M7350/kernel/arch/s390/include/asm/pgtable.h
2024-09-09 08:57:42 +00:00

1764 lines
51 KiB
C

/*
* S390 version
* Copyright IBM Corp. 1999, 2000
* Author(s): Hartmut Penner (hp@de.ibm.com)
* Ulrich Weigand (weigand@de.ibm.com)
* Martin Schwidefsky (schwidefsky@de.ibm.com)
*
* Derived from "include/asm-i386/pgtable.h"
*/
#ifndef _ASM_S390_PGTABLE_H
#define _ASM_S390_PGTABLE_H
/*
* The Linux memory management assumes a three-level page table setup. For
* s390 31 bit we "fold" the mid level into the top-level page table, so
* that we physically have the same two-level page table as the s390 mmu
* expects in 31 bit mode. For s390 64 bit we use three of the five levels
* the hardware provides (region first and region second tables are not
* used).
*
* The "pgd_xxx()" functions are trivial for a folded two-level
* setup: the pgd is never bad, and a pmd always exists (as it's folded
* into the pgd entry)
*
* This file contains the functions and defines necessary to modify and use
* the S390 page table tree.
*/
#ifndef __ASSEMBLY__
#include <linux/sched.h>
#include <linux/mm_types.h>
#include <linux/page-flags.h>
#include <linux/radix-tree.h>
#include <asm/bug.h>
#include <asm/page.h>
extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
extern void paging_init(void);
extern void vmem_map_init(void);
/*
* The S390 doesn't have any external MMU info: the kernel page
* tables contain all the necessary information.
*/
#define update_mmu_cache(vma, address, ptep) do { } while (0)
#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
/*
* ZERO_PAGE is a global shared page that is always zero; used
* for zero-mapped memory areas etc..
*/
extern unsigned long empty_zero_page;
extern unsigned long zero_page_mask;
#define ZERO_PAGE(vaddr) \
(virt_to_page((void *)(empty_zero_page + \
(((unsigned long)(vaddr)) &zero_page_mask))))
#define __HAVE_COLOR_ZERO_PAGE
/* TODO: s390 cannot support io_remap_pfn_range... */
#endif /* !__ASSEMBLY__ */
/*
* PMD_SHIFT determines the size of the area a second-level page
* table can map
* PGDIR_SHIFT determines what a third-level page table entry can map
*/
#ifndef CONFIG_64BIT
# define PMD_SHIFT 20
# define PUD_SHIFT 20
# define PGDIR_SHIFT 20
#else /* CONFIG_64BIT */
# define PMD_SHIFT 20
# define PUD_SHIFT 31
# define PGDIR_SHIFT 42
#endif /* CONFIG_64BIT */
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
#define PUD_SIZE (1UL << PUD_SHIFT)
#define PUD_MASK (~(PUD_SIZE-1))
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
/*
* entries per page directory level: the S390 is two-level, so
* we don't really have any PMD directory physically.
* for S390 segment-table entries are combined to one PGD
* that leads to 1024 pte per pgd
*/
#define PTRS_PER_PTE 256
#ifndef CONFIG_64BIT
#define PTRS_PER_PMD 1
#define PTRS_PER_PUD 1
#else /* CONFIG_64BIT */
#define PTRS_PER_PMD 2048
#define PTRS_PER_PUD 2048
#endif /* CONFIG_64BIT */
#define PTRS_PER_PGD 2048
#define FIRST_USER_ADDRESS 0
#define pte_ERROR(e) \
printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
#define pmd_ERROR(e) \
printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
#define pud_ERROR(e) \
printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
#define pgd_ERROR(e) \
printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
#ifndef __ASSEMBLY__
/*
* The vmalloc and module area will always be on the topmost area of the kernel
* mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
* On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
* modules will reside. That makes sure that inter module branches always
* happen without trampolines and in addition the placement within a 2GB frame
* is branch prediction unit friendly.
*/
extern unsigned long VMALLOC_START;
extern unsigned long VMALLOC_END;
extern struct page *vmemmap;
#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
#ifdef CONFIG_64BIT
extern unsigned long MODULES_VADDR;
extern unsigned long MODULES_END;
#define MODULES_VADDR MODULES_VADDR
#define MODULES_END MODULES_END
#define MODULES_LEN (1UL << 31)
#endif
/*
* A 31 bit pagetable entry of S390 has following format:
* | PFRA | | OS |
* 0 0IP0
* 00000000001111111111222222222233
* 01234567890123456789012345678901
*
* I Page-Invalid Bit: Page is not available for address-translation
* P Page-Protection Bit: Store access not possible for page
*
* A 31 bit segmenttable entry of S390 has following format:
* | P-table origin | |PTL
* 0 IC
* 00000000001111111111222222222233
* 01234567890123456789012345678901
*
* I Segment-Invalid Bit: Segment is not available for address-translation
* C Common-Segment Bit: Segment is not private (PoP 3-30)
* PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
*
* The 31 bit segmenttable origin of S390 has following format:
*
* |S-table origin | | STL |
* X **GPS
* 00000000001111111111222222222233
* 01234567890123456789012345678901
*
* X Space-Switch event:
* G Segment-Invalid Bit: *
* P Private-Space Bit: Segment is not private (PoP 3-30)
* S Storage-Alteration:
* STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
*
* A 64 bit pagetable entry of S390 has following format:
* | PFRA |0IPC| OS |
* 0000000000111111111122222222223333333333444444444455555555556666
* 0123456789012345678901234567890123456789012345678901234567890123
*
* I Page-Invalid Bit: Page is not available for address-translation
* P Page-Protection Bit: Store access not possible for page
* C Change-bit override: HW is not required to set change bit
*
* A 64 bit segmenttable entry of S390 has following format:
* | P-table origin | TT
* 0000000000111111111122222222223333333333444444444455555555556666
* 0123456789012345678901234567890123456789012345678901234567890123
*
* I Segment-Invalid Bit: Segment is not available for address-translation
* C Common-Segment Bit: Segment is not private (PoP 3-30)
* P Page-Protection Bit: Store access not possible for page
* TT Type 00
*
* A 64 bit region table entry of S390 has following format:
* | S-table origin | TF TTTL
* 0000000000111111111122222222223333333333444444444455555555556666
* 0123456789012345678901234567890123456789012345678901234567890123
*
* I Segment-Invalid Bit: Segment is not available for address-translation
* TT Type 01
* TF
* TL Table length
*
* The 64 bit regiontable origin of S390 has following format:
* | region table origon | DTTL
* 0000000000111111111122222222223333333333444444444455555555556666
* 0123456789012345678901234567890123456789012345678901234567890123
*
* X Space-Switch event:
* G Segment-Invalid Bit:
* P Private-Space Bit:
* S Storage-Alteration:
* R Real space
* TL Table-Length:
*
* A storage key has the following format:
* | ACC |F|R|C|0|
* 0 3 4 5 6 7
* ACC: access key
* F : fetch protection bit
* R : referenced bit
* C : changed bit
*/
/* Hardware bits in the page table entry */
#define _PAGE_PROTECT 0x200 /* HW read-only bit */
#define _PAGE_INVALID 0x400 /* HW invalid bit */
#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
/* Software bits in the page table entry */
#define _PAGE_PRESENT 0x001 /* SW pte present bit */
#define _PAGE_TYPE 0x002 /* SW pte type bit */
#define _PAGE_YOUNG 0x004 /* SW pte young bit */
#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
#define _PAGE_READ 0x010 /* SW pte read bit */
#define _PAGE_WRITE 0x020 /* SW pte write bit */
#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
#define __HAVE_ARCH_PTE_SPECIAL
/* Set of bits not changed in pte_modify */
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
_PAGE_YOUNG)
/*
* handle_pte_fault uses pte_present, pte_none and pte_file to find out the
* pte type WITHOUT holding the page table lock. The _PAGE_PRESENT bit
* is used to distinguish present from not-present ptes. It is changed only
* with the page table lock held.
*
* The following table gives the different possible bit combinations for
* the pte hardware and software bits in the last 12 bits of a pte:
*
* 842100000000
* 000084210000
* 000000008421
* .IR...wrdytp
* empty .10...000000
* swap .10...xxxx10
* file .11...xxxxx0
* prot-none, clean, old .11...000001
* prot-none, clean, young .11...000101
* prot-none, dirty, old .10...001001
* prot-none, dirty, young .10...001101
* read-only, clean, old .11...010001
* read-only, clean, young .01...010101
* read-only, dirty, old .11...011001
* read-only, dirty, young .01...011101
* read-write, clean, old .11...110001
* read-write, clean, young .01...110101
* read-write, dirty, old .10...111001
* read-write, dirty, young .00...111101
*
* pte_present is true for the bit pattern .xx...xxxxx1, (pte & 0x001) == 0x001
* pte_none is true for the bit pattern .10...xxxx00, (pte & 0x603) == 0x400
* pte_file is true for the bit pattern .11...xxxxx0, (pte & 0x601) == 0x600
* pte_swap is true for the bit pattern .10...xxxx10, (pte & 0x603) == 0x402
*/
#ifndef CONFIG_64BIT
/* Bits in the segment table address-space-control-element */
#define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
#define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
#define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
/* Bits in the segment table entry */
#define _SEGMENT_ENTRY_BITS 0x7fffffffUL /* Valid segment table bits */
#define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
#define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
#define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
#define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
#define _SEGMENT_ENTRY_DIRTY 0 /* No sw dirty bit for 31-bit */
#define _SEGMENT_ENTRY_YOUNG 0 /* No sw young bit for 31-bit */
#define _SEGMENT_ENTRY_READ 0 /* No sw read bit for 31-bit */
#define _SEGMENT_ENTRY_WRITE 0 /* No sw write bit for 31-bit */
#define _SEGMENT_ENTRY_LARGE 0 /* No large pages for 31-bit */
#define _SEGMENT_ENTRY_BITS_LARGE 0
#define _SEGMENT_ENTRY_ORIGIN_LARGE 0
#define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
/*
* Segment table entry encoding (I = invalid, R = read-only bit):
* ..R...I.....
* prot-none ..1...1.....
* read-only ..1...0.....
* read-write ..0...0.....
* empty ..0...1.....
