M7350/wlan/8192es/DriverSrcPkg/Driver/rtl8192cd_92es/8192cd_tkip.c
2024-09-09 08:59:52 +00:00

1370 lines
34 KiB
C
Executable File

/*
* Software TKIP encryption/descryption routines
*
* $Id: 8192cd_tkip.c,v 1.4.4.2 2010/09/30 05:27:28 button Exp $
*
* Copyright (c) 2009 Realtek Semiconductor Corp.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define _8192CD_TKIP_C_
#ifdef __KERNEL__
#include <linux/module.h>
#include <asm/byteorder.h>
#elif defined(__ECOS)
#include <cyg/io/eth/rltk/819x/wrapper/sys_support.h>
#include <cyg/io/eth/rltk/819x/wrapper/skbuff.h>
#include <cyg/io/eth/rltk/819x/wrapper/timer.h>
#include <cyg/io/eth/rltk/819x/wrapper/wrapper.h>
#endif
#include "./8192cd_cfg.h"
#if !defined(__KERNEL__) && !defined(__ECOS)
#include "./sys-support.h"
#endif
#include "./8192cd.h"
#ifdef __KERNEL__
#include "./ieee802_mib.h"
#elif defined(__ECOS)
#include <cyg/io/eth/rltk/819x/wlan/ieee802_mib.h>
#endif
#include "./8192cd_util.h"
#include "./8192cd_headers.h"
#include "./8192cd_debug.h"
#ifdef __LINUX_2_6__
/*avoid mutli defined*/
#ifdef swap
#undef swap
#endif
#endif
#define MAX_MESSAGE_LENGTH 2048
#define rotr(n,x) (((x) >> ((int)(n))) | ((x) << (32 - (int)(n))))
#define rotl(n,x) (((x) << ((int)(n))) | ((x) >> (32 - (int)(n))))
#define block_function(l,r) { \
r = r ^ rotl(17,l); \
l = (l + r); \
r ^= ((l & 0xff00ff00) >> 8) | ((l & 0x00ff00ff) << 8); \
l = (l + r); \
r = r ^ rotl(3,l); \
l = (l + r); \
r = r ^ rotr(2,l); \
l = (l + r); \
}
void debug_out(unsigned char *label, unsigned char *data, int data_length)
{
int i,j;
int num_blocks;
int block_remainder;
num_blocks = data_length >> 4;
block_remainder = data_length & 15;
if (label) {
printk("%s\n", label);
}
if (data==NULL || data_length==0)
return;
for (i=0; i<num_blocks; i++)
{
printk("\t");
for (j=0; j<16; j++)
{
printk("%02x ", data[j + (i<<4)]);
}
printk("\n");
}
if (block_remainder > 0)
{
printk("\t");
for (j=0; j<block_remainder; j++)
{
printk("%02x ", data[j+(num_blocks<<4)]);
}
printk("\n");
}
}
#if 0
static __inline__ unsigned long int rotr(int bits, unsigned long int a)
{
unsigned long int c,d,e,f,g;
c = (0x0001 << bits)-1;
d = ~c;
e = (a & d) >> bits;
f = (a & c) << (32 - bits);
g = e | f;
return (g & 0xffffffff );
}
static __inline__ unsigned long int rotl(int bits, unsigned long int a)
{
unsigned long int c,d,e,f,g;
c = (0x0001 << (32-bits))-1;
d = ~c;
e = (a & c) << bits;
f = (a & d) >> (32 - bits);
g = e | f;
return (g & 0xffffffff );
}
static __inline__ unsigned long int xswap(unsigned long int in)
{
unsigned long int a,b,c,d,out;
a = in & 0xff;
b = (in >> 8) & 0xff;
c = (in >> 16) & 0xff;
d = (in >> 24) & 0xff;
out = 0;
out |= c << 24;
out |= d << 16;
out |= a << 8;
out |= b;
return out;
}
static __inline__ void block_function(
unsigned long int l,
unsigned long int r,
unsigned long int *l_out,
unsigned long int *r_out)
{
r = r ^ rotl(17,l);
l = (l + r);
r = r ^ xswap(l);
l = (l + r);
r = r ^ rotl(3,l);
l = (l + r);
r = r ^ rotr(2,l);
l = (l + r);
*l_out = l;
*r_out = r;
}
#endif
void michael(
struct rtl8192cd_priv *priv,
unsigned char *key,
unsigned char *hdr,
unsigned char *llc,
unsigned char *message,
int message_length,
unsigned char *mic, int tx)
{
// unsigned long int l_out, r_out;
register unsigned int l,r;
register unsigned int k0,k1;
register unsigned int m;
register unsigned char a,b,c,d;
int num_blocks;
int block;
num_blocks = message_length >> 2;
k0 = key[0] + (key[1] << 8) + (key[2] << 16) + (key[3] << 24);
k1 = key[4] + (key[5] << 8) + (key[6] << 16) + (key[7] << 24);
l = k0;
r = k1;
//in the beginning, perform the first 16 bytes from hdr...
