M7350/kernel/drivers/soc/qcom/smem_log.c
2024-09-09 08:57:42 +00:00

1036 lines
23 KiB
C

/* Copyright (c) 2008-2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/*
* Shared memory logging implementation.
*/
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/jiffies.h>
#include <linux/remote_spinlock.h>
#include <linux/debugfs.h>
#include <linux/io.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/delay.h>
#include <soc/qcom/smem.h>
#include <soc/qcom/smem_log.h>
#include <asm/arch_timer.h>
#include "smem_private.h"
#define DEBUG
#undef DEBUG
#ifdef DEBUG
#define D_DUMP_BUFFER(prestr, cnt, buf) \
do { \
int i; \
printk(KERN_ERR "%s", prestr); \
for (i = 0; i < cnt; i++) \
printk(KERN_ERR "%.2x", buf[i]); \
printk(KERN_ERR "\n"); \
} while (0)
#else
#define D_DUMP_BUFFER(prestr, cnt, buf)
#endif
#ifdef DEBUG
#define D(x...) printk(x)
#else
#define D(x...) do {} while (0)
#endif
struct smem_log_item {
uint32_t identifier;
uint32_t timetick;
uint32_t data1;
uint32_t data2;
uint32_t data3;
};
#define SMEM_LOG_NUM_ENTRIES 2000
#define SMEM_LOG_EVENTS_SIZE (sizeof(struct smem_log_item) * \
SMEM_LOG_NUM_ENTRIES)
#define SMEM_SPINLOCK_SMEM_LOG "S:2"
static remote_spinlock_t remote_spinlock;
static uint32_t smem_log_enable;
static int smem_log_initialized;
module_param_named(log_enable, smem_log_enable, int,
S_IRUGO | S_IWUSR | S_IWGRP);
struct smem_log_inst {
int which_log;
struct smem_log_item __iomem *events;
uint32_t __iomem *idx;
uint32_t num;
uint32_t read_idx;
uint32_t last_read_avail;
wait_queue_head_t read_wait;
remote_spinlock_t *remote_spinlock;
};
enum smem_logs {
GEN = 0,
NUM
};
static struct smem_log_inst inst[NUM];
#if defined(CONFIG_DEBUG_FS)
#define HSIZE 13
struct sym {
uint32_t val;
char *str;
struct hlist_node node;
};
struct sym id_syms[] = {
{ SMEM_LOG_PROC_ID_MODEM, "MODM" },
{ SMEM_LOG_PROC_ID_Q6, "QDSP" },
{ SMEM_LOG_PROC_ID_APPS, "APPS" },
{ SMEM_LOG_PROC_ID_WCNSS, "WCNSS" },
};
struct sym base_syms[] = {
{ SMEM_LOG_SMEM_EVENT_BASE, "SMEM" },
{ SMEM_LOG_ERROR_EVENT_BASE, "ERROR" },
{ SMEM_LOG_QMI_CCI_EVENT_BASE, "QCCI" },
{ SMEM_LOG_QMI_CSI_EVENT_BASE, "QCSI" },
};
struct sym event_syms[] = {
{ ERR_ERROR_FATAL, "ERR_ERROR_FATAL" },
{ ERR_ERROR_FATAL_TASK, "ERR_ERROR_FATAL_TASK" },
{ SMEM_LOG_EVENT_CB, "CB" },
{ SMEM_LOG_EVENT_START, "START" },
{ SMEM_LOG_EVENT_INIT, "INIT" },
{ SMEM_LOG_EVENT_RUNNING, "RUNNING" },
{ SMEM_LOG_EVENT_STOP, "STOP" },
{ SMEM_LOG_EVENT_RESTART, "RESTART" },
{ SMEM_LOG_EVENT_SS, "SS" },
{ SMEM_LOG_EVENT_READ, "READ" },
{ SMEM_LOG_EVENT_WRITE, "WRITE" },
{ SMEM_LOG_EVENT_SIGS1, "SIGS1" },
{ SMEM_LOG_EVENT_SIGS2, "SIGS2" },
{ SMEM_LOG_EVENT_WRITE_DM, "WRITE_DM" },
{ SMEM_LOG_EVENT_READ_DM, "READ_DM" },
{ SMEM_LOG_EVENT_SKIP_DM, "SKIP_DM" },
{ SMEM_LOG_EVENT_STOP_DM, "STOP_DM" },
{ SMEM_LOG_EVENT_ISR, "ISR" },
{ SMEM_LOG_EVENT_TASK, "TASK" },
{ SMEM_LOG_EVENT_RS, "RS" },
};
struct sym smsm_syms[] = {
{ 0x80000000, "UN" },
{ 0x7F000000, "ERR" },
{ 0x00800000, "SMLP" },
{ 0x00400000, "ADWN" },
{ 0x00200000, "PWRS" },
{ 0x00100000, "DWLD" },