*/
/* Page status table bits for virtualization */
#define PGSTE_ACC_BITS 0xf0000000UL
#define PGSTE_FP_BIT 0x08000000UL
#define PGSTE_PCL_BIT 0x00800000UL
#define PGSTE_HR_BIT 0x00400000UL
#define PGSTE_HC_BIT 0x00200000UL
#define PGSTE_GR_BIT 0x00040000UL
#define PGSTE_GC_BIT 0x00020000UL
#define PGSTE_UC_BIT 0x00008000UL /* user dirty (migration) */
#define PGSTE_IN_BIT 0x00004000UL /* IPTE notify bit */
#else /* CONFIG_64BIT */
/* Bits in the segment/region table address-space-control-element */
#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
#define _ASCE_REAL_SPACE 0x20 /* real space control */
#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
/* Bits in the region table entry */
#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
#define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
#define _REGION3_ENTRY_RO 0x200 /* page protection bit */
/* Bits in the segment table entry */
#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
#define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
#define _SEGMENT_ENTRY (0)
#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
#define _SEGMENT_ENTRY_SPLIT 0x0800 /* THP splitting bit */
#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
#define _SEGMENT_ENTRY_READ 0x0002 /* SW segment read bit */
#define _SEGMENT_ENTRY_WRITE 0x0001 /* SW segment write bit */
/*
* Segment table entry encoding (R = read-only, I = invalid, y = young bit):
* dy..R...I...wr
* prot-none, clean, old 00..1...1...00
* prot-none, clean, young 01..1...1...00
* prot-none, dirty, old 10..1...1...00
* prot-none, dirty, young 11..1...1...00
* read-only, clean, old 00..1...1...01
* read-only, clean, young 01..1...0...01
* read-only, dirty, old 10..1...1...01
* read-only, dirty, young 11..1...0...01
* read-write, clean, old 00..1...1...11
* read-write, clean, young 01..1...0...11
* read-write, dirty, old 10..0...1...11
* read-write, dirty, young 11..0...0...11
* The segment table origin is used to distinguish empty (origin==0) from
* read-write, old segment table entries (origin!=0)
*/
#define _SEGMENT_ENTRY_SPLIT_BIT 11 /* THP splitting bit number */
/* Page status table bits for virtualization */
#define PGSTE_ACC_BITS 0xf000000000000000UL
#define PGSTE_FP_BIT 0x0800000000000000UL
#define PGSTE_PCL_BIT 0x0080000000000000UL
#define PGSTE_HR_BIT 0x0040000000000000UL
#define PGSTE_HC_BIT 0x0020000000000000UL
#define PGSTE_GR_BIT 0x0004000000000000UL
#define PGSTE_GC_BIT 0x0002000000000000UL
#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
#endif /* CONFIG_64BIT */
/* Guest Page State used for virtualization */
#define _PGSTE_GPS_ZERO 0x0000000080000000UL
#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
/*
* A user page table pointer has the space-switch-event bit, the
* private-space-control bit and the storage-alteration-event-control
* bit set. A kernel page table pointer doesn't need them.
*/
#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
_ASCE_ALT_EVENT)
/*
* Page protection definitions.
*/
#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
#define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
_PAGE_INVALID | _PAGE_PROTECT)
#define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
_PAGE_INVALID | _PAGE_PROTECT)
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
_PAGE_YOUNG | _PAGE_DIRTY)
#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
_PAGE_YOUNG | _PAGE_DIRTY)
#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
_PAGE_PROTECT)
/*
* On s390 the page table entry has an invalid bit and a read-only bit.
* Read permission implies execute permission and write permission
* implies read permission.
*/
/*xwr*/
#define __P000 PAGE_NONE
#define __P001 PAGE_READ
#define __P010 PAGE_READ
#define __P011 PAGE_READ
#define __P100 PAGE_READ
#define __P101 PAGE_READ
#define __P110 PAGE_READ
#define __P111 PAGE_READ
#define __S000 PAGE_NONE
#define __S001 PAGE_READ
#define __S010 PAGE_WRITE
#define __S011 PAGE_WRITE
#define __S100 PAGE_READ
#define __S101 PAGE_READ
#define __S110 PAGE_WRITE
#define __S111 PAGE_WRITE
/*
* Segment entry (large page) protection definitions.
*/
#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
_SEGMENT_ENTRY_PROTECT)
#define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
_SEGMENT_ENTRY_READ)
#define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
_SEGMENT_ENTRY_WRITE)
static inline int mm_has_pgste(struct mm_struct *mm)
{
#ifdef CONFIG_PGSTE
if (unlikely(mm->context.has_pgste))
return 1;
#endif
return 0;
}
static inline int mm_use_skey(struct mm_struct *mm)
{
#ifdef CONFIG_PGSTE
if (mm->context.use_skey)
return 1;
#endif
return 0;
}
/*
* pgd/pmd/pte query functions
*/
#ifndef CONFIG_64BIT
static inline int pgd_present(pgd_t pgd) { return 1; }
static inline int pgd_none(pgd_t pgd) { return 0; }
static inline int pgd_bad(pgd_t pgd) { return 0; }
static inline int pud_present(pud_t pud) { return 1; }
static inline int pud_none(pud_t pud) { return 0; }
static inline int pud_large(pud_t pud) { return 0; }
static inline int pud_bad(pud_t pud) { return 0; }
#else /* CONFIG_64BIT */
static inline int pgd_present(pgd_t pgd)
{
if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
return 1;
return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
}
static inline int pgd_none(pgd_t pgd)
{
if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
return 0;
return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
}
static inline int pgd_bad(pgd_t pgd)
{
/*
* With dynamic page table levels the pgd can be a region table
* entry or a segment table entry. Check for the bit that are
* invalid for either table entry.
*/
unsigned long mask =
~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
return (pgd_val(pgd) & mask) != 0;
}
static inline int pud_present(pud_t pud)
{
if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
return 1;
return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
}
static inline int pud_none(pud_t pud)
{
if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
return 0;
return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
}
static inline int pud_large(pud_t pud)
{
if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
return 0;
return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
}
static inline int pud_bad(pud_t pud)
{
/*
* With dynamic page table levels the pud can be a region table
* entry or a segment table entry. Check for the bit that are
* invalid for either table entry.