if (hdr)
{
for (block = 0; block < 4; block++)
{
a = hdr[block<<2];
b = hdr[1+(block<<2)];
c = hdr[2+(block<<2)];
d = hdr[3+(block<<2)];
m = a + (b << 8) + (c << 16) + (d << 24);
l = l ^ m;
#if 0
block_function(l,r,&l_out,&r_out);
l = l_out;
r = r_out;
#endif
block_function(l,r);
}
num_blocks -= 4;
}
if (llc)
{
for (block = 0; block < 2; block++)
{
a = llc[block<<2];
b = llc[1+(block<<2)];
c = llc[2+(block<<2)];
d = llc[3+(block<<2)];
m = a + (b << 8) + (c << 16) + (d << 24);
l = l ^ m;
#if 0
block_function(l,r,&l_out,&r_out);
l = l_out;
r = r_out;
#endif
block_function(l,r);
}
num_blocks -= 2;
}
#ifndef NOT_RTK_BSP
if ((priv->pshare->have_hw_mic) &&
!(priv->pmib->dot11StationConfigEntry.swTkipMic))
{
if (tx)
rtl_cache_sync_wback(priv, (unsigned long)message, (num_blocks*4), PCI_DMA_TODEVICE);
*(volatile unsigned int *)GDMACNR = 0;
*(volatile unsigned int *)GDMACNR = GDMA_ENABLE;
*(volatile unsigned int *)GDMAIMR = 0;
*(volatile unsigned int *)GDMAISR = 0xffffffff;
*(volatile unsigned int *)GDMAICVL = (l);
*(volatile unsigned int *)GDMAICVR = (r);
*(volatile unsigned int *)GDMASBP0 = virt_to_bus(message)+CONFIG_LUNA_SLAVE_PHYMEM_OFFSET;
*(volatile unsigned int *)GDMASBL0 = GDMA_LDB|(num_blocks*4);
*(volatile unsigned int *)GDMADBP0 = 0;
*(volatile unsigned int *)GDMADBL0 = 0;
*(volatile unsigned int *)GDMACNR = GDMA_ENABLE|GDMA_POLL|GDMA_MIC|internalUsedGDMACNR;
}
else
#endif // NOT_RTK_BSP
{
for (block = 0; block < num_blocks; block++)
{
a = message[block<<2];
b = message[1+(block<<2)];
c = message[2+(block<<2)];
d = message[3+(block<<2)];
m = a + (b << 8) + (c << 16) + (d << 24);
l = l ^ m;
#if 0
block_function(l,r,&l_out,&r_out);
l = l_out;
r = r_out;
#endif
block_function(l,r);
}
mic[0] = (unsigned char)(l & 0xff);
mic[1] = (unsigned char)((l >> 8) & 0xff);
mic[2] = (unsigned char)((l >> 16) & 0xff);
mic[3] = (unsigned char)((l >> 24) & 0xff);
mic[4] = (unsigned char)(r & 0xff);
mic[5] = (unsigned char)((r >> 8) & 0xff);
mic[6] = (unsigned char)((r >> 16) & 0xff);
mic[7] = (unsigned char)((r >> 24) & 0xff);
}
}
/*-----------------------------------------------------------------------------
below is for key mixing function
------------------------------------------------------------------------------*/
/* The Sbox can be reduced to two 16 bit wide tables, each with 256 entries.*/
/* The second table is the same as the first but with the upper and lower */
/* bytes swapped. To allow an endian tolerant implementation, the byte */
/* halves have been expressed independently here. */
unsigned char Tkip_Sbox_Lower[256] =
{
0xA5,0x84,0x99,0x8D,0x0D,0xBD,0xB1,0x54,
0x50,0x03,0xA9,0x7D,0x19,0x62,0xE6,0x9A,
0x45,0x9D,0x40,0x87,0x15,0xEB,0xC9,0x0B,
0xEC,0x67,0xFD,0xEA,0xBF,0xF7,0x96,0x5B,
0xC2,0x1C,0xAE,0x6A,0x5A,0x41,0x02,0x4F,
0x5C,0xF4,0x34,0x08,0x93,0x73,0x53,0x3F,
0x0C,0x52,0x65,0x5E,0x28,0xA1,0x0F,0xB5,
0x09,0x36,0x9B,0x3D,0x26,0x69,0xCD,0x9F,
0x1B,0x9E,0x74,0x2E,0x2D,0xB2,0xEE,0xFB,
0xF6,0x4D,0x61,0xCE,0x7B,0x3E,0x71,0x97,
0xF5,0x68,0x00,0x2C,0x60,0x1F,0xC8,0xED,
0xBE,0x46,0xD9,0x4B,0xDE,0xD4,0xE8,0x4A,
0x6B,0x2A,0xE5,0x16,0xC5,0xD7,0x55,0x94,
0xCF,0x10,0x06,0x81,0xF0,0x44,0xBA,0xE3,
0xF3,0xFE,0xC0,0x8A,0xAD,0xBC,0x48,0x04,
0xDF,0xC1,0x75,0x63,0x30,0x1A,0x0E,0x6D,
0x4C,0x14,0x35,0x2F,0xE1,0xA2,0xCC,0x39,
0x57,0xF2,0x82,0x47,0xAC,0xE7,0x2B,0x95,
0xA0,0x98,0xD1,0x7F,0x66,0x7E,0xAB,0x83,
0xCA,0x29,0xD3,0x3C,0x79,0xE2,0x1D,0x76,
0x3B,0x56,0x4E,0x1E,0xDB,0x0A,0x6C,0xE4,
0x5D,0x6E,0xEF,0xA6,0xA8,0xA4,0x37,0x8B,
0x32,0x43,0x59,0xB7,0x8C,0x64,0xD2,0xE0,
0xB4,0xFA,0x07,0x25,0xAF,0x8E,0xE9,0x18,
0xD5,0x88,0x6F,0x72,0x24,0xF1,0xC7,0x51,
0x23,0x7C,0x9C,0x21,0xDD,0xDC,0x86,0x85,
0x90,0x42,0xC4,0xAA,0xD8,0x05,0x01,0x12,
0xA3,0x5F,0xF9,0xD0,0x91,0x58,0x27,0xB9,
0x38,0x13,0xB3,0x33,0xBB,0x70,0x89,0xA7,
0xB6,0x22,0x92,0x20,0x49,0xFF,0x78,0x7A,
0x8F,0xF8,0x80,0x17,0xDA,0x31,0xC6,0xB8,
0xC3,0xB0,0x77,0x11,0xCB,0xFC,0xD6,0x3A
};
unsigned char Tkip_Sbox_Upper[256] =
{
0xC6,0xF8,0xEE,0xF6,0xFF,0xD6,0xDE,0x91,
0x60,0x02,0xCE,0x56,0xE7,0xB5,0x4D,0xEC,
0x8F,0x1F,0x89,0xFA,0xEF,0xB2,0x8E,0xFB,
0x41,0xB3,0x5F,0x45,0x23,0x53,0xE4,0x9B,
0x75,0xE1,0x3D,0x4C,0x6C,0x7E,0xF5,0x83,
