1722 lines
39 KiB
C
1722 lines
39 KiB
C
/* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 and
|
|
* only version 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/msm_tsens.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/msm_tsens.h>
|
|
#include <linux/msm_thermal.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/of.h>
|
|
#include <linux/err.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/of.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/types.h>
|
|
#include <linux/android_alarm.h>
|
|
#include <mach/cpufreq.h>
|
|
#include <mach/rpm-regulator.h>
|
|
#include <mach/rpm-regulator-smd.h>
|
|
#include <linux/regulator/consumer.h>
|
|
|
|
#define MAX_RAILS 5
|
|
|
|
static struct msm_thermal_data msm_thermal_info;
|
|
static uint32_t limited_max_freq = MSM_CPUFREQ_NO_LIMIT;
|
|
static struct delayed_work check_temp_work;
|
|
static bool core_control_enabled;
|
|
static uint32_t cpus_offlined;
|
|
static DEFINE_MUTEX(core_control_mutex);
|
|
static uint32_t wakeup_ms;
|
|
static struct alarm thermal_rtc;
|
|
static struct kobject *tt_kobj;
|
|
static struct work_struct timer_work;
|
|
|
|
static int enabled;
|
|
static int rails_cnt;
|
|
static int psm_rails_cnt;
|
|
static int limit_idx;
|
|
static int limit_idx_low;
|
|
static int limit_idx_high;
|
|
static int max_tsens_num;
|
|
static struct cpufreq_frequency_table *table;
|
|
static uint32_t usefreq;
|
|
static int freq_table_get;
|
|
static bool vdd_rstr_enabled;
|
|
static bool vdd_rstr_nodes_called;
|
|
static bool vdd_rstr_probed;
|
|
static bool psm_enabled;
|
|
static bool psm_nodes_called;
|
|
static bool psm_probed;
|
|
static int *tsens_id_map;
|
|
static DEFINE_MUTEX(vdd_rstr_mutex);
|
|
static DEFINE_MUTEX(psm_mutex);
|
|
|
|
struct rail {
|
|
const char *name;
|
|
uint32_t freq_req;
|
|
uint32_t min_level;
|
|
uint32_t num_levels;
|
|
int32_t curr_level;
|
|
uint32_t levels[3];
|
|
struct kobj_attribute value_attr;
|
|
struct kobj_attribute level_attr;
|
|
struct regulator *reg;
|
|
struct attribute_group attr_gp;
|
|
};
|
|
|
|
struct psm_rail {
|
|
const char *name;
|
|
uint8_t init;
|
|
uint8_t mode;
|
|
struct kobj_attribute mode_attr;
|
|
struct rpm_regulator *reg;
|
|
struct attribute_group attr_gp;
|
|
};
|
|
|
|
static struct psm_rail *psm_rails;
|
|
static struct rail *rails;
|
|
|
|
struct vdd_rstr_enable {
|
|
struct kobj_attribute ko_attr;
|
|
uint32_t enabled;
|
|
};
|
|
|
|
/* For SMPS only*/
|
|
enum PMIC_SW_MODE {
|
|
PMIC_AUTO_MODE = RPM_REGULATOR_MODE_AUTO,
|
|
PMIC_IPEAK_MODE = RPM_REGULATOR_MODE_IPEAK,
|
|
PMIC_PWM_MODE = RPM_REGULATOR_MODE_HPM,
|
|
};
|
|
|
|
#define VDD_RES_RO_ATTRIB(_rail, ko_attr, j, _name) \
|
|
ko_attr.attr.name = __stringify(_name); \
|
|
ko_attr.attr.mode = 444; \
|
|
ko_attr.show = vdd_rstr_reg_##_name##_show; \
|
|
ko_attr.store = NULL; \
|
|
sysfs_attr_init(&ko_attr.attr); \
|
|
_rail.attr_gp.attrs[j] = &ko_attr.attr;
|
|
|
|
#define VDD_RES_RW_ATTRIB(_rail, ko_attr, j, _name) \
|
|
ko_attr.attr.name = __stringify(_name); \
|
|
ko_attr.attr.mode = 644; \
|
|
ko_attr.show = vdd_rstr_reg_##_name##_show; \
|
|
ko_attr.store = vdd_rstr_reg_##_name##_store; \
|
|
sysfs_attr_init(&ko_attr.attr); \
|
|
_rail.attr_gp.attrs[j] = &ko_attr.attr;
|
|
|
|
#define VDD_RSTR_ENABLE_FROM_ATTRIBS(attr) \
|
|
(container_of(attr, struct vdd_rstr_enable, ko_attr));
|
|
|
|
#define VDD_RSTR_REG_VALUE_FROM_ATTRIBS(attr) \
|
|
(container_of(attr, struct rail, value_attr));
|
|
|
|
#define VDD_RSTR_REG_LEVEL_FROM_ATTRIBS(attr) \
|
|
(container_of(attr, struct rail, level_attr));
|
|
|
|
#define PSM_RW_ATTRIB(_rail, ko_attr, j, _name) \
|
|
ko_attr.attr.name = __stringify(_name); \
|
|
ko_attr.attr.mode = 644; \
|
|
ko_attr.show = psm_reg_##_name##_show; \
|
|
ko_attr.store = psm_reg_##_name##_store; \
|
|
sysfs_attr_init(&ko_attr.attr); \
|
|
_rail.attr_gp.attrs[j] = &ko_attr.attr;
|
|
|
|
#define PSM_REG_MODE_FROM_ATTRIBS(attr) \
|
|
(container_of(attr, struct psm_rail, mode_attr));
|
|
/* If freq table exists, then we can send freq request */
|
|
static int check_freq_table(void)
|
|
{
|
|
int ret = 0;
|
|
struct cpufreq_frequency_table *table = NULL;
|
|
|
|
table = cpufreq_frequency_get_table(0);
|
|
if (!table) {
|
|
pr_debug("%s: error reading cpufreq table\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
freq_table_get = 1;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int update_cpu_min_freq_all(uint32_t min)
|
|
{
|
|
int cpu = 0;
|
|
int ret = 0;
|
|
struct cpufreq_policy *policy = NULL;
|
|
|
|
if (!freq_table_get) {
|
|
ret = check_freq_table();
|
|
if (ret) {
|
|
pr_err("%s:Fail to get freq table\n", __func__);
|
|
return ret;
|
|
}
|
|
}
|
|
/* If min is larger than allowed max */
|
|
if (min != MSM_CPUFREQ_NO_LIMIT &&
|
|
min > table[limit_idx_high].frequency)
|
|
min = table[limit_idx_high].frequency;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
ret = msm_cpufreq_set_freq_limits(cpu, min, limited_max_freq);
|
|
if (ret) {
|
|
pr_err("%s:Fail to set limits for cpu%d\n",
|
|
__func__, cpu);
|
|
return ret;
|
|
}
|
|
|
|
if (cpu_online(cpu)) {
|
|
policy = cpufreq_cpu_get(cpu);
|
|
if (!policy)
|
|
continue;
|
|
cpufreq_driver_target(policy, policy->cur,
|
|
CPUFREQ_RELATION_L);
|
|
cpufreq_cpu_put(policy);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vdd_restriction_apply_freq(struct rail *r, int level)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (level == r->curr_level)
|
|
return ret;
|
|
|
|
/* level = -1: disable, level = 0,1,2..n: enable */
