFCalibrateInfo->Absolute_OFDMSwingIdx[p] = -1 * deltaSwingTableIdx_TDOWN_A[delta]; // Record delta swing for mix mode power tracking
ODM_RT_TRACE(pDM_Odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("******Temp is lower and pDM_Odm->Absolute_OFDMSwingIdx[ODM_RF_PATH_A] = %d\n", pRFCalibrateInfo->Absolute_OFDMSwingIdx[p]));
break;
}
}
}
if (is_increase)
{
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,(">>> increse power ---> \n"));
for (p = ODM_RF_PATH_A; p < c.RfPathCount; p++)
(*c.ODM_TxPwrTrackSetPwr)(pDM_Odm, MIX_MODE, p, 0);
}
else
{
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,(">>> decrese power --->\n"));
for (p = ODM_RF_PATH_A; p < c.RfPathCount; p++)
(*c.ODM_TxPwrTrackSetPwr)(pDM_Odm, MIX_MODE, p, 0);
}
}
#endif
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("\n******** END:%s() ********\n", __FUNCTION__));
//update thermal meter value
pDM_Odm->RFCalibrateInfo.ThermalValue = ThermalValue;
}
}
#elif(ODM_IC_11AC_SERIES_SUPPORT)
VOID
ODM_TXPowerTrackingCallback_ThermalMeter_JaguarSeries(
#if (DM_ODM_SUPPORT_TYPE & ODM_AP)
IN PVOID pDM_VOID
#else
IN PADAPTER Adapter
#endif
)
{
PDM_ODM_T pDM_Odm = (PDM_ODM_T)pDM_VOID;
unsigned char ThermalValue = 0, delta, delta_LCK, channel, is_decrease;
unsigned char ThermalValue_AVG_count = 0;
unsigned int ThermalValue_AVG = 0, Reg0x18;
unsigned int BBSwingReg[4]={0xc1c,0xe1c,0x181c,0x1a1c};
int ele_D, value32;
char OFDM_index[2], index;
unsigned int i = 0, j = 0, rf_path, max_rf_path =2 ,rf;
prtl8192cd_priv priv = pDM_Odm->priv;
unsigned char OFDM_min_index = 7; //OFDM BB Swing should be less than +2.5dB, which is required by Arthur and Mimic
#ifdef MP_TEST
if ((OPMODE & WIFI_MP_STATE) || priv->pshare->rf_ft_var.mp_specific) {
channel = priv->pshare->working_channel;
if (priv->pshare->mp_txpwr_tracking == FALSE)
return;
} else
#endif
{
channel = (priv->pmib->dot11RFEntry.dot11channel);
}
#if RTL8881A_SUPPORT
if (pDM_Odm->SupportICType == ODM_RTL8881A) {
max_rf_path = 1;
if ((get_bonding_type_8881A() == BOND_8881AM ||get_bonding_type_8881A() == BOND_8881AN)
&& priv->pshare->rf_ft_var.use_intpa8881A && (priv->pmib->dot11RFEntry.phyBandSelect == PHY_BAND_2G))
OFDM_min_index = 6; // intPA - upper bond set to +3 dB (base: -2 dB)ot11RFEntry.phyBandSelect == PHY_BAND_2G))
else
OFDM_min_index = 10; //OFDM BB Swing should be less than +1dB, which is required by Arthur and Mimic
}
#endif
ThermalValue = (unsigned char)PHY_QueryRFReg(priv, RF_PATH_A, 0x42, 0xfc00, 1); //0x42: RF Reg[15:10] 88E
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("\nReadback Thermal Meter = 0x%x pre thermal meter 0x%x EEPROMthermalmeter 0x%x\n", ThermalValue, priv->pshare->ThermalValue, priv->pmib->dot11RFEntry.ther));
//4 Query OFDM BB swing default setting Bit[31:21]
for(rf_path = 0 ; rf_path < max_rf_path ; rf_path++){
ele_D = PHY_QueryBBReg(priv, BBSwingReg[rf_path], 0xffe00000);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("0x%x:0x%x ([31:21] = 0x%x)\n",BBSwingReg[rf_path], PHY_QueryBBReg(priv, BBSwingReg[rf_path], bMaskDWord),ele_D));
for (i = 0; i < OFDM_TABLE_SIZE_8812; i++) {//4
if (ele_D == OFDMSwingTable_8812[i]) {
OFDM_index[rf_path] = (unsigned char)i;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("OFDM_index[%d]=%d\n",rf_path, OFDM_index[rf_path]));
break;
}
}
}
#if 0
//Query OFDM path A default setting Bit[31:21]
ele_D = PHY_QueryBBReg(priv, 0xc1c, 0xffe00000);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("0xc1c:0x%x ([31:21] = 0x%x)\n", PHY_QueryBBReg(priv, 0xc1c, bMaskDWord),ele_D));
for (i = 0; i < OFDM_TABLE_SIZE_8812; i++) {//4
if (ele_D == OFDMSwingTable_8812[i]) {
OFDM_index[0] = (unsigned char)i;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("OFDM_index[0]=%d\n", OFDM_index[0]));
break;
}
}
//Query OFDM path B default setting
if (rf == 2) {
ele_D = PHY_QueryBBReg(priv, 0xe1c, 0xffe00000);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("0xe1c:0x%x ([32:21] = 0x%x)\n", PHY_QueryBBReg(priv, 0xe1c, bMaskDWord),ele_D));
for (i = 0; i < OFDM_TABLE_SIZE_8812; i++) {
if (ele_D == OFDMSwingTable_8812[i]) {
OFDM_index[1] = (unsigned char)i;
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("OFDM_index[1]=%d\n", OFDM_index[1]));
break;
}
}
}
#endif
/* Initialize */
if (!priv->pshare->ThermalValue) {
priv->pshare->ThermalValue = priv->pmib->dot11RFEntry.ther;
priv->pshare->ThermalValue_LCK = ThermalValue;
}
/* calculate average thermal meter */
{
priv->pshare->ThermalValue_AVG_8812[priv->pshare->ThermalValue_AVG_index_8812] = ThermalValue;
priv->pshare->ThermalValue_AVG_index_8812++;
if (priv->pshare->ThermalValue_AVG_index_8812 == AVG_THERMAL_NUM_8812)
priv->pshare->ThermalValue_AVG_index_8812 = 0;
for (i = 0; i < AVG_THERMAL_NUM_8812; i++) {
if (priv->pshare->ThermalValue_AVG_8812[i]) {
ThermalValue_AVG += priv->pshare->ThermalValue_AVG_8812[i];
ThermalValue_AVG_count++;
}
}
if (ThermalValue_AVG_count) {
ThermalValue = (unsigned char)(ThermalValue_AVG / ThermalValue_AVG_count);
//printk("AVG Thermal Meter = 0x%x \n", ThermalValue);
}
}
//4 If necessary, do power tracking
if(!priv->pmib->dot11RFEntry.ther) /*Don't do power tracking since no calibrated thermal value*/
return;
if (ThermalValue != priv->pshare->ThermalValue) {
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("\n******** START POWER TRACKING ********\n"));
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("\nReadback Thermal Meter = 0x%x pre thermal meter 0x%x EEPROMthermalmeter 0x%x\n", ThermalValue, priv->pshare->ThermalValue, priv->pmib->dot11RFEntry.ther));
delta = RTL_ABS(ThermalValue, priv->pmib->dot11RFEntry.ther);
delta_LCK = RTL_ABS(ThermalValue, priv->pshare->ThermalValue_LCK);
is_decrease = ((ThermalValue < priv->pmib->dot11RFEntry.ther) ? 1 : 0);
//if (priv->pmib->dot11RFEntry.phyBandSelect == PHY_BAND_5G)
{
#ifdef _TRACKING_TABLE_FILE
if (priv->pshare->rf_ft_var.pwr_track_file) {
for (rf_path = 0; rf_path < max_rf_path; rf_path++) {
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("Diff: (%s)%d ==> get index from table : %d)\n", (is_decrease?"-":"+"), delta, get_tx_tracking_index(priv, channel, rf_path, delta, is_decrease, 0)));
if (is_decrease) {
OFDM_index[rf_path] = priv->pshare->OFDM_index0[rf_path] + get_tx_tracking_index(priv, channel, rf_path, delta, is_decrease, 0);
OFDM_index[rf_path] = ((OFDM_index[rf_path] > (OFDM_TABLE_SIZE_8812 - 1)) ? (OFDM_TABLE_SIZE_8812 - 1) : OFDM_index[rf_path]);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,(">>> decrese power ---> new OFDM_INDEX:%d (%d + %d)\n", OFDM_index[rf_path], priv->pshare->OFDM_index0[rf_path], get_tx_tracking_index(priv, channel, rf_path, delta, is_decrease, 0)));
#if 0// RTL8881A_SUPPORT
if (pDM_Odm->SupportICType == ODM_RTL8881A){
if(priv->pshare->rf_ft_var.pwrtrk_TxAGC_enable){
if(priv->pshare->AddTxAGC){//TxAGC has been added
AddTxPower88XX_AC(priv,0);
priv->pshare->AddTxAGC = 0;
priv->pshare->AddTxAGC_index = 0;
}
}
}
#endif
} else {
OFDM_index[rf_path] = priv->pshare->OFDM_index0[rf_path] - get_tx_tracking_index(priv, channel, rf_path, delta, is_decrease, 0);
#if 0// RTL8881A_SUPPORT
if(pDM_Odm->SupportICType == ODM_RTL8881A){
if(priv->pshare->rf_ft_var.pwrtrk_TxAGC_enable){
if(OFDM_index[i] < OFDM_min_index){
priv->pshare->AddTxAGC_index = (OFDM_min_index - OFDM_index[i])/2; // Calculate Remnant TxAGC Value, 2 index for 1 TxAGC
AddTxPower88XX_AC(priv,priv->pshare->AddTxAGC_index);
priv->pshare->AddTxAGC = 1; //AddTxAGC Flag = 1
OFDM_index[i] = OFDM_min_index;
}
else{
if(priv->pshare->AddTxAGC){// TxAGC been added
priv->pshare->AddTxAGC = 0;
priv->pshare->AddTxAGC_index = 0;
AddTxPower88XX_AC(priv,0); //minus the added TPI
