M7350/kernel/drivers/leds/leds-qpnp.c
2024-09-09 08:57:42 +00:00

4261 lines
108 KiB
C

/* Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/leds.h>
#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/of_platform.h>
#include <linux/of_device.h>
#include <linux/spmi.h>
#include <linux/qpnp/pwm.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
#include <linux/regulator/consumer.h>
#include <linux/delay.h>
#define WLED_MOD_EN_REG(base, n) (base + 0x60 + n*0x10)
#define WLED_IDAC_DLY_REG(base, n) (WLED_MOD_EN_REG(base, n) + 0x01)
#define WLED_FULL_SCALE_REG(base, n) (WLED_IDAC_DLY_REG(base, n) + 0x01)
#define WLED_MOD_SRC_SEL_REG(base, n) (WLED_FULL_SCALE_REG(base, n) + 0x01)
/* wled control registers */
#define WLED_OVP_INT_STATUS(base) (base + 0x10)
#define WLED_BRIGHTNESS_CNTL_LSB(base, n) (base + 0x40 + 2*n)
#define WLED_BRIGHTNESS_CNTL_MSB(base, n) (base + 0x41 + 2*n)
#define WLED_MOD_CTRL_REG(base) (base + 0x46)
#define WLED_SYNC_REG(base) (base + 0x47)
#define WLED_FDBCK_CTRL_REG(base) (base + 0x48)
#define WLED_SWITCHING_FREQ_REG(base) (base + 0x4C)
#define WLED_OVP_CFG_REG(base) (base + 0x4D)
#define WLED_BOOST_LIMIT_REG(base) (base + 0x4E)
#define WLED_CURR_SINK_REG(base) (base + 0x4F)
#define WLED_HIGH_POLE_CAP_REG(base) (base + 0x58)
#define WLED_CURR_SINK_MASK 0xE0
#define WLED_CURR_SINK_SHFT 0x05
#define WLED_DISABLE_ALL_SINKS 0x00
#define WLED_DISABLE_1_2_SINKS 0x80
#define WLED_SWITCH_FREQ_MASK 0x0F
#define WLED_OVP_VAL_MASK 0x03
#define WLED_OVP_INT_MASK 0x02
#define WLED_OVP_VAL_BIT_SHFT 0x00
#define WLED_BOOST_LIMIT_MASK 0x07
#define WLED_BOOST_LIMIT_BIT_SHFT 0x00
#define WLED_BOOST_ON 0x80
#define WLED_BOOST_OFF 0x00
#define WLED_EN_MASK 0x80
#define WLED_NO_MASK 0x00
#define WLED_CP_SELECT_MAX 0x03
#define WLED_CP_SELECT_MASK 0x02
#define WLED_USE_EXT_GEN_MOD_SRC 0x01
#define WLED_CTL_DLY_STEP 200
#define WLED_CTL_DLY_MAX 1400
#define WLED_MAX_CURR 25
#define WLED_NO_CURRENT 0x00
#define WLED_OVP_DELAY 1000
#define WLED_OVP_DELAY_INT 200
#define WLED_OVP_DELAY_LOOP 100
#define WLED_MSB_MASK 0x0F
#define WLED_MAX_CURR_MASK 0x1F
#define WLED_OP_FDBCK_MASK 0x07
#define WLED_OP_FDBCK_BIT_SHFT 0x00
#define WLED_OP_FDBCK_DEFAULT 0x00
#define WLED_SET_ILIM_CODE 0x01
#define WLED_MAX_LEVEL 4095
#define WLED_8_BIT_MASK 0xFF
#define WLED_4_BIT_MASK 0x0F
#define WLED_8_BIT_SHFT 0x08
#define WLED_MAX_DUTY_CYCLE 0xFFF
#define WLED_SYNC_VAL 0x07
#define WLED_SYNC_RESET_VAL 0x00
#define PMIC_VER_8026 0x04
#define PMIC_VER_8941 0x01
#define PMIC_VERSION_REG 0x0105
#define WLED_DEFAULT_STRINGS 0x01
#define WLED_THREE_STRINGS 0x03
#define WLED_MAX_TRIES 5
#define WLED_DEFAULT_OVP_VAL 0x02
#define WLED_BOOST_LIM_DEFAULT 0x03
#define WLED_CP_SEL_DEFAULT 0x00
#define WLED_CTRL_DLY_DEFAULT 0x00
#define WLED_SWITCH_FREQ_DEFAULT 0x0B
#define FLASH_SAFETY_TIMER(base) (base + 0x40)
#define FLASH_MAX_CURR(base) (base + 0x41)
#define FLASH_LED_0_CURR(base) (base + 0x42)
#define FLASH_LED_1_CURR(base) (base + 0x43)
#define FLASH_CLAMP_CURR(base) (base + 0x44)
#define FLASH_LED_TMR_CTRL(base) (base + 0x48)
#define FLASH_HEADROOM(base) (base + 0x4A)
#define FLASH_STARTUP_DELAY(base) (base + 0x4B)
#define FLASH_MASK_ENABLE(base) (base + 0x4C)
#define FLASH_VREG_OK_FORCE(base) (base + 0x4F)
#define FLASH_ENABLE_CONTROL(base) (base + 0x46)
#define FLASH_LED_STROBE_CTRL(base) (base + 0x47)
#define FLASH_WATCHDOG_TMR(base) (base + 0x49)
#define FLASH_FAULT_DETECT(base) (base + 0x51)
#define FLASH_PERIPHERAL_SUBTYPE(base) (base + 0x05)
#define FLASH_CURRENT_RAMP(base) (base + 0x54)
#define FLASH_MAX_LEVEL 0x4F
#define TORCH_MAX_LEVEL 0x0F
#define FLASH_NO_MASK 0x00
#define FLASH_MASK_1 0x20
#define FLASH_MASK_REG_MASK 0xE0
#define FLASH_HEADROOM_MASK 0x03
#define FLASH_SAFETY_TIMER_MASK 0x7F
#define FLASH_CURRENT_MASK 0xFF
#define FLASH_MAX_CURRENT_MASK 0x7F
#define FLASH_TMR_MASK 0x03
#define FLASH_TMR_WATCHDOG 0x03
#define FLASH_TMR_SAFETY 0x00
#define FLASH_FAULT_DETECT_MASK 0X80
#define FLASH_HW_VREG_OK 0x40
#define FLASH_SW_VREG_OK 0x80
#define FLASH_VREG_MASK 0xC0
#define FLASH_STARTUP_DLY_MASK 0x02
#define FLASH_CURRENT_RAMP_MASK 0xBF
#define FLASH_ENABLE_ALL 0xE0
#define FLASH_ENABLE_MODULE 0x80
#define FLASH_ENABLE_MODULE_MASK 0x80
#define FLASH_DISABLE_ALL 0x00
#define FLASH_ENABLE_MASK 0xE0
#define FLASH_ENABLE_LED_0 0xC0
#define FLASH_ENABLE_LED_1 0xA0
#define FLASH_INIT_MASK 0xE0
#define FLASH_SELFCHECK_ENABLE 0x80
#define FLASH_WATCHDOG_MASK 0x1F
#define FLASH_RAMP_STEP_27US 0xBF
#define FLASH_HW_SW_STROBE_SEL_MASK 0x04
#define FLASH_STROBE_MASK 0xC7
#define FLASH_LED_0_OUTPUT 0x80
#define FLASH_LED_1_OUTPUT 0x40
#define FLASH_TORCH_OUTPUT 0xC0
#define FLASH_CURRENT_PRGM_MIN 1
#define FLASH_CURRENT_PRGM_SHIFT 1
#define FLASH_CURRENT_MAX 0x4F
#define FLASH_CURRENT_TORCH 0x07
#define FLASH_DURATION_200ms 0x13
#define TORCH_DURATION_12s 0x0A
#define FLASH_CLAMP_200mA 0x0F
#define FLASH_SUBTYPE_DUAL 0x01
#define FLASH_SUBTYPE_SINGLE 0x02
#define FLASH_RAMP_UP_DELAY_US 1000
#define FLASH_RAMP_DN_DELAY_US 2160
#define LED_TRIGGER_DEFAULT "none"
#define RGB_LED_SRC_SEL(base) (base + 0x45)
#define RGB_LED_EN_CTL(base) (base + 0x46)
#define RGB_LED_ATC_CTL(base) (base + 0x47)
#define RGB_MAX_LEVEL LED_FULL
#define RGB_LED_ENABLE_RED 0x80
#define RGB_LED_ENABLE_GREEN 0x40
#define RGB_LED_ENABLE_BLUE 0x20
#define RGB_LED_SOURCE_VPH_PWR 0x01
#define RGB_LED_ENABLE_MASK 0xE0
#define RGB_LED_SRC_MASK 0x03
#define QPNP_LED_PWM_FLAGS (PM_PWM_LUT_LOOP | PM_PWM_LUT_RAMP_UP)
#define QPNP_LUT_RAMP_STEP_DEFAULT 255
#define PWM_LUT_MAX_SIZE 63
#define PWM_GPLED_LUT_MAX_SIZE 31
#define RGB_LED_DISABLE 0x00
#define MPP_MAX_LEVEL LED_FULL
#define LED_MPP_MODE_CTRL(base) (base + 0x40)
#define LED_MPP_VIN_CTRL(base) (base + 0x41)
#define LED_MPP_EN_CTRL(base) (base + 0x46)
#define LED_MPP_SINK_CTRL(base) (base + 0x4C)
#define LED_MPP_CURRENT_MIN 5
#define LED_MPP_CURRENT_MAX 40
#define LED_MPP_VIN_CTRL_DEFAULT 0
#define LED_MPP_CURRENT_PER_SETTING 5
#define LED_MPP_SOURCE_SEL_DEFAULT LED_MPP_MODE_ENABLE
#define LED_MPP_SINK_MASK 0x07
#define LED_MPP_MODE_MASK 0x7F
#define LED_MPP_VIN_MASK 0x03
#define LED_MPP_EN_MASK 0x80
#define LED_MPP_SRC_MASK 0x0F
#define LED_MPP_MODE_CTRL_MASK 0x70
#define LED_MPP_MODE_SINK (0x06 << 4)
#define LED_MPP_MODE_ENABLE 0x01
#define LED_MPP_MODE_OUTPUT 0x10
#define LED_MPP_MODE_DISABLE 0x00
#define LED_MPP_EN_ENABLE 0x80
#define LED_MPP_EN_DISABLE 0x00
#define MPP_SOURCE_DTEST1 0x08
#define GPIO_MAX_LEVEL LED_FULL
#define LED_GPIO_MODE_CTRL(base) (base + 0x40)
#define LED_GPIO_VIN_CTRL(base) (base + 0x41)
#define LED_GPIO_EN_CTRL(base) (base + 0x46)
#define LED_GPIO_VIN_CTRL_DEFAULT 0
#define LED_GPIO_SOURCE_SEL_DEFAULT LED_GPIO_MODE_ENABLE
#define LED_GPIO_MODE_MASK 0x3F
#define LED_GPIO_VIN_MASK 0x0F
#define LED_GPIO_EN_MASK 0x80
#define LED_GPIO_SRC_MASK 0x0F
#define LED_GPIO_MODE_CTRL_MASK 0x30
#define LED_GPIO_MODE_ENABLE 0x01
#define LED_GPIO_MODE_DISABLE 0x00
#define LED_GPIO_MODE_OUTPUT 0x10
#define LED_GPIO_EN_ENABLE 0x80
#define LED_GPIO_EN_DISABLE 0x00
#define KPDBL_MAX_LEVEL LED_FULL
#define KPDBL_ROW_SRC_SEL(base) (base + 0x40)
#define KPDBL_ENABLE(base) (base + 0x46)
#define KPDBL_ROW_SRC(base) (base + 0xE5)
#define KPDBL_ROW_SRC_SEL_VAL_MASK 0x0F
#define KPDBL_ROW_SCAN_EN_MASK 0x80
#define KPDBL_ROW_SCAN_VAL_MASK 0x0F
#define KPDBL_ROW_SCAN_EN_SHIFT 7
#define KPDBL_MODULE_EN 0x80
#define KPDBL_MODULE_DIS 0x00
#define KPDBL_MODULE_EN_MASK 0x80
#define NUM_KPDBL_LEDS 4
#define KPDBL_MASTER_BIT_INDEX 0
/**
* enum qpnp_leds - QPNP supported led ids
* @QPNP_ID_WLED - White led backlight
*/
enum qpnp_leds {
QPNP_ID_WLED = 0,
QPNP_ID_FLASH1_LED0,
QPNP_ID_FLASH1_LED1,
QPNP_ID_RGB_RED,
QPNP_ID_RGB_GREEN,
QPNP_ID_RGB_BLUE,
QPNP_ID_LED_MPP,
QPNP_ID_KPDBL,
QPNP_ID_LED_GPIO,
QPNP_ID_MAX,
};
/* current boost limit */
enum wled_current_boost_limit {
WLED_CURR_LIMIT_105mA,
WLED_CURR_LIMIT_385mA,
WLED_CURR_LIMIT_525mA,
WLED_CURR_LIMIT_805mA,
WLED_CURR_LIMIT_980mA,
WLED_CURR_LIMIT_1260mA,
WLED_CURR_LIMIT_1400mA,
WLED_CURR_LIMIT_1680mA,
};
/* over voltage protection threshold */
enum wled_ovp_threshold {
WLED_OVP_35V,
WLED_OVP_32V,
WLED_OVP_29V,
WLED_OVP_27V,
};
enum flash_headroom {
HEADROOM_250mV = 0,
HEADROOM_300mV,
HEADROOM_400mV,
HEADROOM_500mV,
};
enum flash_startup_dly {
DELAY_10us = 0,
DELAY_32us,
DELAY_64us,
DELAY_128us,
};
enum led_mode {
PWM_MODE = 0,
LPG_MODE,
MANUAL_MODE,
};
static u8 wled_debug_regs[] = {
/* brightness registers */
0x40, 0x41, 0x42, 0x43, 0x44, 0x45,
/* common registers */
0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
/* LED1 */
0x60, 0x61, 0x62, 0x63, 0x66,
/* LED2 */
0x70, 0x71, 0x72, 0x73, 0x76,
/* LED3 */
0x80, 0x81, 0x82, 0x83, 0x86,
};
static u8 flash_debug_regs[] = {
0x40, 0x41, 0x42, 0x43, 0x44, 0x48, 0x49, 0x4b, 0x4c,
0x4f, 0x46, 0x47,
};
static u8 rgb_pwm_debug_regs[] = {
0x45, 0x46, 0x47,
};
static u8 mpp_debug_regs[] = {
0x40, 0x41, 0x42, 0x45, 0x46, 0x4c,
};
static u8 kpdbl_debug_regs[] = {
0x40, 0x46, 0xb1, 0xb3, 0xb4, 0xe5,
};
static u8 gpio_debug_regs[] = {
0x40, 0x41, 0x42, 0x45, 0x46,
};
/**
* pwm_config_data - pwm configuration data
* @lut_params - lut parameters to be used by pwm driver
* @pwm_device - pwm device
* @pwm_period_us - period for pwm, in us
* @mode - mode the led operates in
* @old_duty_pcts - storage for duty pcts that may need to be reused
* @default_mode - default mode of LED as set in device tree
* @use_blink - use blink sysfs entry
* @blinking - device is currently blinking w/LPG mode
*/
struct pwm_config_data {
struct lut_params lut_params;
struct pwm_device *pwm_dev;
u32 pwm_period_us;
struct pwm_duty_cycles *duty_cycles;
int *old_duty_pcts;
u8 mode;
u8 default_mode;
bool pwm_enabled;
bool use_blink;
bool blinking;
};
/**
* wled_config_data - wled configuration data
* @num_strings - number of wled strings to be configured
* @num_physical_strings - physical number of strings supported
* @ovp_val - over voltage protection threshold
* @boost_curr_lim - boot current limit
* @cp_select - high pole capacitance
* @ctrl_delay_us - delay in activation of led
* @dig_mod_gen_en - digital module generator
* @cs_out_en - current sink output enable
* @op_fdbck - selection of output as feedback for the boost
*/
struct wled_config_data {
u8 num_strings;
u8 num_physical_strings;
u8 ovp_val;
u8 boost_curr_lim;
u8 cp_select;
u8 ctrl_delay_us;
u8 switch_freq;
u8 op_fdbck;
u8 pmic_version;
bool dig_mod_gen_en;
bool cs_out_en;
};
/**
* mpp_config_data - mpp configuration data
* @pwm_cfg - device pwm configuration
* @current_setting - current setting, 5ma-40ma in 5ma increments
* @source_sel - source selection
* @mode_ctrl - mode control
* @vin_ctrl - input control
* @min_brightness - minimum brightness supported
* @pwm_mode - pwm mode in use
* @max_uV - maximum regulator voltage
* @min_uV - minimum regulator voltage
* @mpp_reg - regulator to power mpp based LED
* @enable - flag indicating LED on or off
*/
struct mpp_config_data {
struct pwm_config_data *pwm_cfg;
u8 current_setting;
u8 source_sel;
u8 mode_ctrl;
u8 vin_ctrl;
u8 min_brightness;
u8 pwm_mode;
u32 max_uV;
u32 min_uV;
struct regulator *mpp_reg;
bool enable;
};
/**
* flash_config_data - flash configuration data
* @current_prgm - current to be programmed, scaled by max level
* @clamp_curr - clamp current to use
* @headroom - headroom value to use
* @duration - duration of the flash
* @enable_module - enable address for particular flash
* @trigger_flash - trigger flash
* @startup_dly - startup delay for flash
* @strobe_type - select between sw and hw strobe
* @peripheral_subtype - module peripheral subtype
* @current_addr - address to write for current
* @second_addr - address of secondary flash to be written
* @safety_timer - enable safety timer or watchdog timer
* @torch_enable - enable flash LED torch mode
* @flash_reg_get - flash regulator attached or not
* @flash_wa_reg_get - workaround regulator attached or not
* @flash_on - flash status, on or off
* @torch_on - torch status, on or off
* @vreg_ok - specifies strobe type, sw or hw
* @no_smbb_support - specifies if smbb boost is not required and there is a
single regulator for both flash and torch
* @flash_boost_reg - boost regulator for flash
* @torch_boost_reg - boost regulator for torch
* @flash_wa_reg - flash regulator for wa
*/
struct flash_config_data {
u8 current_prgm;
u8 clamp_curr;
u8 headroom;
u8 duration;
u8 enable_module;
u8 trigger_flash;
u8 startup_dly;
u8 strobe_type;
u8 peripheral_subtype;
u16 current_addr;
u16 second_addr;
bool safety_timer;
bool torch_enable;
bool flash_reg_get;
bool flash_wa_reg_get;
bool flash_on;
bool torch_on;
bool vreg_ok;
bool no_smbb_support;
struct regulator *flash_boost_reg;
struct regulator *torch_boost_reg;
struct regulator *flash_wa_reg;
};
/**
* kpdbl_config_data - kpdbl configuration data
* @pwm_cfg - device pwm configuration
* @mode - running mode: pwm or lut
* @row_id - row id of the led
* @row_src_vbst - 0 for vph_pwr and 1 for vbst
* @row_src_en - enable row source
* @always_on - always on row
* @lut_params - lut parameters to be used by pwm driver
* @duty_cycles - duty cycles for lut
* @pwm_mode - pwm mode in use