|
|
if (level == -1) {
|
|
ret = update_cpu_min_freq_all(r->min_level);
|
|
if (ret)
|
|
return ret;
|
|
else
|
|
r->curr_level = -1;
|
|
} else if (level >= 0 && level < (r->num_levels)) {
|
|
ret = update_cpu_min_freq_all(r->levels[level]);
|
|
if (ret)
|
|
return ret;
|
|
else
|
|
r->curr_level = level;
|
|
} else {
|
|
pr_err("level input:%d is not within range\n", level);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vdd_restriction_apply_voltage(struct rail *r, int level)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (r->reg == NULL) {
|
|
pr_info("Do not have regulator handle:%s, can't apply vdd\n",
|
|
r->name);
|
|
return -EFAULT;
|
|
}
|
|
if (level == r->curr_level)
|
|
return ret;
|
|
|
|
/* level = -1: disable, level = 0,1,2..n: enable */
|
|
if (level == -1) {
|
|
ret = regulator_set_voltage(r->reg, r->min_level,
|
|
r->levels[r->num_levels - 1]);
|
|
if (!ret)
|
|
r->curr_level = -1;
|
|
} else if (level >= 0 && level < (r->num_levels)) {
|
|
ret = regulator_set_voltage(r->reg, r->levels[level],
|
|
r->levels[r->num_levels - 1]);
|
|
if (!ret)
|
|
r->curr_level = level;
|
|
} else {
|
|
pr_err("level input:%d is not within range\n", level);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Setting all rails the same mode */
|
|
static int psm_set_mode_all(int mode)
|
|
{
|
|
int i = 0;
|
|
int fail_cnt = 0;
|
|
int ret = 0;
|
|
|
|
for (i = 0; i < psm_rails_cnt; i++) {
|
|
if (psm_rails[i].mode != mode) {
|
|
ret = rpm_regulator_set_mode(psm_rails[i].reg, mode);
|
|
if (ret) {
|
|
pr_err("Cannot set mode:%d for %s",
|
|
mode, psm_rails[i].name);
|
|
fail_cnt++;
|
|
} else
|
|
psm_rails[i].mode = mode;
|
|
}
|
|
}
|
|
|
|
return fail_cnt ? (-EFAULT) : ret;
|
|
}
|
|
|
|
static int vdd_rstr_en_show(
|
|
struct kobject *kobj, struct kobj_attribute *attr, char *buf)
|
|
{
|
|
struct vdd_rstr_enable *en = VDD_RSTR_ENABLE_FROM_ATTRIBS(attr);
|
|
|
|
return snprintf(buf, PAGE_SIZE, "%d\n", en->enabled);
|
|
}
|
|
|
|
static ssize_t vdd_rstr_en_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr, const char *buf, size_t count)
|
|
{
|
|
int ret = 0;
|
|
int i = 0;
|
|
uint8_t en_cnt = 0;
|
|
uint8_t dis_cnt = 0;
|
|
uint32_t val = 0;
|
|
struct kernel_param kp;
|
|
struct vdd_rstr_enable *en = VDD_RSTR_ENABLE_FROM_ATTRIBS(attr);
|
|
|
|
mutex_lock(&vdd_rstr_mutex);
|
|
kp.arg = &val;
|
|
ret = param_set_bool(buf, &kp);
|
|
if (ret) {
|
|
pr_err("Invalid input %s for enabled\n", buf);
|
|
goto done_vdd_rstr_en;
|
|
}
|
|
|
|
if ((val == 0) && (en->enabled == 0))
|
|
goto done_vdd_rstr_en;
|
|
|
|
for (i = 0; i < rails_cnt; i++) {
|
|
if (rails[i].freq_req == 1 && freq_table_get)
|
|
ret = vdd_restriction_apply_freq(&rails[i],
|
|
(val) ? 0 : -1);
|
|
else
|
|
ret = vdd_restriction_apply_voltage(&rails[i],
|
|
(val) ? 0 : -1);
|
|
|
|
/*
|
|
* Even if fail to set one rail, still try to set the
|
|
* others. Continue the loop
|
|
*/
|
|
if (ret)
|
|
pr_err("Set vdd restriction for %s failed\n",
|
|
rails[i].name);
|
|
else {
|
|
if (val)
|
|
en_cnt++;
|
|
else
|
|
dis_cnt++;
|
|
}
|
|
}
|
|
/* As long as one rail is enabled, vdd rstr is enabled */
|
|
if (val && en_cnt)
|
|
en->enabled = 1;
|
|
else if (!val && (dis_cnt == rails_cnt))
|
|
en->enabled = 0;
|
|
|
|
done_vdd_rstr_en:
|
|
mutex_unlock(&vdd_rstr_mutex);
|
|
return count;
|
|
}
|
|
|
|
static struct vdd_rstr_enable vdd_rstr_en = {
|
|
.ko_attr.attr.name = __stringify(enabled),
|
|
.ko_attr.attr.mode = 644,
|
|
.ko_attr.show = vdd_rstr_en_show,
|
|
.ko_attr.store = vdd_rstr_en_store,
|
|
.enabled = 1,
|
|
};
|
|
|
|
static struct attribute *vdd_rstr_en_attribs[] = {
|
|
&vdd_rstr_en.ko_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group vdd_rstr_en_attribs_gp = {
|
|
.attrs = vdd_rstr_en_attribs,
|
|
};
|
|
|
|
static int vdd_rstr_reg_value_show(
|
|
struct kobject *kobj, struct kobj_attribute *attr, char *buf)
|
|
{
|
|
int val = 0;
|
|
struct rail *reg = VDD_RSTR_REG_VALUE_FROM_ATTRIBS(attr);
|
|
/* -1:disabled, -2:fail to get regualtor handle */
|
|
if (reg->curr_level < 0)
|
|
val = reg->curr_level;
|
|
else
|
|
val = reg->levels[reg->curr_level];
|
|
|
|
return snprintf(buf, PAGE_SIZE, "%d\n", val);
|
|
}
|
|
|
|
static int vdd_rstr_reg_level_show(
|
|
struct kobject *kobj, struct kobj_attribute *attr, char *buf)
|
|
{
|
|
struct rail *reg = VDD_RSTR_REG_LEVEL_FROM_ATTRIBS(attr);
|
|
return snprintf(buf, PAGE_SIZE, "%d\n", reg->curr_level);
|
|
}
|
|
|
|
static ssize_t vdd_rstr_reg_level_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr, const char *buf, size_t count)
|
|
{
|
|
int ret = 0;
|
|
int val = 0;
|
|
|
|
struct rail *reg = VDD_RSTR_REG_LEVEL_FROM_ATTRIBS(attr);
|
|
|
|
mutex_lock(&vdd_rstr_mutex);
|
|
if (vdd_rstr_en.enabled == 0)
|
|
goto done_store_level;
|
|
|
|
ret = kstrtouint(buf, 10, &val);
|
|
if (ret) {
|
|
pr_err("Invalid input %s for level\n", buf);
|
|
goto done_store_level;
|
|
}
|
|
|
|
if (val < 0 || val > reg->num_levels - 1) {
|
|
pr_err(" Invalid number %d for level\n", val);
|
|
goto done_store_level;
|
|
}
|
|
|
|
if (val != reg->curr_level) {
|
|
if (reg->freq_req == 1 && freq_table_get)
|
|
update_cpu_min_freq_all(reg->levels[val]);
|
|
else {
|
|
ret = vdd_restriction_apply_voltage(reg, val);
|
|
if (ret) {
|
|
pr_err( \
|
|
"Set vdd restriction for regulator %s failed\n",
|
|
reg->name);
|
|
goto done_store_level;
|
|
}
|
|
}
|
|
reg->curr_level = val;
|
|
}
|
|
|
|
done_store_level:
|
|
mutex_unlock(&vdd_rstr_mutex);
|
|
return count;
|
|
}
|
|
|
|
static int psm_reg_mode_show(