0x68,0x51,0xD1,0xF9,0xE2,0xAB,0x62,0x2A,
0x08,0x95,0x46,0x9D,0x30,0x37,0x0A,0x2F,
0x0E,0x24,0x1B,0xDF,0xCD,0x4E,0x7F,0xEA,
0x12,0x1D,0x58,0x34,0x36,0xDC,0xB4,0x5B,
0xA4,0x76,0xB7,0x7D,0x52,0xDD,0x5E,0x13,
0xA6,0xB9,0x00,0xC1,0x40,0xE3,0x79,0xB6,
0xD4,0x8D,0x67,0x72,0x94,0x98,0xB0,0x85,
0xBB,0xC5,0x4F,0xED,0x86,0x9A,0x66,0x11,
0x8A,0xE9,0x04,0xFE,0xA0,0x78,0x25,0x4B,
0xA2,0x5D,0x80,0x05,0x3F,0x21,0x70,0xF1,
0x63,0x77,0xAF,0x42,0x20,0xE5,0xFD,0xBF,
0x81,0x18,0x26,0xC3,0xBE,0x35,0x88,0x2E,
0x93,0x55,0xFC,0x7A,0xC8,0xBA,0x32,0xE6,
0xC0,0x19,0x9E,0xA3,0x44,0x54,0x3B,0x0B,
0x8C,0xC7,0x6B,0x28,0xA7,0xBC,0x16,0xAD,
0xDB,0x64,0x74,0x14,0x92,0x0C,0x48,0xB8,
0x9F,0xBD,0x43,0xC4,0x39,0x31,0xD3,0xF2,
0xD5,0x8B,0x6E,0xDA,0x01,0xB1,0x9C,0x49,
0xD8,0xAC,0xF3,0xCF,0xCA,0xF4,0x47,0x10,
0x6F,0xF0,0x4A,0x5C,0x38,0x57,0x73,0x97,
0xCB,0xA1,0xE8,0x3E,0x96,0x61,0x0D,0x0F,
0xE0,0x7C,0x71,0xCC,0x90,0x06,0xF7,0x1C,
0xC2,0x6A,0xAE,0x69,0x17,0x99,0x3A,0x27,
0xD9,0xEB,0x2B,0x22,0xD2,0xA9,0x07,0x33,
0x2D,0x3C,0x15,0xC9,0x87,0xAA,0x50,0xA5,
0x03,0x59,0x09,0x1A,0x65,0xD7,0x84,0xD0,
0x82,0x29,0x5A,0x1E,0x7B,0xA8,0x6D,0x2C
};
#ifdef _USE_DRAM_
unsigned char *pTkip_Sbox_Lower, *pTkip_Sbox_Upper;
#endif
/*****************************/
/**** Function Prototypes ****/
/*****************************/
unsigned int tkip_sbox(unsigned int index);
static __inline__ unsigned int rotr1(unsigned int a);
/* Mixes key from TA, TK and TSC */
// key: TTK (16 bytes), ta (transmitted address)
void mix_key(
unsigned char *key,
unsigned char *ta,
unsigned int pnl, /* Least significant 16 bits of PN */
unsigned int pnh, /* Most significant 32 bits of PN */
unsigned char *rc4key);
/************************************************************/
/* tkip_sbox() */
/* Returns a 16 bit value from a 64K entry table. The Table */
/* is synthesized from two 256 entry byte wide tables. */
/************************************************************/
unsigned int tkip_sbox(unsigned int index)
{
unsigned int index_low;
unsigned int index_high;
unsigned int left, right;
index_low = (index & 255);
index_high = ((index >> 8) & 255);
#if defined(_USE_DRAM_)
left = ((int)pTkip_Sbox_Lower[index_low]) + (((int)pTkip_Sbox_Upper[index_low]) << 8);
right = ((int)pTkip_Sbox_Upper[index_high]) + (((int)pTkip_Sbox_Lower[index_high]) << 8);
#else
left = Tkip_Sbox_Lower[index_low] + (Tkip_Sbox_Upper[index_low] << 8);
right = Tkip_Sbox_Upper[index_high] + (Tkip_Sbox_Lower[index_high] << 8);
#endif
return (left ^ right);
}
static __inline__ unsigned int rotr1(unsigned int a)
{
unsigned int b;
if ((a & 0x01) == 0x01)
{
b = (a >> 1) | 0x8000;
}
else
{
b = (a >> 1) & 0x7fff;
}
b = b & 0xffff;
return b;
}
/****************************************************/
/* mix_key() */
/* Takes a key, PN and TK. Calculates an RC4 key. */
/****************************************************/
void mix_key(
unsigned char *key,
unsigned char *ta,
unsigned int pnl, /* Least significant 16 bits of PN */
unsigned int pnh, /* Most significant 32 bits of PN */
unsigned char *rc4key)
{
unsigned int p1k[5];
/* 16 bit numbers */
unsigned int tsc0;
unsigned int tsc1;
unsigned int tsc2;
unsigned int ppk0;
unsigned int ppk1;
unsigned int ppk2;
unsigned int ppk3;
unsigned int ppk4;
unsigned int ppk5;
int i;
int j;
tsc0 = (unsigned int)((pnh >> 16) & 0xffff); /* tsc0 is most significant */
tsc1 = (unsigned int)(pnh & 0xffff);
tsc2 = (unsigned int)(pnl & 0xffff); /* tsc2 is least significant */
/* Phase 1, step 1 */
p1k[0] = tsc1;
p1k[1] = tsc0;
p1k[2] = (unsigned int)(ta[0] + (ta[1]<< 8));
p1k[3] = (unsigned int)(ta[2] + (ta[3]<< 8));
p1k[4] = (unsigned int)(ta[4] + (ta[5]<< 8));
/* Phase 1, step 2 */
for (i=0; i<8; i++)
{
j = (i & 1) << 1;
p1k[0] = (p1k[0] + tkip_sbox( (p1k[4] ^ ((key[1+j] << 8) + key[j])) & 0xffff )) & 0xffff;
p1k[1] = (p1k[1] + tkip_sbox( (p1k[0] ^ ((key[5+j] << 8) + key[4+j])) & 0xffff )) & 0xffff;
p1k[2] = (p1k[2] + tkip_sbox( (p1k[1] ^ ((key[9+j] << 8) + key[8+j])) & 0xffff )) & 0xffff;
p1k[3] = (p1k[3] + tkip_sbox( (p1k[2] ^ ((key[13+j]<< 8) + key[12+j])) & 0xffff )) & 0xffff;
p1k[4] = (p1k[4] + tkip_sbox( (p1k[3] ^ (((key[1+j]<< 8) + key[j]))) & 0xffff )) & 0xffff;