*/
unsigned long mask =
~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
return (pud_val(pud) & mask) != 0;
}
#endif /* CONFIG_64BIT */
static inline int pmd_present(pmd_t pmd)
{
return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
}
static inline int pmd_none(pmd_t pmd)
{
return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
}
static inline int pmd_large(pmd_t pmd)
{
return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
}
static inline unsigned long pmd_pfn(pmd_t pmd)
{
unsigned long origin_mask;
origin_mask = _SEGMENT_ENTRY_ORIGIN;
if (pmd_large(pmd))
origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
}
static inline int pmd_bad(pmd_t pmd)
{
if (pmd_large(pmd))
return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
}
#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
extern void pmdp_splitting_flush(struct vm_area_struct *vma,
unsigned long addr, pmd_t *pmdp);
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp,
pmd_t entry, int dirty);
#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#define __HAVE_ARCH_PMD_WRITE
static inline int pmd_write(pmd_t pmd)
{
return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
}
static inline int pmd_dirty(pmd_t pmd)
{
int dirty = 1;
if (pmd_large(pmd))
dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
return dirty;
}
static inline int pmd_young(pmd_t pmd)
{
int young = 1;
if (pmd_large(pmd))
young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
return young;
}
static inline int pte_present(pte_t pte)
{
/* Bit pattern: (pte & 0x001) == 0x001 */
return (pte_val(pte) & _PAGE_PRESENT) != 0;
}
static inline int pte_none(pte_t pte)
{
/* Bit pattern: pte == 0x400 */
return pte_val(pte) == _PAGE_INVALID;
}
static inline int pte_swap(pte_t pte)
{
/* Bit pattern: (pte & 0x603) == 0x402 */
return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT |
_PAGE_TYPE | _PAGE_PRESENT))
== (_PAGE_INVALID | _PAGE_TYPE);
}
static inline int pte_file(pte_t pte)
{
/* Bit pattern: (pte & 0x601) == 0x600 */
return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT | _PAGE_PRESENT))
== (_PAGE_INVALID | _PAGE_PROTECT);
}
static inline int pte_special(pte_t pte)
{
return (pte_val(pte) & _PAGE_SPECIAL);
}
#define __HAVE_ARCH_PTE_SAME
static inline int pte_same(pte_t a, pte_t b)
{
return pte_val(a) == pte_val(b);
}
static inline pgste_t pgste_get_lock(pte_t *ptep)
{
unsigned long new = 0;
#ifdef CONFIG_PGSTE
unsigned long old;
preempt_disable();
asm(
" lg %0,%2\n"
"0: lgr %1,%0\n"
" nihh %0,0xff7f\n" /* clear PCL bit in old */
" oihh %1,0x0080\n" /* set PCL bit in new */
" csg %0,%1,%2\n"
" jl 0b\n"
: "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
: "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
#endif
return __pgste(new);
}
static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
{
#ifdef CONFIG_PGSTE
asm(
" nihh %1,0xff7f\n" /* clear PCL bit */
" stg %1,%0\n"
: "=Q" (ptep[PTRS_PER_PTE])
: "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
: "cc", "memory");
preempt_enable();
#endif
}
static inline pgste_t pgste_get(pte_t *ptep)
{
unsigned long pgste = 0;
#ifdef CONFIG_PGSTE
pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
#endif
return __pgste(pgste);
}
static inline void pgste_set(pte_t *ptep, pgste_t pgste)
{
#ifdef CONFIG_PGSTE
*(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
#endif
}
static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste,
struct mm_struct *mm)
{
#ifdef CONFIG_PGSTE
unsigned long address, bits, skey;
if (!mm_use_skey(mm) || pte_val(*ptep) & _PAGE_INVALID)
return pgste;
address = pte_val(*ptep) & PAGE_MASK;
skey = (unsigned long) page_get_storage_key(address);
bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
/* Transfer page changed & referenced bit to guest bits in pgste */
pgste_val(pgste) |= bits << 48; /* GR bit & GC bit */
/* Copy page access key and fetch protection bit to pgste */
pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
#endif
return pgste;
}
static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry,
struct mm_struct *mm)
{
#ifdef CONFIG_PGSTE
unsigned long address;
unsigned long nkey;
if (!mm_use_skey(mm) || pte_val(entry) & _PAGE_INVALID)
return;
VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
address = pte_val(entry) & PAGE_MASK;
/*
* Set page access key and fetch protection bit from pgste.
* The guest C/R information is still in the PGSTE, set real
* key C/R to 0.
*/
nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
nkey |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48;
page_set_storage_key(address, nkey, 0);
#endif
}
static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
{
if ((pte_val(entry) & _PAGE_PRESENT) &&
(pte_val(entry) & _PAGE_WRITE) &&
!(pte_val(entry) & _PAGE_INVALID)) {
if (!MACHINE_HAS_ESOP) {
/*
* Without enhanced suppression-on-protection force
* the dirty bit on for all writable ptes.