}
}
}
}
#else
OFDM_index[rf_path] = ((OFDM_index[rf_path] < OFDM_min_index) ? OFDM_min_index : OFDM_index[rf_path]);
#endif
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,(">>> increse power ---> new OFDM_INDEX:%d (%d - %d)\n", OFDM_index[rf_path], priv->pshare->OFDM_index0[rf_path], get_tx_tracking_index(priv, channel, rf_path, delta, is_decrease, 0)));
}
}
}
#endif
//4 Set new BB swing index
for (rf_path = 0; rf_path < max_rf_path; rf_path++) {
PHY_SetBBReg(priv, BBSwingReg[rf_path], 0xffe00000, OFDMSwingTable_8812[(unsigned int)OFDM_index[rf_path]]);
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("Readback 0x%x[31:21] = 0x%x, OFDM_index:%d\n",BBSwingReg[rf_path], PHY_QueryBBReg(priv, BBSwingReg[rf_path], 0xffe00000), OFDM_index[rf_path]));
}
}
if (delta_LCK > 8) {
RTL_W8(0x522, 0xff);
Reg0x18 = PHY_QueryRFReg(priv, RF_PATH_A, 0x18, bMask20Bits, 1);
PHY_SetRFReg(priv, RF_PATH_A, 0xB4, BIT(14), 1);
PHY_SetRFReg(priv, RF_PATH_A, 0x18, BIT(15), 1);
delay_ms(200); // frequency deviation
PHY_SetRFReg(priv, RF_PATH_A, 0xB4, BIT(14), 0);
PHY_SetRFReg(priv, RF_PATH_A, 0x18, bMask20Bits, Reg0x18);
#ifdef CONFIG_RTL_8812_SUPPORT
if (GET_CHIP_VER(priv)== VERSION_8812E)
UpdateBBRFVal8812(priv, priv->pmib->dot11RFEntry.dot11channel);
#endif
RTL_W8(0x522, 0x0);
priv->pshare->ThermalValue_LCK = ThermalValue;
}
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("\n******** END:%s() ********\n", __FUNCTION__));
//update thermal meter value
priv->pshare->ThermalValue = ThermalValue;
for (rf_path = 0; rf_path < max_rf_path; rf_path++)
priv->pshare->OFDM_index[rf_path] = OFDM_index[rf_path];
}
}
#endif
VOID
ODM_TXPowerTrackingCallback_ThermalMeter(
#if (DM_ODM_SUPPORT_TYPE & ODM_AP)
IN PVOID pDM_VOID
#else
IN PADAPTER Adapter
#endif
)
{
PDM_ODM_T pDM_Odm = (PDM_ODM_T)pDM_VOID;
PODM_RF_CAL_T pRFCalibrateInfo = &(pDM_Odm->RFCalibrateInfo);
#if (RTL8814A_SUPPORT == 1) //use this function to do power tracking after 8814 by YuChen
if (pDM_Odm->SupportICType & ODM_RTL8814A) {
ODM_TXPowerTrackingCallback_ThermalMeter_JaguarSeries2(pDM_Odm);
return;
}
#elif ODM_IC_11AC_SERIES_SUPPORT
if (pDM_Odm->SupportICType & ODM_IC_11AC_SERIES) {
ODM_TXPowerTrackingCallback_ThermalMeter_JaguarSeries(pDM_Odm);
return;
}
#endif
#if (RTL8192E_SUPPORT == 1)
if (pDM_Odm->SupportICType==ODM_RTL8192E) {
ODM_TXPowerTrackingCallback_ThermalMeter_92E(pDM_Odm);
return;
}
#endif
#if !(DM_ODM_SUPPORT_TYPE & ODM_AP)
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//PMGNT_INFO pMgntInfo = &Adapter->MgntInfo;
#endif
u1Byte ThermalValue = 0, delta, delta_LCK, delta_IQK, offset;
u1Byte ThermalValue_AVG_count = 0;
u4Byte ThermalValue_AVG = 0;
// s4Byte ele_A=0, ele_D, TempCCk, X, value32;
// s4Byte Y, ele_C=0;
// s1Byte OFDM_index[2], CCK_index=0, OFDM_index_old[2]={0,0}, CCK_index_old=0, index;
// s1Byte deltaPowerIndex = 0;
u4Byte i = 0;//, j = 0;
BOOLEAN is2T = FALSE;
// BOOLEAN bInteralPA = FALSE;
u1Byte OFDM_max_index = 34, rf = (is2T) ? 2 : 1; //OFDM BB Swing should be less than +3.0dB, which is required by Arthur
u1Byte Indexforchannel = 0;/*GetRightChnlPlaceforIQK(pHalData->CurrentChannel)*/
enum _POWER_DEC_INC { POWER_DEC, POWER_INC };
#if (DM_ODM_SUPPORT_TYPE == ODM_CE)
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
#endif
#if (DM_ODM_SUPPORT_TYPE == ODM_WIN)
PDM_ODM_T pDM_Odm = &pHalData->DM_OutSrc;
#endif
TXPWRTRACK_CFG c;
//4 1. The following TWO tables decide the final index of OFDM/CCK swing table.
s1Byte deltaSwingTableIdx[2][index_mapping_NUM_88E] = {
// {{Power decreasing(lower temperature)}, {Power increasing(higher temperature)}}
{0,0,2,3,4,4,5,6,7,7,8,9,10,10,11}, {0,0,1,2,3,4,4,4,4,5,7,8,9,9,10}
};
u1Byte thermalThreshold[2][index_mapping_NUM_88E]={
// {{Power decreasing(lower temperature)}, {Power increasing(higher temperature)}}
{0,2,4,6,8,10,12,14,16,18,20,22,24,26,27}, {0,2,4,6,8,10,12,14,16,18,20,22,25,25,25}
};
#if (DM_ODM_SUPPORT_TYPE & ODM_AP)
prtl8192cd_priv priv = pDM_Odm->priv;
#endif
//4 2. Initilization ( 7 steps in total )
ConfigureTxpowerTrack(pDM_Odm, &c);
pDM_Odm->RFCalibrateInfo.TXPowerTrackingCallbackCnt++; //cosa add for debug
pDM_Odm->RFCalibrateInfo.bTXPowerTrackingInit = TRUE;
#if (MP_DRIVER == 1)
pDM_Odm->RFCalibrateInfo.TxPowerTrackControl = pHalData->TxPowerTrackControl; // <Kordan> We should keep updating the control variable according to HalData.
// <Kordan> RFCalibrateInfo.RegA24 will be initialized when ODM HW configuring, but MP configures with para files.
pDM_Odm->RFCalibrateInfo.RegA24 = 0x090e1317;
#endif
#if (DM_ODM_SUPPORT_TYPE == ODM_AP) && defined(MP_TEST)
if ((OPMODE & WIFI_MP_STATE) || pDM_Odm->priv->pshare->rf_ft_var.mp_specific) {
if(pDM_Odm->priv->pshare->mp_txpwr_tracking == FALSE)
return;
}
#endif
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("===>odm_TXPowerTrackingCallback_ThermalMeter_8188E, pDM_Odm->BbSwingIdxCckBase: %d, pDM_Odm->BbSwingIdxOfdmBase: %d \n", pRFCalibrateInfo->BbSwingIdxCckBase, pRFCalibrateInfo->BbSwingIdxOfdmBase));
/*
if (!pDM_Odm->RFCalibrateInfo.TM_Trigger) {
ODM_SetRFReg(pDM_Odm, RF_PATH_A, c.ThermalRegAddr, BIT17 | BIT16, 0x3);
pDM_Odm->RFCalibrateInfo.TM_Trigger = 1;
return;
}
*/
ThermalValue = (u1Byte)ODM_GetRFReg(pDM_Odm, RF_PATH_A, c.ThermalRegAddr, 0xfc00); //0x42: RF Reg[15:10] 88E
#if !(DM_ODM_SUPPORT_TYPE & ODM_AP)
if( ! ThermalValue || ! pDM_Odm->RFCalibrateInfo.TxPowerTrackControl)
#else
if( ! pDM_Odm->RFCalibrateInfo.TxPowerTrackControl)
#endif
return;
//4 3. Initialize ThermalValues of RFCalibrateInfo
if( ! pDM_Odm->RFCalibrateInfo.ThermalValue)
{
pDM_Odm->RFCalibrateInfo.ThermalValue_LCK = ThermalValue;
pDM_Odm->RFCalibrateInfo.ThermalValue_IQK = ThermalValue;
}
if(pDM_Odm->RFCalibrateInfo.bReloadtxpowerindex)
{
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("reload ofdm index for band switch\n"));
}
//4 4. Calculate average thermal meter
pDM_Odm->RFCalibrateInfo.ThermalValue_AVG[pDM_Odm->RFCalibrateInfo.ThermalValue_AVG_index] = ThermalValue;
pDM_Odm->RFCalibrateInfo.ThermalValue_AVG_index++;
if(pDM_Odm->RFCalibrateInfo.ThermalValue_AVG_index == c.AverageThermalNum)
pDM_Odm->RFCalibrateInfo.ThermalValue_AVG_index = 0;
for(i = 0; i < c.AverageThermalNum; i++)
{
if(pDM_Odm->RFCalibrateInfo.ThermalValue_AVG[i])
{
ThermalValue_AVG += pDM_Odm->RFCalibrateInfo.ThermalValue_AVG[i];
ThermalValue_AVG_count++;
}
}
if(ThermalValue_AVG_count)
{
// Give the new thermo value a weighting
ThermalValue_AVG += (ThermalValue*4);
ThermalValue = (u1Byte)(ThermalValue_AVG / (ThermalValue_AVG_count+4));
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("AVG Thermal Meter = 0x%x \n", ThermalValue));
}
//4 5. Calculate delta, delta_LCK, delta_IQK.
delta = (ThermalValue > pDM_Odm->RFCalibrateInfo.ThermalValue)?(ThermalValue - pDM_Odm->RFCalibrateInfo.ThermalValue):(pDM_Odm->RFCalibrateInfo.ThermalValue - ThermalValue);
delta_LCK = (ThermalValue > pDM_Odm->RFCalibrateInfo.ThermalValue_LCK)?(ThermalValue - pDM_Odm->RFCalibrateInfo.ThermalValue_LCK):(pDM_Odm->RFCalibrateInfo.ThermalValue_LCK - ThermalValue);
delta_IQK = (ThermalValue > pDM_Odm->RFCalibrateInfo.ThermalValue_IQK)?(ThermalValue - pDM_Odm->RFCalibrateInfo.ThermalValue_IQK):(pDM_Odm->RFCalibrateInfo.ThermalValue_IQK - ThermalValue);
//4 6. If necessary, do LCK.
if (!(pDM_Odm->SupportICType & ODM_RTL8821)) {
/*if((delta_LCK > pHalData->Delta_LCK) && (pHalData->Delta_LCK != 0))*/
if (delta_LCK >= c.Threshold_IQK) {
/*Delta temperature is equal to or larger than 20 centigrade.*/
pDM_Odm->RFCalibrateInfo.ThermalValue_LCK = ThermalValue;
(*c.PHY_LCCalibrate)(pDM_Odm);
}
}
//3 7. If necessary, move the index of swing table to adjust Tx power.