p1k[4] = (p1k[4] + i) & 0xffff;
}
/* Phase 2, Step 1 */
ppk0 = p1k[0];
ppk1 = p1k[1];
ppk2 = p1k[2];
ppk3 = p1k[3];
ppk4 = p1k[4];
ppk5 = (p1k[4] + tsc2) & (65536-1);
/* Phase2, Step 2 */
ppk0 = ppk0 + tkip_sbox( (ppk5 ^ ((key[1]<<8) + key[0])) & 0xffff);
ppk1 = ppk1 + tkip_sbox( (ppk0 ^ ((key[3]<<8) + key[2])) & 0xffff);
ppk2 = ppk2 + tkip_sbox( (ppk1 ^ ((key[5]<<8) + key[4])) & 0xffff);
ppk3 = ppk3 + tkip_sbox( (ppk2 ^ ((key[7]<<8) + key[6])) & 0xffff);
ppk4 = ppk4 + tkip_sbox( (ppk3 ^ ((key[9]<<8) + key[8])) & 0xffff);
ppk5 = ppk5 + tkip_sbox( (ppk4 ^ ((key[11]<<8) + key[10])) & 0xffff);
ppk0 = ppk0 + rotr1(ppk5 ^ ((key[13]<<8) + key[12]));
ppk1 = ppk1 + rotr1(ppk0 ^ ((key[15]<<8) + key[14]));
ppk2 = ppk2 + rotr1(ppk1);
ppk3 = ppk3 + rotr1(ppk2);
ppk4 = ppk4 + rotr1(ppk3);
ppk5 = ppk5 + rotr1(ppk4);
/* Phase 2, Step 3 */
rc4key[0] = (tsc2 >> 8) & 255;
rc4key[1] = (((tsc2 >> 8) & 255) | 0x20) & 0x7f;
rc4key[2] = tsc2 & 255;
rc4key[3] = ((ppk5 ^ ((key[1]<<8) + key[0])) >> 1) & 255;
rc4key[4] = ppk0 & 255;
rc4key[5] = (ppk0 >> 8) & 255;
rc4key[6] = ppk1 & 255;
rc4key[7] = (ppk1 >> 8) & 255;
rc4key[8] = ppk2 & 255;
rc4key[9] = (ppk2 >> 8) & 255;
rc4key[10] = ppk3 & 255;
rc4key[11] = (ppk3 >> 8) & 255;
rc4key[12] = ppk4 & 255;
rc4key[13] = (ppk4 >> 8) & 255;
rc4key[14] = ppk5 & 255;
rc4key[15] = (ppk5 >> 8) & 255;
}
void rc4(
unsigned char *key,
int key_length,
int cipherstream_length,
unsigned char *cipherstream);
void rc4_encrypt(
unsigned char *key,
int key_length,
unsigned char *data,
int data_length,
unsigned char *ciphertext);
void xor_block(int length, unsigned char *a, unsigned char *b, unsigned char *out)
{
int i;
for (i=0;i<length; i++)
{
out[i] = a[i] ^ b[i];
}
}
static __inline__ void swap(unsigned char *a, unsigned char *b)
{
unsigned char tmp;
tmp = *a;
*a = *b;
*b = tmp;
}
#ifdef _USE_DRAM_
unsigned char *en_cipherstream;
unsigned char *rc4sbox, *rc4kbox;
#else
//__DRAM_IN_865X
unsigned char en_cipherstream[MAX_MESSAGE_LENGTH+1];
#endif
void rc4(
unsigned char *key,
int key_length,
int cipherstream_length,
unsigned char *cipherstream)
{
int i, j, x;
#ifdef _USE_DRAM_
unsigned char *s = rc4sbox;
unsigned char *k = rc4kbox;
#else
unsigned char s[256];
unsigned char k[256];
#endif
/* Create Key Stream */
for (i=0; i<256; i++)
k[i] = key[i % key_length];
/* Initialize SBOX */
for (j=0; j<256; j++)
s[j] = j;
/* Seed the SBOX */
i = 0;
for (j=0; j<256; j++)
{
i = (i + s[j] + k[j]) & 255;
swap(&s[j], &s[i]);
}
/* Generate the cipherstream */
j = 0;
i = 0;
for (x=0; x<cipherstream_length; x++)
{
j = (j + 1) & 255;
i = (i + s[j]) & 255;
swap(&s[j], &s[i]);
cipherstream[x] = s[(s[j] + s[i]) & 255];
};
}
/****************************************/
/* rc4_encrypt() */
/****************************************/
void rc4_encrypt(
unsigned char *key,
int key_length,
unsigned char *data,
int data_length,
unsigned char *ciphertext)
{
rc4(key, key_length, data_length, en_cipherstream);
xor_block(data_length, en_cipherstream, data, ciphertext);
}
void rc4_frag_encrypt(
unsigned char *frag1, unsigned int frag1_len,
unsigned char *frag2, unsigned int frag2_len,
unsigned char *frag3, unsigned int frag3_len,
unsigned char *cipher)
{
unsigned int i;
for(i=0; i<frag1_len; i++)
frag1[i] = cipher[i] ^ frag1[i];
for(i=0; i<frag2_len; i++)
frag2[i] = cipher[i+frag1_len] ^ frag2[i];
for(i=0; i<frag3_len; i++)
frag3[i] = cipher[i+frag1_len+frag2_len] ^ frag3[i];
}
#define REVERSE_BIT(val8)\
(unsigned char)( ((val8<<7)&0x80) | ((val8<<5)&0x40) | ((val8<<3)&0x20) | ((val8<<1)&0x10) | \
((val8>>1)&0x08) | ((val8>>3)&0x04) | ((val8>>5)&0x02) | ((val8>>7)&0x01) )
#define CRC32_POLY 0x04c11db7
static unsigned int crc32_table[256];
void init_crc32_table(void)
{
int i, j;
unsigned int c;
unsigned char *p=(unsigned char *)&c, *p1;
unsigned char k;
c = 0x12340000;
for (i = 0; i < 256; ++i)
{
k = REVERSE_BIT( (unsigned char)(i) );
for (c = ((unsigned int)k) << 24, j = 8; j > 0; --j){
c = (c & 0x80000000) ? ((c << 1) ^ CRC32_POLY) : (c << 1);
}
p1 = (unsigned char *)&crc32_table[i];
p1[0] = REVERSE_BIT(p[3]);
p1[1] = REVERSE_BIT(p[2]);
p1[2] = REVERSE_BIT(p[1]);
p1[3] = REVERSE_BIT(p[0]);
}
}