{ 0x00080000, "SRBT" },
{ 0x00040000, "SDWN" },
{ 0x00020000, "ARBT" },
{ 0x00010000, "REL" },
{ 0x00008000, "SLE" },
{ 0x00004000, "SLP" },
{ 0x00002000, "WFPI" },
{ 0x00001000, "EEX" },
{ 0x00000800, "TIN" },
{ 0x00000400, "TWT" },
{ 0x00000200, "PWRC" },
{ 0x00000100, "RUN" },
{ 0x00000080, "SA" },
{ 0x00000040, "RES" },
{ 0x00000020, "RIN" },
{ 0x00000010, "RWT" },
{ 0x00000008, "SIN" },
{ 0x00000004, "SWT" },
{ 0x00000002, "OE" },
{ 0x00000001, "I" },
};
struct sym smsm_entry_type_syms[] = {
{ 0, "SMSM_APPS_STATE" },
{ 1, "SMSM_MODEM_STATE" },
{ 2, "SMSM_Q6_STATE" },
{ 3, "SMSM_APPS_DEM" },
{ 4, "SMSM_MODEM_DEM" },
{ 5, "SMSM_Q6_DEM" },
{ 6, "SMSM_POWER_MASTER_DEM" },
{ 7, "SMSM_TIME_MASTER_DEM" },
};
struct sym smsm_state_syms[] = {
{ 0x00000001, "INIT" },
{ 0x00000002, "OSENTERED" },
{ 0x00000004, "SMDWAIT" },
{ 0x00000008, "SMDINIT" },
{ 0x00000010, "RPCWAIT" },
{ 0x00000020, "RPCINIT" },
{ 0x00000040, "RESET" },
{ 0x00000080, "RSA" },
{ 0x00000100, "RUN" },
{ 0x00000200, "PWRC" },
{ 0x00000400, "TIMEWAIT" },
{ 0x00000800, "TIMEINIT" },
{ 0x00001000, "PWRC_EARLY_EXIT" },
{ 0x00002000, "WFPI" },
{ 0x00004000, "SLEEP" },
{ 0x00008000, "SLEEPEXIT" },
{ 0x00010000, "OEMSBL_RELEASE" },
{ 0x00020000, "APPS_REBOOT" },
{ 0x00040000, "SYSTEM_POWER_DOWN" },
{ 0x00080000, "SYSTEM_REBOOT" },
{ 0x00100000, "SYSTEM_DOWNLOAD" },
{ 0x00200000, "PWRC_SUSPEND" },
{ 0x00400000, "APPS_SHUTDOWN" },
{ 0x00800000, "SMD_LOOPBACK" },
{ 0x01000000, "RUN_QUIET" },
{ 0x02000000, "MODEM_WAIT" },
{ 0x04000000, "MODEM_BREAK" },
{ 0x08000000, "MODEM_CONTINUE" },
{ 0x80000000, "UNKNOWN" },
};
enum sym_tables {
ID_SYM,
BASE_SYM,
EVENT_SYM,
SMSM_SYM,
SMSM_ENTRY_TYPE_SYM,
SMSM_STATE_SYM,
};
static struct sym_tbl {
struct sym *data;
int size;
struct hlist_head hlist[HSIZE];
} tbl[] = {
{ id_syms, ARRAY_SIZE(id_syms) },
{ base_syms, ARRAY_SIZE(base_syms) },
{ event_syms, ARRAY_SIZE(event_syms) },
{ smsm_syms, ARRAY_SIZE(smsm_syms) },
{ smsm_entry_type_syms, ARRAY_SIZE(smsm_entry_type_syms) },
{ smsm_state_syms, ARRAY_SIZE(smsm_state_syms) },
};
#define hash(val) (val % HSIZE)
static void init_syms(void)
{
int i;
int j;
for (i = 0; i < ARRAY_SIZE(tbl); ++i)
for (j = 0; j < HSIZE; ++j)
INIT_HLIST_HEAD(&tbl[i].hlist[j]);
for (i = 0; i < ARRAY_SIZE(tbl); ++i)
for (j = 0; j < tbl[i].size; ++j) {
INIT_HLIST_NODE(&tbl[i].data[j].node);
hlist_add_head(&tbl[i].data[j].node,
&tbl[i].hlist[hash(tbl[i].data[j].val)]);
}
}
static char *find_sym(uint32_t id, uint32_t val)
{
struct hlist_node *n;
struct sym *s;
hlist_for_each(n, &tbl[id].hlist[hash(val)]) {
s = hlist_entry(n, struct sym, node);
if (s->val == val)
return s->str;
}
return 0;
}
#else
static void init_syms(void) {}
#endif
union fifo_mem {
uint64_t u64;
uint8_t u8;
};
/**
* memcpy_to_log() - copy to SMEM log FIFO
* @dest: Destination address
* @src: Source address
* @num_bytes: Number of bytes to copy
*
* @return: Address of destination
*
* This function copies num_bytes from src to dest maintaining natural alignment
* for accesses to dest as required for Device memory.