if (delta > 0 && pDM_Odm->RFCalibrateInfo.TxPowerTrackControl)
{
#if (DM_ODM_SUPPORT_TYPE & (ODM_WIN|ODM_CE))
delta = ThermalValue > pHalData->EEPROMThermalMeter?(ThermalValue - pHalData->EEPROMThermalMeter):(pHalData->EEPROMThermalMeter - ThermalValue);
#else
delta = (ThermalValue > pDM_Odm->priv->pmib->dot11RFEntry.ther)?(ThermalValue - pDM_Odm->priv->pmib->dot11RFEntry.ther):(pDM_Odm->priv->pmib->dot11RFEntry.ther - ThermalValue);
#endif
//4 7.1 The Final Power Index = BaseIndex + PowerIndexOffset
#if (DM_ODM_SUPPORT_TYPE & (ODM_WIN|ODM_CE))
if(ThermalValue > pHalData->EEPROMThermalMeter) {
#else
if(ThermalValue > pDM_Odm->priv->pmib->dot11RFEntry.ther) {
#endif
CALCULATE_SWINGTALBE_OFFSET(offset, POWER_INC, index_mapping_NUM_88E, delta);
pDM_Odm->RFCalibrateInfo.DeltaPowerIndexLast = pDM_Odm->RFCalibrateInfo.DeltaPowerIndex;
pDM_Odm->RFCalibrateInfo.DeltaPowerIndex = deltaSwingTableIdx[POWER_INC][offset];
} else {
CALCULATE_SWINGTALBE_OFFSET(offset, POWER_DEC, index_mapping_NUM_88E, delta);
pDM_Odm->RFCalibrateInfo.DeltaPowerIndexLast = pDM_Odm->RFCalibrateInfo.DeltaPowerIndex;
pDM_Odm->RFCalibrateInfo.DeltaPowerIndex = (-1)*deltaSwingTableIdx[POWER_DEC][offset];
}
if (pDM_Odm->RFCalibrateInfo.DeltaPowerIndex == pDM_Odm->RFCalibrateInfo.DeltaPowerIndexLast)
pDM_Odm->RFCalibrateInfo.PowerIndexOffset = 0;
else
pDM_Odm->RFCalibrateInfo.PowerIndexOffset = pDM_Odm->RFCalibrateInfo.DeltaPowerIndex - pDM_Odm->RFCalibrateInfo.DeltaPowerIndexLast;
for(i = 0; i < rf; i++)
pDM_Odm->RFCalibrateInfo.OFDM_index[i] = pRFCalibrateInfo->BbSwingIdxOfdmBase + pDM_Odm->RFCalibrateInfo.PowerIndexOffset;
pDM_Odm->RFCalibrateInfo.CCK_index = pRFCalibrateInfo->BbSwingIdxCckBase + pDM_Odm->RFCalibrateInfo.PowerIndexOffset;
pRFCalibrateInfo->BbSwingIdxCck = pDM_Odm->RFCalibrateInfo.CCK_index;
pRFCalibrateInfo->BbSwingIdxOfdm[RF_PATH_A] = pDM_Odm->RFCalibrateInfo.OFDM_index[RF_PATH_A];
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("The 'CCK' final index(%d) = BaseIndex(%d) + PowerIndexOffset(%d)\n", pRFCalibrateInfo->BbSwingIdxCck, pRFCalibrateInfo->BbSwingIdxCckBase, pDM_Odm->RFCalibrateInfo.PowerIndexOffset));
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("The 'OFDM' final index(%d) = BaseIndex(%d) + PowerIndexOffset(%d)\n", pRFCalibrateInfo->BbSwingIdxOfdm[RF_PATH_A], pRFCalibrateInfo->BbSwingIdxOfdmBase, pDM_Odm->RFCalibrateInfo.PowerIndexOffset));
//4 7.1 Handle boundary conditions of index.
for(i = 0; i < rf; i++)
{
if(pDM_Odm->RFCalibrateInfo.OFDM_index[i] > OFDM_max_index)
{
pDM_Odm->RFCalibrateInfo.OFDM_index[i] = OFDM_max_index;
}
else if (pDM_Odm->RFCalibrateInfo.OFDM_index[i] < 0)
{
pDM_Odm->RFCalibrateInfo.OFDM_index[i] = 0;
}
}
if(pDM_Odm->RFCalibrateInfo.CCK_index > c.SwingTableSize_CCK-1)
pDM_Odm->RFCalibrateInfo.CCK_index = c.SwingTableSize_CCK-1;
else if (pDM_Odm->RFCalibrateInfo.CCK_index < 0)
pDM_Odm->RFCalibrateInfo.CCK_index = 0;
}
else
{
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("The thermal meter is unchanged or TxPowerTracking OFF: ThermalValue: %d , pDM_Odm->RFCalibrateInfo.ThermalValue: %d)\n", ThermalValue, pDM_Odm->RFCalibrateInfo.ThermalValue));
pDM_Odm->RFCalibrateInfo.PowerIndexOffset = 0;
}
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("TxPowerTracking: [CCK] Swing Current Index: %d, Swing Base Index: %d\n", pDM_Odm->RFCalibrateInfo.CCK_index, pRFCalibrateInfo->BbSwingIdxCckBase));
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("TxPowerTracking: [OFDM] Swing Current Index: %d, Swing Base Index: %d\n", pDM_Odm->RFCalibrateInfo.OFDM_index[RF_PATH_A], pRFCalibrateInfo->BbSwingIdxOfdmBase));
if (pDM_Odm->RFCalibrateInfo.PowerIndexOffset != 0 && pDM_Odm->RFCalibrateInfo.TxPowerTrackControl)
{
//4 7.2 Configure the Swing Table to adjust Tx Power.
pDM_Odm->RFCalibrateInfo.bTxPowerChanged = TRUE; // Always TRUE after Tx Power is adjusted by power tracking.
//
// 2012/04/23 MH According to Luke's suggestion, we can not write BB digital
// to increase TX power. Otherwise, EVM will be bad.
//
// 2012/04/25 MH Add for tx power tracking to set tx power in tx agc for 88E.
if (ThermalValue > pDM_Odm->RFCalibrateInfo.ThermalValue)
{
//ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
// ("Temperature Increasing: delta_pi: %d , delta_t: %d, Now_t: %d, EFUSE_t: %d, Last_t: %d\n",
// pDM_Odm->RFCalibrateInfo.PowerIndexOffset, delta, ThermalValue, pHalData->EEPROMThermalMeter, pDM_Odm->RFCalibrateInfo.ThermalValue));
}
else if (ThermalValue < pDM_Odm->RFCalibrateInfo.ThermalValue)// Low temperature
{
//ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
// ("Temperature Decreasing: delta_pi: %d , delta_t: %d, Now_t: %d, EFUSE_t: %d, Last_t: %d\n",
// pDM_Odm->RFCalibrateInfo.PowerIndexOffset, delta, ThermalValue, pHalData->EEPROMThermalMeter, pDM_Odm->RFCalibrateInfo.ThermalValue));
}
#if !(DM_ODM_SUPPORT_TYPE & ODM_AP)
if (ThermalValue > pHalData->EEPROMThermalMeter)
#else
if (ThermalValue > pDM_Odm->priv->pmib->dot11RFEntry.ther)
#endif
{
// ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("Temperature(%d) hugher than PG value(%d), increases the power by TxAGC\n", ThermalValue, pHalData->EEPROMThermalMeter));
(*c.ODM_TxPwrTrackSetPwr)(pDM_Odm, TXAGC, 0, 0);
}
else
{
// ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("Temperature(%d) lower than PG value(%d), increases the power by TxAGC\n", ThermalValue, pHalData->EEPROMThermalMeter));
(*c.ODM_TxPwrTrackSetPwr)(pDM_Odm, BBSWING, RF_PATH_A, Indexforchannel);
if(is2T)
(*c.ODM_TxPwrTrackSetPwr)(pDM_Odm, BBSWING, RF_PATH_B, Indexforchannel);
}
pRFCalibrateInfo->BbSwingIdxCckBase = pRFCalibrateInfo->BbSwingIdxCck;
pRFCalibrateInfo->BbSwingIdxOfdmBase = pRFCalibrateInfo->BbSwingIdxOfdm[RF_PATH_A];
pDM_Odm->RFCalibrateInfo.ThermalValue = ThermalValue;
}
#if !(DM_ODM_SUPPORT_TYPE & ODM_AP)
// if((delta_IQK > pHalData->Delta_IQK) && (pHalData->Delta_IQK != 0))
if ((delta_IQK >= 8)) // Delta temperature is equal to or larger than 20 centigrade.
(*c.DoIQK)(pDM_Odm, delta_IQK, ThermalValue, 8);
#endif
ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("<===dm_TXPowerTrackingCallback_ThermalMeter_8188E\n"));
pDM_Odm->RFCalibrateInfo.TXPowercount = 0;
}
#if (DM_ODM_SUPPORT_TYPE & ODM_WIN)
VOID
phy_PathAStandBy(
IN PADAPTER pAdapter
)
{
RTPRINT(FINIT, INIT_IQK, ("Path-A standby mode!\n"));
PHY_SetBBReg(pAdapter, rFPGA0_IQK, 0xffffff00, 0x0);
PHY_SetBBReg(pAdapter, 0x840, bMaskDWord, 0x00010000);
PHY_SetBBReg(pAdapter, rFPGA0_IQK, 0xffffff00, 0x808000);
}
//1 7. IQK
//#define MAX_TOLERANCE 5
//#define IQK_DELAY_TIME 1 //ms
u1Byte //bit0 = 1 => Tx OK, bit1 = 1 => Rx OK
phy_PathA_IQK_8192C(
IN PADAPTER pAdapter,
IN BOOLEAN configPathB
)
{
u4Byte regEAC, regE94, regE9C, regEA4;
u1Byte result = 0x00;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
RTPRINT(FINIT, INIT_IQK, ("Path A IQK!\n"));
//path-A IQK setting
RTPRINT(FINIT, INIT_IQK, ("Path-A IQK setting!\n"));
if(pAdapter->interfaceIndex == 0)
{
PHY_SetBBReg(pAdapter, rTx_IQK_Tone_A, bMaskDWord, 0x10008c1f);
PHY_SetBBReg(pAdapter, rRx_IQK_Tone_A, bMaskDWord, 0x10008c1f);
}
else
{
PHY_SetBBReg(pAdapter, rTx_IQK_Tone_A, bMaskDWord, 0x10008c22);