|
|
struct kobject *kobj, struct kobj_attribute *attr, char *buf)
|
|
{
|
|
struct psm_rail *reg = PSM_REG_MODE_FROM_ATTRIBS(attr);
|
|
return snprintf(buf, PAGE_SIZE, "%d\n", reg->mode);
|
|
}
|
|
|
|
static ssize_t psm_reg_mode_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr, const char *buf, size_t count)
|
|
{
|
|
int ret = 0;
|
|
int val = 0;
|
|
struct psm_rail *reg = PSM_REG_MODE_FROM_ATTRIBS(attr);
|
|
|
|
mutex_lock(&psm_mutex);
|
|
ret = kstrtoint(buf, 10, &val);
|
|
if (ret) {
|
|
pr_err("Invalid input %s for mode\n", buf);
|
|
goto done_psm_store;
|
|
}
|
|
|
|
if ((val != PMIC_PWM_MODE) && (val != PMIC_AUTO_MODE)) {
|
|
pr_err(" Invalid number %d for mode\n", val);
|
|
goto done_psm_store;
|
|
}
|
|
|
|
if (val != reg->mode) {
|
|
ret = rpm_regulator_set_mode(reg->reg, val);
|
|
if (ret) {
|
|
pr_err( \
|
|
"Fail to set PMIC SW Mode:%d for %s\n",
|
|
val, reg->name);
|
|
goto done_psm_store;
|
|
}
|
|
reg->mode = val;
|
|
}
|
|
|
|
done_psm_store:
|
|
mutex_unlock(&psm_mutex);
|
|
return count;
|
|
}
|
|
|
|
static int check_sensor_id(int sensor_id)
|
|
{
|
|
int i = 0;
|
|
bool hw_id_found;
|
|
int ret = 0;
|
|
|
|
for (i = 0; i < max_tsens_num; i++) {
|
|
if (sensor_id == tsens_id_map[i]) {
|
|
hw_id_found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!hw_id_found) {
|
|
pr_err("%s: Invalid sensor hw id :%d\n", __func__, sensor_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int create_sensor_id_map(void)
|
|
{
|
|
int i = 0;
|
|
int ret = 0;
|
|
|
|
tsens_id_map = kzalloc(sizeof(int) * max_tsens_num,
|
|
GFP_KERNEL);
|
|
if (!tsens_id_map) {
|
|
pr_err("%s: Cannot allocate memory for tsens_id_map\n",
|
|
__func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < max_tsens_num; i++) {
|
|
ret = tsens_get_hw_id_mapping(i, &tsens_id_map[i]);
|
|
/* If return -ENXIO, hw_id is default in sequence */
|
|
if (ret) {
|
|
if (ret == -ENXIO) {
|
|
tsens_id_map[i] = i;
|
|
ret = 0;
|
|
} else {
|
|
pr_err( \
|
|
"%s: Failed to get hw id for sw id %d\n",
|
|
__func__, i);
|
|
goto fail;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
fail:
|
|
kfree(tsens_id_map);
|
|
return ret;
|
|
}
|
|
|
|
/* 1:enable, 0:disable */
|
|
static int vdd_restriction_apply_all(int en)
|
|
{
|
|
int i = 0;
|
|
int en_cnt = 0;
|
|
int dis_cnt = 0;
|
|
int fail_cnt = 0;
|
|
int ret = 0;
|
|
|
|
for (i = 0; i < rails_cnt; i++) {
|
|
if (rails[i].freq_req == 1 && freq_table_get)
|
|
ret = vdd_restriction_apply_freq(&rails[i],
|
|
en ? 0 : -1);
|
|
else
|
|
ret = vdd_restriction_apply_voltage(&rails[i],
|
|
en ? 0 : -1);
|
|
if (ret) {
|
|
pr_err("Cannot set voltage for %s", rails[i].name);
|
|
fail_cnt++;
|
|
} else {
|
|
if (en)
|
|
en_cnt++;
|
|
else
|
|
dis_cnt++;
|
|
}
|
|
}
|
|
|
|
/* As long as one rail is enabled, vdd rstr is enabled */
|
|
if (en && en_cnt)
|
|
vdd_rstr_en.enabled = 1;
|
|
else if (!en && (dis_cnt == rails_cnt))
|
|
vdd_rstr_en.enabled = 0;
|
|
|
|
/*
|
|
* Check fail_cnt again to make sure all of the rails are applied
|
|
* restriction successfully or not
|
|
*/
|
|
if (fail_cnt)
|
|
return -EFAULT;
|
|
return ret;
|
|
}
|
|
|
|
static int msm_thermal_get_freq_table(void)
|
|
{
|
|
int ret = 0;
|
|
int i = 0;
|
|
|
|
table = cpufreq_frequency_get_table(0);
|
|
if (table == NULL) {
|
|
pr_debug("%s: error reading cpufreq table\n", KBUILD_MODNAME);
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
while (table[i].frequency != CPUFREQ_TABLE_END)
|
|
i++;
|
|
|
|
limit_idx_low = 0;
|
|
limit_idx_high = limit_idx = i - 1;
|
|
BUG_ON(limit_idx_high <= 0 || limit_idx_high <= limit_idx_low);
|
|
fail:
|
|
return ret;
|
|
}
|
|
|
|
static int update_cpu_max_freq(int cpu, uint32_t max_freq)
|
|
{
|
|
int ret = 0;
|
|
|
|
ret = msm_cpufreq_set_freq_limits(cpu, MSM_CPUFREQ_NO_LIMIT, max_freq);
|
|
if (ret)
|
|
return ret;
|
|
|
|
limited_max_freq = max_freq;
|
|
if (max_freq != MSM_CPUFREQ_NO_LIMIT)
|
|
pr_info("%s: Limiting cpu%d max frequency to %d\n",
|
|
KBUILD_MODNAME, cpu, max_freq);
|
|
else
|
|
pr_info("%s: Max frequency reset for cpu%d\n",
|
|
KBUILD_MODNAME, cpu);
|
|
|
|
if (cpu_online(cpu)) {
|
|
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
|
|
if (!policy)
|
|
return ret;
|
|
ret = cpufreq_driver_target(policy, policy->cur,
|
|
CPUFREQ_RELATION_H);
|
|
cpufreq_cpu_put(policy);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static void __ref do_core_control(long temp)
|
|
{
|
|
int i = 0;
|
|
int ret = 0;
|
|
|
|
if (!core_control_enabled)
|
|
return;
|
|
|
|
mutex_lock(&core_control_mutex);
|
|
if (msm_thermal_info.core_control_mask &&
|
|
temp >= msm_thermal_info.core_limit_temp_degC) {
|
|
for (i = num_possible_cpus(); i > 0; i--) {
|
|
if (!(msm_thermal_info.core_control_mask & BIT(i)))
|
|
continue;
|
|
if (cpus_offlined & BIT(i) && !cpu_online(i))
|
|
continue;
|
|
pr_info("%s: Set Offline: CPU%d Temp: %ld\n",
|
|
KBUILD_MODNAME, i, temp);
|
|
ret = cpu_down(i);
|
|
if (ret)
|
|
pr_err("%s: Error %d offline core %d\n",
|
|
KBUILD_MODNAME, ret, i);
|
|
cpus_offlined |= BIT(i);
|
|
break;
|
|
}
|
|
} else if (msm_thermal_info.core_control_mask && cpus_offlined &&
|
|
temp <= (msm_thermal_info.core_limit_temp_degC -
|
|
msm_thermal_info.core_temp_hysteresis_degC)) {
|
|
for (i = 0; i < num_possible_cpus(); i++) {
|
|
if (!(cpus_offlined & BIT(i)))
|
|
continue;
|
|
cpus_offlined &= ~BIT(i);
|
|
pr_info("%s: Allow Online CPU%d Temp: %ld\n",
|
|
KBUILD_MODNAME, i, temp);
|
|
/*
|
|
* If this core is already online, then bring up the
|
|
* next offlined core.