unsigned long crc32(unsigned char *buf, int len)
{
unsigned char *p;
unsigned long crc;
crc = 0xffffffff; /* preload shift register, per CRC-32 spec */
for (p = buf; len > 0; ++p, --len) {
crc = crc32_table[(crc ^ *p) & 0xff] ^ (crc >> 8);
}
return ~crc; /* transmit complement, per CRC-32 spec */
}
unsigned long crc32_frag(unsigned long crc, unsigned char *buf, int len)
{
unsigned char *p;
for (p = buf; len > 0; ++p, --len) {
crc = crc32_table[(crc ^ *p) & 0xff] ^ (crc >> 8);
}
return ~crc; /* transmit complement, per CRC-32 spec */
}
#if 0
void appendICV(unsigned char *src, unsigned int len, unsigned char *dest)
{
unsigned char CRC[4];
*((unsigned long *)CRC) = crc32(src,len);
*(unsigned char *)dest=*((unsigned char *)CRC+3);
*(unsigned char *)(dest+1)=*((unsigned char *)CRC+2);
*(unsigned char *)(dest+2)=*((unsigned char *)CRC+1);
*(unsigned char *)(dest+3)=*((unsigned char *)CRC);
}
#endif
void tkip_icv(unsigned char *picv, unsigned char *frag1, unsigned int frag1_len,
unsigned char *frag2,unsigned int frag2_len)
{
unsigned int *pcrc;
unsigned int crc= 0xffffffff;
pcrc = &crc;
if (frag1)
crc = crc32_frag(crc, frag1, frag1_len);
else
crc = ~crc;
if (frag2)
crc = crc32_frag(~crc, frag2, frag2_len);
#if defined(_LITTLE_ENDIAN_)
*(unsigned char *)picv=*((unsigned char *)pcrc);
*(unsigned char *)(picv+1)=*((unsigned char *)pcrc+1);
*(unsigned char *)(picv+2)=*((unsigned char *)pcrc+2);
*(unsigned char *)(picv+3)=*((unsigned char *)pcrc+3);
#else
*(unsigned char *)picv=*((unsigned char *)pcrc+3);
*(unsigned char *)(picv+1)=*((unsigned char *)pcrc+2);
*(unsigned char *)(picv+2)=*((unsigned char *)pcrc+1);
*(unsigned char *)(picv+3)=*((unsigned char *)pcrc);
#endif
}
#ifdef _USE_DRAM_
unsigned char *tx_cipherstream;
#else
__DRAM_IN_865X unsigned char tx_cipherstream[MAX_MESSAGE_LENGTH+1];
#endif
/*-----------------------------------------------------------------------------
TKIP Flow
1. Key Mixing (TTK key(128 bits), TA(48 bits), pnl(16 bits), pnh(32 bits)
==>rc4 key
2. Using rc4 key to generate Ciphertext/Cipherstream.
3. Most of the time, we used frag1 to points to llc, frag2 to points to mpdu,
and frag3 to points to icv
------------------------------------------------------------------------------*/
void tkip_encrypt(
struct rtl8192cd_priv *priv, unsigned char *pwlhdr, unsigned int hdrlen,
unsigned char *frag1, unsigned int frag1_len,
unsigned char *frag2, unsigned int frag2_len,
unsigned char *frag3, unsigned int frag3_len)
{
unsigned char *ttkey = NULL;
unsigned char rc4key[16];
union PN48 *ptsc48 = NULL;
unsigned short pnl; // 16 LSB
unsigned int pnh; // 32 MSB
unsigned int keyid = 0;
unsigned char *iv = pwlhdr + hdrlen;
struct stat_info *pstat = NULL;
unsigned char *ta = GET_MY_HWADDR;
unsigned char *ra;
#ifdef WDS
unsigned int to_fr_ds = (GetToDs(pwlhdr) << 1) | GetFrDs(pwlhdr);
#endif
DEBUG_TRACE;
ra = GetAddr1Ptr(pwlhdr);
pstat = get_stainfo(priv, ra);
#ifdef WDS
if ( (to_fr_ds == 3) && pstat && (pstat->state & WIFI_WDS)) {
ttkey = GET_UNICAST_ENCRYP_KEY;
ptsc48 = GET_UNICAST_ENCRYP_PN;
keyid = pstat->keyid;
goto do_tkip_encrypt;
}
#endif
if (OPMODE & WIFI_AP_STATE)
{
if (IS_MCAST(ra))
{
ttkey = GET_GROUP_ENCRYP_KEY;
ptsc48 = GET_GROUP_ENCRYP_PN;
//keyid = 1;
keyid = priv->pmib->dot11GroupKeysTable.keyid;//use mib keyid
}
else
{
if (pstat == NULL) {
DEBUG_ERR("tx tkip pstat == NULL\n");
return;
}
ttkey = GET_UNICAST_ENCRYP_KEY;
ptsc48 = GET_UNICAST_ENCRYP_PN;
keyid = 0;
}
}
#ifdef CLIENT_MODE
else if (OPMODE & WIFI_STATION_STATE)
{
if (IS_MCAST(ra))
{
ttkey = GET_GROUP_ENCRYP_KEY;
ptsc48 = GET_GROUP_ENCRYP_PN;
keyid = GET_ROOT(priv)->pmib->dot11GroupKeysTable.keyid;
}
else
{
if (pstat == NULL) {
DEBUG_ERR("tx tkip pstat == NULL\n");
return;
}
ttkey = GET_UNICAST_ENCRYP_KEY;
ptsc48 = GET_UNICAST_ENCRYP_PN;
keyid = 0;
}
}
else if (OPMODE & WIFI_ADHOC_STATE)
{
ttkey = GET_GROUP_ENCRYP_KEY;
ptsc48 = GET_GROUP_ENCRYP_PN;
keyid = 0;
}
#endif
if ((ttkey == NULL) || (ptsc48 == NULL)) {
DEBUG_ERR("no encrypt key for TKIP due to ttkey=NULL or ptsc48=NULL\n");
return;
}
#ifdef WDS
do_tkip_encrypt:
#endif
pnl = get_pnl(ptsc48);
pnh = get_pnh(ptsc48);
// below is for key mixing!