PHY_SetBBReg(pAdapter, rRx_IQK_Tone_A, bMaskDWord, 0x10008c22);
}
PHY_SetBBReg(pAdapter, rTx_IQK_PI_A, bMaskDWord, 0x82140102);
PHY_SetBBReg(pAdapter, rRx_IQK_PI_A, bMaskDWord, configPathB ? 0x28160202 :
IS_81xxC_VENDOR_UMC_B_CUT(pHalData->VersionID)?0x28160202:0x28160502);
//path-B IQK setting
if(configPathB)
{
PHY_SetBBReg(pAdapter, rTx_IQK_Tone_B, bMaskDWord, 0x10008c22);
PHY_SetBBReg(pAdapter, rRx_IQK_Tone_B, bMaskDWord, 0x10008c22);
PHY_SetBBReg(pAdapter, rTx_IQK_PI_B, bMaskDWord, 0x82140102);
PHY_SetBBReg(pAdapter, rRx_IQK_PI_B, bMaskDWord, 0x28160202);
}
//LO calibration setting
RTPRINT(FINIT, INIT_IQK, ("LO calibration setting!\n"));
PHY_SetBBReg(pAdapter, rIQK_AGC_Rsp, bMaskDWord, 0x001028d1);
//One shot, path A LOK & IQK
RTPRINT(FINIT, INIT_IQK, ("One shot, path A LOK & IQK!\n"));
PHY_SetBBReg(pAdapter, rIQK_AGC_Pts, bMaskDWord, 0xf9000000);
PHY_SetBBReg(pAdapter, rIQK_AGC_Pts, bMaskDWord, 0xf8000000);
// delay x ms
RTPRINT(FINIT, INIT_IQK, ("Delay %d ms for One shot, path A LOK & IQK.\n", IQK_DELAY_TIME));
PlatformStallExecution(IQK_DELAY_TIME*1000);
// Check failed
regEAC = PHY_QueryBBReg(pAdapter, rRx_Power_After_IQK_A_2, bMaskDWord);
RTPRINT(FINIT, INIT_IQK, ("0xeac = 0x%x\n", regEAC));
regE94 = PHY_QueryBBReg(pAdapter, rTx_Power_Before_IQK_A, bMaskDWord);
RTPRINT(FINIT, INIT_IQK, ("0xe94 = 0x%x\n", regE94));
regE9C= PHY_QueryBBReg(pAdapter, rTx_Power_After_IQK_A, bMaskDWord);
RTPRINT(FINIT, INIT_IQK, ("0xe9c = 0x%x\n", regE9C));
regEA4= PHY_QueryBBReg(pAdapter, rRx_Power_Before_IQK_A_2, bMaskDWord);
RTPRINT(FINIT, INIT_IQK, ("0xea4 = 0x%x\n", regEA4));
if(!(regEAC & BIT28) &&
(((regE94 & 0x03FF0000)>>16) != 0x142) &&
(((regE9C & 0x03FF0000)>>16) != 0x42) )
result |= 0x01;
else //if Tx not OK, ignore Rx
return result;
if(!(regEAC & BIT27) && //if Tx is OK, check whether Rx is OK
(((regEA4 & 0x03FF0000)>>16) != 0x132) &&
(((regEAC & 0x03FF0000)>>16) != 0x36))
result |= 0x02;
else
RTPRINT(FINIT, INIT_IQK, ("Path A Rx IQK fail!!\n"));
return result;
}
u1Byte //bit0 = 1 => Tx OK, bit1 = 1 => Rx OK
phy_PathB_IQK_8192C(
IN PADAPTER pAdapter
)
{
u4Byte regEAC, regEB4, regEBC, regEC4, regECC;
u1Byte result = 0x00;
RTPRINT(FINIT, INIT_IQK, ("Path B IQK!\n"));
//One shot, path B LOK & IQK
RTPRINT(FINIT, INIT_IQK, ("One shot, path A LOK & IQK!\n"));
PHY_SetBBReg(pAdapter, rIQK_AGC_Cont, bMaskDWord, 0x00000002);
PHY_SetBBReg(pAdapter, rIQK_AGC_Cont, bMaskDWord, 0x00000000);
// delay x ms
RTPRINT(FINIT, INIT_IQK, ("Delay %d ms for One shot, path B LOK & IQK.\n", IQK_DELAY_TIME));
PlatformStallExecution(IQK_DELAY_TIME*1000);
// Check failed
regEAC = PHY_QueryBBReg(pAdapter, rRx_Power_After_IQK_A_2, bMaskDWord);
RTPRINT(FINIT, INIT_IQK, ("0xeac = 0x%x\n", regEAC));
regEB4 = PHY_QueryBBReg(pAdapter, rTx_Power_Before_IQK_B, bMaskDWord);
RTPRINT(FINIT, INIT_IQK, ("0xeb4 = 0x%x\n", regEB4));
regEBC= PHY_QueryBBReg(pAdapter, rTx_Power_After_IQK_B, bMaskDWord);
RTPRINT(FINIT, INIT_IQK, ("0xebc = 0x%x\n", regEBC));
regEC4= PHY_QueryBBReg(pAdapter, rRx_Power_Before_IQK_B_2, bMaskDWord);
RTPRINT(FINIT, INIT_IQK, ("0xec4 = 0x%x\n", regEC4));
regECC= PHY_QueryBBReg(pAdapter, rRx_Power_After_IQK_B_2, bMaskDWord);
RTPRINT(FINIT, INIT_IQK, ("0xecc = 0x%x\n", regECC));
if(!(regEAC & BIT31) &&
(((regEB4 & 0x03FF0000)>>16) != 0x142) &&
(((regEBC & 0x03FF0000)>>16) != 0x42))
result |= 0x01;
else
return result;
if(!(regEAC & BIT30) &&
(((regEC4 & 0x03FF0000)>>16) != 0x132) &&
(((regECC & 0x03FF0000)>>16) != 0x36))
result |= 0x02;
else
RTPRINT(FINIT, INIT_IQK, ("Path B Rx IQK fail!!\n"));
return result;
}
VOID
phy_PathAFillIQKMatrix(
IN PADAPTER pAdapter,
IN BOOLEAN bIQKOK,
IN s4Byte result[][8],
IN u1Byte final_candidate,
IN BOOLEAN bTxOnly
)
{
u4Byte Oldval_0, X, TX0_A, reg;
s4Byte Y, TX0_C;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
RTPRINT(FINIT, INIT_IQK, ("Path A IQ Calibration %s !\n",(bIQKOK)?"Success":"Failed"));
if(final_candidate == 0xFF)
return;
else if(bIQKOK)
{
Oldval_0 = (PHY_QueryBBReg(pAdapter, rOFDM0_XATxIQImbalance, bMaskDWord) >> 22) & 0x3FF;
X = result[final_candidate][0];
if ((X & 0x00000200) != 0)
X = X | 0xFFFFFC00;
TX0_A = (X * Oldval_0) >> 8;
RTPRINT(FINIT, INIT_IQK, ("X = 0x%x, TX0_A = 0x%x, Oldval_0 0x%x\n", X, TX0_A, Oldval_0));
PHY_SetBBReg(pAdapter, rOFDM0_XATxIQImbalance, 0x3FF, TX0_A);
PHY_SetBBReg(pAdapter, rOFDM0_ECCAThreshold, BIT(31), ((X * Oldval_0>>7) & 0x1));
Y = result[final_candidate][1];
if ((Y & 0x00000200) != 0)
Y = Y | 0xFFFFFC00;
//path B IQK result + 3
if(pAdapter->interfaceIndex == 1 && pHalData->CurrentBandType == BAND_ON_5G)
Y += 3;
TX0_C = (Y * Oldval_0) >> 8;
RTPRINT(FINIT, INIT_IQK, ("Y = 0x%x, TX = 0x%x\n", Y, TX0_C));
PHY_SetBBReg(pAdapter, rOFDM0_XCTxAFE, 0xF0000000, ((TX0_C&0x3C0)>>6));
PHY_SetBBReg(pAdapter, rOFDM0_XATxIQImbalance, 0x003F0000, (TX0_C&0x3F));
PHY_SetBBReg(pAdapter, rOFDM0_ECCAThreshold, BIT(29), ((Y * Oldval_0>>7) & 0x1));
if(bTxOnly)
{
RTPRINT(FINIT, INIT_IQK, ("phy_PathAFillIQKMatrix only Tx OK\n"));
return;
}
reg = result[final_candidate][2];
PHY_SetBBReg(pAdapter, rOFDM0_XARxIQImbalance, 0x3FF, reg);
reg = result[final_candidate][3] & 0x3F;
PHY_SetBBReg(pAdapter, rOFDM0_XARxIQImbalance, 0xFC00, reg);
reg = (result[final_candidate][3] >> 6) & 0xF;
PHY_SetBBReg(pAdapter, rOFDM0_RxIQExtAnta, 0xF0000000, reg);
}
}
VOID
phy_PathBFillIQKMatrix(
IN PADAPTER pAdapter,
IN BOOLEAN bIQKOK,
IN s4Byte result[][8],
IN u1Byte final_candidate,
IN BOOLEAN bTxOnly //do Tx only
)
{
u4Byte Oldval_1, X, TX1_A, reg;
s4Byte Y, TX1_C;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
RTPRINT(FINIT, INIT_IQK, ("Path B IQ Calibration %s !\n",(bIQKOK)?"Success":"Failed"));
if(final_candidate == 0xFF)
return;
else if(bIQKOK)
{
Oldval_1 = (PHY_QueryBBReg(pAdapter, rOFDM0_XBTxIQImbalance, bMaskDWord) >> 22) & 0x3FF;
X = result[final_candidate][4];
if ((X & 0x00000200) != 0)
X = X | 0xFFFFFC00;
TX1_A = (X * Oldval_1) >> 8;
RTPRINT(FINIT, INIT_IQK, ("X = 0x%x, TX1_A = 0x%x\n", X, TX1_A));
PHY_SetBBReg(pAdapter, rOFDM0_XBTxIQImbalance, 0x3FF, TX1_A);
PHY_SetBBReg(pAdapter, rOFDM0_ECCAThreshold, BIT(27), ((X * Oldval_1>>7) & 0x1));
Y = result[final_candidate][5];
if ((Y & 0x00000200) != 0)
Y = Y | 0xFFFFFC00;
if(pHalData->CurrentBandType == BAND_ON_5G)
Y += 3; //temp modify for preformance
TX1_C = (Y * Oldval_1) >> 8;
RTPRINT(FINIT, INIT_IQK, ("Y = 0x%x, TX1_C = 0x%x\n", Y, TX1_C));
PHY_SetBBReg(pAdapter, rOFDM0_XDTxAFE, 0xF0000000, ((TX1_C&0x3C0)>>6));
PHY_SetBBReg(pAdapter, rOFDM0_XBTxIQImbalance, 0x003F0000, (TX1_C&0x3F));
PHY_SetBBReg(pAdapter, rOFDM0_ECCAThreshold, BIT(25), ((Y * Oldval_1>>7) & 0x1));
if(bTxOnly)
return;
reg = result[final_candidate][6];
PHY_SetBBReg(pAdapter, rOFDM0_XBRxIQImbalance, 0x3FF, reg);
reg = result[final_candidate][7] & 0x3F;
PHY_SetBBReg(pAdapter, rOFDM0_XBRxIQImbalance, 0xFC00, reg);
reg = (result[final_candidate][7] >> 6) & 0xF;
PHY_SetBBReg(pAdapter, rOFDM0_AGCRSSITable, 0x0000F000, reg);
}
}
BOOLEAN
phy_SimularityCompare_92C(
IN PADAPTER pAdapter,
IN s4Byte result[][8],
IN u1Byte c1,
IN u1Byte c2
)
{
u4Byte i, j, diff, SimularityBitMap, bound = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