*/
pte_val(entry) |= _PAGE_DIRTY;
pte_val(entry) &= ~_PAGE_PROTECT;
}
if (!(pte_val(entry) & _PAGE_PROTECT))
/* This pte allows write access, set user-dirty */
pgste_val(pgste) |= PGSTE_UC_BIT;
}
*ptep = entry;
return pgste;
}
/**
* struct gmap_struct - guest address space
* @crst_list: list of all crst tables used in the guest address space
* @mm: pointer to the parent mm_struct
* @guest_to_host: radix tree with guest to host address translation
* @host_to_guest: radix tree with pointer to segment table entries
* @guest_table_lock: spinlock to protect all entries in the guest page table
* @table: pointer to the page directory
* @asce: address space control element for gmap page table
* @pfault_enabled: defines if pfaults are applicable for the guest
*/
struct gmap {
struct list_head list;
struct list_head crst_list;
struct mm_struct *mm;
struct radix_tree_root guest_to_host;
struct radix_tree_root host_to_guest;
spinlock_t guest_table_lock;
unsigned long *table;
unsigned long asce;
unsigned long asce_end;
void *private;
bool pfault_enabled;
};
/**
* struct gmap_notifier - notify function block for page invalidation
* @notifier_call: address of callback function
*/
struct gmap_notifier {
struct list_head list;
void (*notifier_call)(struct gmap *gmap, unsigned long gaddr);
};
struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit);
void gmap_free(struct gmap *gmap);
void gmap_enable(struct gmap *gmap);
void gmap_disable(struct gmap *gmap);
int gmap_map_segment(struct gmap *gmap, unsigned long from,
unsigned long to, unsigned long len);
int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
unsigned long __gmap_translate(struct gmap *, unsigned long gaddr);
unsigned long gmap_translate(struct gmap *, unsigned long gaddr);
int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr);
int gmap_fault(struct gmap *, unsigned long gaddr, unsigned int fault_flags);
void gmap_discard(struct gmap *, unsigned long from, unsigned long to);
void __gmap_zap(struct gmap *, unsigned long gaddr);
bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *);
void gmap_register_ipte_notifier(struct gmap_notifier *);
void gmap_unregister_ipte_notifier(struct gmap_notifier *);
int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
unsigned long addr,
pte_t *ptep, pgste_t pgste)
{
#ifdef CONFIG_PGSTE
if (pgste_val(pgste) & PGSTE_IN_BIT) {
pgste_val(pgste) &= ~PGSTE_IN_BIT;
gmap_do_ipte_notify(mm, addr, ptep);
}
#endif
return pgste;
}
/*
* Certain architectures need to do special things when PTEs
* within a page table are directly modified. Thus, the following
* hook is made available.
*/
static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t entry)
{
pgste_t pgste;
if (mm_has_pgste(mm)) {
pgste = pgste_get_lock(ptep);
pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
pgste_set_key(ptep, pgste, entry, mm);
pgste = pgste_set_pte(ptep, pgste, entry);
pgste_set_unlock(ptep, pgste);
} else {
*ptep = entry;
}
}
/*
* query functions pte_write/pte_dirty/pte_young only work if
* pte_present() is true. Undefined behaviour if not..
*/
static inline int pte_write(pte_t pte)
{
return (pte_val(pte) & _PAGE_WRITE) != 0;
}
static inline int pte_dirty(pte_t pte)
{
return (pte_val(pte) & _PAGE_DIRTY) != 0;
}
static inline int pte_young(pte_t pte)
{
return (pte_val(pte) & _PAGE_YOUNG) != 0;
}
#define __HAVE_ARCH_PTE_UNUSED
static inline int pte_unused(pte_t pte)
{
return pte_val(pte) & _PAGE_UNUSED;
}
/*
* pgd/pmd/pte modification functions
*/
static inline void pgd_clear(pgd_t *pgd)
{
#ifdef CONFIG_64BIT
if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
#endif
}
static inline void pud_clear(pud_t *pud)
{
#ifdef CONFIG_64BIT
if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
pud_val(*pud) = _REGION3_ENTRY_EMPTY;
#endif
}
static inline void pmd_clear(pmd_t *pmdp)
{
pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
}
static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
pte_val(*ptep) = _PAGE_INVALID;
}
/*
* The following pte modification functions only work if
* pte_present() is true. Undefined behaviour if not..
*/
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
pte_val(pte) &= _PAGE_CHG_MASK;
pte_val(pte) |= pgprot_val(newprot);
/*
* newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
* invalid bit set, clear it again for readable, young pages
*/
if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
pte_val(pte) &= ~_PAGE_INVALID;
/*
* newprot for PAGE_READ and PAGE_WRITE has the page protection
* bit set, clear it again for writable, dirty pages
*/
if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
pte_val(pte) &= ~_PAGE_PROTECT;
return pte;
}
static inline pte_t pte_wrprotect(pte_t pte)
{
pte_val(pte) &= ~_PAGE_WRITE;
pte_val(pte) |= _PAGE_PROTECT;
return pte;
}
static inline pte_t pte_mkwrite(pte_t pte)
{
pte_val(pte) |= _PAGE_WRITE;
if (pte_val(pte) & _PAGE_DIRTY)
pte_val(pte) &= ~_PAGE_PROTECT;
return pte;
}
static inline pte_t pte_mkclean(pte_t pte)
{
pte_val(pte) &= ~_PAGE_DIRTY;
pte_val(pte) |= _PAGE_PROTECT;
return pte;
}
static inline pte_t pte_mkdirty(pte_t pte)
{
pte_val(pte) |= _PAGE_DIRTY;
if (pte_val(pte) & _PAGE_WRITE)
pte_val(pte) &= ~_PAGE_PROTECT;
return pte;
}
static inline pte_t pte_mkold(pte_t pte)
{
pte_val(pte) &= ~_PAGE_YOUNG;
pte_val(pte) |= _PAGE_INVALID;
return pte;
}
static inline pte_t pte_mkyoung(pte_t pte)
{
pte_val(pte) |= _PAGE_YOUNG;
if (pte_val(pte) & _PAGE_READ)
pte_val(pte) &= ~_PAGE_INVALID;
return pte;
}
static inline pte_t pte_mkspecial(pte_t pte)
{
pte_val(pte) |= _PAGE_SPECIAL;
return pte;
}
#ifdef CONFIG_HUGETLB_PAGE
static inline pte_t pte_mkhuge(pte_t pte)
{
pte_val(pte) |= _PAGE_LARGE;
return pte;
}
#endif
static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
{
unsigned long pto = (unsigned long) ptep;