*/
struct kpdbl_config_data {
struct pwm_config_data *pwm_cfg;
u32 row_id;
bool row_src_vbst;
bool row_src_en;
bool always_on;
struct pwm_duty_cycles *duty_cycles;
struct lut_params lut_params;
u8 pwm_mode;
};
/**
* rgb_config_data - rgb configuration data
* @pwm_cfg - device pwm configuration
* @enable - bits to enable led
*/
struct rgb_config_data {
struct pwm_config_data *pwm_cfg;
u8 enable;
};
/**
* gpio_config_data - gpio configuration data
* @source_sel - source selection
* @mode_ctrl - mode control
* @vin_ctrl - input control
* @enable - flag indicating LED on or off
*/
struct gpio_config_data {
u8 source_sel;
u8 mode_ctrl;
u8 vin_ctrl;
bool enable;
};
/**
* struct qpnp_led_data - internal led data structure
* @led_classdev - led class device
* @delayed_work - delayed work for turning off the LED
* @workqueue - dedicated workqueue to handle concurrency
* @work - workqueue for led
* @id - led index
* @base_reg - base register given in device tree
* @lock - to protect the transactions
* @reg - cached value of led register
* @num_leds - number of leds in the module
* @max_current - maximum current supported by LED
* @default_on - true: default state max, false, default state 0
* @turn_off_delay_ms - number of msec before turning off the LED
*/
struct qpnp_led_data {
struct led_classdev cdev;
struct spmi_device *spmi_dev;
struct delayed_work dwork;
struct workqueue_struct *workqueue;
struct work_struct work;
int id;
u16 base;
u8 reg;
u8 num_leds;
struct mutex lock;
struct wled_config_data *wled_cfg;
struct flash_config_data *flash_cfg;
struct kpdbl_config_data *kpdbl_cfg;
struct rgb_config_data *rgb_cfg;
struct mpp_config_data *mpp_cfg;
struct gpio_config_data *gpio_cfg;
int max_current;
bool default_on;
bool in_order_command_processing;
int turn_off_delay_ms;
};
static DEFINE_MUTEX(flash_lock);
static struct pwm_device *kpdbl_master;
static u32 kpdbl_master_period_us;
DECLARE_BITMAP(kpdbl_leds_in_use, NUM_KPDBL_LEDS);
static bool is_kpdbl_master_turn_on;
static int
qpnp_led_masked_write(struct qpnp_led_data *led, u16 addr, u8 mask, u8 val)
{
int rc;
u8 reg;
rc = spmi_ext_register_readl(led->spmi_dev->ctrl, led->spmi_dev->sid,
addr, &reg, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Unable to read from addr=%x, rc(%d)\n", addr, rc);
}
reg &= ~mask;
reg |= val;
rc = spmi_ext_register_writel(led->spmi_dev->ctrl, led->spmi_dev->sid,
addr, &reg, 1);
if (rc)
dev_err(&led->spmi_dev->dev,
"Unable to write to addr=%x, rc(%d)\n", addr, rc);
return rc;
}
static void qpnp_dump_regs(struct qpnp_led_data *led, u8 regs[], u8 array_size)
{
int i;
u8 val;
pr_debug("===== %s LED register dump start =====\n", led->cdev.name);
for (i = 0; i < array_size; i++) {
spmi_ext_register_readl(led->spmi_dev->ctrl,
led->spmi_dev->sid,
led->base + regs[i],
&val, sizeof(val));
pr_debug("%s: 0x%x = 0x%x\n", led->cdev.name,
led->base + regs[i], val);
}
pr_debug("===== %s LED register dump end =====\n", led->cdev.name);
}
static int qpnp_wled_sync(struct qpnp_led_data *led)
{
int rc;
u8 val;
/* sync */
val = WLED_SYNC_VAL;
rc = spmi_ext_register_writel(led->spmi_dev->ctrl, led->spmi_dev->sid,
WLED_SYNC_REG(led->base), &val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED set sync reg failed(%d)\n", rc);
return rc;
}
val = WLED_SYNC_RESET_VAL;
rc = spmi_ext_register_writel(led->spmi_dev->ctrl, led->spmi_dev->sid,
WLED_SYNC_REG(led->base), &val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED reset sync reg failed(%d)\n", rc);
return rc;
}
return 0;
}
static int qpnp_wled_set(struct qpnp_led_data *led)
{
int rc, duty, level, tries = 0;
u8 val, i, num_wled_strings, sink_val, ilim_val, ovp_val;
num_wled_strings = led->wled_cfg->num_strings;
level = led->cdev.brightness;
if (level > WLED_MAX_LEVEL)
level = WLED_MAX_LEVEL;
if (level == 0) {
for (i = 0; i < num_wled_strings; i++) {
rc = qpnp_led_masked_write(led,
WLED_FULL_SCALE_REG(led->base, i),
WLED_MAX_CURR_MASK, WLED_NO_CURRENT);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Write max current failure (%d)\n",
rc);
return rc;
}
}
rc = qpnp_wled_sync(led);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED sync failed(%d)\n", rc);
return rc;
}
rc = spmi_ext_register_readl(led->spmi_dev->ctrl,
led->spmi_dev->sid, WLED_CURR_SINK_REG(led->base),
&sink_val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED read sink reg failed(%d)\n", rc);
return rc;
}
if (led->wled_cfg->pmic_version == PMIC_VER_8026) {
val = WLED_DISABLE_ALL_SINKS;
rc = spmi_ext_register_writel(led->spmi_dev->ctrl,
led->spmi_dev->sid,
WLED_CURR_SINK_REG(led->base), &val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED write sink reg failed(%d)\n", rc);
return rc;
}
usleep_range(WLED_OVP_DELAY, WLED_OVP_DELAY);
} else if (led->wled_cfg->pmic_version == PMIC_VER_8941) {
if (led->wled_cfg->num_physical_strings <=
WLED_THREE_STRINGS) {
val = WLED_DISABLE_1_2_SINKS;
rc = spmi_ext_register_writel(
led->spmi_dev->ctrl,
led->spmi_dev->sid,
WLED_CURR_SINK_REG(led->base), &val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED write sink reg failed");
return rc;
}
rc = spmi_ext_register_readl(
led->spmi_dev->ctrl,
led->spmi_dev->sid,
WLED_BOOST_LIMIT_REG(led->base),
&ilim_val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Unable to read boost reg");
}
val = WLED_SET_ILIM_CODE;
rc = spmi_ext_register_writel(
led->spmi_dev->ctrl,
led->spmi_dev->sid,
WLED_BOOST_LIMIT_REG(led->base),
&val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED write sink reg failed");
return rc;
}
usleep_range(WLED_OVP_DELAY, WLED_OVP_DELAY);
} else {
val = WLED_DISABLE_ALL_SINKS;
rc = spmi_ext_register_writel(
led->spmi_dev->ctrl,
led->spmi_dev->sid,
WLED_CURR_SINK_REG(led->base), &val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED write sink reg failed");
return rc;
}
msleep(WLED_OVP_DELAY_INT);
while (tries < WLED_MAX_TRIES) {
rc = spmi_ext_register_readl(
led->spmi_dev->ctrl,
led->spmi_dev->sid,
WLED_OVP_INT_STATUS(led->base),
&ovp_val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Unable to read boost reg");
}
if (ovp_val & WLED_OVP_INT_MASK)
break;
msleep(WLED_OVP_DELAY_LOOP);
tries++;
}
usleep_range(WLED_OVP_DELAY, WLED_OVP_DELAY);
}
}
val = WLED_BOOST_OFF;
rc = spmi_ext_register_writel(led->spmi_dev->ctrl,
led->spmi_dev->sid, WLED_MOD_CTRL_REG(led->base),
&val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED write ctrl reg failed(%d)\n", rc);
return rc;
}
for (i = 0; i < num_wled_strings; i++) {
rc = qpnp_led_masked_write(led,
WLED_FULL_SCALE_REG(led->base, i),
WLED_MAX_CURR_MASK, (u8)led->max_current);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Write max current failure (%d)\n",
rc);
return rc;
}
}
rc = qpnp_wled_sync(led);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED sync failed(%d)\n", rc);
return rc;
}
if (led->wled_cfg->pmic_version == PMIC_VER_8941) {
if (led->wled_cfg->num_physical_strings <=
WLED_THREE_STRINGS) {
rc = spmi_ext_register_writel(
led->spmi_dev->ctrl,
led->spmi_dev->sid,
WLED_BOOST_LIMIT_REG(led->base),
&ilim_val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED write sink reg failed");
return rc;
}
} else {
/* restore OVP to original value */
rc = spmi_ext_register_writel(
led->spmi_dev->ctrl,
led->spmi_dev->sid,
WLED_OVP_CFG_REG(led->base),
&led->wled_cfg->ovp_val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED write sink reg failed");
return rc;
}
}
}
/* re-enable all sinks */
rc = spmi_ext_register_writel(led->spmi_dev->ctrl,
led->spmi_dev->sid, WLED_CURR_SINK_REG(led->base),
&sink_val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED write sink reg failed(%d)\n", rc);
return rc;
}
} else {
val = WLED_BOOST_ON;
rc = spmi_ext_register_writel(led->spmi_dev->ctrl,
led->spmi_dev->sid, WLED_MOD_CTRL_REG(led->base),
&val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED write ctrl reg failed(%d)\n", rc);
return rc;
}
}
duty = (WLED_MAX_DUTY_CYCLE * level) / WLED_MAX_LEVEL;
/* program brightness control registers */
for (i = 0; i < num_wled_strings; i++) {
rc = qpnp_led_masked_write(led,
WLED_BRIGHTNESS_CNTL_MSB(led->base, i), WLED_MSB_MASK,
(duty >> WLED_8_BIT_SHFT) & WLED_4_BIT_MASK);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED set brightness MSB failed(%d)\n", rc);
return rc;
}
val = duty & WLED_8_BIT_MASK;
rc = spmi_ext_register_writel(led->spmi_dev->ctrl,
led->spmi_dev->sid,
WLED_BRIGHTNESS_CNTL_LSB(led->base, i), &val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED set brightness LSB failed(%d)\n", rc);
return rc;
}
}
rc = qpnp_wled_sync(led);
if (rc) {
dev_err(&led->spmi_dev->dev, "WLED sync failed(%d)\n", rc);
return rc;
}
return 0;
}
static int qpnp_mpp_set(struct qpnp_led_data *led)
{
int rc;
u8 val;
int duty_us, duty_ns, period_us;
if (led->cdev.brightness) {
if (led->mpp_cfg->mpp_reg && !led->mpp_cfg->enable) {
rc = regulator_set_voltage(led->mpp_cfg->mpp_reg,
led->mpp_cfg->min_uV,
led->mpp_cfg->max_uV);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Regulator voltage set failed rc=%d\n",
rc);
return rc;
}
rc = regulator_enable(led->mpp_cfg->mpp_reg);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Regulator enable failed(%d)\n", rc);
goto err_reg_enable;
}
}
led->mpp_cfg->enable = true;
if (led->cdev.brightness < led->mpp_cfg->min_brightness) {
dev_warn(&led->spmi_dev->dev,
"brightness is less than supported..." \
"set to minimum supported\n");
led->cdev.brightness = led->mpp_cfg->min_brightness;
}
if (led->mpp_cfg->pwm_mode != MANUAL_MODE) {
if (!led->mpp_cfg->pwm_cfg->blinking) {
led->mpp_cfg->pwm_cfg->mode =
led->mpp_cfg->pwm_cfg->default_mode;
led->mpp_cfg->pwm_mode =
led->mpp_cfg->pwm_cfg->default_mode;
}
}
if (led->mpp_cfg->pwm_mode == PWM_MODE) {
/*config pwm for brightness scaling*/
period_us = led->mpp_cfg->pwm_cfg->pwm_period_us;
if (period_us > INT_MAX / NSEC_PER_USEC) {
duty_us = (period_us * led->cdev.brightness) /
LED_FULL;
rc = pwm_config_us(
led->mpp_cfg->pwm_cfg->pwm_dev,
duty_us,
period_us);
} else {
duty_ns = ((period_us * NSEC_PER_USEC) /
LED_FULL) * led->cdev.brightness;
rc = pwm_config(
led->mpp_cfg->pwm_cfg->pwm_dev,
duty_ns,
period_us * NSEC_PER_USEC);
}
if (rc < 0) {
dev_err(&led->spmi_dev->dev, "Failed to " \
"configure pwm for new values\n");
goto err_mpp_reg_write;
}
}
if (led->mpp_cfg->pwm_mode != MANUAL_MODE)
pwm_enable(led->mpp_cfg->pwm_cfg->pwm_dev);
else {
if (led->cdev.brightness < LED_MPP_CURRENT_MIN)
led->cdev.brightness = LED_MPP_CURRENT_MIN;
else {
/*
* PMIC supports LED intensity from 5mA - 40mA
* in steps of 5mA. Brightness is rounded to
* 5mA or nearest lower supported values
*/
led->cdev.brightness /= LED_MPP_CURRENT_MIN;
led->cdev.brightness *= LED_MPP_CURRENT_MIN;
}
val = (led->cdev.brightness / LED_MPP_CURRENT_MIN) - 1;
rc = qpnp_led_masked_write(led,
LED_MPP_SINK_CTRL(led->base),
LED_MPP_SINK_MASK, val);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to write sink control reg\n");
goto err_mpp_reg_write;
}
}
val = (led->mpp_cfg->source_sel & LED_MPP_SRC_MASK) |
(led->mpp_cfg->mode_ctrl & LED_MPP_MODE_CTRL_MASK);
rc = qpnp_led_masked_write(led,
LED_MPP_MODE_CTRL(led->base), LED_MPP_MODE_MASK,
val);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to write led mode reg\n");
goto err_mpp_reg_write;
}
rc = qpnp_led_masked_write(led,
LED_MPP_EN_CTRL(led->base), LED_MPP_EN_MASK,
LED_MPP_EN_ENABLE);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to write led enable " \
"reg\n");
goto err_mpp_reg_write;
}
} else {
if (led->mpp_cfg->pwm_mode != MANUAL_MODE) {
led->mpp_cfg->pwm_cfg->mode =
led->mpp_cfg->pwm_cfg->default_mode;
led->mpp_cfg->pwm_mode =
led->mpp_cfg->pwm_cfg->default_mode;
pwm_disable(led->mpp_cfg->pwm_cfg->pwm_dev);
}
rc = qpnp_led_masked_write(led,
LED_MPP_MODE_CTRL(led->base),
LED_MPP_MODE_MASK,
LED_MPP_MODE_DISABLE);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to write led mode reg\n");
goto err_mpp_reg_write;
}
rc = qpnp_led_masked_write(led,
LED_MPP_EN_CTRL(led->base),
LED_MPP_EN_MASK,
LED_MPP_EN_DISABLE);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to write led enable reg\n");
goto err_mpp_reg_write;
}
if (led->mpp_cfg->mpp_reg && led->mpp_cfg->enable) {
rc = regulator_disable(led->mpp_cfg->mpp_reg);
if (rc) {
dev_err(&led->spmi_dev->dev,
"MPP regulator disable failed(%d)\n",
rc);
return rc;
}
rc = regulator_set_voltage(led->mpp_cfg->mpp_reg,
0, led->mpp_cfg->max_uV);
if (rc) {
dev_err(&led->spmi_dev->dev,
"MPP regulator voltage set failed(%d)\n",
rc);
return rc;
}
}
led->mpp_cfg->enable = false;
}
if (led->mpp_cfg->pwm_mode != MANUAL_MODE)
led->mpp_cfg->pwm_cfg->blinking = false;
qpnp_dump_regs(led, mpp_debug_regs, ARRAY_SIZE(mpp_debug_regs));
return 0;
err_mpp_reg_write:
if (led->mpp_cfg->mpp_reg)
regulator_disable(led->mpp_cfg->mpp_reg);
err_reg_enable:
if (led->mpp_cfg->mpp_reg)
regulator_set_voltage(led->mpp_cfg->mpp_reg, 0,
led->mpp_cfg->max_uV);
led->mpp_cfg->enable = false;
return rc;
}
static int qpnp_gpio_set(struct qpnp_led_data *led)
{
int rc, val;
if (led->cdev.brightness) {
val = (led->gpio_cfg->source_sel & LED_GPIO_SRC_MASK) |
(led->gpio_cfg->mode_ctrl & LED_GPIO_MODE_CTRL_MASK);
rc = qpnp_led_masked_write(led,