u1Byte final_candidate[2] = {0xFF, 0xFF}; //for path A and path B
BOOLEAN bResult = TRUE, is2T = IS_92C_SERIAL( pHalData->VersionID);
if(is2T)
bound = 8;
else
bound = 4;
SimularityBitMap = 0;
for( i = 0; i < bound; i++ )
{
diff = (result[c1][i] > result[c2][i]) ? (result[c1][i] - result[c2][i]) : (result[c2][i] - result[c1][i]);
if (diff > MAX_TOLERANCE)
{
if((i == 2 || i == 6) && !SimularityBitMap)
{
if(result[c1][i]+result[c1][i+1] == 0)
final_candidate[(i/4)] = c2;
else if (result[c2][i]+result[c2][i+1] == 0)
final_candidate[(i/4)] = c1;
else
SimularityBitMap = SimularityBitMap|(1<<i);
}
else
SimularityBitMap = SimularityBitMap|(1<<i);
}
}
if ( SimularityBitMap == 0)
{
for( i = 0; i < (bound/4); i++ )
{
if(final_candidate[i] != 0xFF)
{
for( j = i*4; j < (i+1)*4-2; j++)
result[3][j] = result[final_candidate[i]][j];
bResult = FALSE;
}
}
return bResult;
}
else if (!(SimularityBitMap & 0x0F)) //path A OK
{
for(i = 0; i < 4; i++)
result[3][i] = result[c1][i];
return FALSE;
}
else if (!(SimularityBitMap & 0xF0) && is2T) //path B OK
{
for(i = 4; i < 8; i++)
result[3][i] = result[c1][i];
return FALSE;
}
else
return FALSE;
}
/*
return FALSE => do IQK again
*/
BOOLEAN
phy_SimularityCompare(
IN PADAPTER pAdapter,
IN s4Byte result[][8],
IN u1Byte c1,
IN u1Byte c2
)
{
return phy_SimularityCompare_92C(pAdapter, result, c1, c2);
}
VOID
phy_IQCalibrate_8192C(
IN PADAPTER pAdapter,
IN s4Byte result[][8],
IN u1Byte t,
IN BOOLEAN is2T
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
u4Byte i;
u1Byte PathAOK, PathBOK;
u4Byte ADDA_REG[IQK_ADDA_REG_NUM] = {
rFPGA0_XCD_SwitchControl, rBlue_Tooth,
rRx_Wait_CCA, rTx_CCK_RFON,
rTx_CCK_BBON, rTx_OFDM_RFON,
rTx_OFDM_BBON, rTx_To_Rx,
rTx_To_Tx, rRx_CCK,
rRx_OFDM, rRx_Wait_RIFS,
rRx_TO_Rx, rStandby,
rSleep, rPMPD_ANAEN };
u4Byte IQK_MAC_REG[IQK_MAC_REG_NUM] = {
REG_TXPAUSE, REG_BCN_CTRL,
REG_BCN_CTRL_1, REG_GPIO_MUXCFG};
//since 92C & 92D have the different define in IQK_BB_REG
u4Byte IQK_BB_REG_92C[IQK_BB_REG_NUM] = {
rOFDM0_TRxPathEnable, rOFDM0_TRMuxPar,
rFPGA0_XCD_RFInterfaceSW, rConfig_AntA, rConfig_AntB,
rFPGA0_XAB_RFInterfaceSW, rFPGA0_XA_RFInterfaceOE,
rFPGA0_XB_RFInterfaceOE, /*rFPGA0_RFMOD*/ rCCK0_AFESetting
};
u4Byte IQK_BB_REG_92D[IQK_BB_REG_NUM_92D] = { //for normal
rFPGA0_XAB_RFInterfaceSW, rFPGA0_XA_RFInterfaceOE,
rFPGA0_XB_RFInterfaceOE, rOFDM0_TRMuxPar,
rFPGA0_XCD_RFInterfaceSW, rOFDM0_TRxPathEnable,
/*rFPGA0_RFMOD*/ rCCK0_AFESetting, rFPGA0_AnalogParameter4,
rOFDM0_XAAGCCore1, rOFDM0_XBAGCCore1
};
#if MP_DRIVER
const u4Byte retryCount = 9;
#else
const u4Byte retryCount = 2;
#endif
//Neil Chen--2011--05--19--
//3 Path Div
u1Byte rfPathSwitch=0x0;
// Note: IQ calibration must be performed after loading
// PHY_REG.txt , and radio_a, radio_b.txt
u4Byte bbvalue;
if(t==0)
{
//bbvalue = PHY_QueryBBReg(pAdapter, rFPGA0_RFMOD, bMaskDWord);
// RTPRINT(FINIT, INIT_IQK, ("phy_IQCalibrate_8192C()==>0x%08x\n",bbvalue));
RTPRINT(FINIT, INIT_IQK, ("IQ Calibration for %s\n", (is2T ? "2T2R" : "1T1R")));
// Save ADDA parameters, turn Path A ADDA on
phy_SaveADDARegisters(pAdapter, ADDA_REG, pHalData->ADDA_backup, IQK_ADDA_REG_NUM);
phy_SaveMACRegisters(pAdapter, IQK_MAC_REG, pHalData->IQK_MAC_backup);
phy_SaveADDARegisters(pAdapter, IQK_BB_REG_92C, pHalData->IQK_BB_backup, IQK_BB_REG_NUM);
}
phy_PathADDAOn(pAdapter, ADDA_REG, TRUE, is2T);
if(t==0)
{
pHalData->bRfPiEnable = (u1Byte)PHY_QueryBBReg(pAdapter, rFPGA0_XA_HSSIParameter1, BIT(8));
}
if(!pHalData->bRfPiEnable){
// Switch BB to PI mode to do IQ Calibration.
phy_PIModeSwitch(pAdapter, TRUE);
}
//MAC settings
phy_MACSettingCalibration(pAdapter, IQK_MAC_REG, pHalData->IQK_MAC_backup);
//PHY_SetBBReg(pAdapter, rFPGA0_RFMOD, BIT24, 0x00);
PHY_SetBBReg(pAdapter, rCCK0_AFESetting, bMaskDWord, (0x0f000000 | (PHY_QueryBBReg(pAdapter, rCCK0_AFESetting, bMaskDWord))) );
PHY_SetBBReg(pAdapter, rOFDM0_TRxPathEnable, bMaskDWord, 0x03a05600);
PHY_SetBBReg(pAdapter, rOFDM0_TRMuxPar, bMaskDWord, 0x000800e4);
PHY_SetBBReg(pAdapter, rFPGA0_XCD_RFInterfaceSW, bMaskDWord, 0x22204000);
{
PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT10, 0x01);
PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT26, 0x01);
PHY_SetBBReg(pAdapter, rFPGA0_XA_RFInterfaceOE, BIT10, 0x00);
PHY_SetBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT10, 0x00);
}
if(is2T)
{
PHY_SetBBReg(pAdapter, rFPGA0_XA_LSSIParameter, bMaskDWord, 0x00010000);
PHY_SetBBReg(pAdapter, rFPGA0_XB_LSSIParameter, bMaskDWord, 0x00010000);
}
{
//Page B init
PHY_SetBBReg(pAdapter, rConfig_AntA, bMaskDWord, 0x00080000);
if(is2T)
{
PHY_SetBBReg(pAdapter, rConfig_AntB, bMaskDWord, 0x00080000);
}
}
// IQ calibration setting
RTPRINT(FINIT, INIT_IQK, ("IQK setting!\n"));
PHY_SetBBReg(pAdapter, rFPGA0_IQK, 0xffffff00, 0x808000);
PHY_SetBBReg(pAdapter, rTx_IQK, bMaskDWord, 0x01007c00);
PHY_SetBBReg(pAdapter, rRx_IQK, bMaskDWord, 0x01004800);
for(i = 0 ; i < retryCount ; i++){
PathAOK = phy_PathA_IQK_8192C(pAdapter, is2T);
if(PathAOK == 0x03){
RTPRINT(FINIT, INIT_IQK, ("Path A IQK Success!!\n"));
result[t][0] = (PHY_QueryBBReg(pAdapter, rTx_Power_Before_IQK_A, bMaskDWord)&0x3FF0000)>>16;
result[t][1] = (PHY_QueryBBReg(pAdapter, rTx_Power_After_IQK_A, bMaskDWord)&0x3FF0000)>>16;
result[t][2] = (PHY_QueryBBReg(pAdapter, rRx_Power_Before_IQK_A_2, bMaskDWord)&0x3FF0000)>>16;
result[t][3] = (PHY_QueryBBReg(pAdapter, rRx_Power_After_IQK_A_2, bMaskDWord)&0x3FF0000)>>16;
break;
}
else if (i == (retryCount-1) && PathAOK == 0x01) //Tx IQK OK
{
RTPRINT(FINIT, INIT_IQK, ("Path A IQK Only Tx Success!!\n"));
result[t][0] = (PHY_QueryBBReg(pAdapter, rTx_Power_Before_IQK_A, bMaskDWord)&0x3FF0000)>>16;
result[t][1] = (PHY_QueryBBReg(pAdapter, rTx_Power_After_IQK_A, bMaskDWord)&0x3FF0000)>>16;
}
}
if(0x00 == PathAOK){
RTPRINT(FINIT, INIT_IQK, ("Path A IQK failed!!\n"));
}
if(is2T){
phy_PathAStandBy(pAdapter);
// Turn Path B ADDA on
phy_PathADDAOn(pAdapter, ADDA_REG, FALSE, is2T);
for(i = 0 ; i < retryCount ; i++){
PathBOK = phy_PathB_IQK_8192C(pAdapter);
if(PathBOK == 0x03){
RTPRINT(FINIT, INIT_IQK, ("Path B IQK Success!!\n"));
result[t][4] = (PHY_QueryBBReg(pAdapter, rTx_Power_Before_IQK_B, bMaskDWord)&0x3FF0000)>>16;
result[t][5] = (PHY_QueryBBReg(pAdapter, rTx_Power_After_IQK_B, bMaskDWord)&0x3FF0000)>>16;
result[t][6] = (PHY_QueryBBReg(pAdapter, rRx_Power_Before_IQK_B_2, bMaskDWord)&0x3FF0000)>>16;
result[t][7] = (PHY_QueryBBReg(pAdapter, rRx_Power_After_IQK_B_2, bMaskDWord)&0x3FF0000)>>16;
break;
}
else if (i == (retryCount - 1) && PathBOK == 0x01) //Tx IQK OK
{
RTPRINT(FINIT, INIT_IQK, ("Path B Only Tx IQK Success!!\n"));
result[t][4] = (PHY_QueryBBReg(pAdapter, rTx_Power_Before_IQK_B, bMaskDWord)&0x3FF0000)>>16;
result[t][5] = (PHY_QueryBBReg(pAdapter, rTx_Power_After_IQK_B, bMaskDWord)&0x3FF0000)>>16;
}
}
if(0x00 == PathBOK){
RTPRINT(FINIT, INIT_IQK, ("Path B IQK failed!!\n"));
}
}
//Back to BB mode, load original value
RTPRINT(FINIT, INIT_IQK, ("IQK:Back to BB mode, load original value!\n"));
PHY_SetBBReg(pAdapter, rFPGA0_IQK, 0xffffff00, 0);
if(t!=0)
{
if(!pHalData->bRfPiEnable){
// Switch back BB to SI mode after finish IQ Calibration.