*/
static void *memcpy_to_log(void *dest, const void *src, size_t num_bytes)
{
union fifo_mem *temp_dst = (union fifo_mem *)dest;
union fifo_mem *temp_src = (union fifo_mem *)src;
uintptr_t mask = sizeof(union fifo_mem) - 1;
/* Do byte copies until we hit 8-byte (double word) alignment */
while ((uintptr_t)temp_dst & mask && num_bytes) {
__raw_writeb_no_log(temp_src->u8, temp_dst);
temp_src = (union fifo_mem *)((uintptr_t)temp_src + 1);
temp_dst = (union fifo_mem *)((uintptr_t)temp_dst + 1);
num_bytes--;
}
/* Do double word copies */
while (num_bytes >= sizeof(union fifo_mem)) {
__raw_writeq_no_log(temp_src->u64, temp_dst);
temp_dst++;
temp_src++;
num_bytes -= sizeof(union fifo_mem);
}
/* Copy remaining bytes */
while (num_bytes--) {
__raw_writeb_no_log(temp_src->u8, temp_dst);
temp_src = (union fifo_mem *)((uintptr_t)temp_src + 1);
temp_dst = (union fifo_mem *)((uintptr_t)temp_dst + 1);
}
return dest;
}
static inline unsigned int read_timestamp(void)
{
return (unsigned int)(arch_counter_get_cntpct());
}
static void smem_log_event_from_user(struct smem_log_inst *inst,
const char *buf, int size, int num)
{
uint32_t idx;
uint32_t next_idx;
unsigned long flags;
uint32_t identifier = 0;
uint32_t timetick = 0;
int first = 1;
if (!inst->idx) {
pr_err("%s: invalid write index\n", __func__);
return;
}
remote_spin_lock_irqsave(inst->remote_spinlock, flags);
while (num--) {
idx = *inst->idx;
if (idx < inst->num) {
memcpy_to_log(&inst->events[idx], buf, size);
if (first) {
identifier =
inst->events[idx].