LED_GPIO_MODE_CTRL(led->base),
LED_GPIO_MODE_MASK,
val);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to write led mode reg\n");
goto err_gpio_reg_write;
}
rc = qpnp_led_masked_write(led,
LED_GPIO_EN_CTRL(led->base),
LED_GPIO_EN_MASK,
LED_GPIO_EN_ENABLE);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to write led enable reg\n");
goto err_gpio_reg_write;
}
led->gpio_cfg->enable = true;
} else {
rc = qpnp_led_masked_write(led,
LED_GPIO_MODE_CTRL(led->base),
LED_GPIO_MODE_MASK,
LED_GPIO_MODE_DISABLE);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to write led mode reg\n");
goto err_gpio_reg_write;
}
rc = qpnp_led_masked_write(led,
LED_GPIO_EN_CTRL(led->base),
LED_GPIO_EN_MASK,
LED_GPIO_EN_DISABLE);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to write led enable reg\n");
goto err_gpio_reg_write;
}
led->gpio_cfg->enable = false;
}
qpnp_dump_regs(led, gpio_debug_regs, ARRAY_SIZE(gpio_debug_regs));
return 0;
err_gpio_reg_write:
led->gpio_cfg->enable = false;
return rc;
}
static int qpnp_flash_regulator_operate(struct qpnp_led_data *led, bool on)
{
int rc, i;
struct qpnp_led_data *led_array;
bool regulator_on = false;
led_array = dev_get_drvdata(&led->spmi_dev->dev);
if (!led_array) {
dev_err(&led->spmi_dev->dev,
"Unable to get LED array\n");
return -EINVAL;
}
for (i = 0; i < led->num_leds; i++)
regulator_on |= led_array[i].flash_cfg->flash_on;
if (!on)
goto regulator_turn_off;
if (!regulator_on && !led->flash_cfg->flash_on) {
for (i = 0; i < led->num_leds; i++) {
if (led_array[i].flash_cfg->flash_reg_get) {
if (led_array[i].flash_cfg->flash_wa_reg_get) {
rc = regulator_enable(
led_array[i].flash_cfg->
flash_wa_reg);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Flash wa regulator"
"enable failed(%d)\n",
rc);
return rc;
}
}
rc = regulator_enable(
led_array[i].flash_cfg->\
flash_boost_reg);
if (rc) {
if (led_array[i].flash_cfg->
flash_wa_reg_get)
/* Disable flash wa regulator
* when flash boost regulator
* enable fails
*/
regulator_disable(
led_array[i].flash_cfg->
flash_wa_reg);
dev_err(&led->spmi_dev->dev,
"Flash boost regulator enable"
"failed(%d)\n", rc);
return rc;
}
led->flash_cfg->flash_on = true;
}
break;
}
}
return 0;
regulator_turn_off:
if (regulator_on && led->flash_cfg->flash_on) {
for (i = 0; i < led->num_leds; i++) {
if (led_array[i].flash_cfg->flash_reg_get) {
rc = qpnp_led_masked_write(led,
FLASH_ENABLE_CONTROL(led->base),
FLASH_ENABLE_MASK,
FLASH_DISABLE_ALL);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Enable reg write failed(%d)\n",
rc);
}
rc = regulator_disable(led_array[i].flash_cfg->\
flash_boost_reg);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Flash boost regulator disable"
"failed(%d)\n", rc);
return rc;
}
if (led_array[i].flash_cfg->flash_wa_reg_get) {
rc = regulator_disable(
led_array[i].flash_cfg->
flash_wa_reg);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Flash_wa regulator"
"disable failed(%d)\n",
rc);
return rc;
}
}
led->flash_cfg->flash_on = false;
}
break;
}
}
return 0;
}
static int qpnp_torch_regulator_operate(struct qpnp_led_data *led, bool on)
{
int rc;
if (!on)
goto regulator_turn_off;
if (!led->flash_cfg->torch_on) {
rc = regulator_enable(led->flash_cfg->torch_boost_reg);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Regulator enable failed(%d)\n", rc);
return rc;
}
led->flash_cfg->torch_on = true;
}
return 0;
regulator_turn_off:
if (led->flash_cfg->torch_on) {
rc = qpnp_led_masked_write(led, FLASH_ENABLE_CONTROL(led->base),
FLASH_ENABLE_MODULE_MASK, FLASH_DISABLE_ALL);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Enable reg write failed(%d)\n", rc);
}
rc = regulator_disable(led->flash_cfg->torch_boost_reg);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Regulator disable failed(%d)\n", rc);
return rc;
}
led->flash_cfg->torch_on = false;
}
return 0;
}
static int qpnp_flash_set(struct qpnp_led_data *led)
{
int rc, error;
int val = led->cdev.brightness;
if (led->flash_cfg->torch_enable)
led->flash_cfg->current_prgm =
(val * TORCH_MAX_LEVEL / led->max_current);
else
led->flash_cfg->current_prgm =
(val * FLASH_MAX_LEVEL / led->max_current);
/* Set led current */
if (val > 0) {
if (led->flash_cfg->torch_enable) {
if (led->flash_cfg->peripheral_subtype ==
FLASH_SUBTYPE_DUAL) {
if (!led->flash_cfg->no_smbb_support)
rc = qpnp_torch_regulator_operate(led,
true);
else
rc = qpnp_flash_regulator_operate(led,
true);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Torch regulator operate failed(%d)\n",
rc);
return rc;
}
} else if (led->flash_cfg->peripheral_subtype ==
FLASH_SUBTYPE_SINGLE) {
rc = qpnp_flash_regulator_operate(led, true);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Flash regulator operate failed(%d)\n",
rc);
goto error_flash_set;
}
}
qpnp_led_masked_write(led, FLASH_MAX_CURR(led->base),
FLASH_CURRENT_MASK,
TORCH_MAX_LEVEL);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Max current reg write failed(%d)\n",
rc);
goto error_reg_write;
}
qpnp_led_masked_write(led,
FLASH_LED_TMR_CTRL(led->base),
FLASH_TMR_MASK,
FLASH_TMR_WATCHDOG);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Timer control reg write failed(%d)\n",
rc);
goto error_reg_write;
}
rc = qpnp_led_masked_write(led,
led->flash_cfg->current_addr,
FLASH_CURRENT_MASK,
led->flash_cfg->current_prgm);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Current reg write failed(%d)\n", rc);
goto error_reg_write;
}
rc = qpnp_led_masked_write(led,
led->flash_cfg->second_addr,
FLASH_CURRENT_MASK,
led->flash_cfg->current_prgm);
if (rc) {
dev_err(&led->spmi_dev->dev,
"2nd Current reg write failed(%d)\n",
rc);
goto error_reg_write;
}
qpnp_led_masked_write(led,
FLASH_WATCHDOG_TMR(led->base),
FLASH_WATCHDOG_MASK,
led->flash_cfg->duration);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Max current reg write failed(%d)\n",
rc);
goto error_reg_write;
}
rc = qpnp_led_masked_write(led,
FLASH_ENABLE_CONTROL(led->base),
FLASH_ENABLE_MASK,
led->flash_cfg->enable_module);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Enable reg write failed(%d)\n",
rc);
goto error_reg_write;
}
if (!led->flash_cfg->strobe_type)
led->flash_cfg->trigger_flash &=
~FLASH_HW_SW_STROBE_SEL_MASK;
else
led->flash_cfg->trigger_flash |=
FLASH_HW_SW_STROBE_SEL_MASK;
rc = qpnp_led_masked_write(led,
FLASH_LED_STROBE_CTRL(led->base),
led->flash_cfg->trigger_flash,
led->flash_cfg->trigger_flash);
if (rc) {
dev_err(&led->spmi_dev->dev,
"LED %d strobe reg write failed(%d)\n",
led->id, rc);
goto error_reg_write;
}
} else {
rc = qpnp_flash_regulator_operate(led, true);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Flash regulator operate failed(%d)\n",
rc);
goto error_flash_set;
}
qpnp_led_masked_write(led,
FLASH_LED_TMR_CTRL(led->base),
FLASH_TMR_MASK,
FLASH_TMR_SAFETY);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Timer control reg write failed(%d)\n",
rc);
goto error_reg_write;
}
/* Set flash safety timer */
rc = qpnp_led_masked_write(led,
FLASH_SAFETY_TIMER(led->base),
FLASH_SAFETY_TIMER_MASK,
led->flash_cfg->duration);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Safety timer reg write failed(%d)\n",
rc);
goto error_flash_set;
}
/* Set max current */
rc = qpnp_led_masked_write(led,
FLASH_MAX_CURR(led->base), FLASH_CURRENT_MASK,
FLASH_MAX_LEVEL);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Max current reg write failed(%d)\n",
rc);
goto error_flash_set;
}
/* Set clamp current */
rc = qpnp_led_masked_write(led,
FLASH_CLAMP_CURR(led->base),
FLASH_CURRENT_MASK,
led->flash_cfg->clamp_curr);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Clamp current reg write failed(%d)\n",
rc);
goto error_flash_set;
}
rc = qpnp_led_masked_write(led,
led->flash_cfg->current_addr,
FLASH_CURRENT_MASK,
led->flash_cfg->current_prgm);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Current reg write failed(%d)\n", rc);
goto error_flash_set;
}
rc = qpnp_led_masked_write(led,
FLASH_ENABLE_CONTROL(led->base),
led->flash_cfg->enable_module,
led->flash_cfg->enable_module);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Enable reg write failed(%d)\n", rc);
goto error_flash_set;
}
/*
* Add 1ms delay for bharger enter stable state
*/
usleep_range(FLASH_RAMP_UP_DELAY_US, FLASH_RAMP_UP_DELAY_US);
if (!led->flash_cfg->strobe_type)
led->flash_cfg->trigger_flash &=
~FLASH_HW_SW_STROBE_SEL_MASK;
else
led->flash_cfg->trigger_flash |=
FLASH_HW_SW_STROBE_SEL_MASK;
rc = qpnp_led_masked_write(led,
FLASH_LED_STROBE_CTRL(led->base),
led->flash_cfg->trigger_flash,
led->flash_cfg->trigger_flash);
if (rc) {
dev_err(&led->spmi_dev->dev,
"LED %d strobe reg write failed(%d)\n",
led->id, rc);
goto error_flash_set;
}
}
} else {
rc = qpnp_led_masked_write(led,
FLASH_LED_STROBE_CTRL(led->base),
led->flash_cfg->trigger_flash,
FLASH_DISABLE_ALL);
if (rc) {
dev_err(&led->spmi_dev->dev,
"LED %d flash write failed(%d)\n", led->id, rc);
if (led->flash_cfg->torch_enable)
goto error_torch_set;
else
goto error_flash_set;
}
if (led->flash_cfg->torch_enable) {
if (led->flash_cfg->peripheral_subtype ==
FLASH_SUBTYPE_DUAL) {
if (!led->flash_cfg->no_smbb_support)
rc = qpnp_torch_regulator_operate(led,
false);
else
rc = qpnp_flash_regulator_operate(led,
false);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Torch regulator operate failed(%d)\n",
rc);
return rc;
}
} else if (led->flash_cfg->peripheral_subtype ==
FLASH_SUBTYPE_SINGLE) {
rc = qpnp_flash_regulator_operate(led, false);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Flash regulator operate failed(%d)\n",
rc);
return rc;
}
}
} else {
/*
* Disable module after ramp down complete for stable
* behavior
*/
usleep_range(FLASH_RAMP_UP_DELAY_US, FLASH_RAMP_UP_DELAY_US);
rc = qpnp_led_masked_write(led,
FLASH_ENABLE_CONTROL(led->base),
led->flash_cfg->enable_module &
~FLASH_ENABLE_MODULE_MASK,
FLASH_DISABLE_ALL);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Enable reg write failed(%d)\n", rc);
if (led->flash_cfg->torch_enable)
goto error_torch_set;
else
goto error_flash_set;
}
rc = qpnp_flash_regulator_operate(led, false);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Flash regulator operate failed(%d)\n",
rc);
return rc;
}
}
}
qpnp_dump_regs(led, flash_debug_regs, ARRAY_SIZE(flash_debug_regs));
return 0;
error_reg_write:
if (led->flash_cfg->peripheral_subtype == FLASH_SUBTYPE_SINGLE)
goto error_flash_set;
error_torch_set:
if (!led->flash_cfg->no_smbb_support)
error = qpnp_torch_regulator_operate(led, false);
else
error = qpnp_flash_regulator_operate(led, false);
if (error) {
dev_err(&led->spmi_dev->dev,
"Torch regulator operate failed(%d)\n", rc);
return error;
}
return rc;
error_flash_set:
error = qpnp_flash_regulator_operate(led, false);
if (error) {
dev_err(&led->spmi_dev->dev,
"Flash regulator operate failed(%d)\n", rc);
return error;
}
return rc;
}
static int qpnp_kpdbl_set(struct qpnp_led_data *led)
{
int rc;
int duty_us, duty_ns, period_us;
if (led->cdev.brightness) {
if (!led->kpdbl_cfg->pwm_cfg->blinking)
led->kpdbl_cfg->pwm_cfg->mode =
led->kpdbl_cfg->pwm_cfg->default_mode;
if (bitmap_empty(kpdbl_leds_in_use, NUM_KPDBL_LEDS)) {
rc = qpnp_led_masked_write(led, KPDBL_ENABLE(led->base),
KPDBL_MODULE_EN_MASK, KPDBL_MODULE_EN);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Enable reg write failed(%d)\n", rc);
return rc;
}
}
/* On some platforms, GPLED1 channel should always be enabled
* for the other GPLEDs 2/3/4 to glow. Before enabling GPLED
* 2/3/4, first check if GPLED1 is already enabled. If GPLED1
* channel is not enabled, then enable the GPLED1 channel but
* with a 0 brightness
*/
if (!led->kpdbl_cfg->always_on &&
!test_bit(KPDBL_MASTER_BIT_INDEX, kpdbl_leds_in_use) &&
kpdbl_master) {
rc = pwm_config_us(kpdbl_master, 0,
kpdbl_master_period_us);
if (rc < 0) {
dev_err(&led->spmi_dev->dev,
"pwm config failed\n");
return rc;
}
rc = pwm_enable(kpdbl_master);
if (rc < 0) {
dev_err(&led->spmi_dev->dev,
"pwm enable failed\n");
return rc;
}
set_bit(KPDBL_MASTER_BIT_INDEX,
kpdbl_leds_in_use);
}
if (led->kpdbl_cfg->pwm_cfg->mode == PWM_MODE) {
period_us = led->kpdbl_cfg->pwm_cfg->pwm_period_us;
if (period_us > INT_MAX / NSEC_PER_USEC) {
duty_us = (period_us * led->cdev.brightness) /
KPDBL_MAX_LEVEL;
rc = pwm_config_us(
led->kpdbl_cfg->pwm_cfg->pwm_dev,
duty_us,
period_us);
} else {
duty_ns = ((period_us * NSEC_PER_USEC) /
KPDBL_MAX_LEVEL) * led->cdev.brightness;
rc = pwm_config(
led->kpdbl_cfg->pwm_cfg->pwm_dev,
duty_ns,
period_us * NSEC_PER_USEC);
}
if (rc < 0) {
dev_err(&led->spmi_dev->dev, "pwm config failed\n");
return rc;
}
}
rc = pwm_enable(led->kpdbl_cfg->pwm_cfg->pwm_dev);
if (rc < 0) {
dev_err(&led->spmi_dev->dev, "pwm enable failed\n");
return rc;
}
set_bit(led->kpdbl_cfg->row_id, kpdbl_leds_in_use);
/* is_kpdbl_master_turn_on will be set to true when GPLED1
* channel is enabled and has a valid brightness value
*/
if (led->kpdbl_cfg->always_on)
is_kpdbl_master_turn_on = true;
} else {
led->kpdbl_cfg->pwm_cfg->mode =
led->kpdbl_cfg->pwm_cfg->default_mode;
/* Before disabling GPLED1, check if any other GPLED 2/3/4 is
* on. If any of the other GPLED 2/3/4 is on, then have the
* GPLED1 channel enabled with 0 brightness.