mix_key(ttkey, ta, pnl, pnh, rc4key);
//okay, use rc4_encrypt go generate ciphertext.
rc4(rc4key, 16, (frag1_len + frag2_len + frag3_len), tx_cipherstream);
// now, using cipherstream to xor all the plaintext!
rc4_frag_encrypt(frag1, frag1_len, frag2, frag2_len, frag3, frag3_len, tx_cipherstream);
// Wa-oh...finally, let's fill in the IV field...
iv[0] = ptsc48->_byte_.TSC1;
iv[1] = (iv[0] | 0x20) & 0x7f;
iv[2] = ptsc48->_byte_.TSC0;
iv[3] = 0x20 | (keyid << 6);
iv[4] = ptsc48->_byte_.TSC2;
iv[5] = ptsc48->_byte_.TSC3;
iv[6] = ptsc48->_byte_.TSC4;
iv[7] = ptsc48->_byte_.TSC5;
if (ptsc48->val48 == 0xffffffffffffULL)
ptsc48->val48 = 0;
else
ptsc48->val48++;
}
unsigned int tkip_decrypt(struct rtl8192cd_priv *priv, struct rx_frinfo *pfrinfo, unsigned int fr_len)
{
union TSC48 tsc48;
unsigned char *da;
unsigned char *ta;
unsigned int keylen=0, hdr_len, pnh, crc;
unsigned short pnl;
unsigned char *ttkey = NULL;
unsigned char rc4key[16];
unsigned char *pframe;
struct stat_info *pstat = NULL;
pframe = get_pframe(pfrinfo);
da = pfrinfo->da;
hdr_len = pfrinfo->hdr_len;
ta = GetAddr2Ptr(pframe);
pstat = get_stainfo(priv, ta);
if (pstat) {
#ifdef WDS
if ((pfrinfo->to_fr_ds == 3) && (pstat->state & WIFI_WDS)) {
keylen = GET_UNICAST_ENCRYP_KEYLEN;
ttkey = GET_UNICAST_ENCRYP_KEY;
goto do_tkip_decrypt;
}
#endif
}
if (OPMODE & WIFI_AP_STATE)
{
if (pstat == NULL) {
DEBUG_WARN("rx tkip pstat == NULL\n");
return FALSE;
}
keylen = GET_UNICAST_ENCRYP_KEYLEN;
ttkey = GET_UNICAST_ENCRYP_KEY;
}
#ifdef CLIENT_MODE
else if (OPMODE & WIFI_STATION_STATE)
{
if (IS_MCAST(da))
{
keylen = GET_GROUP_ENCRYP_KEYLEN;
ttkey = GET_GROUP_ENCRYP_KEY;
}
else
{
if (pstat == NULL) {
DEBUG_WARN("rx tkip pstat == NULL\n");
return FALSE;
}
keylen = GET_UNICAST_ENCRYP_KEYLEN;
ttkey = GET_UNICAST_ENCRYP_KEY;
}
}
else if (OPMODE & WIFI_ADHOC_STATE)
{
keylen = GET_GROUP_ENCRYP_KEYLEN;
ttkey = GET_GROUP_ENCRYP_KEY;
}
#endif
if (keylen == 0) {
DEBUG_ERR("no descrypt key for TKIP due to keylen=0\n");
return FALSE;
}
#ifdef WDS
do_tkip_decrypt:
#endif
tsc48._byte_.TSC1 = *(pframe + hdr_len + 0);
tsc48._byte_.TSC0 = *(pframe + hdr_len + 2);
tsc48._byte_.TSC2 = *(pframe + hdr_len + 4);
tsc48._byte_.TSC3 = *(pframe + hdr_len + 5);
tsc48._byte_.TSC4 = *(pframe + hdr_len + 6);
tsc48._byte_.TSC5 = *(pframe + hdr_len + 7);
pnl = get_pnl((union PN48 *)&tsc48);
pnh = get_pnh((union PN48 *)&tsc48);
mix_key(ttkey, ta, pnl, pnh, rc4key);
rc4_encrypt(rc4key, 16, pframe + hdr_len + 8, fr_len - hdr_len - 8, pframe + hdr_len + 8);
// now, let's check if icv is correct!