identifier;
timetick = read_timestamp();
first = 0;
} else {
identifier |= SMEM_LOG_CONT;
}
inst->events[idx].identifier =
identifier;
inst->events[idx].timetick =
timetick;
}
next_idx = idx + 1;
if (next_idx >= inst->num)
next_idx = 0;
*inst->idx = next_idx;
buf += sizeof(struct smem_log_item);
}
wmb();
remote_spin_unlock_irqrestore(inst->remote_spinlock, flags);
}
static void _smem_log_event(
struct smem_log_item __iomem *events,
uint32_t __iomem *_idx,
remote_spinlock_t *lock,
int num,
uint32_t id, uint32_t data1, uint32_t data2,
uint32_t data3)
{
struct smem_log_item item;
uint32_t idx;
uint32_t next_idx;
unsigned long flags;
item.timetick = read_timestamp();
item.identifier = id;
item.data1 = data1;
item.data2 = data2;
item.data3 = data3;
remote_spin_lock_irqsave(lock, flags);
idx = *_idx;
if (idx < num)
memcpy_to_log(&events[idx], &item, sizeof(item));
next_idx = idx + 1;
if (next_idx >= num)
next_idx = 0;
*_idx = next_idx;
wmb();
remote_spin_unlock_irqrestore(lock, flags);
}
static void _smem_log_event6(
struct smem_log_item __iomem *events,
uint32_t __iomem *_idx,
remote_spinlock_t *lock,
int num,
uint32_t id, uint32_t data1, uint32_t data2,
uint32_t data3, uint32_t data4, uint32_t data5,
uint32_t data6)
{
struct smem_log_item item[2];
uint32_t idx;
uint32_t next_idx;
unsigned long flags;
item[0].timetick = read_timestamp();
item[0].identifier = id;
item[0].data1 = data1;
item[0].data2 = data2;
item[0].data3 = data3;
item[1].identifier = item[0].identifier;
item[1].timetick = item[0].timetick;
item[1].data1 = data4;
item[1].data2 = data5;
item[1].data3 = data6;
remote_spin_lock_irqsave(lock, flags);
idx = *_idx;
/* FIXME: Wrap around */
if (idx < (num-1))
memcpy_to_log(&events[idx], &item, sizeof(item));
next_idx = idx + 2;
if (next_idx >= num)
next_idx = 0;
*_idx = next_idx;
wmb();
remote_spin_unlock_irqrestore(lock, flags);
}
void smem_log_event(uint32_t id, uint32_t data1, uint32_t data2,
uint32_t data3)
{
if (smem_log_enable)
_smem_log_event(inst[GEN].events, inst[GEN].idx,
inst[GEN].remote_spinlock,
SMEM_LOG_NUM_ENTRIES, id,
data1, data2, data3);
}
void smem_log_event6(uint32_t id, uint32_t data1, uint32_t data2,
uint32_t data3, uint32_t data4, uint32_t data5,
uint32_t data6)
{
if (smem_log_enable)
_smem_log_event6(inst[GEN].events, inst[GEN].idx,
inst[GEN].remote_spinlock,
SMEM_LOG_NUM_ENTRIES, id,
data1, data2, data3, data4, data5, data6);
}
static int _smem_log_init(void)
{
int ret;
inst[GEN].which_log = GEN;
inst[GEN].events =
(struct smem_log_item *)smem_alloc(SMEM_SMEM_LOG_EVENTS,
SMEM_LOG_EVENTS_SIZE,
0,
SMEM_ANY_HOST_FLAG);
inst[GEN].idx = (uint32_t *)smem_alloc(SMEM_SMEM_LOG_IDX,
sizeof(uint32_t),
0,
SMEM_ANY_HOST_FLAG);
if (IS_ERR_OR_NULL(inst[GEN].events) || IS_ERR_OR_NULL(inst[GEN].idx)) {
pr_err("%s: no log or log_idx allocated\n", __func__);
return -ENODEV;
}
inst[GEN].num = SMEM_LOG_NUM_ENTRIES;
inst[GEN].read_idx = 0;
inst[GEN].last_read_avail = SMEM_LOG_NUM_ENTRIES;
init_waitqueue_head(&inst[GEN].read_wait);
inst[GEN].remote_spinlock = &remote_spinlock;
ret = remote_spin_lock_init(&remote_spinlock,
SMEM_SPINLOCK_SMEM_LOG);
if (ret) {
mb();
return ret;
}
init_syms();
mb();
return 0;
}
static ssize_t smem_log_write_bin(struct file *fp, const char __user *_buf,
size_t count, loff_t *pos)
{
void *buf;
int r;
if (count < sizeof(struct smem_log_item))
return -EINVAL;
buf = kmalloc(count, GFP_KERNEL);
if (!buf)
return -ENOMEM;
r = copy_from_user(buf, _buf, count);
if (r) {
kfree(buf);