*/
if (led->kpdbl_cfg->always_on) {
if (bitmap_weight(kpdbl_leds_in_use,
NUM_KPDBL_LEDS) > 1) {
rc = pwm_config_us(
led->kpdbl_cfg->pwm_cfg->pwm_dev, 0,
led->kpdbl_cfg->pwm_cfg->pwm_period_us);
if (rc < 0) {
dev_err(&led->spmi_dev->dev,
"pwm config failed\n");
return rc;
}
rc = pwm_enable(led->kpdbl_cfg->pwm_cfg->
pwm_dev);
if (rc < 0) {
dev_err(&led->spmi_dev->dev,
"pwm enable failed\n");
return rc;
}
} else {
if (kpdbl_master) {
pwm_disable(kpdbl_master);
clear_bit(KPDBL_MASTER_BIT_INDEX,
kpdbl_leds_in_use);
rc = qpnp_led_masked_write(
led, KPDBL_ENABLE(led->base),
KPDBL_MODULE_EN_MASK,
KPDBL_MODULE_DIS);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to write led"
" enable reg\n");
return rc;
}
}
}
is_kpdbl_master_turn_on = false;
} else {
pwm_disable(led->kpdbl_cfg->pwm_cfg->pwm_dev);
clear_bit(led->kpdbl_cfg->row_id, kpdbl_leds_in_use);
if (bitmap_weight(kpdbl_leds_in_use,
NUM_KPDBL_LEDS) == 1 && kpdbl_master &&
!is_kpdbl_master_turn_on) {
pwm_disable(kpdbl_master);
clear_bit(KPDBL_MASTER_BIT_INDEX,
kpdbl_leds_in_use);
rc = qpnp_led_masked_write(
led, KPDBL_ENABLE(led->base),
KPDBL_MODULE_EN_MASK, KPDBL_MODULE_DIS);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to write led enable reg\n");
return rc;
}
is_kpdbl_master_turn_on = false;
}
}
}
led->kpdbl_cfg->pwm_cfg->blinking = false;
qpnp_dump_regs(led, kpdbl_debug_regs, ARRAY_SIZE(kpdbl_debug_regs));
return 0;
}
static int qpnp_rgb_set(struct qpnp_led_data *led)
{
int rc;
int duty_us, duty_ns, period_us;
if (led->cdev.brightness) {
if (!led->rgb_cfg->pwm_cfg->blinking)
led->rgb_cfg->pwm_cfg->mode =
led->rgb_cfg->pwm_cfg->default_mode;
if (led->rgb_cfg->pwm_cfg->mode == PWM_MODE) {
period_us = led->rgb_cfg->pwm_cfg->pwm_period_us;
if (period_us > INT_MAX / NSEC_PER_USEC) {
duty_us = (period_us * led->cdev.brightness) /
LED_FULL;
rc = pwm_config_us(
led->rgb_cfg->pwm_cfg->pwm_dev,
duty_us,
period_us);
} else {
duty_ns = ((period_us * NSEC_PER_USEC) /
LED_FULL) * led->cdev.brightness;
rc = pwm_config(
led->rgb_cfg->pwm_cfg->pwm_dev,
duty_ns,
period_us * NSEC_PER_USEC);
}
if (rc < 0) {
dev_err(&led->spmi_dev->dev,
"pwm config failed\n");
return rc;
}
}
rc = qpnp_led_masked_write(led,
RGB_LED_EN_CTL(led->base),
led->rgb_cfg->enable, led->rgb_cfg->enable);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to write led enable reg\n");
return rc;
}
if (led->rgb_cfg->pwm_cfg->pwm_enabled) {
pwm_disable(led->rgb_cfg->pwm_cfg->pwm_dev);
led->rgb_cfg->pwm_cfg->pwm_enabled = 0;
}
rc = pwm_enable(led->rgb_cfg->pwm_cfg->pwm_dev);
if (!rc)
led->rgb_cfg->pwm_cfg->pwm_enabled = 1;
} else {
led->rgb_cfg->pwm_cfg->mode =
led->rgb_cfg->pwm_cfg->default_mode;
pwm_disable(led->rgb_cfg->pwm_cfg->pwm_dev);
led->rgb_cfg->pwm_cfg->pwm_enabled = 0;
rc = qpnp_led_masked_write(led,
RGB_LED_EN_CTL(led->base),
led->rgb_cfg->enable, RGB_LED_DISABLE);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to write led enable reg\n");
return rc;
}
}
led->rgb_cfg->pwm_cfg->blinking = false;
qpnp_dump_regs(led, rgb_pwm_debug_regs, ARRAY_SIZE(rgb_pwm_debug_regs));
return 0;
}
static void qpnp_led_set(struct led_classdev *led_cdev,
enum led_brightness value)
{
struct qpnp_led_data *led;
led = container_of(led_cdev, struct qpnp_led_data, cdev);
if (value < LED_OFF) {
dev_err(&led->spmi_dev->dev, "Invalid brightness value\n");
return;
}
if (value > led->cdev.max_brightness)
value = led->cdev.max_brightness;
led->cdev.brightness = value;
if (led->in_order_command_processing)
queue_work(led->workqueue, &led->work);
else
schedule_work(&led->work);
}
static void __qpnp_led_work(struct qpnp_led_data *led,
enum led_brightness value)
{
int rc;
if (led->id == QPNP_ID_FLASH1_LED0 || led->id == QPNP_ID_FLASH1_LED1)
mutex_lock(&flash_lock);
else
mutex_lock(&led->lock);
switch (led->id) {
case QPNP_ID_WLED:
rc = qpnp_wled_set(led);
if (rc < 0)
dev_err(&led->spmi_dev->dev,
"WLED set brightness failed (%d)\n", rc);
break;
case QPNP_ID_FLASH1_LED0:
case QPNP_ID_FLASH1_LED1:
rc = qpnp_flash_set(led);
if (rc < 0)
dev_err(&led->spmi_dev->dev,
"FLASH set brightness failed (%d)\n", rc);
break;
case QPNP_ID_RGB_RED:
case QPNP_ID_RGB_GREEN:
case QPNP_ID_RGB_BLUE:
rc = qpnp_rgb_set(led);
if (rc < 0)
dev_err(&led->spmi_dev->dev,
"RGB set brightness failed (%d)\n", rc);
break;
case QPNP_ID_LED_MPP:
rc = qpnp_mpp_set(led);
if (rc < 0)
dev_err(&led->spmi_dev->dev,
"MPP set brightness failed (%d)\n", rc);
break;
case QPNP_ID_LED_GPIO:
rc = qpnp_gpio_set(led);
if (rc < 0)
dev_err(&led->spmi_dev->dev,
"GPIO set brightness failed (%d)\n",
rc);
break;
case QPNP_ID_KPDBL:
rc = qpnp_kpdbl_set(led);
if (rc < 0)
dev_err(&led->spmi_dev->dev,
"KPDBL set brightness failed (%d)\n", rc);
break;
default:
dev_err(&led->spmi_dev->dev, "Invalid LED(%d)\n", led->id);
break;
}
if (led->id == QPNP_ID_FLASH1_LED0 || led->id == QPNP_ID_FLASH1_LED1)
mutex_unlock(&flash_lock);
else
mutex_unlock(&led->lock);
}
static void qpnp_led_work(struct work_struct *work)
{
struct qpnp_led_data *led = container_of(work,
struct qpnp_led_data, work);
__qpnp_led_work(led, led->cdev.brightness);
return;
}
static int qpnp_led_set_max_brightness(struct qpnp_led_data *led)
{
switch (led->id) {
case QPNP_ID_WLED:
led->cdev.max_brightness = WLED_MAX_LEVEL;
break;
case QPNP_ID_FLASH1_LED0:
case QPNP_ID_FLASH1_LED1:
led->cdev.max_brightness = led->max_current;
break;
case QPNP_ID_RGB_RED:
case QPNP_ID_RGB_GREEN:
case QPNP_ID_RGB_BLUE:
led->cdev.max_brightness = RGB_MAX_LEVEL;
break;
case QPNP_ID_LED_MPP:
if (led->mpp_cfg->pwm_mode == MANUAL_MODE)
led->cdev.max_brightness = led->max_current;
else
led->cdev.max_brightness = MPP_MAX_LEVEL;
break;
case QPNP_ID_LED_GPIO:
led->cdev.max_brightness = led->max_current;
break;
case QPNP_ID_KPDBL:
led->cdev.max_brightness = KPDBL_MAX_LEVEL;
break;
default:
dev_err(&led->spmi_dev->dev, "Invalid LED(%d)\n", led->id);
return -EINVAL;
}
return 0;
}
static enum led_brightness qpnp_led_get(struct led_classdev *led_cdev)
{
struct qpnp_led_data *led;
led = container_of(led_cdev, struct qpnp_led_data, cdev);
return led->cdev.brightness;
}
static void qpnp_led_turn_off_delayed(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct qpnp_led_data *led
= container_of(dwork, struct qpnp_led_data, dwork);
led->cdev.brightness = LED_OFF;
qpnp_led_set(&led->cdev, led->cdev.brightness);
}
static void qpnp_led_turn_off(struct qpnp_led_data *led)
{
INIT_DELAYED_WORK(&led->dwork, qpnp_led_turn_off_delayed);
schedule_delayed_work(&led->dwork,
msecs_to_jiffies(led->turn_off_delay_ms));
}
static int qpnp_wled_init(struct qpnp_led_data *led)
{
int rc, i;
u8 num_wled_strings, val = 0;
num_wled_strings = led->wled_cfg->num_strings;
/* verify ranges */
if (led->wled_cfg->ovp_val > WLED_OVP_27V) {
dev_err(&led->spmi_dev->dev, "Invalid ovp value\n");
return -EINVAL;
}
if (led->wled_cfg->boost_curr_lim > WLED_CURR_LIMIT_1680mA) {
dev_err(&led->spmi_dev->dev, "Invalid boost current limit\n");
return -EINVAL;
}
if (led->wled_cfg->cp_select > WLED_CP_SELECT_MAX) {
dev_err(&led->spmi_dev->dev, "Invalid pole capacitance\n");
return -EINVAL;
}
if ((led->max_current > WLED_MAX_CURR)) {
dev_err(&led->spmi_dev->dev, "Invalid max current\n");
return -EINVAL;
}
if ((led->wled_cfg->ctrl_delay_us % WLED_CTL_DLY_STEP) ||
(led->wled_cfg->ctrl_delay_us > WLED_CTL_DLY_MAX)) {
dev_err(&led->spmi_dev->dev, "Invalid control delay\n");
return -EINVAL;
}
/* program over voltage protection threshold */
rc = qpnp_led_masked_write(led, WLED_OVP_CFG_REG(led->base),
WLED_OVP_VAL_MASK,
(led->wled_cfg->ovp_val << WLED_OVP_VAL_BIT_SHFT));
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED OVP reg write failed(%d)\n", rc);
return rc;
}
/* program current boost limit */
rc = qpnp_led_masked_write(led, WLED_BOOST_LIMIT_REG(led->base),
WLED_BOOST_LIMIT_MASK, led->wled_cfg->boost_curr_lim);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED boost limit reg write failed(%d)\n", rc);
return rc;
}
/* program output feedback */
rc = qpnp_led_masked_write(led, WLED_FDBCK_CTRL_REG(led->base),
WLED_OP_FDBCK_MASK,
(led->wled_cfg->op_fdbck << WLED_OP_FDBCK_BIT_SHFT));
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED fdbck ctrl reg write failed(%d)\n", rc);
return rc;
}
/* program switch frequency */
rc = qpnp_led_masked_write(led,
WLED_SWITCHING_FREQ_REG(led->base),
WLED_SWITCH_FREQ_MASK, led->wled_cfg->switch_freq);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED switch freq reg write failed(%d)\n", rc);
return rc;
}
/* program current sink */
if (led->wled_cfg->cs_out_en) {
for (i = 0; i < led->wled_cfg->num_strings; i++)
val |= 1 << i;
rc = qpnp_led_masked_write(led, WLED_CURR_SINK_REG(led->base),
WLED_CURR_SINK_MASK, (val << WLED_CURR_SINK_SHFT));
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED curr sink reg write failed(%d)\n", rc);
return rc;
}
}
/* program high pole capacitance */
rc = qpnp_led_masked_write(led, WLED_HIGH_POLE_CAP_REG(led->base),
WLED_CP_SELECT_MASK, led->wled_cfg->cp_select);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED pole cap reg write failed(%d)\n", rc);
return rc;
}
/* program modulator, current mod src and cabc */
for (i = 0; i < num_wled_strings; i++) {
rc = qpnp_led_masked_write(led, WLED_MOD_EN_REG(led->base, i),
WLED_NO_MASK, WLED_EN_MASK);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED mod enable reg write failed(%d)\n", rc);
return rc;
}
if (led->wled_cfg->dig_mod_gen_en) {
rc = qpnp_led_masked_write(led,
WLED_MOD_SRC_SEL_REG(led->base, i),
WLED_NO_MASK, WLED_USE_EXT_GEN_MOD_SRC);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED dig mod en reg write failed(%d)\n", rc);
}
}
rc = qpnp_led_masked_write(led,
WLED_FULL_SCALE_REG(led->base, i), WLED_MAX_CURR_MASK,
(u8)led->max_current);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED max current reg write failed(%d)\n", rc);
return rc;
}
}
/* Reset WLED enable register */
rc = qpnp_led_masked_write(led, WLED_MOD_CTRL_REG(led->base),
WLED_8_BIT_MASK, WLED_BOOST_OFF);
if (rc) {
dev_err(&led->spmi_dev->dev,
"WLED write ctrl reg failed(%d)\n", rc);
return rc;
}
/* dump wled registers */
qpnp_dump_regs(led, wled_debug_regs, ARRAY_SIZE(wled_debug_regs));
return 0;
}
static ssize_t led_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct qpnp_led_data *led;
unsigned long state;
struct led_classdev *led_cdev = dev_get_drvdata(dev);
ssize_t ret = -EINVAL;
ret = kstrtoul(buf, 10, &state);
if (ret)
return ret;
led = container_of(led_cdev, struct qpnp_led_data, cdev);
/* '1' to enable torch mode; '0' to switch to flash mode */
if (state == 1)
led->flash_cfg->torch_enable = true;
else
led->flash_cfg->torch_enable = false;
return count;
}
static ssize_t led_strobe_type_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct qpnp_led_data *led;
unsigned long state;
struct led_classdev *led_cdev = dev_get_drvdata(dev);
ssize_t ret = -EINVAL;
ret = kstrtoul(buf, 10, &state);
if (ret)
return ret;
led = container_of(led_cdev, struct qpnp_led_data, cdev);
/* '0' for sw strobe; '1' for hw strobe */
if (state == 1)
led->flash_cfg->strobe_type = 1;
else
led->flash_cfg->strobe_type = 0;
return count;
}
static int qpnp_pwm_init(struct pwm_config_data *pwm_cfg,
struct spmi_device *spmi_dev,
const char *name)
{
int rc, start_idx, idx_len, lut_max_size;
if (pwm_cfg->pwm_dev) {
if (pwm_cfg->mode == LPG_MODE) {
start_idx =
pwm_cfg->duty_cycles->start_idx;
idx_len =
pwm_cfg->duty_cycles->num_duty_pcts;
if (strnstr(name, "kpdbl", sizeof("kpdbl")))
lut_max_size = PWM_GPLED_LUT_MAX_SIZE;
else
lut_max_size = PWM_LUT_MAX_SIZE;
if (idx_len >= lut_max_size && start_idx) {
dev_err(&spmi_dev->dev,
"Wrong LUT size or index\n");
return -EINVAL;
}
if ((start_idx + idx_len) > lut_max_size) {
dev_err(&spmi_dev->dev,
"Exceed LUT limit\n");
return -EINVAL;
}
rc = pwm_lut_config(pwm_cfg->pwm_dev,
pwm_cfg->pwm_period_us,
pwm_cfg->duty_cycles->duty_pcts,
pwm_cfg->lut_params);
if (rc < 0) {
dev_err(&spmi_dev->dev, "Failed to " \
"configure pwm LUT\n");
return rc;
}
}
} else {
dev_err(&spmi_dev->dev,
"Invalid PWM device\n");
return -EINVAL;
}
return 0;
}
static ssize_t pwm_us_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct qpnp_led_data *led;
u32 pwm_us;
struct led_classdev *led_cdev = dev_get_drvdata(dev);
ssize_t ret;
u32 previous_pwm_us;
struct pwm_config_data *pwm_cfg;
led = container_of(led_cdev, struct qpnp_led_data, cdev);
ret = kstrtou32(buf, 10, &pwm_us);
if (ret)
return ret;
switch (led->id) {
case QPNP_ID_LED_MPP:
pwm_cfg = led->mpp_cfg->pwm_cfg;
break;
case QPNP_ID_RGB_RED:
case QPNP_ID_RGB_GREEN:
case QPNP_ID_RGB_BLUE:
pwm_cfg = led->rgb_cfg->pwm_cfg;
break;
case QPNP_ID_KPDBL:
pwm_cfg = led->kpdbl_cfg->pwm_cfg;
break;
default:
dev_err(&led->spmi_dev->dev,
"Invalid LED id type for pwm_us\n");
return -EINVAL;
}
if (pwm_cfg->mode == LPG_MODE)
pwm_cfg->blinking = true;
previous_pwm_us = pwm_cfg->pwm_period_us;
pwm_cfg->pwm_period_us = pwm_us;
pwm_free(pwm_cfg->pwm_dev);
ret = qpnp_pwm_init(pwm_cfg, led->spmi_dev, led->cdev.name);
if (ret) {
pwm_cfg->pwm_period_us = previous_pwm_us;
pwm_free(pwm_cfg->pwm_dev);
qpnp_pwm_init(pwm_cfg, led->spmi_dev, led->cdev.name);
qpnp_led_set(&led->cdev, led->cdev.brightness);
dev_err(&led->spmi_dev->dev,
"Failed to initialize pwm with new pwm_us value\n");
return ret;
}
qpnp_led_set(&led->cdev, led->cdev.brightness);
return count;
}
static ssize_t pause_lo_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct qpnp_led_data *led;
u32 pause_lo;
struct led_classdev *led_cdev = dev_get_drvdata(dev);
ssize_t ret;
u32 previous_pause_lo;
struct pwm_config_data *pwm_cfg;
ret = kstrtou32(buf, 10, &pause_lo);
if (ret)
return ret;
led = container_of(led_cdev, struct qpnp_led_data, cdev);
switch (led->id) {
case QPNP_ID_LED_MPP:
pwm_cfg = led->mpp_cfg->pwm_cfg;
break;
case QPNP_ID_RGB_RED:
case QPNP_ID_RGB_GREEN:
case QPNP_ID_RGB_BLUE:
pwm_cfg = led->rgb_cfg->pwm_cfg;
break;
case QPNP_ID_KPDBL:
pwm_cfg = led->kpdbl_cfg->pwm_cfg;
break;
default:
dev_err(&led->spmi_dev->dev,
"Invalid LED id type for pause lo\n");
return -EINVAL;
}
if (pwm_cfg->mode == LPG_MODE)
pwm_cfg->blinking = true;
previous_pause_lo = pwm_cfg->lut_params.lut_pause_lo;
pwm_free(pwm_cfg->pwm_dev);
pwm_cfg->lut_params.lut_pause_lo = pause_lo;
ret = qpnp_pwm_init(pwm_cfg, led->spmi_dev, led->cdev.name);
if (ret) {
pwm_cfg->lut_params.lut_pause_lo = previous_pause_lo;
pwm_free(pwm_cfg->pwm_dev);
qpnp_pwm_init(pwm_cfg, led->spmi_dev, led->cdev.name);
qpnp_led_set(&led->cdev, led->cdev.brightness);
dev_err(&led->spmi_dev->dev,
"Failed to initialize pwm with new pause lo value\n");
return ret;
}
qpnp_led_set(&led->cdev, led->cdev.brightness);
return count;
}
static ssize_t pause_hi_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct qpnp_led_data *led;
u32 pause_hi;
struct led_classdev *led_cdev = dev_get_drvdata(dev);
ssize_t ret;
u32 previous_pause_hi;
struct pwm_config_data *pwm_cfg;
ret = kstrtou32(buf, 10, &pause_hi);
if (ret)
return ret;
led = container_of(led_cdev, struct qpnp_led_data, cdev);
switch (led->id) {
case QPNP_ID_LED_MPP:
pwm_cfg = led->mpp_cfg->pwm_cfg;
break;
case QPNP_ID_RGB_RED:
case QPNP_ID_RGB_GREEN:
case QPNP_ID_RGB_BLUE:
pwm_cfg = led->rgb_cfg->pwm_cfg;
break;
case QPNP_ID_KPDBL:
pwm_cfg = led->kpdbl_cfg->pwm_cfg;
break;
default:
dev_err(&led->spmi_dev->dev,
"Invalid LED id type for pause hi\n");
return -EINVAL;
}
if (pwm_cfg->mode == LPG_MODE)
pwm_cfg->blinking = true;
previous_pause_hi = pwm_cfg->lut_params.lut_pause_hi;
pwm_free(pwm_cfg->pwm_dev);
pwm_cfg->lut_params.lut_pause_hi = pause_hi;
ret = qpnp_pwm_init(pwm_cfg, led->spmi_dev, led->cdev.name);
if (ret) {
pwm_cfg->lut_params.lut_pause_hi = previous_pause_hi;
pwm_free(pwm_cfg->pwm_dev);
qpnp_pwm_init(pwm_cfg, led->spmi_dev, led->cdev.name);
qpnp_led_set(&led->cdev, led->cdev.brightness);
dev_err(&led->spmi_dev->dev,
"Failed to initialize pwm with new pause hi value\n");
return ret;
}
qpnp_led_set(&led->cdev, led->cdev.brightness);
return count;
}
static ssize_t start_idx_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct qpnp_led_data *led;
u32 start_idx;
struct led_classdev *led_cdev = dev_get_drvdata(dev);
ssize_t ret;
u32 previous_start_idx;
struct pwm_config_data *pwm_cfg;
ret = kstrtou32(buf, 10, &start_idx);
if (ret)
return ret;
led = container_of(led_cdev, struct qpnp_led_data, cdev);
switch (led->id) {
case QPNP_ID_LED_MPP:
pwm_cfg = led->mpp_cfg->pwm_cfg;
break;
case QPNP_ID_RGB_RED:
case QPNP_ID_RGB_GREEN:
case QPNP_ID_RGB_BLUE:
pwm_cfg = led->rgb_cfg->pwm_cfg;
break;
case QPNP_ID_KPDBL:
pwm_cfg = led->kpdbl_cfg->pwm_cfg;
break;
default:
dev_err(&led->spmi_dev->dev,
"Invalid LED id type for start idx\n");
return -EINVAL;
}
if (pwm_cfg->mode == LPG_MODE)
pwm_cfg->blinking = true;
previous_start_idx = pwm_cfg->duty_cycles->start_idx;
pwm_cfg->duty_cycles->start_idx = start_idx;
pwm_cfg->lut_params.start_idx = pwm_cfg->duty_cycles->start_idx;
pwm_free(pwm_cfg->pwm_dev);
ret = qpnp_pwm_init(pwm_cfg, led->spmi_dev, led->cdev.name);
if (ret) {
pwm_cfg->duty_cycles->start_idx = previous_start_idx;
pwm_cfg->lut_params.start_idx = pwm_cfg->duty_cycles->start_idx;
pwm_free(pwm_cfg->pwm_dev);
qpnp_pwm_init(pwm_cfg, led->spmi_dev, led->cdev.name);
qpnp_led_set(&led->cdev, led->cdev.brightness);
dev_err(&led->spmi_dev->dev,
"Failed to initialize pwm with new start idx value\n");
return ret;
}
qpnp_led_set(&led->cdev, led->cdev.brightness);
return count;
}
static ssize_t ramp_step_ms_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct qpnp_led_data *led;
u32 ramp_step_ms;
struct led_classdev *led_cdev = dev_get_drvdata(dev);
ssize_t ret;
u32 previous_ramp_step_ms;
struct pwm_config_data *pwm_cfg;
ret = kstrtou32(buf, 10, &ramp_step_ms);
if (ret)
return ret;
led = container_of(led_cdev, struct qpnp_led_data, cdev);
switch (led->id) {
case QPNP_ID_LED_MPP:
pwm_cfg = led->mpp_cfg->pwm_cfg;
break;
case QPNP_ID_RGB_RED:
case QPNP_ID_RGB_GREEN:
case QPNP_ID_RGB_BLUE:
pwm_cfg = led->rgb_cfg->pwm_cfg;
break;
case QPNP_ID_KPDBL:
pwm_cfg = led->kpdbl_cfg->pwm_cfg;
break;
default:
dev_err(&led->spmi_dev->dev,
"Invalid LED id type for ramp step\n");
return -EINVAL;
}
if (pwm_cfg->mode == LPG_MODE)
pwm_cfg->blinking = true;
previous_ramp_step_ms = pwm_cfg->lut_params.ramp_step_ms;
pwm_free(pwm_cfg->pwm_dev);
pwm_cfg->lut_params.ramp_step_ms = ramp_step_ms;
ret = qpnp_pwm_init(pwm_cfg, led->spmi_dev, led->cdev.name);
if (ret) {
pwm_cfg->lut_params.ramp_step_ms = previous_ramp_step_ms;
pwm_free(pwm_cfg->pwm_dev);
qpnp_pwm_init(pwm_cfg, led->spmi_dev, led->cdev.name);
qpnp_led_set(&led->cdev, led->cdev.brightness);
dev_err(&led->spmi_dev->dev,
"Failed to initialize pwm with new ramp step value\n");
return ret;
}
qpnp_led_set(&led->cdev, led->cdev.brightness);
return count;
}
static ssize_t lut_flags_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct qpnp_led_data *led;
u32 lut_flags;
struct led_classdev *led_cdev = dev_get_drvdata(dev);
ssize_t ret;
u32 previous_lut_flags;
struct pwm_config_data *pwm_cfg;
ret = kstrtou32(buf, 10, &lut_flags);
if (ret)
return ret;
led = container_of(led_cdev, struct qpnp_led_data, cdev);
switch (led->id) {
case QPNP_ID_LED_MPP:
pwm_cfg = led->mpp_cfg->pwm_cfg;
break;
case QPNP_ID_RGB_RED:
case QPNP_ID_RGB_GREEN:
case QPNP_ID_RGB_BLUE:
pwm_cfg = led->rgb_cfg->pwm_cfg;
break;
case QPNP_ID_KPDBL:
pwm_cfg = led->kpdbl_cfg->pwm_cfg;
break;
default:
dev_err(&led->spmi_dev->dev,
"Invalid LED id type for lut flags\n");
return -EINVAL;
}
if (pwm_cfg->mode == LPG_MODE)
pwm_cfg->blinking = true;
previous_lut_flags = pwm_cfg->lut_params.flags;
pwm_free(pwm_cfg->pwm_dev);
pwm_cfg->lut_params.flags = lut_flags;
ret = qpnp_pwm_init(pwm_cfg, led->spmi_dev, led->cdev.name);
if (ret) {
pwm_cfg->lut_params.flags = previous_lut_flags;
pwm_free(pwm_cfg->pwm_dev);
qpnp_pwm_init(pwm_cfg, led->spmi_dev, led->cdev.name);
qpnp_led_set(&led->cdev, led->cdev.brightness);
dev_err(&led->spmi_dev->dev,
"Failed to initialize pwm with new lut flags value\n");
return ret;
}
qpnp_led_set(&led->cdev, led->cdev.brightness);
return count;
}
static ssize_t duty_pcts_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct qpnp_led_data *led;
int num_duty_pcts = 0;
struct led_classdev *led_cdev = dev_get_drvdata(dev);
char *buffer;
ssize_t ret;
int i = 0;
int max_duty_pcts;
struct pwm_config_data *pwm_cfg;
u32 previous_num_duty_pcts;
int value;
int *previous_duty_pcts;
led = container_of(led_cdev, struct qpnp_led_data, cdev);
switch (led->id) {
case QPNP_ID_LED_MPP:
pwm_cfg = led->mpp_cfg->pwm_cfg;
max_duty_pcts = PWM_LUT_MAX_SIZE;
break;
case QPNP_ID_RGB_RED:
case QPNP_ID_RGB_GREEN:
case QPNP_ID_RGB_BLUE:
pwm_cfg = led->rgb_cfg->pwm_cfg;
max_duty_pcts = PWM_LUT_MAX_SIZE;
break;
case QPNP_ID_KPDBL:
pwm_cfg = led->kpdbl_cfg->pwm_cfg;
max_duty_pcts = PWM_GPLED_LUT_MAX_SIZE;
break;
default:
dev_err(&led->spmi_dev->dev,
"Invalid LED id type for duty pcts\n");
return -EINVAL;
}
if (pwm_cfg->mode == LPG_MODE)
pwm_cfg->blinking = true;
buffer = (char *)buf;
for (i = 0; i < max_duty_pcts; i++) {
if (buffer == NULL)
break;
ret = sscanf((const char *)buffer, "%u,%s", &value, buffer);
pwm_cfg->old_duty_pcts[i] = value;
num_duty_pcts++;
if (ret <= 1)
break;
}
if (num_duty_pcts >= max_duty_pcts) {
dev_err(&led->spmi_dev->dev,
"Number of duty pcts given exceeds max (%d)\n",
max_duty_pcts);
return -EINVAL;
}
previous_num_duty_pcts = pwm_cfg->duty_cycles->num_duty_pcts;
previous_duty_pcts = pwm_cfg->duty_cycles->duty_pcts;
pwm_cfg->duty_cycles->num_duty_pcts = num_duty_pcts;
pwm_cfg->duty_cycles->duty_pcts = pwm_cfg->old_duty_pcts;
pwm_cfg->old_duty_pcts = previous_duty_pcts;
pwm_cfg->lut_params.idx_len = pwm_cfg->duty_cycles->num_duty_pcts;
pwm_free(pwm_cfg->pwm_dev);
ret = qpnp_pwm_init(pwm_cfg, led->spmi_dev, led->cdev.name);
if (ret)
goto restore;
qpnp_led_set(&led->cdev, led->cdev.brightness);
return count;
restore:
dev_err(&led->spmi_dev->dev,
"Failed to initialize pwm with new duty pcts value\n");
pwm_cfg->duty_cycles->num_duty_pcts = previous_num_duty_pcts;
pwm_cfg->old_duty_pcts = pwm_cfg->duty_cycles->duty_pcts;
pwm_cfg->duty_cycles->duty_pcts = previous_duty_pcts;
pwm_cfg->lut_params.idx_len = pwm_cfg->duty_cycles->num_duty_pcts;
pwm_free(pwm_cfg->pwm_dev);
qpnp_pwm_init(pwm_cfg, led->spmi_dev, led->cdev.name);
qpnp_led_set(&led->cdev, led->cdev.brightness);
return ret;
}
static void led_blink(struct qpnp_led_data *led,
struct pwm_config_data *pwm_cfg)
{
int rc;
flush_work(&led->work);
mutex_lock(&led->lock);
if (pwm_cfg->use_blink) {
if (led->cdev.brightness) {
pwm_cfg->blinking = true;
if (led->id == QPNP_ID_LED_MPP)
led->mpp_cfg->pwm_mode = LPG_MODE;
else if (led->id == QPNP_ID_KPDBL)
led->kpdbl_cfg->pwm_mode = LPG_MODE;
pwm_cfg->mode = LPG_MODE;
} else {
pwm_cfg->blinking = false;
pwm_cfg->mode = pwm_cfg->default_mode;
if (led->id == QPNP_ID_LED_MPP)
led->mpp_cfg->pwm_mode = pwm_cfg->default_mode;
else if (led->id == QPNP_ID_KPDBL)
led->kpdbl_cfg->pwm_mode =
pwm_cfg->default_mode;
}
pwm_free(pwm_cfg->pwm_dev);
qpnp_pwm_init(pwm_cfg, led->spmi_dev, led->cdev.name);
if (led->id == QPNP_ID_RGB_RED || led->id == QPNP_ID_RGB_GREEN
|| led->id == QPNP_ID_RGB_BLUE) {
rc = qpnp_rgb_set(led);
if (rc < 0)
dev_err(&led->spmi_dev->dev,
"RGB set brightness failed (%d)\n", rc);
} else if (led->id == QPNP_ID_LED_MPP) {
rc = qpnp_mpp_set(led);
if (rc < 0)
dev_err(&led->spmi_dev->dev,
"MPP set brightness failed (%d)\n", rc);
} else if (led->id == QPNP_ID_KPDBL) {
rc = qpnp_kpdbl_set(led);
if (rc < 0)
dev_err(&led->spmi_dev->dev,
"KPDBL set brightness failed (%d)\n", rc);
}
}
mutex_unlock(&led->lock);
}
static ssize_t blink_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct qpnp_led_data *led;
unsigned long blinking;
struct led_classdev *led_cdev = dev_get_drvdata(dev);
ssize_t ret = -EINVAL;
ret = kstrtoul(buf, 10, &blinking);
if (ret)
return ret;
led = container_of(led_cdev, struct qpnp_led_data, cdev);
led->cdev.brightness = blinking ? led->cdev.max_brightness : 0;
switch (led->id) {
case QPNP_ID_LED_MPP:
led_blink(led, led->mpp_cfg->pwm_cfg);
break;
case QPNP_ID_RGB_RED:
case QPNP_ID_RGB_GREEN:
case QPNP_ID_RGB_BLUE:
led_blink(led, led->rgb_cfg->pwm_cfg);
break;
case QPNP_ID_KPDBL:
led_blink(led, led->kpdbl_cfg->pwm_cfg);
break;
default:
dev_err(&led->spmi_dev->dev, "Invalid LED id type for blink\n");
return -EINVAL;
}
return count;
}
static DEVICE_ATTR(led_mode, 0664, NULL, led_mode_store);
static DEVICE_ATTR(strobe, 0664, NULL, led_strobe_type_store);
static DEVICE_ATTR(pwm_us, 0664, NULL, pwm_us_store);
static DEVICE_ATTR(pause_lo, 0664, NULL, pause_lo_store);
static DEVICE_ATTR(pause_hi, 0664, NULL, pause_hi_store);
static DEVICE_ATTR(start_idx, 0664, NULL, start_idx_store);
static DEVICE_ATTR(ramp_step_ms, 0664, NULL, ramp_step_ms_store);
static DEVICE_ATTR(lut_flags, 0664, NULL, lut_flags_store);
static DEVICE_ATTR(duty_pcts, 0664, NULL, duty_pcts_store);
static DEVICE_ATTR(blink, 0664, NULL, blink_store);
static struct attribute *led_attrs[] = {
&dev_attr_led_mode.attr,
&dev_attr_strobe.attr,
NULL
};
static const struct attribute_group led_attr_group = {
.attrs = led_attrs,