|
|
*/
|
|
if (cpu_online(i))
|
|
continue;
|
|
ret = cpu_up(i);
|
|
if (ret)
|
|
pr_err("%s: Error %d online core %d\n",
|
|
KBUILD_MODNAME, ret, i);
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&core_control_mutex);
|
|
}
|
|
#else
|
|
static void do_core_control(long temp)
|
|
{
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
static int do_vdd_restriction(void)
|
|
{
|
|
struct tsens_device tsens_dev;
|
|
long temp = 0;
|
|
int ret = 0;
|
|
int i = 0;
|
|
int dis_cnt = 0;
|
|
|
|
if (!vdd_rstr_enabled)
|
|
return ret;
|
|
|
|
if (usefreq && !freq_table_get) {
|
|
if (check_freq_table())
|
|
return ret;
|
|
}
|
|
|
|
mutex_lock(&vdd_rstr_mutex);
|
|
for (i = 0; i < max_tsens_num; i++) {
|
|
tsens_dev.sensor_num = tsens_id_map[i];
|
|
ret = tsens_get_temp(&tsens_dev, &temp);
|
|
if (ret) {
|
|
pr_debug("%s: Unable to read TSENS sensor %d\n",
|
|
__func__, tsens_dev.sensor_num);
|
|
dis_cnt++;
|
|
continue;
|
|
}
|
|
if (temp <= msm_thermal_info.vdd_rstr_temp_degC) {
|
|
ret = vdd_restriction_apply_all(1);
|
|
if (ret) {
|
|
pr_err( \
|
|
"Enable vdd rstr votlage for all failed\n");
|
|
goto exit;
|
|
}
|
|
goto exit;
|
|
} else if (temp > msm_thermal_info.vdd_rstr_temp_hyst_degC)
|
|
dis_cnt++;
|
|
}
|
|
if (dis_cnt == max_tsens_num) {
|
|
ret = vdd_restriction_apply_all(0);
|
|
if (ret) {
|
|
pr_err("Disable vdd rstr votlage for all failed\n");
|
|
goto exit;
|
|
}
|
|
}
|
|
exit:
|
|
mutex_unlock(&vdd_rstr_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int do_psm(void)
|
|
{
|
|
struct tsens_device tsens_dev;
|
|
long temp = 0;
|
|
int ret = 0;
|
|
int i = 0;
|
|
int auto_cnt = 0;
|
|
|
|
mutex_lock(&psm_mutex);
|
|
for (i = 0; i < max_tsens_num; i++) {
|
|
tsens_dev.sensor_num = tsens_id_map[i];
|
|
ret = tsens_get_temp(&tsens_dev, &temp);
|
|
if (ret) {
|
|
pr_debug("%s: Unable to read TSENS sensor %d\n",
|
|
__func__, tsens_dev.sensor_num);
|
|
auto_cnt++;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* As long as one sensor is above the threshold, set PWM mode
|
|
* on all rails, and loop stops. Set auto mode when all rails
|
|
* are below thershold
|
|
*/
|
|
if (temp > msm_thermal_info.psm_temp_degC) {
|
|
ret = psm_set_mode_all(PMIC_PWM_MODE);
|
|
if (ret) {
|
|
pr_err("Set pwm mode for all failed\n");
|
|
goto exit;
|
|
}
|
|
break;
|
|
} else if (temp <= msm_thermal_info.psm_temp_hyst_degC)
|
|
auto_cnt++;
|
|
}
|
|
|
|
if (auto_cnt == max_tsens_num) {
|
|
ret = psm_set_mode_all(PMIC_AUTO_MODE);
|
|
if (ret) {
|
|
pr_err("Set auto mode for all failed\n");
|
|
goto exit;
|
|
}
|
|
}
|
|
|
|
exit:
|
|
mutex_unlock(&psm_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static void __ref do_freq_control(long temp)
|
|
{
|
|
int ret = 0;
|
|
int cpu = 0;
|
|
uint32_t max_freq = limited_max_freq;
|
|
|
|
if (temp >= msm_thermal_info.limit_temp_degC) {
|
|
if (limit_idx == limit_idx_low)
|
|
return;
|
|
|
|
limit_idx -= msm_thermal_info.freq_step;
|
|
if (limit_idx < limit_idx_low)
|
|
limit_idx = limit_idx_low;
|
|
max_freq = table[limit_idx].frequency;
|
|
} else if (temp < msm_thermal_info.limit_temp_degC -
|
|
msm_thermal_info.temp_hysteresis_degC) {
|
|
if (limit_idx == limit_idx_high)
|
|
return;
|
|
|
|
limit_idx += msm_thermal_info.freq_step;
|
|
if (limit_idx >= limit_idx_high) {
|
|
limit_idx = limit_idx_high;
|
|
max_freq = MSM_CPUFREQ_NO_LIMIT;
|
|
} else
|
|
max_freq = table[limit_idx].frequency;
|
|
}
|
|
|
|
if (max_freq == limited_max_freq)
|
|
return;
|
|
|
|
/* Update new limits */
|
|
for_each_possible_cpu(cpu) {
|
|
if (!(msm_thermal_info.freq_control_mask & BIT(cpu)))
|
|
continue;
|
|
ret = update_cpu_max_freq(cpu, max_freq);
|
|
if (ret)
|
|
pr_debug(
|
|
"%s: Unable to limit cpu%d max freq to %d\n",
|
|
KBUILD_MODNAME, cpu, max_freq);
|
|
}
|
|
|
|
}
|
|
|
|
static void __ref check_temp(struct work_struct *work)
|
|
{
|
|
static int limit_init;
|
|
struct tsens_device tsens_dev;
|
|
long temp = 0;
|
|
int ret = 0;
|
|
|
|
tsens_dev.sensor_num = msm_thermal_info.sensor_id;
|
|
ret = tsens_get_temp(&tsens_dev, &temp);
|
|
if (ret) {
|
|
pr_debug("%s: Unable to read TSENS sensor %d\n",
|
|
KBUILD_MODNAME, tsens_dev.sensor_num);
|
|
goto reschedule;
|
|
}
|
|
|
|
if (!limit_init) {
|
|
ret = msm_thermal_get_freq_table();
|
|
if (ret)
|
|
goto reschedule;
|
|
else
|
|
limit_init = 1;
|
|
}
|
|
|
|
do_core_control(temp);
|
|
do_vdd_restriction();
|
|
do_psm();
|
|
do_freq_control(temp);
|
|
|
|
reschedule:
|
|
if (enabled)
|
|
schedule_delayed_work(&check_temp_work,
|
|
msecs_to_jiffies(msm_thermal_info.poll_ms));
|
|
}
|
|
|
|
static int __ref msm_thermal_cpu_callback(struct notifier_block *nfb,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
unsigned int cpu = (unsigned long)hcpu;
|
|
|
|
if (action == CPU_UP_PREPARE || action == CPU_UP_PREPARE_FROZEN) {
|
|
if (core_control_enabled &&
|
|
(msm_thermal_info.core_control_mask & BIT(cpu)) &&
|
|
(cpus_offlined & BIT(cpu))) {
|
|
pr_info(
|
|
"%s: Preventing cpu%d from coming online.\n",
|
|
KBUILD_MODNAME, cpu);
|
|
return NOTIFY_BAD;
|
|
}
|
|
}
|
|
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block __refdata msm_thermal_cpu_notifier = {
|
|
.notifier_call = msm_thermal_cpu_callback,
|
|
};
|
|
|
|
static void thermal_rtc_setup(void)
|
|
{
|
|
ktime_t wakeup_time;
|
|
ktime_t curr_time;
|
|
|
|
curr_time = alarm_get_elapsed_realtime();
|
|
wakeup_time = ktime_add_us(curr_time,
|
|
(wakeup_ms * USEC_PER_MSEC));
|
|
alarm_start_range(&thermal_rtc, wakeup_time,
|
|
wakeup_time);
|
|
pr_debug("%s: Current Time: %ld %ld, Alarm set to: %ld %ld\n",
|
|
KBUILD_MODNAME,
|
|
ktime_to_timeval(curr_time).tv_sec,
|
|
ktime_to_timeval(curr_time).tv_usec,
|
|
ktime_to_timeval(wakeup_time).tv_sec,
|
|
ktime_to_timeval(wakeup_time).tv_usec);
|
|
|
|
}
|
|
|
|
static void timer_work_fn(struct work_struct *work)
|
|
{
|
|
sysfs_notify(tt_kobj, NULL, "wakeup_ms");
|
|
}
|
|
|
|
static void thermal_rtc_callback(struct alarm *al)
|
|
{
|
|
struct timeval ts;
|
|
ts = ktime_to_timeval(alarm_get_elapsed_realtime());
|
|
schedule_work(&timer_work);
|
|
pr_debug("%s: Time on alarm expiry: %ld %ld\n", KBUILD_MODNAME,
|
|
ts.tv_sec, ts.tv_usec);
|
|
}
|
|
|
|
/*
|
|
* We will reset the cpu frequencies limits here. The core online/offline
|
|
* status will be carried over to the process stopping the msm_thermal, as
|
|
* we dont want to online a core and bring in the thermal issues.