return -EFAULT;
}
if (smem_log_enable)
smem_log_event_from_user(fp->private_data, buf,
sizeof(struct smem_log_item),
count / sizeof(struct smem_log_item));
kfree(buf);
return count;
}
static int smem_log_open(struct inode *ip, struct file *fp)
{
fp->private_data = &inst[GEN];
return 0;
}
static int smem_log_release(struct inode *ip, struct file *fp)
{
return 0;
}
static const struct file_operations smem_log_bin_fops = {
.owner = THIS_MODULE,
.write = smem_log_write_bin,
.open = smem_log_open,
.release = smem_log_release,
};
static struct miscdevice smem_log_dev = {
.minor = MISC_DYNAMIC_MINOR,
.name = "smem_log",
.fops = &smem_log_bin_fops,
};
#if defined(CONFIG_DEBUG_FS)
#define SMEM_LOG_ITEM_PRINT_SIZE 160
#define EVENTS_PRINT_SIZE \
(SMEM_LOG_ITEM_PRINT_SIZE * SMEM_LOG_NUM_ENTRIES)
static uint32_t smem_log_timeout_ms;
module_param_named(timeout_ms, smem_log_timeout_ms,
int, S_IRUGO | S_IWUSR | S_IWGRP);
static int smem_log_debug_mask;
module_param_named(debug_mask, smem_log_debug_mask, int,
S_IRUGO | S_IWUSR | S_IWGRP);
#define DBG(x...) do {\
if (smem_log_debug_mask) \
printk(KERN_DEBUG x);\
} while (0)
static int update_read_avail(struct smem_log_inst *inst)
{
int curr_read_avail;
unsigned long flags = 0;
if (!inst->idx)
return 0;
remote_spin_lock_irqsave(inst->remote_spinlock, flags);
curr_read_avail = (*inst->idx - inst->read_idx);
if (curr_read_avail < 0)
curr_read_avail = inst->num - inst->read_idx + *inst->idx;
DBG("%s: read = %d write = %d curr = %d last = %d\n", __func__,
inst->read_idx, *inst->idx, curr_read_avail, inst->last_read_avail);
if (curr_read_avail < inst->last_read_avail) {
if (inst->last_read_avail != inst->num)
pr_info("smem_log: skipping %d log entries\n",
inst->last_read_avail);
inst->read_idx = *inst->idx + 1;
inst->last_read_avail = inst->num - 1;
} else
inst->last_read_avail = curr_read_avail;
remote_spin_unlock_irqrestore(inst->remote_spinlock, flags);
DBG("%s: read = %d write = %d curr = %d last = %d\n", __func__,
inst->read_idx, *inst->idx, curr_read_avail, inst->last_read_avail);
return inst->last_read_avail;
}
static int _debug_dump(int log, char *buf, int max, uint32_t cont)
{
unsigned int idx;
int write_idx, read_avail = 0;
unsigned long flags;
int i = 0;
if (!inst[log].events)
return 0;
if (cont && update_read_avail(&inst[log]) == 0)
return 0;
remote_spin_lock_irqsave(inst[log].remote_spinlock, flags);
if (cont) {
idx = inst[log].read_idx;
write_idx = (inst[log].read_idx + inst[log].last_read_avail);
if (write_idx >= inst[log].num)
write_idx -= inst[log].num;
} else {
write_idx = *inst[log].idx;
idx = (write_idx + 1);
}
DBG("%s: read %d write %d idx %d num %d\n", __func__,
inst[log].read_idx, write_idx, idx, inst[log].num - 1);
while ((max - i) > 50) {
if ((inst[log].num - 1) < idx)
idx = 0;
if (idx == write_idx)
break;
if (inst[log].events[idx].identifier) {
i += scnprintf(buf + i, max - i,
"%08x %08x %08x %08x %08x\n",
inst[log].events[idx].identifier,
inst[log].events[idx].timetick,
inst[log].events[idx].data1,
inst[log].events[idx].data2,
inst[log].events[idx].data3);
}
idx++;
}
if (cont) {
inst[log].read_idx = idx;
read_avail = (write_idx - inst[log].read_idx);
if (read_avail < 0)
read_avail = inst->num - inst->read_idx + write_idx;
inst[log].last_read_avail = read_avail;
}
remote_spin_unlock_irqrestore(inst[log].remote_spinlock, flags);
DBG("%s: read %d write %d idx %d num %d\n", __func__,
inst[log].read_idx, write_idx, idx, inst[log].num);
return i;
}