};
static struct attribute *pwm_attrs[] = {
&dev_attr_pwm_us.attr,
NULL
};
static struct attribute *lpg_attrs[] = {
&dev_attr_pause_lo.attr,
&dev_attr_pause_hi.attr,
&dev_attr_start_idx.attr,
&dev_attr_ramp_step_ms.attr,
&dev_attr_lut_flags.attr,
&dev_attr_duty_pcts.attr,
NULL
};
static struct attribute *blink_attrs[] = {
&dev_attr_blink.attr,
NULL
};
static const struct attribute_group pwm_attr_group = {
.attrs = pwm_attrs,
};
static const struct attribute_group lpg_attr_group = {
.attrs = lpg_attrs,
};
static const struct attribute_group blink_attr_group = {
.attrs = blink_attrs,
};
static int qpnp_flash_init(struct qpnp_led_data *led)
{
int rc;
led->flash_cfg->flash_on = false;
rc = qpnp_led_masked_write(led,
FLASH_LED_STROBE_CTRL(led->base),
FLASH_STROBE_MASK, FLASH_DISABLE_ALL);
if (rc) {
dev_err(&led->spmi_dev->dev,
"LED %d flash write failed(%d)\n", led->id, rc);
return rc;
}
/* Disable flash LED module */
rc = qpnp_led_masked_write(led, FLASH_ENABLE_CONTROL(led->base),
FLASH_ENABLE_MASK, FLASH_DISABLE_ALL);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Enable reg write failed(%d)\n", rc);
return rc;
}
if (led->flash_cfg->torch_enable)
return 0;
/* Set headroom */
rc = qpnp_led_masked_write(led, FLASH_HEADROOM(led->base),
FLASH_HEADROOM_MASK, led->flash_cfg->headroom);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Headroom reg write failed(%d)\n", rc);
return rc;
}
/* Set startup delay */
rc = qpnp_led_masked_write(led,
FLASH_STARTUP_DELAY(led->base), FLASH_STARTUP_DLY_MASK,
led->flash_cfg->startup_dly);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Startup delay reg write failed(%d)\n", rc);
return rc;
}
/* Set timer control - safety or watchdog */
if (led->flash_cfg->safety_timer) {
rc = qpnp_led_masked_write(led,
FLASH_LED_TMR_CTRL(led->base),
FLASH_TMR_MASK, FLASH_TMR_SAFETY);
if (rc) {
dev_err(&led->spmi_dev->dev,
"LED timer ctrl reg write failed(%d)\n",
rc);
return rc;
}
}
/* Set Vreg force */
if (led->flash_cfg->vreg_ok)
rc = qpnp_led_masked_write(led, FLASH_VREG_OK_FORCE(led->base),
FLASH_VREG_MASK, FLASH_SW_VREG_OK);
else
rc = qpnp_led_masked_write(led, FLASH_VREG_OK_FORCE(led->base),
FLASH_VREG_MASK, FLASH_HW_VREG_OK);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Vreg OK reg write failed(%d)\n", rc);
return rc;
}
/* Set self fault check */
rc = qpnp_led_masked_write(led, FLASH_FAULT_DETECT(led->base),
FLASH_FAULT_DETECT_MASK, FLASH_SELFCHECK_ENABLE);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Fault detect reg write failed(%d)\n", rc);
return rc;
}
/* Set mask enable */
rc = qpnp_led_masked_write(led, FLASH_MASK_ENABLE(led->base),
FLASH_MASK_REG_MASK, FLASH_MASK_1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Mask enable reg write failed(%d)\n", rc);
return rc;
}
/* Set current ramp */
rc = qpnp_led_masked_write(led, FLASH_CURRENT_RAMP(led->base),
FLASH_CURRENT_RAMP_MASK, FLASH_RAMP_STEP_27US);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Current ramp reg write failed(%d)\n", rc);
return rc;
}
led->flash_cfg->strobe_type = 0;
/* dump flash registers */
qpnp_dump_regs(led, flash_debug_regs, ARRAY_SIZE(flash_debug_regs));
return 0;
}
static int qpnp_kpdbl_init(struct qpnp_led_data *led)
{
int rc;
u8 val;
/* select row source - vbst or vph */
rc = spmi_ext_register_readl(led->spmi_dev->ctrl, led->spmi_dev->sid,
KPDBL_ROW_SRC_SEL(led->base), &val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Unable to read from addr=%x, rc(%d)\n",
KPDBL_ROW_SRC_SEL(led->base), rc);
return rc;
}
if (led->kpdbl_cfg->row_src_vbst)
val |= 1 << led->kpdbl_cfg->row_id;
else
val &= ~(1 << led->kpdbl_cfg->row_id);
rc = spmi_ext_register_writel(led->spmi_dev->ctrl, led->spmi_dev->sid,
KPDBL_ROW_SRC_SEL(led->base), &val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Unable to read from addr=%x, rc(%d)\n",
KPDBL_ROW_SRC_SEL(led->base), rc);
return rc;
}
/* row source enable */
rc = spmi_ext_register_readl(led->spmi_dev->ctrl, led->spmi_dev->sid,
KPDBL_ROW_SRC(led->base), &val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Unable to read from addr=%x, rc(%d)\n",
KPDBL_ROW_SRC(led->base), rc);
return rc;
}
if (led->kpdbl_cfg->row_src_en)
val |= KPDBL_ROW_SCAN_EN_MASK | (1 << led->kpdbl_cfg->row_id);
else
val &= ~(1 << led->kpdbl_cfg->row_id);
rc = spmi_ext_register_writel(led->spmi_dev->ctrl, led->spmi_dev->sid,
KPDBL_ROW_SRC(led->base), &val, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Unable to write to addr=%x, rc(%d)\n",
KPDBL_ROW_SRC(led->base), rc);
return rc;
}
/* enable module */
rc = qpnp_led_masked_write(led, KPDBL_ENABLE(led->base),
KPDBL_MODULE_EN_MASK, KPDBL_MODULE_EN);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Enable module write failed(%d)\n", rc);
return rc;
}
rc = qpnp_pwm_init(led->kpdbl_cfg->pwm_cfg, led->spmi_dev,
led->cdev.name);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to initialize pwm\n");
return rc;
}
if (led->kpdbl_cfg->always_on) {
kpdbl_master = led->kpdbl_cfg->pwm_cfg->pwm_dev;
kpdbl_master_period_us = led->kpdbl_cfg->pwm_cfg->pwm_period_us;
}
/* dump kpdbl registers */
qpnp_dump_regs(led, kpdbl_debug_regs, ARRAY_SIZE(kpdbl_debug_regs));
return 0;
}
static int qpnp_rgb_init(struct qpnp_led_data *led)
{
int rc;
rc = qpnp_led_masked_write(led, RGB_LED_SRC_SEL(led->base),
RGB_LED_SRC_MASK, RGB_LED_SOURCE_VPH_PWR);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to write led source select register\n");
return rc;
}
rc = qpnp_pwm_init(led->rgb_cfg->pwm_cfg, led->spmi_dev,
led->cdev.name);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to initialize pwm\n");
return rc;
}
/* Initialize led for use in auto trickle charging mode */
rc = qpnp_led_masked_write(led, RGB_LED_ATC_CTL(led->base),
led->rgb_cfg->enable, led->rgb_cfg->enable);
return 0;
}
static int qpnp_mpp_init(struct qpnp_led_data *led)
{
int rc;
u8 val;
if (led->max_current < LED_MPP_CURRENT_MIN ||
led->max_current > LED_MPP_CURRENT_MAX) {
dev_err(&led->spmi_dev->dev,
"max current for mpp is not valid\n");
return -EINVAL;
}
val = (led->mpp_cfg->current_setting / LED_MPP_CURRENT_PER_SETTING) - 1;
if (val < 0)
val = 0;
rc = qpnp_led_masked_write(led, LED_MPP_VIN_CTRL(led->base),
LED_MPP_VIN_MASK, led->mpp_cfg->vin_ctrl);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to write led vin control reg\n");
return rc;
}
rc = qpnp_led_masked_write(led, LED_MPP_SINK_CTRL(led->base),
LED_MPP_SINK_MASK, val);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to write sink control reg\n");
return rc;
}
if (led->mpp_cfg->pwm_mode != MANUAL_MODE) {
rc = qpnp_pwm_init(led->mpp_cfg->pwm_cfg, led->spmi_dev,
led->cdev.name);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to initialize pwm\n");
return rc;
}
}
return 0;
}
static int qpnp_gpio_init(struct qpnp_led_data *led)
{
int rc;
rc = qpnp_led_masked_write(led, LED_GPIO_VIN_CTRL(led->base),
LED_GPIO_VIN_MASK, led->gpio_cfg->vin_ctrl);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failed to write led vin control reg\n");
return rc;
}
return 0;
}
static int qpnp_led_initialize(struct qpnp_led_data *led)
{
int rc = 0;
switch (led->id) {
case QPNP_ID_WLED:
rc = qpnp_wled_init(led);
if (rc)
dev_err(&led->spmi_dev->dev,
"WLED initialize failed(%d)\n", rc);
break;
case QPNP_ID_FLASH1_LED0:
case QPNP_ID_FLASH1_LED1:
rc = qpnp_flash_init(led);
if (rc)
dev_err(&led->spmi_dev->dev,
"FLASH initialize failed(%d)\n", rc);
break;
case QPNP_ID_RGB_RED:
case QPNP_ID_RGB_GREEN:
case QPNP_ID_RGB_BLUE:
rc = qpnp_rgb_init(led);
if (rc)
dev_err(&led->spmi_dev->dev,
"RGB initialize failed(%d)\n", rc);
break;
case QPNP_ID_LED_MPP:
rc = qpnp_mpp_init(led);
if (rc)
dev_err(&led->spmi_dev->dev,
"MPP initialize failed(%d)\n", rc);
break;
case QPNP_ID_LED_GPIO:
rc = qpnp_gpio_init(led);
if (rc)
dev_err(&led->spmi_dev->dev,
"GPIO initialize failed(%d)\n", rc);
break;
case QPNP_ID_KPDBL:
rc = qpnp_kpdbl_init(led);
if (rc)
dev_err(&led->spmi_dev->dev,
"KPDBL initialize failed(%d)\n", rc);
break;
default:
dev_err(&led->spmi_dev->dev, "Invalid LED(%d)\n", led->id);
return -EINVAL;
}
return rc;
}
static int qpnp_get_common_configs(struct qpnp_led_data *led,
struct device_node *node)
{
int rc;
u32 val;
const char *temp_string;
led->cdev.default_trigger = LED_TRIGGER_DEFAULT;
rc = of_property_read_string(node, "linux,default-trigger",
&temp_string);
if (!rc)
led->cdev.default_trigger = temp_string;
else if (rc != -EINVAL)
return rc;
led->default_on = false;
rc = of_property_read_string(node, "qcom,default-state",
&temp_string);
if (!rc) {
if (strncmp(temp_string, "on", sizeof("on")) == 0)
led->default_on = true;
} else if (rc != -EINVAL)
return rc;
led->turn_off_delay_ms = 0;
rc = of_property_read_u32(node, "qcom,turn-off-delay-ms", &val);
if (!rc)
led->turn_off_delay_ms = val;
else if (rc != -EINVAL)
return rc;
return 0;
}
/*
* Handlers for alternative sources of platform_data
*/
static int qpnp_get_config_wled(struct qpnp_led_data *led,
struct device_node *node)
{
u32 val;
int rc;
led->wled_cfg = devm_kzalloc(&led->spmi_dev->dev,
sizeof(struct wled_config_data), GFP_KERNEL);
if (!led->wled_cfg) {
dev_err(&led->spmi_dev->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
rc = spmi_ext_register_readl(led->spmi_dev->ctrl, led->spmi_dev->sid,
PMIC_VERSION_REG, &led->wled_cfg->pmic_version, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Unable to read pmic ver, rc(%d)\n", rc);
}
led->wled_cfg->num_strings = WLED_DEFAULT_STRINGS;
rc = of_property_read_u32(node, "qcom,num-strings", &val);
if (!rc)
led->wled_cfg->num_strings = (u8) val;
else if (rc != -EINVAL)
return rc;
led->wled_cfg->num_physical_strings = led->wled_cfg->num_strings;
rc = of_property_read_u32(node, "qcom,num-physical-strings", &val);
if (!rc)
led->wled_cfg->num_physical_strings = (u8) val;
else if (rc != -EINVAL)
return rc;
led->wled_cfg->ovp_val = WLED_DEFAULT_OVP_VAL;
rc = of_property_read_u32(node, "qcom,ovp-val", &val);
if (!rc)
led->wled_cfg->ovp_val = (u8) val;
else if (rc != -EINVAL)
return rc;
led->wled_cfg->boost_curr_lim = WLED_BOOST_LIM_DEFAULT;
rc = of_property_read_u32(node, "qcom,boost-curr-lim", &val);
if (!rc)
led->wled_cfg->boost_curr_lim = (u8) val;
else if (rc != -EINVAL)
return rc;
led->wled_cfg->cp_select = WLED_CP_SEL_DEFAULT;
rc = of_property_read_u32(node, "qcom,cp-sel", &val);
if (!rc)
led->wled_cfg->cp_select = (u8) val;
else if (rc != -EINVAL)
return rc;
led->wled_cfg->ctrl_delay_us = WLED_CTRL_DLY_DEFAULT;
rc = of_property_read_u32(node, "qcom,ctrl-delay-us", &val);
if (!rc)
led->wled_cfg->ctrl_delay_us = (u8) val;
else if (rc != -EINVAL)
return rc;
led->wled_cfg->op_fdbck = WLED_OP_FDBCK_DEFAULT;
rc = of_property_read_u32(node, "qcom,op-fdbck", &val);
if (!rc)
led->wled_cfg->op_fdbck = (u8) val;
else if (rc != -EINVAL)
return rc;
led->wled_cfg->switch_freq = WLED_SWITCH_FREQ_DEFAULT;
rc = of_property_read_u32(node, "qcom,switch-freq", &val);
if (!rc)
led->wled_cfg->switch_freq = (u8) val;
else if (rc != -EINVAL)
return rc;
led->wled_cfg->dig_mod_gen_en =
of_property_read_bool(node, "qcom,dig-mod-gen-en");
led->wled_cfg->cs_out_en =
of_property_read_bool(node, "qcom,cs-out-en");
return 0;
}
static int qpnp_get_config_flash(struct qpnp_led_data *led,
struct device_node *node, bool *reg_set)
{
int rc;
u32 val;
led->flash_cfg = devm_kzalloc(&led->spmi_dev->dev,
sizeof(struct flash_config_data), GFP_KERNEL);
if (!led->flash_cfg) {
dev_err(&led->spmi_dev->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
rc = spmi_ext_register_readl(led->spmi_dev->ctrl, led->spmi_dev->sid,
FLASH_PERIPHERAL_SUBTYPE(led->base),
&led->flash_cfg->peripheral_subtype, 1);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Unable to read from addr=%x, rc(%d)\n",
FLASH_PERIPHERAL_SUBTYPE(led->base), rc);
}
led->flash_cfg->torch_enable =
of_property_read_bool(node, "qcom,torch-enable");
led->flash_cfg->no_smbb_support =
of_property_read_bool(node, "qcom,no-smbb-support");
if (of_find_property(of_get_parent(node), "flash-wa-supply",
NULL) && (!*reg_set)) {
led->flash_cfg->flash_wa_reg =
devm_regulator_get(&led->spmi_dev->dev, "flash-wa");
if (IS_ERR_OR_NULL(led->flash_cfg->flash_wa_reg)) {
rc = PTR_ERR(led->flash_cfg->flash_wa_reg);
if (rc != EPROBE_DEFER) {
dev_err(&led->spmi_dev->dev,
"Flash wa regulator get failed(%d)\n",
rc);
}
} else {
led->flash_cfg->flash_wa_reg_get = true;
}
}
if (led->id == QPNP_ID_FLASH1_LED0) {
led->flash_cfg->enable_module = FLASH_ENABLE_LED_0;
led->flash_cfg->current_addr = FLASH_LED_0_CURR(led->base);
led->flash_cfg->trigger_flash = FLASH_LED_0_OUTPUT;