|
|
*/
|
|
static void __ref disable_msm_thermal(void)
|
|
{
|
|
int cpu = 0;
|
|
|
|
/* make sure check_temp is no longer running */
|
|
cancel_delayed_work(&check_temp_work);
|
|
flush_scheduled_work();
|
|
|
|
if (limited_max_freq == MSM_CPUFREQ_NO_LIMIT)
|
|
return;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
update_cpu_max_freq(cpu, MSM_CPUFREQ_NO_LIMIT);
|
|
}
|
|
}
|
|
|
|
static int __ref set_enabled(const char *val, const struct kernel_param *kp)
|
|
{
|
|
int ret = 0;
|
|
|
|
ret = param_set_bool(val, kp);
|
|
if (!enabled)
|
|
disable_msm_thermal();
|
|
else
|
|
pr_info("%s: no action for enabled = %d\n",
|
|
KBUILD_MODNAME, enabled);
|
|
|
|
pr_info("%s: enabled = %d\n", KBUILD_MODNAME, enabled);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct kernel_param_ops module_ops = {
|
|
.set = set_enabled,
|
|
.get = param_get_bool,
|
|
};
|
|
|
|
module_param_cb(enabled, &module_ops, &enabled, 0644);
|
|
MODULE_PARM_DESC(enabled, "enforce thermal limit on cpu");
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* Call with core_control_mutex locked */
|
|
static int __ref update_offline_cores(int val)
|
|
{
|
|
int cpu = 0;
|
|
int ret = 0;
|
|
|
|
cpus_offlined = msm_thermal_info.core_control_mask & val;
|
|
if (!core_control_enabled)
|
|
return 0;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
if (!(cpus_offlined & BIT(cpu)))
|
|
continue;
|
|
if (!cpu_online(cpu))
|
|
continue;
|
|
ret = cpu_down(cpu);
|
|
if (ret)
|
|
pr_err("%s: Unable to offline cpu%d\n",
|
|
KBUILD_MODNAME, cpu);
|
|
}
|
|
return ret;
|
|
}
|
|
#else
|
|
static int update_offline_cores(int val)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static ssize_t show_cc_enabled(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return snprintf(buf, PAGE_SIZE, "%d\n", core_control_enabled);
|
|
}
|
|
|
|
static ssize_t __ref store_cc_enabled(struct kobject *kobj,
|
|
struct kobj_attribute *attr, const char *buf, size_t count)
|
|
{
|
|
int ret = 0;
|
|
int val = 0;
|
|
|
|
mutex_lock(&core_control_mutex);
|
|
ret = kstrtoint(buf, 10, &val);
|
|
if (ret) {
|
|
pr_err("%s: Invalid input %s\n", KBUILD_MODNAME, buf);
|
|
goto done_store_cc;
|
|
}
|
|
|
|
if (core_control_enabled == !!val)
|
|
goto done_store_cc;
|
|
|
|
core_control_enabled = !!val;
|
|
if (core_control_enabled) {
|
|
pr_info("%s: Core control enabled\n", KBUILD_MODNAME);
|
|
register_cpu_notifier(&msm_thermal_cpu_notifier);
|
|
update_offline_cores(cpus_offlined);
|
|
} else {
|
|
pr_info("%s: Core control disabled\n", KBUILD_MODNAME);
|
|
unregister_cpu_notifier(&msm_thermal_cpu_notifier);
|
|
}
|
|
|
|
done_store_cc:
|
|
mutex_unlock(&core_control_mutex);
|
|
return count;
|
|
}
|
|
|
|
static ssize_t show_cpus_offlined(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return snprintf(buf, PAGE_SIZE, "%d\n", cpus_offlined);
|
|
}
|
|
|
|
static ssize_t __ref store_cpus_offlined(struct kobject *kobj,
|
|
struct kobj_attribute *attr, const char *buf, size_t count)
|
|
{
|
|
int ret = 0;
|
|
uint32_t val = 0;
|
|
|
|
mutex_lock(&core_control_mutex);
|
|
ret = kstrtouint(buf, 10, &val);
|
|
if (ret) {
|
|
pr_err("%s: Invalid input %s\n", KBUILD_MODNAME, buf);
|
|
goto done_cc;
|
|
}
|
|
|
|
if (enabled) {
|
|
pr_err("%s: Ignoring request; polling thread is enabled.\n",
|
|
KBUILD_MODNAME);
|
|
goto done_cc;
|
|
}
|
|
|
|
if (cpus_offlined == val)
|
|
goto done_cc;
|
|
|
|
update_offline_cores(val);
|
|
done_cc:
|
|
mutex_unlock(&core_control_mutex);
|
|
return count;
|
|
}
|
|
|
|
static __refdata struct kobj_attribute cc_enabled_attr =
|
|
__ATTR(enabled, 0644, show_cc_enabled, store_cc_enabled);
|
|
|
|
static __refdata struct kobj_attribute cpus_offlined_attr =
|
|
__ATTR(cpus_offlined, 0644, show_cpus_offlined, store_cpus_offlined);
|
|
|
|
static __refdata struct attribute *cc_attrs[] = {
|
|
&cc_enabled_attr.attr,
|
|
&cpus_offlined_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static __refdata struct attribute_group cc_attr_group = {
|
|
.attrs = cc_attrs,
|
|
};
|
|
|
|
static ssize_t show_wakeup_ms(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return snprintf(buf, PAGE_SIZE, "%d\n", wakeup_ms);
|
|
}
|
|
|
|
static ssize_t store_wakeup_ms(struct kobject *kobj,
|
|
struct kobj_attribute *attr, const char *buf, size_t count)
|
|
{
|
|
int ret;
|
|
ret = kstrtouint(buf, 10, &wakeup_ms);
|
|
|
|
if (ret) {
|
|
pr_err("%s: Trying to set invalid wakeup timer\n",
|
|
KBUILD_MODNAME);
|
|
return ret;
|
|
}
|
|
|
|
if (wakeup_ms > 0) {
|
|
thermal_rtc_setup();
|
|
pr_debug("%s: Timer started for %ums\n", KBUILD_MODNAME,
|
|
wakeup_ms);
|
|
} else {
|
|
ret = alarm_cancel(&thermal_rtc);
|
|
if (ret)
|
|
pr_debug("%s: Timer canceled\n", KBUILD_MODNAME);
|
|
else
|
|
pr_debug("%s: No active timer present to cancel\n",
|
|
KBUILD_MODNAME);
|
|
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static __refdata struct kobj_attribute timer_attr =
|
|
__ATTR(wakeup_ms, 0644, show_wakeup_ms, store_wakeup_ms);
|
|
|
|
static __refdata struct attribute *tt_attrs[] = {
|
|
&timer_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static __refdata struct attribute_group tt_attr_group = {