phy_PIModeSwitch(pAdapter, FALSE);
}
// Reload ADDA power saving parameters
phy_ReloadADDARegisters(pAdapter, ADDA_REG, pHalData->ADDA_backup, IQK_ADDA_REG_NUM);
// Reload MAC parameters
phy_ReloadMACRegisters(pAdapter, IQK_MAC_REG, pHalData->IQK_MAC_backup);
// Reload BB parameters
phy_ReloadADDARegisters(pAdapter, IQK_BB_REG_92C, pHalData->IQK_BB_backup, IQK_BB_REG_NUM);
/*Restore RX initial gain*/
PHY_SetBBReg(pAdapter, rFPGA0_XA_LSSIParameter, bMaskDWord, 0x00032ed3);
if (is2T)
PHY_SetBBReg(pAdapter, rFPGA0_XB_LSSIParameter, bMaskDWord, 0x00032ed3);
//load 0xe30 IQC default value
PHY_SetBBReg(pAdapter, rTx_IQK_Tone_A, bMaskDWord, 0x01008c00);
PHY_SetBBReg(pAdapter, rRx_IQK_Tone_A, bMaskDWord, 0x01008c00);
}
RTPRINT(FINIT, INIT_IQK, ("phy_IQCalibrate_8192C() <==\n"));
}
VOID
phy_LCCalibrate92C(
IN PADAPTER pAdapter,
IN BOOLEAN is2T
)
{
u1Byte tmpReg;
u4Byte RF_Amode=0, RF_Bmode=0, LC_Cal;
// HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
//Check continuous TX and Packet TX
tmpReg = PlatformEFIORead1Byte(pAdapter, 0xd03);
if((tmpReg&0x70) != 0) //Deal with contisuous TX case
PlatformEFIOWrite1Byte(pAdapter, 0xd03, tmpReg&0x8F); //disable all continuous TX
else // Deal with Packet TX case
PlatformEFIOWrite1Byte(pAdapter, REG_TXPAUSE, 0xFF); // block all queues
if((tmpReg&0x70) != 0)
{
//1. Read original RF mode
//Path-A
RF_Amode = PHY_QueryRFReg(pAdapter, RF_PATH_A, RF_AC, bMask12Bits);
//Path-B
if(is2T)
RF_Bmode = PHY_QueryRFReg(pAdapter, RF_PATH_B, RF_AC, bMask12Bits);
//2. Set RF mode = standby mode
//Path-A
PHY_SetRFReg(pAdapter, RF_PATH_A, RF_AC, bMask12Bits, (RF_Amode&0x8FFFF)|0x10000);
//Path-B
if(is2T)
PHY_SetRFReg(pAdapter, RF_PATH_B, RF_AC, bMask12Bits, (RF_Bmode&0x8FFFF)|0x10000);
}
//3. Read RF reg18
LC_Cal = PHY_QueryRFReg(pAdapter, RF_PATH_A, RF_CHNLBW, bMask12Bits);
//4. Set LC calibration begin bit15
PHY_SetRFReg(pAdapter, RF_PATH_A, RF_CHNLBW, bMask12Bits, LC_Cal|0x08000);
delay_ms(100);
//Restore original situation
if((tmpReg&0x70) != 0) //Deal with contisuous TX case
{
//Path-A
PlatformEFIOWrite1Byte(pAdapter, 0xd03, tmpReg);
PHY_SetRFReg(pAdapter, RF_PATH_A, RF_AC, bMask12Bits, RF_Amode);
//Path-B
if(is2T)
PHY_SetRFReg(pAdapter, RF_PATH_B, RF_AC, bMask12Bits, RF_Bmode);
}
else // Deal with Packet TX case
{
PlatformEFIOWrite1Byte(pAdapter, REG_TXPAUSE, 0x00);
}
}
VOID
phy_LCCalibrate(
IN PADAPTER pAdapter,
IN BOOLEAN is2T
)
{
phy_LCCalibrate92C(pAdapter, is2T);
}
//Analog Pre-distortion calibration
#define APK_BB_REG_NUM 8
#define APK_CURVE_REG_NUM 4
#define PATH_NUM 2
VOID
phy_APCalibrate_8192C(
IN PADAPTER pAdapter,
IN s1Byte delta,
IN BOOLEAN is2T
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
u4Byte regD[PATH_NUM];
u4Byte tmpReg, index, offset, i, apkbound;
u1Byte path, pathbound = PATH_NUM;
u4Byte BB_backup[APK_BB_REG_NUM];
u4Byte BB_REG[APK_BB_REG_NUM] = {
rFPGA1_TxBlock, rOFDM0_TRxPathEnable,
rFPGA0_RFMOD, rOFDM0_TRMuxPar,
rFPGA0_XCD_RFInterfaceSW, rFPGA0_XAB_RFInterfaceSW,
rFPGA0_XA_RFInterfaceOE, rFPGA0_XB_RFInterfaceOE };
u4Byte BB_AP_MODE[APK_BB_REG_NUM] = {
0x00000020, 0x00a05430, 0x02040000,
0x000800e4, 0x00204000 };
u4Byte BB_normal_AP_MODE[APK_BB_REG_NUM] = {
0x00000020, 0x00a05430, 0x02040000,
0x000800e4, 0x22204000 };
u4Byte AFE_backup[IQK_ADDA_REG_NUM];
u4Byte AFE_REG[IQK_ADDA_REG_NUM] = {
rFPGA0_XCD_SwitchControl, rBlue_Tooth,
rRx_Wait_CCA, rTx_CCK_RFON,
rTx_CCK_BBON, rTx_OFDM_RFON,
rTx_OFDM_BBON, rTx_To_Rx,
rTx_To_Tx, rRx_CCK,
rRx_OFDM, rRx_Wait_RIFS,
rRx_TO_Rx, rStandby,
rSleep, rPMPD_ANAEN };
u4Byte MAC_backup[IQK_MAC_REG_NUM];
u4Byte MAC_REG[IQK_MAC_REG_NUM] = {
REG_TXPAUSE, REG_BCN_CTRL,
REG_BCN_CTRL_1, REG_GPIO_MUXCFG};
u4Byte APK_RF_init_value[PATH_NUM][APK_BB_REG_NUM] = {
{0x0852c, 0x1852c, 0x5852c, 0x1852c, 0x5852c},
{0x2852e, 0x0852e, 0x3852e, 0x0852e, 0x0852e}
};
u4Byte APK_normal_RF_init_value[PATH_NUM][APK_BB_REG_NUM] = {
{0x0852c, 0x0a52c, 0x3a52c, 0x5a52c, 0x5a52c}, //path settings equal to path b settings
{0x0852c, 0x0a52c, 0x5a52c, 0x5a52c, 0x5a52c}
};
u4Byte APK_RF_value_0[PATH_NUM][APK_BB_REG_NUM] = {
{0x52019, 0x52014, 0x52013, 0x5200f, 0x5208d},
{0x5201a, 0x52019, 0x52016, 0x52033, 0x52050}
};
u4Byte APK_normal_RF_value_0[PATH_NUM][APK_BB_REG_NUM] = {
{0x52019, 0x52017, 0x52010, 0x5200d, 0x5206a}, //path settings equal to path b settings
{0x52019, 0x52017, 0x52010, 0x5200d, 0x5206a}
};
#if 0
u4Byte APK_RF_value_A[PATH_NUM][APK_BB_REG_NUM] = {
{0x1adb0, 0x1adb0, 0x1ada0, 0x1ad90, 0x1ad80},
{0x00fb0, 0x00fb0, 0x00fa0, 0x00f90, 0x00f80}
};
#endif
u4Byte AFE_on_off[PATH_NUM] = {
0x04db25a4, 0x0b1b25a4}; //path A on path B off / path A off path B on
u4Byte APK_offset[PATH_NUM] = {
rConfig_AntA, rConfig_AntB};
u4Byte APK_normal_offset[PATH_NUM] = {
rConfig_Pmpd_AntA, rConfig_Pmpd_AntB};
u4Byte APK_value[PATH_NUM] = {
0x92fc0000, 0x12fc0000};
u4Byte APK_normal_value[PATH_NUM] = {
0x92680000, 0x12680000};
s1Byte APK_delta_mapping[APK_BB_REG_NUM][13] = {
{-4, -3, -2, -2, -1, -1, 0, 1, 2, 3, 4, 5, 6},
{-4, -3, -2, -2, -1, -1, 0, 1, 2, 3, 4, 5, 6},
{-6, -4, -2, -2, -1, -1, 0, 1, 2, 3, 4, 5, 6},
{-1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6},
{-11, -9, -7, -5, -3, -1, 0, 0, 0, 0, 0, 0, 0}
};
u4Byte APK_normal_setting_value_1[13] = {
0x01017018, 0xf7ed8f84, 0x1b1a1816, 0x2522201e, 0x322e2b28,
0x433f3a36, 0x5b544e49, 0x7b726a62, 0xa69a8f84, 0xdfcfc0b3,
0x12680000, 0x00880000, 0x00880000
};
u4Byte APK_normal_setting_value_2[16] = {
0x01c7021d, 0x01670183, 0x01000123, 0x00bf00e2, 0x008d00a3,
0x0068007b, 0x004d0059, 0x003a0042, 0x002b0031, 0x001f0025,
0x0017001b, 0x00110014, 0x000c000f, 0x0009000b, 0x00070008,
0x00050006
};
u4Byte APK_result[PATH_NUM][APK_BB_REG_NUM]; //val_1_1a, val_1_2a, val_2a, val_3a, val_4a
// u4Byte AP_curve[PATH_NUM][APK_CURVE_REG_NUM];
s4Byte BB_offset, delta_V, delta_offset;
#if MP_DRIVER == 1
PMPT_CONTEXT pMptCtx = &(pAdapter->MptCtx);
pMptCtx->APK_bound[0] = 45;
pMptCtx->APK_bound[1] = 52;
#endif
RTPRINT(FINIT, INIT_IQK, ("==>phy_APCalibrate_8192C() delta %d\n", delta));
RTPRINT(FINIT, INIT_IQK, ("AP Calibration for %s\n", (is2T ? "2T2R" : "1T1R")));
if(!is2T)
pathbound = 1;
//2 FOR NORMAL CHIP SETTINGS
// Temporarily do not allow normal driver to do the following settings because these offset
// and value will cause RF internal PA to be unpredictably disabled by HW, such that RF Tx signal
// will disappear after disable/enable card many times on 88CU. RF SD and DD have not find the
// root cause, so we remove these actions temporarily. Added by tynli and SD3 Allen. 2010.05.31.