if (!*reg_set) {
led->flash_cfg->flash_boost_reg =
regulator_get(&led->spmi_dev->dev,
"flash-boost");
if (IS_ERR(led->flash_cfg->flash_boost_reg)) {
rc = PTR_ERR(led->flash_cfg->flash_boost_reg);
dev_err(&led->spmi_dev->dev,
"Regulator get failed(%d)\n", rc);
goto error_get_flash_reg;
}
led->flash_cfg->flash_reg_get = true;
*reg_set = true;
} else
led->flash_cfg->flash_reg_get = false;
if (led->flash_cfg->torch_enable) {
led->flash_cfg->second_addr =
FLASH_LED_1_CURR(led->base);
}
} else if (led->id == QPNP_ID_FLASH1_LED1) {
led->flash_cfg->enable_module = FLASH_ENABLE_LED_1;
led->flash_cfg->current_addr = FLASH_LED_1_CURR(led->base);
led->flash_cfg->trigger_flash = FLASH_LED_1_OUTPUT;
if (!*reg_set) {
led->flash_cfg->flash_boost_reg =
regulator_get(&led->spmi_dev->dev,
"flash-boost");
if (IS_ERR(led->flash_cfg->flash_boost_reg)) {
rc = PTR_ERR(led->flash_cfg->flash_boost_reg);
dev_err(&led->spmi_dev->dev,
"Regulator get failed(%d)\n", rc);
goto error_get_flash_reg;
}
led->flash_cfg->flash_reg_get = true;
*reg_set = true;
} else
led->flash_cfg->flash_reg_get = false;
if (led->flash_cfg->torch_enable) {
led->flash_cfg->second_addr =
FLASH_LED_0_CURR(led->base);
}
} else {
dev_err(&led->spmi_dev->dev, "Unknown flash LED name given\n");
return -EINVAL;
}
if (led->flash_cfg->torch_enable) {
if (of_find_property(of_get_parent(node), "torch-boost-supply",
NULL)) {
if (!led->flash_cfg->no_smbb_support) {
led->flash_cfg->torch_boost_reg =
regulator_get(&led->spmi_dev->dev,
"torch-boost");
if (IS_ERR(led->flash_cfg->torch_boost_reg)) {
rc = PTR_ERR(led->flash_cfg->
torch_boost_reg);
dev_err(&led->spmi_dev->dev,
"Torch regulator get failed(%d)\n", rc);
goto error_get_torch_reg;
}
}
led->flash_cfg->enable_module = FLASH_ENABLE_MODULE;
} else
led->flash_cfg->enable_module = FLASH_ENABLE_ALL;
led->flash_cfg->trigger_flash = FLASH_TORCH_OUTPUT;
rc = of_property_read_u32(node, "qcom,duration", &val);
if (!rc)
led->flash_cfg->duration = ((u8) val) - 2;
else if (rc == -EINVAL)
led->flash_cfg->duration = TORCH_DURATION_12s;
else {
if (led->flash_cfg->peripheral_subtype ==
FLASH_SUBTYPE_SINGLE)
goto error_get_flash_reg;
else if (led->flash_cfg->peripheral_subtype ==
FLASH_SUBTYPE_DUAL)
goto error_get_torch_reg;
}
rc = of_property_read_u32(node, "qcom,current", &val);
if (!rc)
led->flash_cfg->current_prgm = (val *
TORCH_MAX_LEVEL / led->max_current);
else {
if (led->flash_cfg->peripheral_subtype ==
FLASH_SUBTYPE_SINGLE)
goto error_get_flash_reg;
else if (led->flash_cfg->peripheral_subtype ==
FLASH_SUBTYPE_DUAL)
goto error_get_torch_reg;
goto error_get_torch_reg;
}
return 0;
} else {
rc = of_property_read_u32(node, "qcom,duration", &val);
if (!rc)
led->flash_cfg->duration = (u8)((val - 10) / 10);
else if (rc == -EINVAL)
led->flash_cfg->duration = FLASH_DURATION_200ms;
else
goto error_get_flash_reg;
rc = of_property_read_u32(node, "qcom,current", &val);
if (!rc)
led->flash_cfg->current_prgm = (val *
FLASH_MAX_LEVEL / led->max_current);
else
goto error_get_flash_reg;
}
rc = of_property_read_u32(node, "qcom,headroom", &val);
if (!rc)
led->flash_cfg->headroom = (u8) val;
else if (rc == -EINVAL)
led->flash_cfg->headroom = HEADROOM_500mV;
else
goto error_get_flash_reg;
rc = of_property_read_u32(node, "qcom,clamp-curr", &val);
if (!rc)
led->flash_cfg->clamp_curr = (val *
FLASH_MAX_LEVEL / led->max_current);
else if (rc == -EINVAL)
led->flash_cfg->clamp_curr = FLASH_CLAMP_200mA;
else
goto error_get_flash_reg;
rc = of_property_read_u32(node, "qcom,startup-dly", &val);
if (!rc)
led->flash_cfg->startup_dly = (u8) val;
else if (rc == -EINVAL)
led->flash_cfg->startup_dly = DELAY_128us;
else
goto error_get_flash_reg;
led->flash_cfg->safety_timer =
of_property_read_bool(node, "qcom,safety-timer");
led->flash_cfg->vreg_ok =
of_property_read_bool(node, "qcom,sw_vreg_ok");
return 0;
error_get_torch_reg:
if (led->flash_cfg->no_smbb_support)
regulator_put(led->flash_cfg->flash_boost_reg);
else
regulator_put(led->flash_cfg->torch_boost_reg);
error_get_flash_reg:
regulator_put(led->flash_cfg->flash_boost_reg);
return rc;
}
static int qpnp_get_config_pwm(struct pwm_config_data *pwm_cfg,
struct spmi_device *spmi_dev,
struct device_node *node)
{
struct property *prop;
int rc, i, lut_max_size;
u32 val;
u8 *temp_cfg;
const char *led_label;
pwm_cfg->pwm_dev = of_pwm_get(node, NULL);
if (IS_ERR(pwm_cfg->pwm_dev)) {
rc = PTR_ERR(pwm_cfg->pwm_dev);
dev_err(&spmi_dev->dev, "Cannot get PWM device rc:(%d)\n", rc);
pwm_cfg->pwm_dev = NULL;
return rc;
}
if (pwm_cfg->mode != MANUAL_MODE) {
rc = of_property_read_u32(node, "qcom,pwm-us", &val);
if (!rc)
pwm_cfg->pwm_period_us = val;
else
return rc;
}
pwm_cfg->use_blink =
of_property_read_bool(node, "qcom,use-blink");
if (pwm_cfg->mode == LPG_MODE || pwm_cfg->use_blink) {
pwm_cfg->duty_cycles =
devm_kzalloc(&spmi_dev->dev,
sizeof(struct pwm_duty_cycles), GFP_KERNEL);
if (!pwm_cfg->duty_cycles) {
dev_err(&spmi_dev->dev,
"Unable to allocate memory\n");
rc = -ENOMEM;
goto bad_lpg_params;
}
prop = of_find_property(node, "qcom,duty-pcts",
&pwm_cfg->duty_cycles->num_duty_pcts);
if (!prop) {
dev_err(&spmi_dev->dev, "Looking up property " \
"node qcom,duty-pcts failed\n");
rc = -ENODEV;
goto bad_lpg_params;
} else if (!pwm_cfg->duty_cycles->num_duty_pcts) {
dev_err(&spmi_dev->dev, "Invalid length of " \
"duty pcts\n");
rc = -EINVAL;
goto bad_lpg_params;
}
rc = of_property_read_string(node, "label", &led_label);
if (rc < 0) {
dev_err(&spmi_dev->dev,
"Failure reading label, rc = %d\n", rc);
return rc;
}
if (strcmp(led_label, "kpdbl") == 0)
lut_max_size = PWM_GPLED_LUT_MAX_SIZE;
else
lut_max_size = PWM_LUT_MAX_SIZE;
pwm_cfg->duty_cycles->duty_pcts =
devm_kzalloc(&spmi_dev->dev,
sizeof(int) * lut_max_size,
GFP_KERNEL);
if (!pwm_cfg->duty_cycles->duty_pcts) {
dev_err(&spmi_dev->dev,
"Unable to allocate memory\n");
rc = -ENOMEM;
goto bad_lpg_params;
}
pwm_cfg->old_duty_pcts =
devm_kzalloc(&spmi_dev->dev,
sizeof(int) * lut_max_size,
GFP_KERNEL);
if (!pwm_cfg->old_duty_pcts) {
dev_err(&spmi_dev->dev,
"Unable to allocate memory\n");
rc = -ENOMEM;
goto bad_lpg_params;
}
temp_cfg = devm_kzalloc(&spmi_dev->dev,
pwm_cfg->duty_cycles->num_duty_pcts *
sizeof(u8), GFP_KERNEL);
if (!temp_cfg) {
dev_err(&spmi_dev->dev, "Failed to allocate " \
"memory for duty pcts\n");
rc = -ENOMEM;
goto bad_lpg_params;
}
memcpy(temp_cfg, prop->value,
pwm_cfg->duty_cycles->num_duty_pcts);
for (i = 0; i < pwm_cfg->duty_cycles->num_duty_pcts; i++)
pwm_cfg->duty_cycles->duty_pcts[i] =
(int) temp_cfg[i];
rc = of_property_read_u32(node, "qcom,start-idx", &val);
if (!rc) {
pwm_cfg->lut_params.start_idx = val;
pwm_cfg->duty_cycles->start_idx = val;
} else
goto bad_lpg_params;
pwm_cfg->lut_params.lut_pause_hi = 0;
rc = of_property_read_u32(node, "qcom,pause-hi", &val);
if (!rc)
pwm_cfg->lut_params.lut_pause_hi = val;
else if (rc != -EINVAL)
goto bad_lpg_params;
pwm_cfg->lut_params.lut_pause_lo = 0;
rc = of_property_read_u32(node, "qcom,pause-lo", &val);
if (!rc)
pwm_cfg->lut_params.lut_pause_lo = val;
else if (rc != -EINVAL)
goto bad_lpg_params;
pwm_cfg->lut_params.ramp_step_ms =
QPNP_LUT_RAMP_STEP_DEFAULT;
rc = of_property_read_u32(node, "qcom,ramp-step-ms", &val);
if (!rc)
pwm_cfg->lut_params.ramp_step_ms = val;
else if (rc != -EINVAL)
goto bad_lpg_params;
pwm_cfg->lut_params.flags = QPNP_LED_PWM_FLAGS;
rc = of_property_read_u32(node, "qcom,lut-flags", &val);
if (!rc)
pwm_cfg->lut_params.flags = (u8) val;
else if (rc != -EINVAL)
goto bad_lpg_params;
pwm_cfg->lut_params.idx_len =
pwm_cfg->duty_cycles->num_duty_pcts;
}
return 0;
bad_lpg_params:
pwm_cfg->use_blink = false;
if (pwm_cfg->mode == PWM_MODE) {
dev_err(&spmi_dev->dev, "LPG parameters not set for" \
" blink mode, defaulting to PWM mode\n");
return 0;
}
return rc;
};
static int qpnp_led_get_mode(const char *mode)
{
if (strncmp(mode, "manual", strlen(mode)) == 0)
return MANUAL_MODE;
else if (strncmp(mode, "pwm", strlen(mode)) == 0)
return PWM_MODE;
else if (strncmp(mode, "lpg", strlen(mode)) == 0)
return LPG_MODE;
else
return -EINVAL;
};
static int qpnp_get_config_kpdbl(struct qpnp_led_data *led,
struct device_node *node)
{
int rc;
u32 val;
u8 led_mode;
const char *mode;
led->kpdbl_cfg = devm_kzalloc(&led->spmi_dev->dev,
sizeof(struct kpdbl_config_data), GFP_KERNEL);
if (!led->kpdbl_cfg) {
dev_err(&led->spmi_dev->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
rc = of_property_read_string(node, "qcom,mode", &mode);
if (!rc) {
led_mode = qpnp_led_get_mode(mode);
if ((led_mode == MANUAL_MODE) || (led_mode == -EINVAL)) {
dev_err(&led->spmi_dev->dev, "Selected mode not " \
"supported for kpdbl.\n");
return -EINVAL;
}
led->kpdbl_cfg->pwm_cfg = devm_kzalloc(&led->spmi_dev->dev,
sizeof(struct pwm_config_data),
GFP_KERNEL);
if (!led->kpdbl_cfg->pwm_cfg) {
dev_err(&led->spmi_dev->dev,
"Unable to allocate memory\n");
return -ENOMEM;
}
led->kpdbl_cfg->pwm_cfg->mode = led_mode;
led->kpdbl_cfg->pwm_cfg->default_mode = led_mode;
} else
return rc;
rc = qpnp_get_config_pwm(led->kpdbl_cfg->pwm_cfg, led->spmi_dev, node);
if (rc < 0)
return rc;
rc = of_property_read_u32(node, "qcom,row-id", &val);
if (!rc)
led->kpdbl_cfg->row_id = val;
else
return rc;
led->kpdbl_cfg->row_src_vbst =
of_property_read_bool(node, "qcom,row-src-vbst");
led->kpdbl_cfg->row_src_en =
of_property_read_bool(node, "qcom,row-src-en");
led->kpdbl_cfg->always_on =
of_property_read_bool(node, "qcom,always-on");
return 0;
}
static int qpnp_get_config_rgb(struct qpnp_led_data *led,
struct device_node *node)
{
int rc;
u8 led_mode;
const char *mode;
led->rgb_cfg = devm_kzalloc(&led->spmi_dev->dev,
sizeof(struct rgb_config_data), GFP_KERNEL);
if (!led->rgb_cfg) {
dev_err(&led->spmi_dev->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
if (led->id == QPNP_ID_RGB_RED)
led->rgb_cfg->enable = RGB_LED_ENABLE_RED;
else if (led->id == QPNP_ID_RGB_GREEN)
led->rgb_cfg->enable = RGB_LED_ENABLE_GREEN;
else if (led->id == QPNP_ID_RGB_BLUE)
led->rgb_cfg->enable = RGB_LED_ENABLE_BLUE;
else
return -EINVAL;
rc = of_property_read_string(node, "qcom,mode", &mode);
if (!rc) {
led_mode = qpnp_led_get_mode(mode);
if ((led_mode == MANUAL_MODE) || (led_mode == -EINVAL)) {
dev_err(&led->spmi_dev->dev, "Selected mode not " \
"supported for rgb.\n");
return -EINVAL;
}
led->rgb_cfg->pwm_cfg = devm_kzalloc(&led->spmi_dev->dev,
sizeof(struct pwm_config_data),
GFP_KERNEL);
if (!led->rgb_cfg->pwm_cfg) {
dev_err(&led->spmi_dev->dev,
"Unable to allocate memory\n");
return -ENOMEM;
}
led->rgb_cfg->pwm_cfg->mode = led_mode;
led->rgb_cfg->pwm_cfg->default_mode = led_mode;
} else
return rc;
rc = qpnp_get_config_pwm(led->rgb_cfg->pwm_cfg, led->spmi_dev, node);
if (rc < 0)
return rc;
return 0;
}
static int qpnp_get_config_mpp(struct qpnp_led_data *led,
struct device_node *node)
{
int rc;
u32 val;
u8 led_mode;
const char *mode;
led->mpp_cfg = devm_kzalloc(&led->spmi_dev->dev,
sizeof(struct mpp_config_data), GFP_KERNEL);
if (!led->mpp_cfg) {
dev_err(&led->spmi_dev->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
if (of_find_property(of_get_parent(node), "mpp-power-supply", NULL)) {
led->mpp_cfg->mpp_reg =
regulator_get(&led->spmi_dev->dev,
"mpp-power");
if (IS_ERR(led->mpp_cfg->mpp_reg)) {
rc = PTR_ERR(led->mpp_cfg->mpp_reg);
dev_err(&led->spmi_dev->dev,
"MPP regulator get failed(%d)\n", rc);
return rc;
}
}
if (led->mpp_cfg->mpp_reg) {
rc = of_property_read_u32(of_get_parent(node),
"qcom,mpp-power-max-voltage", &val);
if (!rc)
led->mpp_cfg->max_uV = val;
else
goto err_config_mpp;
rc = of_property_read_u32(of_get_parent(node),
"qcom,mpp-power-min-voltage", &val);
if (!rc)
led->mpp_cfg->min_uV = val;
else
goto err_config_mpp;
} else {
rc = of_property_read_u32(of_get_parent(node),
"qcom,mpp-power-max-voltage", &val);
if (!rc)
dev_warn(&led->spmi_dev->dev,
"No regulator specified\n");
rc = of_property_read_u32(of_get_parent(node),
"qcom,mpp-power-min-voltage", &val);
if (!rc)
dev_warn(&led->spmi_dev->dev,
"No regulator specified\n");
}
led->mpp_cfg->current_setting = LED_MPP_CURRENT_MIN;
rc = of_property_read_u32(node, "qcom,current-setting", &val);
if (!rc) {
if (led->mpp_cfg->current_setting < LED_MPP_CURRENT_MIN)
led->mpp_cfg->current_setting = LED_MPP_CURRENT_MIN;
else if (led->mpp_cfg->current_setting > LED_MPP_CURRENT_MAX)
led->mpp_cfg->current_setting = LED_MPP_CURRENT_MAX;
else
led->mpp_cfg->current_setting = (u8) val;
} else if (rc != -EINVAL)
goto err_config_mpp;
led->mpp_cfg->source_sel = LED_MPP_SOURCE_SEL_DEFAULT;
rc = of_property_read_u32(node, "qcom,source-sel", &val);
if (!rc)