|
|
.attrs = tt_attrs,
|
|
};
|
|
|
|
static __init int msm_thermal_add_cc_nodes(void)
|
|
{
|
|
struct kobject *module_kobj = NULL;
|
|
struct kobject *cc_kobj = NULL;
|
|
int ret = 0;
|
|
|
|
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
|
|
if (!module_kobj) {
|
|
pr_err("%s: cannot find kobject for module\n",
|
|
KBUILD_MODNAME);
|
|
ret = -ENOENT;
|
|
goto done_cc_nodes;
|
|
}
|
|
|
|
cc_kobj = kobject_create_and_add("core_control", module_kobj);
|
|
if (!cc_kobj) {
|
|
pr_err("%s: cannot create core control kobj\n",
|
|
KBUILD_MODNAME);
|
|
ret = -ENOMEM;
|
|
goto done_cc_nodes;
|
|
}
|
|
|
|
ret = sysfs_create_group(cc_kobj, &cc_attr_group);
|
|
if (ret) {
|
|
pr_err("%s: cannot create group\n", KBUILD_MODNAME);
|
|
goto done_cc_nodes;
|
|
}
|
|
|
|
return 0;
|
|
|
|
done_cc_nodes:
|
|
if (cc_kobj)
|
|
kobject_del(cc_kobj);
|
|
return ret;
|
|
}
|
|
|
|
static __init int msm_thermal_add_timer_nodes(void)
|
|
{
|
|
struct kobject *module_kobj = NULL;
|
|
int ret = 0;
|
|
|
|
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
|
|
if (!module_kobj) {
|
|
pr_err("%s: cannot find kobject for module\n",
|
|
KBUILD_MODNAME);
|
|
ret = -ENOENT;
|
|
goto failed;
|
|
}
|
|
|
|
tt_kobj = kobject_create_and_add("thermal_timer", module_kobj);
|
|
if (!tt_kobj) {
|
|
pr_err("%s: cannot create timer kobj\n",
|
|
KBUILD_MODNAME);
|
|
ret = -ENOMEM;
|
|
goto failed;
|
|
}
|
|
|
|
ret = sysfs_create_group(tt_kobj, &tt_attr_group);
|
|
if (ret) {
|
|
pr_err("%s: cannot create group\n", KBUILD_MODNAME);
|
|
goto failed;
|
|
}
|
|
|
|
return 0;
|
|
|
|
failed:
|
|
if (tt_kobj)
|
|
kobject_del(tt_kobj);
|
|
return ret;
|
|
}
|
|
|
|
int __devinit msm_thermal_init(struct msm_thermal_data *pdata)
|
|
{
|
|
int ret = 0;
|
|
|
|
BUG_ON(!pdata);
|
|
tsens_get_max_sensor_num(&max_tsens_num);
|
|
memcpy(&msm_thermal_info, pdata, sizeof(struct msm_thermal_data));
|
|
|
|
if (create_sensor_id_map())
|
|
return -EINVAL;
|
|
if (check_sensor_id(msm_thermal_info.sensor_id))
|
|
return -EINVAL;
|
|
|
|
enabled = 1;
|
|
if (num_possible_cpus() > 1)
|
|
core_control_enabled = 1;
|
|
INIT_DELAYED_WORK(&check_temp_work, check_temp);
|
|
schedule_delayed_work(&check_temp_work, 0);
|
|
|
|
if (num_possible_cpus() > 1)
|
|
register_cpu_notifier(&msm_thermal_cpu_notifier);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vdd_restriction_reg_init(struct platform_device *pdev)
|
|
{
|
|
int ret = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < rails_cnt; i++) {
|
|
if (rails[i].freq_req == 1) {
|
|
usefreq |= BIT(i);
|
|
check_freq_table();
|
|
/*
|
|
* Restrict frequency by default until we have made
|
|
* our first temp reading
|
|
*/
|
|
if (freq_table_get)
|
|
ret = vdd_restriction_apply_freq(&rails[i], 0);
|
|
else
|
|
pr_info("%s:Defer vdd rstr freq init\n",
|
|
__func__);
|
|
} else {
|
|
rails[i].reg = devm_regulator_get(&pdev->dev,
|
|
rails[i].name);
|
|
if (IS_ERR_OR_NULL(rails[i].reg)) {
|
|
ret = PTR_ERR(rails[i].reg);
|
|
if (ret != -EPROBE_DEFER) {
|
|
pr_err( \
|
|
"%s, could not get regulator: %s\n",
|
|
rails[i].name, __func__);
|
|
rails[i].reg = NULL;
|
|
rails[i].curr_level = -2;
|
|
return ret;
|
|
}
|
|
return ret;
|
|
}
|
|
/*
|
|
* Restrict votlage by default until we have made
|
|
* our first temp reading
|
|
*/
|
|
ret = vdd_restriction_apply_voltage(&rails[i], 0);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int psm_reg_init(struct platform_device *pdev)
|
|
{
|
|
int ret = 0;
|
|
int i = 0;
|
|
int j = 0;
|
|
|
|
for (i = 0; i < psm_rails_cnt; i++) {
|
|
psm_rails[i].reg = rpm_regulator_get(&pdev->dev,
|
|
psm_rails[i].name);
|
|
if (IS_ERR_OR_NULL(psm_rails[i].reg)) {
|
|
ret = PTR_ERR(psm_rails[i].reg);
|
|
if (ret != -EPROBE_DEFER) {
|
|
pr_err("%s, could not get rpm regulator: %s\n",
|
|
psm_rails[i].name, __func__);
|
|
psm_rails[i].reg = NULL;
|
|
goto psm_reg_exit;
|
|
}
|
|
return ret;
|
|
}
|
|
/* Apps default vote for PWM mode */
|
|
psm_rails[i].init = PMIC_PWM_MODE;
|
|
ret = rpm_regulator_set_mode(psm_rails[i].reg,
|
|
psm_rails[i].init);
|
|
if (ret) {
|
|
pr_err("%s: Cannot set PMIC PWM mode\n", __func__);
|
|
return ret;
|
|
} else
|
|
psm_rails[i].mode = PMIC_PWM_MODE;
|
|
}
|
|
|
|
return ret;
|
|
|
|
psm_reg_exit:
|
|
if (ret) {
|
|
for (j = 0; j < i; j++) {
|
|
if (psm_rails[j].reg != NULL)
|
|
rpm_regulator_put(psm_rails[j].reg);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int msm_thermal_add_vdd_rstr_nodes(void)
|
|
{
|
|
struct kobject *module_kobj = NULL;
|
|
struct kobject *vdd_rstr_kobj = NULL;
|
|
struct kobject *vdd_rstr_reg_kobj[MAX_RAILS] = {0};
|
|
int rc = 0;
|
|
int i = 0;
|
|
|
|
if (!vdd_rstr_probed) {
|
|
vdd_rstr_nodes_called = true;
|
|
return rc;
|
|
}
|
|
|
|
if (vdd_rstr_probed && rails_cnt == 0)
|
|
return rc;
|
|
|
|
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
|
|
if (!module_kobj) {
|
|
pr_err("%s: cannot find kobject for module %s\n",
|
|
__func__, KBUILD_MODNAME);
|
|
rc = -ENOENT;
|
|
goto thermal_sysfs_add_exit;
|
|
}
|
|
|
|
vdd_rstr_kobj = kobject_create_and_add("vdd_restriction", module_kobj);
|
|
if (!vdd_rstr_kobj) {