#if MP_DRIVER != 1
return;
#endif
//settings adjust for normal chip
for(index = 0; index < PATH_NUM; index ++)
{
APK_offset[index] = APK_normal_offset[index];
APK_value[index] = APK_normal_value[index];
AFE_on_off[index] = 0x6fdb25a4;
}
for(index = 0; index < APK_BB_REG_NUM; index ++)
{
for(path = 0; path < pathbound; path++)
{
APK_RF_init_value[path][index] = APK_normal_RF_init_value[path][index];
APK_RF_value_0[path][index] = APK_normal_RF_value_0[path][index];
}
BB_AP_MODE[index] = BB_normal_AP_MODE[index];
}
apkbound = 6;
//save BB default value
for(index = 0; index < APK_BB_REG_NUM ; index++)
{
if(index == 0) //skip
continue;
BB_backup[index] = PHY_QueryBBReg(pAdapter, BB_REG[index], bMaskDWord);
}
//save MAC default value
phy_SaveMACRegisters(pAdapter, MAC_REG, MAC_backup);
//save AFE default value
phy_SaveADDARegisters(pAdapter, AFE_REG, AFE_backup, IQK_ADDA_REG_NUM);
for(path = 0; path < pathbound; path++)
{
if(path == RF_PATH_A)
{
//path A APK
//load APK setting
//path-A
offset = rPdp_AntA;
for(index = 0; index < 11; index ++)
{
PHY_SetBBReg(pAdapter, offset, bMaskDWord, APK_normal_setting_value_1[index]);
RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0x%x value 0x%x\n", offset, PHY_QueryBBReg(pAdapter, offset, bMaskDWord)));
offset += 0x04;
}
PHY_SetBBReg(pAdapter, rConfig_Pmpd_AntB, bMaskDWord, 0x12680000);
offset = rConfig_AntA;
for(; index < 13; index ++)
{
PHY_SetBBReg(pAdapter, offset, bMaskDWord, APK_normal_setting_value_1[index]);
RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0x%x value 0x%x\n", offset, PHY_QueryBBReg(pAdapter, offset, bMaskDWord)));
offset += 0x04;
}
//page-B1
PHY_SetBBReg(pAdapter, rFPGA0_IQK, 0xffffff00, 0x400000);
//path A
offset = rPdp_AntA;
for(index = 0; index < 16; index++)
{
PHY_SetBBReg(pAdapter, offset, bMaskDWord, APK_normal_setting_value_2[index]);
RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0x%x value 0x%x\n", offset, PHY_QueryBBReg(pAdapter, offset, bMaskDWord)));
offset += 0x04;
}
PHY_SetBBReg(pAdapter, rFPGA0_IQK, 0xffffff00, 0);
}
else if(path == RF_PATH_B)
{
//path B APK
//load APK setting
//path-B
offset = rPdp_AntB;
for(index = 0; index < 10; index ++)
{
PHY_SetBBReg(pAdapter, offset, bMaskDWord, APK_normal_setting_value_1[index]);
RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0x%x value 0x%x\n", offset, PHY_QueryBBReg(pAdapter, offset, bMaskDWord)));
offset += 0x04;
}
PHY_SetBBReg(pAdapter, rConfig_Pmpd_AntA, bMaskDWord, 0x12680000);
PHY_SetBBReg(pAdapter, rConfig_Pmpd_AntB, bMaskDWord, 0x12680000);
offset = rConfig_AntA;
index = 11;
for(; index < 13; index ++) //offset 0xb68, 0xb6c
{
PHY_SetBBReg(pAdapter, offset, bMaskDWord, APK_normal_setting_value_1[index]);
RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0x%x value 0x%x\n", offset, PHY_QueryBBReg(pAdapter, offset, bMaskDWord)));
offset += 0x04;
}
//page-B1
PHY_SetBBReg(pAdapter, rFPGA0_IQK, 0xffffff00, 0x400000);
//path B
offset = 0xb60;
for(index = 0; index < 16; index++)
{
PHY_SetBBReg(pAdapter, offset, bMaskDWord, APK_normal_setting_value_2[index]);
RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0x%x value 0x%x\n", offset, PHY_QueryBBReg(pAdapter, offset, bMaskDWord)));
offset += 0x04;
}
PHY_SetBBReg(pAdapter, rFPGA0_IQK, 0xffffff00, 0);
}
//save RF default value
regD[path] = PHY_QueryRFReg(pAdapter, path, RF_TXBIAS_A, bRFRegOffsetMask);
//Path A AFE all on, path B AFE All off or vise versa
for(index = 0; index < IQK_ADDA_REG_NUM ; index++)
PHY_SetBBReg(pAdapter, AFE_REG[index], bMaskDWord, AFE_on_off[path]);
RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0xe70 %x\n", PHY_QueryBBReg(pAdapter, rRx_Wait_CCA, bMaskDWord)));
//BB to AP mode
if(path == 0)
{
for(index = 0; index < APK_BB_REG_NUM ; index++)
{
if(index == 0) //skip
continue;
else if (index < 5)
PHY_SetBBReg(pAdapter, BB_REG[index], bMaskDWord, BB_AP_MODE[index]);
else if (BB_REG[index] == 0x870)
PHY_SetBBReg(pAdapter, BB_REG[index], bMaskDWord, BB_backup[index]|BIT10|BIT26);
else
PHY_SetBBReg(pAdapter, BB_REG[index], BIT10, 0x0);
}
PHY_SetBBReg(pAdapter, rTx_IQK_Tone_A, bMaskDWord, 0x01008c00);
PHY_SetBBReg(pAdapter, rRx_IQK_Tone_A, bMaskDWord, 0x01008c00);
}
else //path B
{
PHY_SetBBReg(pAdapter, rTx_IQK_Tone_B, bMaskDWord, 0x01008c00);
PHY_SetBBReg(pAdapter, rRx_IQK_Tone_B, bMaskDWord, 0x01008c00);
}
RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0x800 %x\n", PHY_QueryBBReg(pAdapter, 0x800, bMaskDWord)));
//MAC settings
phy_MACSettingCalibration(pAdapter, MAC_REG, MAC_backup);
if(path == RF_PATH_A) //Path B to standby mode
{
PHY_SetRFReg(pAdapter, RF_PATH_B, RF_AC, bRFRegOffsetMask, 0x10000);
}
else //Path A to standby mode
{
PHY_SetRFReg(pAdapter, RF_PATH_A, RF_AC, bRFRegOffsetMask, 0x10000);
PHY_SetRFReg(pAdapter, RF_PATH_A, RF_MODE1, bRFRegOffsetMask, 0x1000f);
PHY_SetRFReg(pAdapter, RF_PATH_A, RF_MODE2, bRFRegOffsetMask, 0x20103);
}
delta_offset = ((delta+14)/2);
if(delta_offset < 0)
delta_offset = 0;
else if (delta_offset > 12)
delta_offset = 12;
//AP calibration
for(index = 0; index < APK_BB_REG_NUM; index++)
{
if(index != 1) //only DO PA11+PAD01001, AP RF setting
continue;
tmpReg = APK_RF_init_value[path][index];
#if 1
if(!pHalData->bAPKThermalMeterIgnore)
{
BB_offset = (tmpReg & 0xF0000) >> 16;
if(!(tmpReg & BIT15)) //sign bit 0
{
BB_offset = -BB_offset;
}
delta_V = APK_delta_mapping[index][delta_offset];
BB_offset += delta_V;
RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() APK index %d tmpReg 0x%x delta_V %d delta_offset %d\n", index, tmpReg, delta_V, delta_offset));
if(BB_offset < 0)
{
tmpReg = tmpReg & (~BIT15);
BB_offset = -BB_offset;
}
else
{
tmpReg = tmpReg | BIT15;
}
tmpReg = (tmpReg & 0xFFF0FFFF) | (BB_offset << 16);
}
#endif
#if DEV_BUS_TYPE==RT_PCI_INTERFACE
if(IS_81xxC_VENDOR_UMC_B_CUT(pHalData->VersionID))
PHY_SetRFReg(pAdapter, path, RF_IPA_A, bRFRegOffsetMask, 0x894ae);
else
#endif
PHY_SetRFReg(pAdapter, path, RF_IPA_A, bRFRegOffsetMask, 0x8992e);
RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0xc %x\n", PHY_QueryRFReg(pAdapter, path, RF_IPA_A, bRFRegOffsetMask)));
PHY_SetRFReg(pAdapter, path, RF_AC, bRFRegOffsetMask, APK_RF_value_0[path][index]);
RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0x0 %x\n", PHY_QueryRFReg(pAdapter, path, RF_AC, bRFRegOffsetMask)));
PHY_SetRFReg(pAdapter, path, RF_TXBIAS_A, bRFRegOffsetMask, tmpReg);
RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0xd %x\n", PHY_QueryRFReg(pAdapter, path, RF_TXBIAS_A, bRFRegOffsetMask)));
// PA11+PAD01111, one shot
i = 0;
do
{
PHY_SetBBReg(pAdapter, rFPGA0_IQK, 0xffffff00, 0x800000);
{
PHY_SetBBReg(pAdapter, APK_offset[path], bMaskDWord, APK_value[0]);
RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0x%x value 0x%x\n", APK_offset[path], PHY_QueryBBReg(pAdapter, APK_offset[path], bMaskDWord)));
delay_ms(3);
PHY_SetBBReg(pAdapter, APK_offset[path], bMaskDWord, APK_value[1]);
RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0x%x value 0x%x\n", APK_offset[path], PHY_QueryBBReg(pAdapter, APK_offset[path], bMaskDWord)));
delay_ms(20);
}
PHY_SetBBReg(pAdapter, rFPGA0_IQK, 0xffffff00, 0);
if(path == RF_PATH_A)
tmpReg = PHY_QueryBBReg(pAdapter, rAPK, 0x03E00000);
else
tmpReg = PHY_QueryBBReg(pAdapter, rAPK, 0xF8000000);
RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0xbd8[25:21] %x\n", tmpReg));
i++;
}
while(tmpReg > apkbound && i < 4);
APK_result[path][index] = tmpReg;
}
}
//reload MAC default value
phy_ReloadMACRegisters(pAdapter, MAC_REG, MAC_backup);
//reload BB default value
for(index = 0; index < APK_BB_REG_NUM ; index++)
{
if(index == 0) //skip
continue;
PHY_SetBBReg(pAdapter, BB_REG[index], bMaskDWord, BB_backup[index]);
}
//reload AFE default value
phy_ReloadADDARegisters(pAdapter, AFE_REG, AFE_backup, IQK_ADDA_REG_NUM);
//reload RF path default value
for(path = 0; path < pathbound; path++)
{
PHY_SetRFReg(pAdapter, path, RF_TXBIAS_A, bRFRegOffsetMask, regD[path]);
if(path == RF_PATH_B)
{
PHY_SetRFReg(pAdapter, RF_PATH_A, RF_MODE1, bRFRegOffsetMask, 0x1000f);
PHY_SetRFReg(pAdapter, RF_PATH_A, RF_MODE2, bRFRegOffsetMask, 0x20101);
}
//note no index == 0
if (APK_result[path][1] > 6)
APK_result[path][1] = 6;
RTPRINT(FINIT, INIT_IQK, ("apk path %d result %d 0x%x \t", path, 1, APK_result[path][1]));
}
RTPRINT(FINIT, INIT_IQK, ("\n"));
for(path = 0; path < pathbound; path++)
{
PHY_SetRFReg(pAdapter, path, RF_BS_PA_APSET_G1_G4, bRFRegOffsetMask,
((APK_result[path][1] << 15) | (APK_result[path][1] << 10) | (APK_result[path][1] << 5) | APK_result[path][1]));
if(path == RF_PATH_A)
PHY_SetRFReg(pAdapter, path, RF_BS_PA_APSET_G5_G8, bRFRegOffsetMask,
((APK_result[path][1] << 15) | (APK_result[path][1] << 10) | (0x00 << 5) | 0x05));
else
PHY_SetRFReg(pAdapter, path, RF_BS_PA_APSET_G5_G8, bRFRegOffsetMask,