led->mpp_cfg->source_sel = (u8) val;
else if (rc != -EINVAL)
goto err_config_mpp;
led->mpp_cfg->mode_ctrl = LED_MPP_MODE_SINK;
rc = of_property_read_u32(node, "qcom,mode-ctrl", &val);
if (!rc)
led->mpp_cfg->mode_ctrl = (u8) val;
else if (rc != -EINVAL)
goto err_config_mpp;
led->mpp_cfg->vin_ctrl = LED_MPP_VIN_CTRL_DEFAULT;
rc = of_property_read_u32(node, "qcom,vin-ctrl", &val);
if (!rc)
led->mpp_cfg->vin_ctrl = (u8) val;
else if (rc != -EINVAL)
goto err_config_mpp;
led->mpp_cfg->min_brightness = 0;
rc = of_property_read_u32(node, "qcom,min-brightness", &val);
if (!rc)
led->mpp_cfg->min_brightness = (u8) val;
else if (rc != -EINVAL)
goto err_config_mpp;
rc = of_property_read_string(node, "qcom,mode", &mode);
if (!rc) {
led_mode = qpnp_led_get_mode(mode);
led->mpp_cfg->pwm_mode = led_mode;
if (led_mode == MANUAL_MODE)
return MANUAL_MODE;
else if (led_mode == -EINVAL) {
dev_err(&led->spmi_dev->dev, "Selected mode not " \
"supported for mpp.\n");
rc = -EINVAL;
goto err_config_mpp;
}
led->mpp_cfg->pwm_cfg = devm_kzalloc(&led->spmi_dev->dev,
sizeof(struct pwm_config_data),
GFP_KERNEL);
if (!led->mpp_cfg->pwm_cfg) {
dev_err(&led->spmi_dev->dev,
"Unable to allocate memory\n");
rc = -ENOMEM;
goto err_config_mpp;
}
led->mpp_cfg->pwm_cfg->mode = led_mode;
led->mpp_cfg->pwm_cfg->default_mode = led_mode;
} else
return rc;
rc = qpnp_get_config_pwm(led->mpp_cfg->pwm_cfg, led->spmi_dev, node);
if (rc < 0)
goto err_config_mpp;
return 0;
err_config_mpp:
if (led->mpp_cfg->mpp_reg)
regulator_put(led->mpp_cfg->mpp_reg);
return rc;
}
static int qpnp_get_config_gpio(struct qpnp_led_data *led,
struct device_node *node)
{
int rc;
u32 val;
led->gpio_cfg = devm_kzalloc(&led->spmi_dev->dev,
sizeof(struct gpio_config_data), GFP_KERNEL);
if (!led->gpio_cfg) {
dev_err(&led->spmi_dev->dev, "Unable to allocate memory gpio struct\n");
return -ENOMEM;
}
led->gpio_cfg->source_sel = LED_GPIO_SOURCE_SEL_DEFAULT;
rc = of_property_read_u32(node, "qcom,source-sel", &val);
if (!rc)
led->gpio_cfg->source_sel = (u8) val;
else if (rc != -EINVAL)
goto err_config_gpio;
led->gpio_cfg->mode_ctrl = LED_GPIO_MODE_OUTPUT;
rc = of_property_read_u32(node, "qcom,mode-ctrl", &val);
if (!rc)
led->gpio_cfg->mode_ctrl = (u8) val;
else if (rc != -EINVAL)
goto err_config_gpio;
led->gpio_cfg->vin_ctrl = LED_GPIO_VIN_CTRL_DEFAULT;
rc = of_property_read_u32(node, "qcom,vin-ctrl", &val);
if (!rc)
led->gpio_cfg->vin_ctrl = (u8) val;
else if (rc != -EINVAL)
goto err_config_gpio;
return 0;
err_config_gpio:
return rc;
}
static int qpnp_leds_probe(struct spmi_device *spmi)
{
struct qpnp_led_data *led, *led_array;
struct resource *led_resource;
struct device_node *node, *temp;
int rc, i, num_leds = 0, parsed_leds = 0;
const char *led_label;
bool regulator_probe = false;
node = spmi->dev.of_node;
if (node == NULL)
return -ENODEV;
temp = NULL;
while ((temp = of_get_next_child(node, temp)))
num_leds++;
if (!num_leds)
return -ECHILD;
led_array = devm_kzalloc(&spmi->dev,
(sizeof(struct qpnp_led_data) * num_leds), GFP_KERNEL);
if (!led_array) {
dev_err(&spmi->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
for_each_child_of_node(node, temp) {
led = &led_array[parsed_leds];
led->num_leds = num_leds;
led->spmi_dev = spmi;
led_resource = spmi_get_resource(spmi, NULL, IORESOURCE_MEM, 0);
if (!led_resource) {
dev_err(&spmi->dev, "Unable to get LED base address\n");
rc = -ENXIO;
goto fail_id_check;
}
led->base = led_resource->start;
rc = of_property_read_string(temp, "label", &led_label);
if (rc < 0) {
dev_err(&led->spmi_dev->dev,
"Failure reading label, rc = %d\n", rc);
goto fail_id_check;
}
rc = of_property_read_string(temp, "linux,name",
&led->cdev.name);
if (rc < 0) {
dev_err(&led->spmi_dev->dev,
"Failure reading led name, rc = %d\n", rc);
goto fail_id_check;
}
rc = of_property_read_u32(temp, "qcom,max-current",
&led->max_current);
if (rc < 0) {
dev_err(&led->spmi_dev->dev,
"Failure reading max_current, rc = %d\n", rc);
goto fail_id_check;
}
rc = of_property_read_u32(temp, "qcom,id", &led->id);
if (rc < 0) {
dev_err(&led->spmi_dev->dev,
"Failure reading led id, rc = %d\n", rc);
goto fail_id_check;
}
rc = qpnp_get_common_configs(led, temp);
if (rc) {
dev_err(&led->spmi_dev->dev,
"Failure reading common led configuration," \
" rc = %d\n", rc);
goto fail_id_check;
}
led->cdev.brightness_set = qpnp_led_set;
led->cdev.brightness_get = qpnp_led_get;
if (strncmp(led_label, "wled", sizeof("wled")) == 0) {
rc = qpnp_get_config_wled(led, temp);
if (rc < 0) {
dev_err(&led->spmi_dev->dev,
"Unable to read wled config data\n");
goto fail_id_check;
}
} else if (strncmp(led_label, "flash", sizeof("flash"))
== 0) {
if (!of_find_property(node, "flash-boost-supply", NULL))
regulator_probe = true;
rc = qpnp_get_config_flash(led, temp, &regulator_probe);
if (rc < 0) {
dev_err(&led->spmi_dev->dev,
"Unable to read flash config data\n");
goto fail_id_check;
}
} else if (strncmp(led_label, "rgb", sizeof("rgb")) == 0) {
rc = qpnp_get_config_rgb(led, temp);
if (rc < 0) {
dev_err(&led->spmi_dev->dev,
"Unable to read rgb config data\n");
goto fail_id_check;
}
} else if (strncmp(led_label, "mpp", sizeof("mpp")) == 0) {
rc = qpnp_get_config_mpp(led, temp);
if (rc < 0) {
dev_err(&led->spmi_dev->dev,
"Unable to read mpp config data\n");
goto fail_id_check;
}
} else if (strcmp(led_label, "gpio") == 0) {
rc = qpnp_get_config_gpio(led, temp);
if (rc < 0) {
dev_err(&led->spmi_dev->dev,
"Unable to read gpio config data\n");
goto fail_id_check;
}
} else if (strncmp(led_label, "kpdbl", sizeof("kpdbl")) == 0) {
bitmap_zero(kpdbl_leds_in_use, NUM_KPDBL_LEDS);
is_kpdbl_master_turn_on = false;
rc = qpnp_get_config_kpdbl(led, temp);
if (rc < 0) {
dev_err(&led->spmi_dev->dev,
"Unable to read kpdbl config data\n");
goto fail_id_check;
}
} else {
dev_err(&led->spmi_dev->dev, "No LED matching label\n");
rc = -EINVAL;
goto fail_id_check;
}
if (led->id != QPNP_ID_FLASH1_LED0 &&
led->id != QPNP_ID_FLASH1_LED1)
mutex_init(&led->lock);
led->in_order_command_processing = of_property_read_bool
(temp, "qcom,in-order-command-processing");
if (led->in_order_command_processing) {
/*
* the command order from user space needs to be
* maintained use ordered workqueue to prevent
* concurrency
*/
led->workqueue = alloc_ordered_workqueue
("led_workqueue", 0);
if (!led->workqueue) {
rc = -ENOMEM;
goto fail_id_check;
}
}
INIT_WORK(&led->work, qpnp_led_work);
rc = qpnp_led_initialize(led);
if (rc < 0)
goto fail_id_check;
rc = qpnp_led_set_max_brightness(led);
if (rc < 0)
goto fail_id_check;
rc = led_classdev_register(&spmi->dev, &led->cdev);
if (rc) {
dev_err(&spmi->dev, "unable to register led %d,rc=%d\n",
led->id, rc);
goto fail_id_check;
}
if (led->id == QPNP_ID_FLASH1_LED0 ||
led->id == QPNP_ID_FLASH1_LED1) {
rc = sysfs_create_group(&led->cdev.dev->kobj,
&led_attr_group);
if (rc)
goto fail_id_check;
}
if (led->id == QPNP_ID_LED_MPP) {
if (!led->mpp_cfg->pwm_cfg)
break;
if (led->mpp_cfg->pwm_cfg->mode == PWM_MODE) {
rc = sysfs_create_group(&led->cdev.dev->kobj,
&pwm_attr_group);
if (rc)
goto fail_id_check;
}
if (led->mpp_cfg->pwm_cfg->use_blink) {
rc = sysfs_create_group(&led->cdev.dev->kobj,
&blink_attr_group);
if (rc)
goto fail_id_check;
rc = sysfs_create_group(&led->cdev.dev->kobj,
&lpg_attr_group);
if (rc)
goto fail_id_check;
} else if (led->mpp_cfg->pwm_cfg->mode == LPG_MODE) {
rc = sysfs_create_group(&led->cdev.dev->kobj,
&lpg_attr_group);
if (rc)
goto fail_id_check;
}
} else if ((led->id == QPNP_ID_RGB_RED) ||
(led->id == QPNP_ID_RGB_GREEN) ||
(led->id == QPNP_ID_RGB_BLUE)) {
if (led->rgb_cfg->pwm_cfg->mode == PWM_MODE) {
rc = sysfs_create_group(&led->cdev.dev->kobj,
&pwm_attr_group);
if (rc)
goto fail_id_check;
}
if (led->rgb_cfg->pwm_cfg->use_blink) {
rc = sysfs_create_group(&led->cdev.dev->kobj,
&blink_attr_group);
if (rc)
goto fail_id_check;
rc = sysfs_create_group(&led->cdev.dev->kobj,
&lpg_attr_group);
if (rc)
goto fail_id_check;
} else if (led->rgb_cfg->pwm_cfg->mode == LPG_MODE) {
rc = sysfs_create_group(&led->cdev.dev->kobj,
&lpg_attr_group);
if (rc)
goto fail_id_check;
}
} else if (led->id == QPNP_ID_KPDBL) {
if (led->kpdbl_cfg->pwm_cfg->mode == PWM_MODE) {
rc = sysfs_create_group(&led->cdev.dev->kobj,
&pwm_attr_group);
if (rc)
goto fail_id_check;
}
if (led->kpdbl_cfg->pwm_cfg->use_blink) {
rc = sysfs_create_group(&led->cdev.dev->kobj,
&blink_attr_group);
if (rc)
goto fail_id_check;
rc = sysfs_create_group(&led->cdev.dev->kobj,
&lpg_attr_group);
if (rc)
goto fail_id_check;
} else if (led->kpdbl_cfg->pwm_cfg->mode == LPG_MODE) {
rc = sysfs_create_group(&led->cdev.dev->kobj,
&lpg_attr_group);
if (rc)
goto fail_id_check;
}
}
/* configure default state */
if (led->default_on) {
led->cdev.brightness = led->cdev.max_brightness;
__qpnp_led_work(led, led->cdev.brightness);
if (led->turn_off_delay_ms > 0)
qpnp_led_turn_off(led);
} else
led->cdev.brightness = LED_OFF;
parsed_leds++;
}
dev_set_drvdata(&spmi->dev, led_array);
return 0;
fail_id_check:
for (i = 0; i < parsed_leds; i++) {
if (led_array[i].id != QPNP_ID_FLASH1_LED0 &&
led_array[i].id != QPNP_ID_FLASH1_LED1)
mutex_destroy(&led_array[i].lock);
if (led_array[i].in_order_command_processing)
destroy_workqueue(led_array[i].workqueue);
led_classdev_unregister(&led_array[i].cdev);
}
return rc;
}
static int qpnp_leds_remove(struct spmi_device *spmi)
{
struct qpnp_led_data *led_array = dev_get_drvdata(&spmi->dev);
int i, parsed_leds = led_array->num_leds;
for (i = 0; i < parsed_leds; i++) {
cancel_work_sync(&led_array[i].work);
if (led_array[i].id != QPNP_ID_FLASH1_LED0 &&
led_array[i].id != QPNP_ID_FLASH1_LED1)
mutex_destroy(&led_array[i].lock);
if (led_array[i].in_order_command_processing)
destroy_workqueue(led_array[i].workqueue);
led_classdev_unregister(&led_array[i].cdev);
switch (led_array[i].id) {
case QPNP_ID_WLED:
break;
case QPNP_ID_FLASH1_LED0:
case QPNP_ID_FLASH1_LED1:
if (led_array[i].flash_cfg->flash_reg_get)
regulator_put(led_array[i].flash_cfg-> \
flash_boost_reg);
if (led_array[i].flash_cfg->torch_enable)
if (!led_array[i].flash_cfg->no_smbb_support)
regulator_put(led_array[i].
flash_cfg->torch_boost_reg);
sysfs_remove_group(&led_array[i].cdev.dev->kobj,
&led_attr_group);
break;
case QPNP_ID_RGB_RED:
case QPNP_ID_RGB_GREEN:
case QPNP_ID_RGB_BLUE:
if (led_array[i].rgb_cfg->pwm_cfg->mode == PWM_MODE)
sysfs_remove_group(&led_array[i].cdev.dev->\
kobj, &pwm_attr_group);
if (led_array[i].rgb_cfg->pwm_cfg->use_blink) {
sysfs_remove_group(&led_array[i].cdev.dev->\
kobj, &blink_attr_group);
sysfs_remove_group(&led_array[i].cdev.dev->\
kobj, &lpg_attr_group);
} else if (led_array[i].rgb_cfg->pwm_cfg->mode\
== LPG_MODE)
sysfs_remove_group(&led_array[i].cdev.dev->\
kobj, &lpg_attr_group);
break;
case QPNP_ID_LED_MPP:
if (!led_array[i].mpp_cfg->pwm_cfg)
break;
if (led_array[i].mpp_cfg->pwm_cfg->mode == PWM_MODE)
sysfs_remove_group(&led_array[i].cdev.dev->\
kobj, &pwm_attr_group);
if (led_array[i].mpp_cfg->pwm_cfg->use_blink) {
sysfs_remove_group(&led_array[i].cdev.dev->\
kobj, &blink_attr_group);
sysfs_remove_group(&led_array[i].cdev.dev->\
kobj, &lpg_attr_group);
} else if (led_array[i].mpp_cfg->pwm_cfg->mode\
== LPG_MODE)
sysfs_remove_group(&led_array[i].cdev.dev->\
kobj, &lpg_attr_group);
if (led_array[i].mpp_cfg->mpp_reg)
regulator_put(led_array[i].mpp_cfg->mpp_reg);
break;
case QPNP_ID_KPDBL:
if (led_array[i].kpdbl_cfg->pwm_cfg->mode == PWM_MODE)
sysfs_remove_group(&led_array[i].cdev.dev->
kobj, &pwm_attr_group);
if (led_array[i].kpdbl_cfg->pwm_cfg->use_blink) {
sysfs_remove_group(&led_array[i].cdev.dev->
kobj, &blink_attr_group);
sysfs_remove_group(&led_array[i].cdev.dev->
kobj, &lpg_attr_group);
} else if (led_array[i].kpdbl_cfg->pwm_cfg->mode
== LPG_MODE)
sysfs_remove_group(&led_array[i].cdev.dev->
kobj, &lpg_attr_group);
break;
default:
dev_err(&led_array[i].spmi_dev->dev,
"Invalid LED(%d)\n",
led_array[i].id);
return -EINVAL;
}
}
return 0;
}
#ifdef CONFIG_OF
static struct of_device_id spmi_match_table[] = {
{ .compatible = "qcom,leds-qpnp",},
{ },
};
#else
#define spmi_match_table NULL
#endif
static struct spmi_driver qpnp_leds_driver = {
.driver = {
.name = "qcom,leds-qpnp",
.of_match_table = spmi_match_table,
},
.probe = qpnp_leds_probe,
.remove = qpnp_leds_remove,
};
static int __init qpnp_led_init(void)
{
return spmi_driver_register(&qpnp_leds_driver);
}
module_init(qpnp_led_init);
static void __exit qpnp_led_exit(void)
{
spmi_driver_unregister(&qpnp_leds_driver);
}
module_exit(qpnp_led_exit);
MODULE_DESCRIPTION("QPNP LEDs driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("leds:leds-qpnp");