|
|
pr_err("%s: cannot create vdd_restriction kobject\n", __func__);
|
|
rc = -ENOMEM;
|
|
goto thermal_sysfs_add_exit;
|
|
}
|
|
|
|
rc = sysfs_create_group(vdd_rstr_kobj, &vdd_rstr_en_attribs_gp);
|
|
if (rc) {
|
|
pr_err("%s: cannot create kobject attribute group\n", __func__);
|
|
rc = -ENOMEM;
|
|
goto thermal_sysfs_add_exit;
|
|
}
|
|
|
|
for (i = 0; i < rails_cnt; i++) {
|
|
vdd_rstr_reg_kobj[i] = kobject_create_and_add(rails[i].name,
|
|
vdd_rstr_kobj);
|
|
if (!vdd_rstr_reg_kobj[i]) {
|
|
pr_err("%s: cannot create for kobject for %s\n",
|
|
__func__, rails[i].name);
|
|
rc = -ENOMEM;
|
|
goto thermal_sysfs_add_exit;
|
|
}
|
|
|
|
rails[i].attr_gp.attrs = kzalloc(sizeof(struct attribute *) * 3,
|
|
GFP_KERNEL);
|
|
if (!rails[i].attr_gp.attrs) {
|
|
rc = -ENOMEM;
|
|
goto thermal_sysfs_add_exit;
|
|
}
|
|
|
|
VDD_RES_RW_ATTRIB(rails[i], rails[i].level_attr, 0, level);
|
|
VDD_RES_RO_ATTRIB(rails[i], rails[i].value_attr, 1, value);
|
|
rails[i].attr_gp.attrs[2] = NULL;
|
|
|
|
rc = sysfs_create_group(vdd_rstr_reg_kobj[i],
|
|
&rails[i].attr_gp);
|
|
if (rc) {
|
|
pr_err("%s: cannot create attribute group for %s\n",
|
|
__func__, rails[i].name);
|
|
goto thermal_sysfs_add_exit;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
|
|
thermal_sysfs_add_exit:
|
|
if (rc) {
|
|
for (i = 0; i < rails_cnt; i++) {
|
|
kobject_del(vdd_rstr_reg_kobj[i]);
|
|
kfree(rails[i].attr_gp.attrs);
|
|
}
|
|
if (vdd_rstr_kobj)
|
|
kobject_del(vdd_rstr_kobj);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int msm_thermal_add_psm_nodes(void)
|
|
{
|
|
struct kobject *module_kobj = NULL;
|
|
struct kobject *psm_kobj = NULL;
|
|
struct kobject *psm_reg_kobj[MAX_RAILS] = {0};
|
|
int rc = 0;
|
|
int i = 0;
|
|
|
|
if (!psm_probed) {
|
|
psm_nodes_called = true;
|
|
return rc;
|
|
}
|
|
|
|
if (psm_probed && psm_rails_cnt == 0)
|
|
return rc;
|
|
|
|
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
|
|
if (!module_kobj) {
|
|
pr_err("%s: cannot find kobject for module %s\n",
|
|
__func__, KBUILD_MODNAME);
|
|
rc = -ENOENT;
|
|
goto psm_node_exit;
|
|
}
|
|
|
|
psm_kobj = kobject_create_and_add("pmic_sw_mode", module_kobj);
|
|
if (!psm_kobj) {
|
|
pr_err("%s: cannot create psm kobject\n", KBUILD_MODNAME);
|
|
rc = -ENOMEM;
|
|
goto psm_node_exit;
|
|
}
|
|
|
|
for (i = 0; i < psm_rails_cnt; i++) {
|
|
psm_reg_kobj[i] = kobject_create_and_add(psm_rails[i].name,
|
|
psm_kobj);
|
|
if (!psm_reg_kobj[i]) {
|
|
pr_err("%s: cannot create for kobject for %s\n",
|
|
KBUILD_MODNAME, psm_rails[i].name);
|
|
rc = -ENOMEM;
|
|
goto psm_node_exit;
|
|
}
|
|
psm_rails[i].attr_gp.attrs = kzalloc( \
|
|
sizeof(struct attribute *) * 2, GFP_KERNEL);
|
|
if (!psm_rails[i].attr_gp.attrs) {
|
|
rc = -ENOMEM;
|
|
goto psm_node_exit;
|
|
}
|
|
|
|
PSM_RW_ATTRIB(psm_rails[i], psm_rails[i].mode_attr, 0, mode);
|
|
psm_rails[i].attr_gp.attrs[1] = NULL;
|
|
|
|
rc = sysfs_create_group(psm_reg_kobj[i], &psm_rails[i].attr_gp);
|
|
if (rc) {
|
|
pr_err("%s: cannot create attribute group for %s\n",
|
|
KBUILD_MODNAME, psm_rails[i].name);
|
|
goto psm_node_exit;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
|
|
psm_node_exit:
|
|
if (rc) {
|
|
for (i = 0; i < psm_rails_cnt; i++) {
|
|
kobject_del(psm_reg_kobj[i]);
|
|
kfree(psm_rails[i].attr_gp.attrs);
|
|
}
|
|
if (psm_kobj)
|
|
kobject_del(psm_kobj);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int probe_vdd_rstr(struct device_node *node,
|
|
struct msm_thermal_data *data, struct platform_device *pdev)
|
|
{
|
|
int ret = 0;
|
|
int i = 0;
|
|
int arr_size;
|
|
char *key = NULL;
|
|
struct device_node *child_node = NULL;
|
|
|
|
rails = NULL;
|
|
|
|
key = "qcom,vdd-restriction-temp";
|
|
ret = of_property_read_u32(node, key, &data->vdd_rstr_temp_degC);
|
|
if (ret)
|
|
goto read_node_fail;
|
|
|
|
key = "qcom,vdd-restriction-temp-hysteresis";
|
|
ret = of_property_read_u32(node, key, &data->vdd_rstr_temp_hyst_degC);
|
|
if (ret)
|
|
goto read_node_fail;
|
|
|
|
for_each_child_of_node(node, child_node) {
|
|
rails_cnt++;
|
|
}
|
|
|
|
if (rails_cnt == 0)
|
|
goto read_node_fail;
|
|
if (rails_cnt >= MAX_RAILS) {
|
|
pr_err("%s: Too many rails.\n", __func__);
|
|
return -EFAULT;
|
|
}
|
|
|
|
rails = kzalloc(sizeof(struct rail) * rails_cnt,
|
|
GFP_KERNEL);
|
|
if (!rails) {
|
|
pr_err("%s: Fail to allocate memory for rails.\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
i = 0;
|
|
for_each_child_of_node(node, child_node) {
|
|
key = "qcom,vdd-rstr-reg";
|
|
ret = of_property_read_string(child_node, key, &rails[i].name);
|
|
if (ret)
|
|
goto read_node_fail;
|
|
|
|
key = "qcom,levels";
|
|
if (!of_get_property(child_node, key, &arr_size))
|
|
goto read_node_fail;
|
|
rails[i].num_levels = arr_size/sizeof(__be32);
|
|
if (rails[i].num_levels >
|
|
sizeof(rails[i].levels)/sizeof(uint32_t)) {
|
|
pr_err("%s: Array size too large\n", __func__);
|
|
return -EFAULT;
|
|
}
|
|
ret = of_property_read_u32_array(child_node, key,
|
|
rails[i].levels, rails[i].num_levels);
|
|
if (ret)
|
|
goto read_node_fail;
|
|
|
|
key = "qcom,freq-req";
|
|
rails[i].freq_req = of_property_read_bool(child_node, key);
|
|