static int _debug_dump_sym(int log, char *buf, int max, uint32_t cont)
{
unsigned int idx;
int write_idx, read_avail = 0;
unsigned long flags;
int i = 0;
char *proc;
char *sub;
char *id;
const char *sym = NULL;
uint32_t proc_val = 0;
uint32_t sub_val = 0;
uint32_t id_val = 0;
uint32_t id_only_val = 0;
uint32_t data1 = 0;
uint32_t data2 = 0;
uint32_t data3 = 0;
if (!inst[log].events)
return 0;
if (cont && update_read_avail(&inst[log]) == 0)
return 0;
remote_spin_lock_irqsave(inst[log].remote_spinlock, flags);
if (cont) {
idx = inst[log].read_idx;
write_idx = (inst[log].read_idx + inst[log].last_read_avail);
if (write_idx >= inst[log].num)
write_idx -= inst[log].num;
} else {
write_idx = *inst[log].idx;
idx = (write_idx + 1);
}
DBG("%s: read %d write %d idx %d num %d\n", __func__,
inst[log].read_idx, write_idx, idx, inst[log].num - 1);
for (; (max - i) > SMEM_LOG_ITEM_PRINT_SIZE; idx++) {
if (idx > (inst[log].num - 1))
idx = 0;
if (idx == write_idx)
break;
if (idx < inst[log].num) {
if (!inst[log].events[idx].identifier)
continue;
proc_val = PROC & inst[log].events[idx].identifier;
sub_val = SUB & inst[log].events[idx].identifier;
id_val = (SUB | ID) & inst[log].events[idx].identifier;
id_only_val = ID & inst[log].events[idx].identifier;
data1 = inst[log].events[idx].data1;
data2 = inst[log].events[idx].data2;
data3 = inst[log].events[idx].data3;
if (!(proc_val & SMEM_LOG_CONT)) {
i += scnprintf(buf + i, max - i, "\n");
proc = find_sym(ID_SYM, proc_val);
if (proc)
i += scnprintf(buf + i, max - i,
"%4s: ", proc);
else
i += scnprintf(buf + i, max - i,
"%04x: ",
PROC &
inst[log].events[idx].
identifier);
i += scnprintf(buf + i, max - i, "%10u ",
inst[log].events[idx].timetick);
sub = find_sym(BASE_SYM, sub_val);
if (sub)
i += scnprintf(buf + i, max - i,
"%9s: ", sub);
else
i += scnprintf(buf + i, max - i,
"%08x: ", sub_val);
id = find_sym(EVENT_SYM, id_val);
if (id)
i += scnprintf(buf + i, max - i,
"%11s: ", id);
else
i += scnprintf(buf + i, max - i,
"%08x: ", id_only_val);
}
if (proc_val & SMEM_LOG_CONT) {
i += scnprintf(buf + i, max - i,
" %08x %08x %08x",
data1, data2, data3);
} else if (id_val == SMEM_LOG_EVENT_CB) {
unsigned vals[] = {data2, data3};
unsigned j;
unsigned mask;
unsigned tmp;
unsigned once;
i += scnprintf(buf + i, max - i, "%08x ",
data1);
for (j = 0; j < ARRAY_SIZE(vals); ++j) {
i += scnprintf(buf + i, max - i, "[");
mask = 0x80000000;
once = 0;
while (mask) {
tmp = vals[j] & mask;
mask >>= 1;
if (!tmp)
continue;
sym = find_sym(SMSM_SYM, tmp);
if (once)
i += scnprintf(buf + i,
max - i,
" ");
if (sym)
i += scnprintf(buf + i,
max - i,
"%s",
sym);
else
i += scnprintf(buf + i,
max - i,
"%08x",
tmp);
once = 1;
}
i += scnprintf(buf + i, max - i, "] ");
}
} else {
i += scnprintf(buf + i, max - i,
"%08x %08x %08x",
data1, data2, data3);
}
}
}
if (cont) {
inst[log].read_idx = idx;
read_avail = (write_idx - inst[log].read_idx);
if (read_avail < 0)
read_avail = inst->num - inst->read_idx + write_idx;
inst[log].last_read_avail = read_avail;
}
remote_spin_unlock_irqrestore(inst[log].remote_spinlock, flags);
DBG("%s: read %d write %d idx %d num %d\n", __func__,
inst[log].read_idx, write_idx, idx, inst[log].num);
return i;
}
static int debug_dump(char *buf, int max, uint32_t cont)
{
int r;
if (!inst[GEN].idx || !inst[GEN].events)
return -ENODEV;
while (cont) {
update_read_avail(&inst[GEN]);
r = wait_event_interruptible_timeout(inst[GEN].read_wait,
inst[GEN].last_read_avail,
smem_log_timeout_ms *
HZ / 1000);
DBG("%s: read available %d\n", __func__,