crc = crc32(pframe + hdr_len + 8, fr_len - hdr_len - 8 - 4);
crc = le32_to_cpu(crc); //crc is big endian located in the payload
if (memcmp((void *)&crc, (void *)(pframe + fr_len -4), 4))
{
DEBUG_ERR("crc error!crc=%08X, vs %02X%02X%02X%02X\n", crc,
*(pframe + fr_len -4),
*(pframe + fr_len -3),
*(pframe + fr_len -2),
*(pframe + fr_len -1));
return FALSE;
}
else
return TRUE;
}
void wep_encrypt(struct rtl8192cd_priv *priv, unsigned char *pwlhdr, unsigned int hdrlen,
unsigned char *frag1, unsigned int frag1_len,
unsigned char *frag2, unsigned int frag2_len,
unsigned char *frag3, unsigned int frag3_len,
int type)
{
unsigned char *ra;
unsigned char *ttkey = NULL;
unsigned char rc4key[16];
unsigned int keyid = 0;
unsigned char *iv = pwlhdr + hdrlen;
struct stat_info *pstat = NULL;
unsigned int *piv;
int keylen;
#ifdef WDS
unsigned int to_fr_ds = (GetToDs(pwlhdr) << 1) | GetFrDs(pwlhdr);
#endif
DEBUG_TRACE;
ra = GetAddr1Ptr(pwlhdr);
pstat = get_stainfo(priv, ra);
if (pstat) {
#ifdef WDS
if ((to_fr_ds == 3) && (pstat->state & WIFI_WDS)) {
#ifdef CONFIG_RTL8186_KB
keyid = priv->pmib->dot1180211AuthEntry.dot11PrivacyKeyIndex;
ttkey = priv->pmib->dot11DefaultKeysTable.keytype[keyid&3].skey;
#else
ttkey = GET_UNICAST_ENCRYP_KEY;
keyid = pstat->keyid;
#endif
goto do_encrypt;
}
#endif
}
if (priv->pmib->dot118021xAuthEntry.dot118021xAlgrthm) // 1x enabled, get key from mapping table
{
if (OPMODE & WIFI_AP_STATE)
{
if (IS_MCAST(ra))
{
ttkey = GET_GROUP_ENCRYP_KEY;
keyid = 0;
}
else
{
if (pstat == NULL) {
DEBUG_ERR("tx wep pstat == NULL\n");
return;
}
ttkey = GET_UNICAST_ENCRYP_KEY;
keyid = 3;
}
}
#ifdef CLIENT_MODE
else if (OPMODE & WIFI_STATION_STATE)
{
if (pstat == NULL) {
DEBUG_ERR("tx wep pstat == NULL\n");
return;
}
ttkey = GET_UNICAST_ENCRYP_KEY;
keyid = 3;
}
else if (OPMODE & WIFI_ADHOC_STATE)
{
ttkey = GET_GROUP_ENCRYP_KEY;
keyid = 0;
}
#endif
}
else
{
keyid = priv->pmib->dot1180211AuthEntry.dot11PrivacyKeyIndex;
ttkey = priv->pmib->dot11DefaultKeysTable.keytype[keyid&3].skey;
}
#ifdef WDS
do_encrypt:
#endif
piv = (unsigned int *)GET_GROUP_ENCRYP_PN;
if (type == _WEP_40_PRIVACY_)
keylen = 8;
else
keylen = 16;
*((unsigned int *)iv) = cpu_to_le32(((*piv) & 0x00FFFFFF) |((keyid&0x03)<<30));
*piv = *piv + 1;
memcpy(rc4key, iv, 3);
memcpy(&rc4key[3], ttkey, keylen-3);
#ifdef _DEBUG_RTL8192CD_
{
char tmpbuf[400], tmp1[100];
int i;
sprintf(tmpbuf, "wep encrypt: iv=%d, keyid=%d, type=%s, key=",
(le32_to_cpup((u32 *)iv) & 0xFFFFFF), keyid,
(type==_WEP_40_PRIVACY_ ? "64b" : "128b"));
for (i=0; i<keylen-3; i++) {
sprintf(tmp1, "%02x", ttkey[i]);
strcat(tmpbuf, tmp1);
if (i+1 != keylen-3)
strcat(tmpbuf, ":");
else
strcat(tmpbuf, "\n");
}
DEBUG_INFO("%s", tmpbuf);
}
#endif
//okay, use rc4_encrypt go generate ciphertext.
rc4(rc4key, keylen, (frag1_len + frag2_len + frag3_len), tx_cipherstream);
// now, using cipherstream to xor all the plaintext!
rc4_frag_encrypt(frag1, frag1_len, frag2, frag2_len, frag3, frag3_len, tx_cipherstream);
}
unsigned int wep_decrypt(struct rtl8192cd_priv *priv, struct rx_frinfo *pfrinfo,
unsigned int fr_len, int type, int using_keymap)
{
unsigned char *ta;
unsigned int keylen, hdr_len, crc;
unsigned char *ttkey = NULL;
unsigned char iv[4];
unsigned char rc4key[16];
unsigned char *pframe;
struct stat_info *pstat = NULL;
DEBUG_TRACE;
pframe = get_pframe(pfrinfo);
ta = GetAddr2Ptr(pframe);
hdr_len = pfrinfo->hdr_len;
memcpy(iv, pframe+hdr_len, sizeof(iv));
if (type == _WEP_40_PRIVACY_)
keylen = 8;
else
keylen = 16;
pstat = get_stainfo(priv, ta);
if (pstat) {
#ifdef WDS
if ((pfrinfo->to_fr_ds == 3) && (pstat->state & WIFI_WDS)) {
ttkey = GET_UNICAST_ENCRYP_KEY;
goto do_decrypt;
}
#endif
}
if (priv->pmib->dot118021xAuthEntry.dot118021xAlgrthm) // 1x enabled, get key from mapping table
{
if (OPMODE & WIFI_AP_STATE)
{
if (using_keymap) {
if (pstat == NULL) {
DEBUG_ERR("rx wep pstat == NULL\n");
return FALSE;
}
ttkey = GET_UNICAST_ENCRYP_KEY;
}
else if ((iv[3] & 0xC0) == 0) // key id=0, use group key
ttkey = GET_GROUP_ENCRYP_KEY;
else if ((iv[3] & 0xC0) == 0xC0)
{
if (pstat == NULL) {
DEBUG_ERR("rx wep pstat == NULL\n");
return FALSE;
}
ttkey = GET_UNICAST_ENCRYP_KEY;
}
else
{
DEBUG_ERR("rx wep keyid != 0 and 3 \n");
return FALSE;
}
}
#ifdef CLIENT_MODE
else if (OPMODE & WIFI_STATION_STATE) {
if ((iv[3] & 0xC0) == 0) // key id=0, use group key
ttkey = GET_GROUP_ENCRYP_KEY;
else if ((iv[3] & 0xC0) == 0xC0)
{
if (pstat == NULL) {
DEBUG_ERR("rx wep pstat == NULL\n");
return FALSE;
}
ttkey = GET_UNICAST_ENCRYP_KEY;
}
else
{
DEBUG_ERR("rx wep keyid != 0 and 3 \n");
return FALSE;
}
}
else if (OPMODE & WIFI_ADHOC_STATE)
ttkey = GET_GROUP_ENCRYP_KEY;
#endif
}
else // default key
ttkey = priv->pmib->dot11DefaultKeysTable.keytype[(iv[3]>>6) & 3].skey;
#ifdef WDS
do_decrypt:
#endif
memcpy(rc4key, iv, 3);
memcpy(&rc4key[3], ttkey, keylen-3);
#ifdef _DEBUG_RTL8192CD_
{
char tmpbuf[400], tmp1[100];
int i;
sprintf(tmpbuf, "wep decript: iv=%d, keyid=%d, type=%s, key=",
(le32_to_cpup((u32 *)iv) & 0xFFFFFF), (int)((iv[3]>>6)&3),
(type==_WEP_40_PRIVACY_ ? "64b" : "128b"));
for (i=0; i<keylen-3; i++) {
sprintf(tmp1, "%02x", ttkey[i]);
strcat(tmpbuf, tmp1);
if (i+1 != keylen-3)
strcat(tmpbuf, ":");
else
strcat(tmpbuf, "\n");
}
DEBUG_INFO("%s", tmpbuf);
}
#endif
rc4_encrypt(rc4key, keylen, pframe+hdr_len+4, fr_len-hdr_len-4, pframe+hdr_len+4);
// now, let's check if icv is correct!