#ifndef CONFIG_64BIT
/* pto in ESA mode must point to the start of the segment table */
pto &= 0x7ffffc00;
#endif
/* Invalidation + global TLB flush for the pte */
asm volatile(
" ipte %2,%3"
: "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
}
static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
{
unsigned long pto = (unsigned long) ptep;
#ifndef CONFIG_64BIT
/* pto in ESA mode must point to the start of the segment table */
pto &= 0x7ffffc00;
#endif
/* Invalidation + local TLB flush for the pte */
asm volatile(
" .insn rrf,0xb2210000,%2,%3,0,1"
: "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
}
static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep)
{
unsigned long pto = (unsigned long) ptep;
#ifndef CONFIG_64BIT
/* pto in ESA mode must point to the start of the segment table */
pto &= 0x7ffffc00;
#endif
/* Invalidate a range of ptes + global TLB flush of the ptes */
do {
asm volatile(
" .insn rrf,0xb2210000,%2,%0,%1,0"
: "+a" (address), "+a" (nr) : "a" (pto) : "memory");
} while (nr != 255);
}
static inline void ptep_flush_direct(struct mm_struct *mm,
unsigned long address, pte_t *ptep)
{
int active, count;
if (pte_val(*ptep) & _PAGE_INVALID)
return;
active = (mm == current->active_mm) ? 1 : 0;
count = atomic_add_return(0x10000, &mm->context.attach_count);
if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
__ptep_ipte_local(address, ptep);
else
__ptep_ipte(address, ptep);
atomic_sub(0x10000, &mm->context.attach_count);
}
static inline void ptep_flush_lazy(struct mm_struct *mm,
unsigned long address, pte_t *ptep)
{
int active, count;
if (pte_val(*ptep) & _PAGE_INVALID)
return;
active = (mm == current->active_mm) ? 1 : 0;
count = atomic_add_return(0x10000, &mm->context.attach_count);
if ((count & 0xffff) <= active) {
pte_val(*ptep) |= _PAGE_INVALID;
mm->context.flush_mm = 1;
} else
__ptep_ipte(address, ptep);
atomic_sub(0x10000, &mm->context.attach_count);
}
/*
* Get (and clear) the user dirty bit for a pte.
*/
static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
unsigned long addr,
pte_t *ptep)
{
pgste_t pgste;
pte_t pte;
int dirty;
if (!mm_has_pgste(mm))
return 0;
pgste = pgste_get_lock(ptep);
dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
pgste_val(pgste) &= ~PGSTE_UC_BIT;
pte = *ptep;
if (dirty && (pte_val(pte) & _PAGE_PRESENT)) {
pgste = pgste_ipte_notify(mm, addr, ptep, pgste);
__ptep_ipte(addr, ptep);
if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE))
pte_val(pte) |= _PAGE_PROTECT;
else
pte_val(pte) |= _PAGE_INVALID;
*ptep = pte;
}
pgste_set_unlock(ptep, pgste);
return dirty;
}
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep)
{
pgste_t pgste;
pte_t pte, oldpte;
int young;
if (mm_has_pgste(vma->vm_mm)) {
pgste = pgste_get_lock(ptep);
pgste = pgste_ipte_notify(vma->vm_mm, addr, ptep, pgste);
}
oldpte = pte = *ptep;
ptep_flush_direct(vma->vm_mm, addr, ptep);
young = pte_young(pte);
pte = pte_mkold(pte);
if (mm_has_pgste(vma->vm_mm)) {
pgste = pgste_update_all(&oldpte, pgste, vma->vm_mm);
pgste = pgste_set_pte(ptep, pgste, pte);
pgste_set_unlock(ptep, pgste);
} else
*ptep = pte;
return young;
}
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep)
{
return ptep_test_and_clear_young(vma, address, ptep);
}
/*
* This is hard to understand. ptep_get_and_clear and ptep_clear_flush
* both clear the TLB for the unmapped pte. The reason is that
* ptep_get_and_clear is used in common code (e.g. change_pte_range)
* to modify an active pte. The sequence is
* 1) ptep_get_and_clear
* 2) set_pte_at
* 3) flush_tlb_range
* On s390 the tlb needs to get flushed with the modification of the pte
* if the pte is active. The only way how this can be implemented is to
* have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
* is a nop.
*/
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
unsigned long address, pte_t *ptep)
{
pgste_t pgste;
pte_t pte;
if (mm_has_pgste(mm)) {
pgste = pgste_get_lock(ptep);
pgste = pgste_ipte_notify(mm, address, ptep, pgste);
}
pte = *ptep;
ptep_flush_lazy(mm, address, ptep);
pte_val(*ptep) = _PAGE_INVALID;
if (mm_has_pgste(mm)) {
pgste = pgste_update_all(&pte, pgste, mm);
pgste_set_unlock(ptep, pgste);
}
return pte;
}
#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
unsigned long address,
pte_t *ptep)
{
pgste_t pgste;
pte_t pte;
if (mm_has_pgste(mm)) {
pgste = pgste_get_lock(ptep);
pgste_ipte_notify(mm, address, ptep, pgste);
}
pte = *ptep;
ptep_flush_lazy(mm, address, ptep);
if (mm_has_pgste(mm)) {
pgste = pgste_update_all(&pte, pgste, mm);
pgste_set(ptep, pgste);
}
return pte;
}
static inline void ptep_modify_prot_commit(struct mm_struct *mm,
unsigned long address,
pte_t *ptep, pte_t pte)
{
pgste_t pgste;
if (mm_has_pgste(mm)) {
pgste = pgste_get(ptep);
pgste_set_key(ptep, pgste, pte, mm);
pgste = pgste_set_pte(ptep, pgste, pte);
pgste_set_unlock(ptep, pgste);
} else
*ptep = pte;
}
#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep)
{
pgste_t pgste;
pte_t pte;
if (mm_has_pgste(vma->vm_mm)) {
pgste = pgste_get_lock(ptep);
pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
}
pte = *ptep;
ptep_flush_direct(vma->vm_mm, address, ptep);
pte_val(*ptep) = _PAGE_INVALID;
if (mm_has_pgste(vma->vm_mm)) {
if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
_PGSTE_GPS_USAGE_UNUSED)
pte_val(pte) |= _PAGE_UNUSED;
pgste = pgste_update_all(&pte, pgste, vma->vm_mm);
pgste_set_unlock(ptep, pgste);
}
return pte;
}
/*
* The batched pte unmap code uses ptep_get_and_clear_full to clear the
* ptes. Here an optimization is possible. tlb_gather_mmu flushes all
* tlbs of an mm if it can guarantee that the ptes of the mm_struct
* cannot be accessed while the batched unmap is running. In this case
* full==1 and a simple pte_clear is enough. See tlb.h.