inst[GEN].last_read_avail);
if (r < 0)
return 0;
else if (inst[GEN].last_read_avail)
break;
}
return _debug_dump(GEN, buf, max, cont);
}
static int debug_dump_sym(char *buf, int max, uint32_t cont)
{
int r;
if (!inst[GEN].idx || !inst[GEN].events)
return -ENODEV;
while (cont) {
update_read_avail(&inst[GEN]);
r = wait_event_interruptible_timeout(inst[GEN].read_wait,
inst[GEN].last_read_avail,
smem_log_timeout_ms *
HZ / 1000);
DBG("%s: readavailable %d\n", __func__,
inst[GEN].last_read_avail);
if (r < 0)
return 0;
else if (inst[GEN].last_read_avail)
break;
}
return _debug_dump_sym(GEN, buf, max, cont);
}
static char debug_buffer[EVENTS_PRINT_SIZE];
static ssize_t debug_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
int r;
int bsize = 0;
int (*fill)(char *, int, uint32_t) = file->private_data;
if (!(*ppos)) {
bsize = fill(debug_buffer, EVENTS_PRINT_SIZE, 0);
if (bsize < 0)
bsize = scnprintf(debug_buffer,
EVENTS_PRINT_SIZE, "Log not available\n");
}
DBG("%s: count %zu ppos %d\n", __func__, count, (unsigned int)*ppos);
r = simple_read_from_buffer(buf, count, ppos, debug_buffer,
bsize);
return r;
}
static ssize_t debug_read_cont(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
int (*fill)(char *, int, uint32_t) = file->private_data;
char *buffer = kmalloc(count, GFP_KERNEL);
int bsize;
if (!buffer)
return -ENOMEM;
bsize = fill(buffer, count, 1);
if (bsize < 0) {
if (*ppos == 0)
bsize = scnprintf(buffer, count, "Log not available\n");
else
bsize = 0;
}
DBG("%s: count %zu bsize %d\n", __func__, count, bsize);
if (copy_to_user(buf, buffer, bsize)) {
kfree(buffer);
return -EFAULT;
}
*ppos += bsize;
kfree(buffer);
return bsize;
}
static int debug_open(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
static const struct file_operations debug_ops = {
.read = debug_read,
.open = debug_open,
};
static const struct file_operations debug_ops_cont = {
.read = debug_read_cont,
.open = debug_open,
};
static void debug_create(const char *name, mode_t mode,
struct dentry *dent,
int (*fill)(char *buf, int max, uint32_t cont),
const struct file_operations *fops)
{
debugfs_create_file(name, mode, dent, fill, fops);
}
static void smem_log_debugfs_init(void)
{
struct dentry *dent;
dent = debugfs_create_dir("smem_log", 0);
if (IS_ERR(dent))
return;
debug_create("dump", 0444, dent, debug_dump, &debug_ops);
debug_create("dump_sym", 0444, dent, debug_dump_sym, &debug_ops);
debug_create("dump_cont", 0444, dent, debug_dump, &debug_ops_cont);
debug_create("dump_sym_cont", 0444, dent,
debug_dump_sym, &debug_ops_cont);
smem_log_timeout_ms = 500;
smem_log_debug_mask = 0;
}
#else
static void smem_log_debugfs_init(void) {}
#endif
static int smem_log_initialize(void)
{
int ret;
ret = _smem_log_init();
if (ret < 0) {
pr_err("%s: init failed %d\n", __func__, ret);
return ret;
}
ret = misc_register(&smem_log_dev);
if (ret < 0) {
pr_err("%s: device register failed %d\n", __func__, ret);
return ret;
}
smem_log_enable = 1;
smem_log_initialized = 1;
smem_log_debugfs_init();
return ret;
}
static int smem_module_init_notifier(struct notifier_block *this,
unsigned long code,
void *_cmd)
{
int ret = 0;
if (!smem_log_initialized)
ret = smem_log_initialize();
return ret;
}
static struct notifier_block nb = {
.notifier_call = smem_module_init_notifier,
};
static int __init smem_log_init(void)
{
return smem_module_init_notifier_register(&nb);
}
module_init(smem_log_init);
MODULE_DESCRIPTION("smem log");
MODULE_LICENSE("GPL v2");