((APK_result[path][1] << 15) | (APK_result[path][1] << 10) | (0x02 << 5) | 0x05));
PHY_SetRFReg(pAdapter, path, RF_BS_PA_APSET_G9_G11, bRFRegOffsetMask, ((0x08 << 15) | (0x08 << 10) | (0x08 << 5) | 0x08));
}
pHalData->bAPKdone = TRUE;
RTPRINT(FINIT, INIT_IQK, ("<==phy_APCalibrate_8192C()\n"));
}
VOID
PHY_IQCalibrate_8192C(
IN PADAPTER pAdapter,
IN BOOLEAN bReCovery
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
s4Byte result[4][8]; //last is final result
u1Byte i, final_candidate, Indexforchannel;
BOOLEAN bPathAOK, bPathBOK;
s4Byte RegE94, RegE9C, RegEA4, RegEAC, RegEB4, RegEBC, RegEC4, RegECC, RegTmp = 0;
BOOLEAN is12simular, is13simular, is23simular;
BOOLEAN bStartContTx = FALSE, bSingleTone = FALSE, bCarrierSuppression = FALSE;
u4Byte IQK_BB_REG_92C[IQK_BB_REG_NUM] = {
rOFDM0_XARxIQImbalance, rOFDM0_XBRxIQImbalance,
rOFDM0_ECCAThreshold, rOFDM0_AGCRSSITable,
rOFDM0_XATxIQImbalance, rOFDM0_XBTxIQImbalance,
rOFDM0_XCTxAFE, rOFDM0_XDTxAFE,
rOFDM0_RxIQExtAnta};
if (ODM_CheckPowerStatus(pAdapter) == FALSE)
return;
#if MP_DRIVER == 1
bStartContTx = pAdapter->MptCtx.bStartContTx;
bSingleTone = pAdapter->MptCtx.bSingleTone;
bCarrierSuppression = pAdapter->MptCtx.bCarrierSuppression;
#endif
//ignore IQK when continuous Tx
if(bStartContTx || bSingleTone || bCarrierSuppression)
return;
#ifdef DISABLE_BB_RF
return;
#endif
if(pAdapter->bSlaveOfDMSP)
return;
if (bReCovery)
{
phy_ReloadADDARegisters(pAdapter, IQK_BB_REG_92C, pHalData->IQK_BB_backup_recover, 9);
return;
}
RTPRINT(FINIT, INIT_IQK, ("IQK:Start!!!\n"));
for(i = 0; i < 8; i++)
{
result[0][i] = 0;
result[1][i] = 0;
result[2][i] = 0;
result[3][i] = 0;
}
final_candidate = 0xff;
bPathAOK = FALSE;
bPathBOK = FALSE;
is12simular = FALSE;
is23simular = FALSE;
is13simular = FALSE;
AcquireCCKAndRWPageAControl(pAdapter);
/*RT_TRACE(COMP_INIT,DBG_LOUD,("Acquire Mutex in IQCalibrate\n"));*/
for (i=0; i<3; i++)
{
/*For 88C 1T1R*/
phy_IQCalibrate_8192C(pAdapter, result, i, FALSE);
if(i == 1)
{
is12simular = phy_SimularityCompare(pAdapter, result, 0, 1);
if(is12simular)
{
final_candidate = 0;
break;
}
}
if(i == 2)
{
is13simular = phy_SimularityCompare(pAdapter, result, 0, 2);
if(is13simular)
{
final_candidate = 0;
break;
}
is23simular = phy_SimularityCompare(pAdapter, result, 1, 2);
if(is23simular)
final_candidate = 1;
else
{
for(i = 0; i < 8; i++)
RegTmp += result[3][i];
if(RegTmp != 0)
final_candidate = 3;
else
final_candidate = 0xFF;
}
}
}
// RT_TRACE(COMP_INIT,DBG_LOUD,("Release Mutex in IQCalibrate \n"));
ReleaseCCKAndRWPageAControl(pAdapter);
for (i=0; i<4; i++)
{
RegE94 = result[i][0];
RegE9C = result[i][1];
RegEA4 = result[i][2];
RegEAC = result[i][3];
RegEB4 = result[i][4];
RegEBC = result[i][5];
RegEC4 = result[i][6];
RegECC = result[i][7];
RTPRINT(FINIT, INIT_IQK, ("IQK: RegE94=%x RegE9C=%x RegEA4=%x RegEAC=%x RegEB4=%x RegEBC=%x RegEC4=%x RegECC=%x\n ", RegE94, RegE9C, RegEA4, RegEAC, RegEB4, RegEBC, RegEC4, RegECC));
}
if(final_candidate != 0xff)
{
pHalData->RegE94 = RegE94 = result[final_candidate][0];
pHalData->RegE9C = RegE9C = result[final_candidate][1];
RegEA4 = result[final_candidate][2];
RegEAC = result[final_candidate][3];
pHalData->RegEB4 = RegEB4 = result[final_candidate][4];
pHalData->RegEBC = RegEBC = result[final_candidate][5];
RegEC4 = result[final_candidate][6];
RegECC = result[final_candidate][7];
RTPRINT(FINIT, INIT_IQK, ("IQK: final_candidate is %x\n",final_candidate));
RTPRINT(FINIT, INIT_IQK, ("IQK: RegE94=%x RegE9C=%x RegEA4=%x RegEAC=%x RegEB4=%x RegEBC=%x RegEC4=%x RegECC=%x\n ", RegE94, RegE9C, RegEA4, RegEAC, RegEB4, RegEBC, RegEC4, RegECC));
bPathAOK = bPathBOK = TRUE;
}
else
{
RegE94 = RegEB4 = pHalData->RegE94 = pHalData->RegEB4 = 0x100; //X default value
RegE9C = RegEBC = pHalData->RegE9C = pHalData->RegEBC = 0x0; //Y default value
}
if((RegE94 != 0)/*&&(RegEA4 != 0)*/)
{
if(pHalData->CurrentBandType == BAND_ON_5G)
phy_PathAFillIQKMatrix_5G_Normal(pAdapter, bPathAOK, result, final_candidate, (RegEA4 == 0));
else
phy_PathAFillIQKMatrix(pAdapter, bPathAOK, result, final_candidate, (RegEA4 == 0));
}
if (IS_92C_SERIAL(pHalData->VersionID) || IS_92D_SINGLEPHY(pHalData->VersionID))
{
if((RegEB4 != 0)/*&&(RegEC4 != 0)*/)
{
if(pHalData->CurrentBandType == BAND_ON_5G)
phy_PathBFillIQKMatrix_5G_Normal(pAdapter, bPathBOK, result, final_candidate, (RegEC4 == 0));
else
phy_PathBFillIQKMatrix(pAdapter, bPathBOK, result, final_candidate, (RegEC4 == 0));
}
}
phy_SaveADDARegisters(pAdapter, IQK_BB_REG_92C, pHalData->IQK_BB_backup_recover, 9);
}
VOID
PHY_LCCalibrate_8192C(
IN PADAPTER pAdapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
BOOLEAN bStartContTx = FALSE, bSingleTone = FALSE, bCarrierSuppression = FALSE;
PMGNT_INFO pMgntInfo=&pAdapter->MgntInfo;
PMGNT_INFO pMgntInfoBuddyAdapter;
u4Byte timeout = 2000, timecount = 0;
PADAPTER BuddyAdapter = pAdapter->BuddyAdapter;
#if MP_DRIVER == 1
bStartContTx = pAdapter->MptCtx.bStartContTx;
bSingleTone = pAdapter->MptCtx.bSingleTone;
bCarrierSuppression = pAdapter->MptCtx.bCarrierSuppression;
#endif
#ifdef DISABLE_BB_RF
return;
#endif
//ignore LCK when continuous Tx
if(bStartContTx || bSingleTone || bCarrierSuppression)
return;
if(BuddyAdapter != NULL &&
((pAdapter->interfaceIndex == 0 && pHalData->CurrentBandType == BAND_ON_2_4G) ||
(pAdapter->interfaceIndex == 1 && pHalData->CurrentBandType == BAND_ON_5G)))
{
pMgntInfoBuddyAdapter=&BuddyAdapter->MgntInfo;
while(pMgntInfoBuddyAdapter->bScanInProgress && timecount < timeout)
{
delay_ms(50);
timecount += 50;
}
}
while(pMgntInfo->bScanInProgress && timecount < timeout)
{
delay_ms(50);
timecount += 50;
}
pHalData->bLCKInProgress = TRUE;
RTPRINT(FINIT, INIT_IQK, ("LCK:Start!!!interface %d currentband %x delay %d ms\n", pAdapter->interfaceIndex, pHalData->CurrentBandType, timecount));
//if(IS_92C_SERIAL(pHalData->VersionID) || IS_92D_SINGLEPHY(pHalData->VersionID))
if(IS_2T2R(pHalData->VersionID))
{
phy_LCCalibrate(pAdapter, TRUE);
}
else{
// For 88C 1T1R
phy_LCCalibrate(pAdapter, FALSE);
}
pHalData->bLCKInProgress = FALSE;
RTPRINT(FINIT, INIT_IQK, ("LCK:Finish!!!interface %d\n", pAdapter->interfaceIndex));
}
VOID
PHY_APCalibrate_8192C(
IN PADAPTER pAdapter,
IN s1Byte delta
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
//default disable APK, because Tx NG issue, suggest by Jenyu, 2011.11.25
return;
#ifdef DISABLE_BB_RF
return;
#endif
#if FOR_BRAZIL_PRETEST != 1
if(pHalData->bAPKdone)
#endif
return;
if(IS_92C_SERIAL( pHalData->VersionID)){
phy_APCalibrate_8192C(pAdapter, delta, TRUE);
}
else{
// For 88C 1T1R
phy_APCalibrate_8192C(pAdapter, delta, FALSE);
}
}
#endif
//3============================================================
//3 IQ Calibration
//3============================================================
VOID
ODM_ResetIQKResult(
IN PVOID pDM_VOID
)
{
return;
}
#if 1//!(DM_ODM_SUPPORT_TYPE & ODM_AP)
u1Byte ODM_GetRightChnlPlaceforIQK(u1Byte chnl)
{
u1Byte channel_all[ODM_TARGET_CHNL_NUM_2G_5G] =
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,149,151,153,155,157,159,161,163,165};
u1Byte place = chnl;
if(chnl > 14)
{
for(place = 14; place<sizeof(channel_all); place++)
{
if(channel_all[place] == chnl)
{
return place-13;
}
}
}
return 0;
}
#endif
VOID
odm_IQCalibrate(
IN PDM_ODM_T pDM_Odm
)
{
PADAPTER Adapter = pDM_Odm->Adapter;
#if (DM_ODM_SUPPORT_TYPE == ODM_WIN)
if (*pDM_Odm->pIsFcsModeEnable)
return;
#endif
#if (DM_ODM_SUPPORT_TYPE & (ODM_WIN|ODM_CE))
if (!IS_HARDWARE_TYPE_JAGUAR(Adapter))
return;
#if (DM_ODM_SUPPORT_TYPE & (ODM_CE))
else if (IS_HARDWARE_TYPE_8812AU(Adapter))
return;
#endif
#endif
#if (RTL8821A_SUPPORT == 1)
if (pDM_Odm->bLinked) {
if ((*pDM_Odm->pChannel != pDM_Odm->preChannel) && (!*pDM_Odm->pbScanInProcess)) {
pDM_Odm->preChannel = *pDM_Odm->pChannel;
pDM_Odm->LinkedInterval = 0;
}
if (pDM_Odm->LinkedInterval < 3)
pDM_Odm->LinkedInterval++;
if (pDM_Odm->LinkedInterval == 2) {
/*Mark out IQK flow to prevent tx stuck. by Maddest 20130306*/
/*Open it verified by James 20130715*/
#if (DM_ODM_SUPPORT_TYPE == ODM_CE)
PHY_IQCalibrate_8821A(pDM_Odm, FALSE);
#elif (DM_ODM_SUPPORT_TYPE == ODM_WIN)
PHY_IQCalibrate(Adapter, FALSE);
#else
PHY_IQCalibrate_8821A(Adapter, FALSE);
#endif
}
} else
pDM_Odm->LinkedInterval = 0;
#endif
}
void phydm_rf_init(IN PVOID pDM_VOID)
{
PDM_ODM_T pDM_Odm = (PDM_ODM_T)pDM_VOID;
odm_TXPowerTrackingInit(pDM_Odm);
#if (DM_ODM_SUPPORT_TYPE & (ODM_WIN|ODM_CE))
ODM_ClearTxPowerTrackingState(pDM_Odm);
#endif
#if (DM_ODM_SUPPORT_TYPE & (ODM_AP))
#if (RTL8814A_SUPPORT == 1)
if (pDM_Odm->SupportICType & ODM_RTL8814A)
PHY_IQCalibrate_8814A_Init(pDM_Odm);
#endif
#endif
}
void phydm_rf_watchdog(IN PVOID pDM_VOID)
{
PDM_ODM_T pDM_Odm = (PDM_ODM_T)pDM_VOID;
#if (DM_ODM_SUPPORT_TYPE & (ODM_WIN|ODM_CE))
ODM_TXPowerTrackingCheck(pDM_Odm);
if (pDM_Odm->SupportICType & ODM_IC_11AC_SERIES)
odm_IQCalibrate(pDM_Odm);
#endif
}