*/
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
unsigned long address,
pte_t *ptep, int full)
{
pgste_t pgste;
pte_t pte;
if (!full && mm_has_pgste(mm)) {
pgste = pgste_get_lock(ptep);
pgste = pgste_ipte_notify(mm, address, ptep, pgste);
}
pte = *ptep;
if (!full)
ptep_flush_lazy(mm, address, ptep);
pte_val(*ptep) = _PAGE_INVALID;
if (!full && mm_has_pgste(mm)) {
pgste = pgste_update_all(&pte, pgste, mm);
pgste_set_unlock(ptep, pgste);
}
return pte;
}
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
unsigned long address, pte_t *ptep)
{
pgste_t pgste;
pte_t pte = *ptep;
if (pte_write(pte)) {
if (mm_has_pgste(mm)) {
pgste = pgste_get_lock(ptep);
pgste = pgste_ipte_notify(mm, address, ptep, pgste);
}
ptep_flush_lazy(mm, address, ptep);
pte = pte_wrprotect(pte);
if (mm_has_pgste(mm)) {
pgste = pgste_set_pte(ptep, pgste, pte);
pgste_set_unlock(ptep, pgste);
} else
*ptep = pte;
}
return pte;
}
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
static inline int ptep_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep,
pte_t entry, int dirty)
{
pgste_t pgste;
if (pte_same(*ptep, entry))
return 0;
if (mm_has_pgste(vma->vm_mm)) {
pgste = pgste_get_lock(ptep);
pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
}
ptep_flush_direct(vma->vm_mm, address, ptep);
if (mm_has_pgste(vma->vm_mm)) {
pgste_set_key(ptep, pgste, entry, vma->vm_mm);
pgste = pgste_set_pte(ptep, pgste, entry);
pgste_set_unlock(ptep, pgste);
} else
*ptep = entry;
return 1;
}
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
{
pte_t __pte;
pte_val(__pte) = physpage + pgprot_val(pgprot);
return pte_mkyoung(__pte);
}
static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
{
unsigned long physpage = page_to_phys(page);
pte_t __pte = mk_pte_phys(physpage, pgprot);
if (pte_write(__pte) && PageDirty(page))
__pte = pte_mkdirty(__pte);
return __pte;
}
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
#ifndef CONFIG_64BIT
#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
#define pud_deref(pmd) ({ BUG(); 0UL; })
#define pgd_deref(pmd) ({ BUG(); 0UL; })
#define pud_offset(pgd, address) ((pud_t *) pgd)
#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
#else /* CONFIG_64BIT */
#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
{
pud_t *pud = (pud_t *) pgd;
if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
pud = (pud_t *) pgd_deref(*pgd);
return pud + pud_index(address);
}
static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
{
pmd_t *pmd = (pmd_t *) pud;
if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
pmd = (pmd_t *) pud_deref(*pud);
return pmd + pmd_index(address);
}
#endif /* CONFIG_64BIT */
#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
#define pte_page(x) pfn_to_page(pte_pfn(x))
#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
/* Find an entry in the lowest level page table.. */
#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
#define pte_unmap(pte) do { } while (0)
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
{
/*
* pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
* Convert to segment table entry format.