crc = crc32(pframe+hdr_len+4, fr_len-hdr_len-4-4);
crc = le32_to_cpu(crc); //crc is big endian located in the payload
if (memcmp((void *)&crc, (void *)(pframe + fr_len -4), 4)) {
DEBUG_ERR("crc error!crc=%08X, vs %02X%02X%02X%02X\n", crc,
*(pframe + fr_len -4),
*(pframe + fr_len -3),
*(pframe + fr_len -2),
*(pframe + fr_len -1));
return FALSE;
}
else
return TRUE;
}
int tkip_rx_mic(struct rtl8192cd_priv *priv, unsigned char *pframe, unsigned char *da,
unsigned char *sa, unsigned char priority, unsigned char *pbuf, unsigned int len,
unsigned char *tkipmic, int no_wait)
{
// now check what's the mic key we should apply...
unsigned char *mickey = NULL;
unsigned int keylen = 0;
struct stat_info *pstat;
unsigned char hdr[16], *ta;
unsigned int num_blocks;
ta = GetAddr2Ptr(pframe);
pstat = get_stainfo(priv, ta);
if (OPMODE & WIFI_AP_STATE)
{
#ifdef WDS
unsigned int to_fr_ds = (GetToDs(pframe) << 1) | GetFrDs(pframe);
#endif
if (pstat == NULL) {
DEBUG_ERR("rx mic pstat == NULL\n");
return FALSE;
}
keylen = GET_UNICAST_MIC_KEYLEN;
#ifdef WDS
if ( to_fr_ds==3 && (pstat->state & WIFI_WDS))
#ifdef __DRAYTEK_OS__
mickey = GET_UNICAST_TKIP_MIC2_KEY;
#else
mickey = GET_UNICAST_TKIP_MIC1_KEY;
#endif
else
#endif
mickey = GET_UNICAST_TKIP_MIC2_KEY;
}
#ifdef CLIENT_MODE
else if (OPMODE & WIFI_STATION_STATE)
{
if (IS_MCAST(da))
{
keylen = GET_GROUP_MIC_KEYLEN;
mickey = GET_GROUP_TKIP_MIC1_KEY;
}
else
{
if (pstat == NULL) {
DEBUG_ERR("rx mic pstat == NULL\n");
return FALSE;
}
keylen = GET_UNICAST_MIC_KEYLEN;
mickey = GET_UNICAST_TKIP_MIC1_KEY;
}
}
else if (OPMODE & WIFI_ADHOC_STATE)
{
keylen = GET_GROUP_MIC_KEYLEN;
mickey = GET_GROUP_TKIP_MIC1_KEY;
}
#endif
if (keylen == 0)
{
DEBUG_ERR("no mic padding for TKIP due to keylen=0\n");
return FALSE;
}
memcpy((void *)hdr, (void *)da, WLAN_ADDR_LEN);
memcpy((void *)(hdr + WLAN_ADDR_LEN), (void *)sa, WLAN_ADDR_LEN);
hdr[12] = priority;
hdr[13] = hdr[14] = hdr[15] = 0;
pbuf[len] = 0x5a; /* Insert padding */
pbuf[len+1] = 0x00;
pbuf[len+2] = 0x00;
pbuf[len+3] = 0x00;
pbuf[len+4] = 0x00;
pbuf[len+5] = 0x00;
pbuf[len+6] = 0x00;
pbuf[len+7] = 0x00;
num_blocks = (16 + len + 5)/4; // 8 is for snap_llc length = 8
if ((16 + len + 5) & (4-1))
num_blocks++;
#ifndef NOT_RTK_BSP
if ((priv->pshare->have_hw_mic) &&
!(priv->pmib->dot11StationConfigEntry.swTkipMic))
{
register unsigned long int l,r;
michael(priv, mickey, hdr, pbuf, pbuf+8, (num_blocks << 2), tkipmic, 0);
if (no_wait)
return FALSE;
do {
delay_us(60);
} while ((*(volatile unsigned int *)GDMAISR & GDMA_COMPIP) == 0);
l = *(volatile unsigned int *)GDMAICVL;
r = *(volatile unsigned int *)GDMAICVR;
tkipmic[0] = (unsigned char)(l & 0xff);
tkipmic[1] = (unsigned char)((l >> 8) & 0xff);
tkipmic[2] = (unsigned char)((l >> 16) & 0xff);
tkipmic[3] = (unsigned char)((l >> 24) & 0xff);
tkipmic[4] = (unsigned char)(r & 0xff);
tkipmic[5] = (unsigned char)((r >> 8) & 0xff);
tkipmic[6] = (unsigned char)((r >> 16) & 0xff);
tkipmic[7] = (unsigned char)((r >> 24) & 0xff);
}
else
#endif // NOT_RTK_BSP
michael(priv, mickey, hdr, pbuf, pbuf+8, (num_blocks << 2), tkipmic, 0);
return TRUE;
}