*/
if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
return pgprot_val(SEGMENT_NONE);
if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
return pgprot_val(SEGMENT_READ);
return pgprot_val(SEGMENT_WRITE);
}
static inline pmd_t pmd_wrprotect(pmd_t pmd)
{
pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
return pmd;
}
static inline pmd_t pmd_mkwrite(pmd_t pmd)
{
pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
return pmd;
pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
return pmd;
}
static inline pmd_t pmd_mkclean(pmd_t pmd)
{
if (pmd_large(pmd)) {
pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
}
return pmd;
}
static inline pmd_t pmd_mkdirty(pmd_t pmd)
{
if (pmd_large(pmd)) {
pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY;
if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
}
return pmd;
}
static inline pmd_t pmd_mkyoung(pmd_t pmd)
{
if (pmd_large(pmd)) {
pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
}
return pmd;
}
static inline pmd_t pmd_mkold(pmd_t pmd)
{
if (pmd_large(pmd)) {
pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
}
return pmd;
}
static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
{
if (pmd_large(pmd)) {
pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SPLIT;
pmd_val(pmd) |= massage_pgprot_pmd(newprot);
if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
return pmd;
}
pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
pmd_val(pmd) |= massage_pgprot_pmd(newprot);
return pmd;
}
static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
{
pmd_t __pmd;
pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
return __pmd;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
static inline void __pmdp_csp(pmd_t *pmdp)
{
register unsigned long reg2 asm("2") = pmd_val(*pmdp);
register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
_SEGMENT_ENTRY_INVALID;
register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
asm volatile(
" csp %1,%3"
: "=m" (*pmdp)
: "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
}
static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
{
unsigned long sto;
sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
asm volatile(
" .insn rrf,0xb98e0000,%2,%3,0,0"
: "=m" (*pmdp)
: "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
: "cc" );
}
static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
{
unsigned long sto;
sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
asm volatile(
" .insn rrf,0xb98e0000,%2,%3,0,1"
: "=m" (*pmdp)
: "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
: "cc" );
}
static inline void pmdp_flush_direct(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
int active, count;
if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
return;
if (!MACHINE_HAS_IDTE) {
__pmdp_csp(pmdp);
return;
}
active = (mm == current->active_mm) ? 1 : 0;
count = atomic_add_return(0x10000, &mm->context.attach_count);
if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
__pmdp_idte_local(address, pmdp);
else
__pmdp_idte(address, pmdp);
atomic_sub(0x10000, &mm->context.attach_count);
}
static inline void pmdp_flush_lazy(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
int active, count;
if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
return;
active = (mm == current->active_mm) ? 1 : 0;
count = atomic_add_return(0x10000, &mm->context.attach_count);
if ((count & 0xffff) <= active) {
pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID;
mm->context.flush_mm = 1;
} else if (MACHINE_HAS_IDTE)
__pmdp_idte(address, pmdp);
else
__pmdp_csp(pmdp);
atomic_sub(0x10000, &mm->context.attach_count);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __HAVE_ARCH_PGTABLE_DEPOSIT
extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
pgtable_t pgtable);
#define __HAVE_ARCH_PGTABLE_WITHDRAW
extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
static inline int pmd_trans_splitting(pmd_t pmd)
{
return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) &&
(pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT);
}
static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, pmd_t entry)
{
*pmdp = entry;
}
static inline pmd_t pmd_mkhuge(pmd_t pmd)
{
pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
return pmd;
}
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp)
{
pmd_t pmd;
pmd = *pmdp;
pmdp_flush_direct(vma->vm_mm, address, pmdp);
*pmdp = pmd_mkold(pmd);
return pmd_young(pmd);
}
#define __HAVE_ARCH_PMDP_GET_AND_CLEAR
static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
pmd_t pmd = *pmdp;
pmdp_flush_direct(mm, address, pmdp);
pmd_clear(pmdp);
return pmd;
}
#define __HAVE_ARCH_PMDP_CLEAR_FLUSH
static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp)
{
return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
}
#define __HAVE_ARCH_PMDP_INVALIDATE
static inline void pmdp_invalidate(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp)
{
pmdp_flush_direct(vma->vm_mm, address, pmdp);
}
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
pmd_t pmd = *pmdp;
if (pmd_write(pmd)) {
pmdp_flush_direct(mm, address, pmdp);
set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
}
}
#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
static inline int pmd_trans_huge(pmd_t pmd)
{
return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
}
static inline int has_transparent_hugepage(void)
{
return MACHINE_HAS_HPAGE ? 1 : 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
/*
* 31 bit swap entry format:
* A page-table entry has some bits we have to treat in a special way.
* Bits 0, 20 and bit 23 have to be zero, otherwise an specification
* exception will occur instead of a page translation exception. The
* specifiation exception has the bad habit not to store necessary
* information in the lowcore.
* Bits 21, 22, 30 and 31 are used to indicate the page type.
* A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
* This leaves the bits 1-19 and bits 24-29 to store type and offset.
* We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
* plus 24 for the offset.
* 0| offset |0110|o|type |00|
* 0 0000000001111111111 2222 2 22222 33
* 0 1234567890123456789 0123 4 56789 01
*
* 64 bit swap entry format:
* A page-table entry has some bits we have to treat in a special way.
* Bits 52 and bit 55 have to be zero, otherwise an specification
* exception will occur instead of a page translation exception. The
* specifiation exception has the bad habit not to store necessary
* information in the lowcore.
* Bits 53, 54, 62 and 63 are used to indicate the page type.
* A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
* This leaves the bits 0-51 and bits 56-61 to store type and offset.
* We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
* plus 56 for the offset.
* | offset |0110|o|type |00|
* 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
* 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
*/
#ifndef CONFIG_64BIT
#define __SWP_OFFSET_MASK (~0UL >> 12)
#else
#define __SWP_OFFSET_MASK (~0UL >> 11)
#endif
static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
{
pte_t pte;
offset &= __SWP_OFFSET_MASK;
pte_val(pte) = _PAGE_INVALID | _PAGE_TYPE | ((type & 0x1f) << 2) |
((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
return pte;
}
#define __swp_type(entry) (((entry).val >> 2) & 0x1f)
#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
#ifndef CONFIG_64BIT
# define PTE_FILE_MAX_BITS 26
#else /* CONFIG_64BIT */
# define PTE_FILE_MAX_BITS 59
#endif /* CONFIG_64BIT */
#define pte_to_pgoff(__pte) \
((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
#define pgoff_to_pte(__off) \
((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
| _PAGE_INVALID | _PAGE_PROTECT })
#endif /* !__ASSEMBLY__ */
#define kern_addr_valid(addr) (1)
extern int vmem_add_mapping(unsigned long start, unsigned long size);
extern int vmem_remove_mapping(unsigned long start, unsigned long size);
extern int s390_enable_sie(void);
extern void s390_enable_skey(void);
/* s390 has a private copy of get unmapped area to deal with cache synonyms */
#define HAVE_ARCH_UNMAPPED_AREA
#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
/*
* No page table caches to initialise
*/
static inline void pgtable_cache_init(void) { }
static inline void check_pgt_cache(void) { }
#include <asm-generic/pgtable.h>
#endif /* _S390_PAGE_H */