if (rails[i].freq_req)
|
|
rails[i].min_level = MSM_CPUFREQ_NO_LIMIT;
|
|
else {
|
|
key = "qcom,min-level";
|
|
ret = of_property_read_u32(child_node, key,
|
|
&rails[i].min_level);
|
|
if (ret)
|
|
goto read_node_fail;
|
|
}
|
|
|
|
rails[i].curr_level = 0;
|
|
rails[i].reg = NULL;
|
|
i++;
|
|
}
|
|
|
|
if (rails_cnt) {
|
|
ret = vdd_restriction_reg_init(pdev);
|
|
if (ret) {
|
|
pr_info("%s:Failed to get regulators. KTM continues.\n",
|
|
__func__);
|
|
goto read_node_fail;
|
|
}
|
|
vdd_rstr_enabled = true;
|
|
}
|
|
read_node_fail:
|
|
vdd_rstr_probed = true;
|
|
if (ret) {
|
|
dev_info(&pdev->dev,
|
|
"%s:Failed reading node=%s, key=%s. KTM continues\n",
|
|
__func__, node->full_name, key);
|
|
kfree(rails);
|
|
rails_cnt = 0;
|
|
}
|
|
if (ret == -EPROBE_DEFER)
|
|
vdd_rstr_probed = false;
|
|
return ret;
|
|
}
|
|
|
|
static int probe_psm(struct device_node *node, struct msm_thermal_data *data,
|
|
struct platform_device *pdev)
|
|
{
|
|
int ret = 0;
|
|
int j = 0;
|
|
char *key = NULL;
|
|
|
|
psm_rails = NULL;
|
|
|
|
key = "qcom,pmic-sw-mode-temp";
|
|
ret = of_property_read_u32(node, key, &data->psm_temp_degC);
|
|
if (ret)
|
|
goto read_node_fail;
|
|
|
|
key = "qcom,pmic-sw-mode-temp-hysteresis";
|
|
ret = of_property_read_u32(node, key, &data->psm_temp_hyst_degC);
|
|
if (ret)
|
|
goto read_node_fail;
|
|
|
|
key = "qcom,pmic-sw-mode-regs";
|
|
psm_rails_cnt = of_property_count_strings(node, key);
|
|
psm_rails = kzalloc(sizeof(struct psm_rail) * psm_rails_cnt,
|
|
GFP_KERNEL);
|
|
if (!psm_rails) {
|
|
pr_err("%s: Fail to allocate memory for psm rails\n", __func__);
|
|
psm_rails_cnt = 0;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (j = 0; j < psm_rails_cnt; j++) {
|
|
ret = of_property_read_string_index(node, key, j,
|
|
&psm_rails[j].name);
|
|
if (ret)
|
|
goto read_node_fail;
|
|
}
|
|
|
|
if (psm_rails_cnt) {
|
|
ret = psm_reg_init(pdev);
|
|
if (ret) {
|
|
pr_info("%s:Failed to get regulators. KTM continues.\n",
|
|
__func__);
|
|
goto read_node_fail;
|
|
}
|
|
psm_enabled = true;
|
|
}
|
|
|
|
read_node_fail:
|
|
psm_probed = true;
|
|
if (ret) {
|
|
dev_info(&pdev->dev,
|
|
"%s:Failed reading node=%s, key=%s. KTM continues\n",
|
|
__func__, node->full_name, key);
|
|
kfree(psm_rails);
|
|
psm_rails_cnt = 0;
|
|
}
|
|
if (ret == -EPROBE_DEFER)
|
|
psm_probed = false;
|
|
return ret;
|
|
}
|
|
|
|
static int __devinit msm_thermal_dev_probe(struct platform_device *pdev)
|
|
{
|
|
int ret = 0;
|
|
char *key = NULL;
|
|
struct device_node *node = pdev->dev.of_node;
|
|
|
|
struct msm_thermal_data data;
|
|
|
|
memset(&data, 0, sizeof(struct msm_thermal_data));
|
|
|
|
key = "qcom,sensor-id";
|
|
ret = of_property_read_u32(node, key, &data.sensor_id);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
key = "qcom,poll-ms";
|
|
ret = of_property_read_u32(node, key, &data.poll_ms);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
key = "qcom,limit-temp";
|
|
ret = of_property_read_u32(node, key, &data.limit_temp_degC);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
key = "qcom,temp-hysteresis";
|
|
ret = of_property_read_u32(node, key, &data.temp_hysteresis_degC);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
key = "qcom,freq-step";
|
|
ret = of_property_read_u32(node, key, &data.freq_step);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
key = "qcom,freq-control-mask";
|
|
ret = of_property_read_u32(node, key, &data.freq_control_mask);
|
|
|
|
key = "qcom,core-limit-temp";
|
|
ret = of_property_read_u32(node, key, &data.core_limit_temp_degC);
|
|
|
|
key = "qcom,core-temp-hysteresis";
|
|
ret = of_property_read_u32(node, key, &data.core_temp_hysteresis_degC);
|
|
|
|
key = "qcom,core-control-mask";
|
|
ret = of_property_read_u32(node, key, &data.core_control_mask);
|
|
|
|
/*
|
|
* Probe optional properties below. Call probe_psm before
|
|
* probe_vdd_rstr because rpm_regulator_get has to be called
|
|
* before devm_regulator_get
|
|
*/
|
|
ret = probe_psm(node, &data, pdev);
|
|
if (ret == -EPROBE_DEFER)
|
|
goto fail;
|
|
ret = probe_vdd_rstr(node, &data, pdev);
|
|
if (ret == -EPROBE_DEFER)
|
|
goto fail;
|
|
|
|
/*
|
|
* In case sysfs add nodes get called before probe function.
|
|
* Need to make sure sysfs node is created again
|
|
*/
|
|
if (psm_nodes_called) {
|
|
msm_thermal_add_psm_nodes();
|
|
psm_nodes_called = false;
|
|
}
|
|
if (vdd_rstr_nodes_called) {
|
|
msm_thermal_add_vdd_rstr_nodes();
|
|
vdd_rstr_nodes_called = false;
|
|
}
|
|
ret = msm_thermal_init(&data);
|
|
|
|
return ret;
|
|
fail:
|
|
if (ret)
|
|
pr_err("%s: Failed reading node=%s, key=%s\n",
|
|
__func__, node->full_name, key);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static struct of_device_id msm_thermal_match_table[] = {
|
|
{.compatible = "qcom,msm-thermal"},
|
|
{},
|
|
};
|
|
|
|
static struct platform_driver msm_thermal_device_driver = {
|
|
.probe = msm_thermal_dev_probe,
|
|
.driver = {
|
|
.name = "msm-thermal",
|
|
.owner = THIS_MODULE,
|
|
.of_match_table = msm_thermal_match_table,
|
|
},
|
|
};
|
|
|
|
int __init msm_thermal_device_init(void)
|
|
{
|
|
return platform_driver_register(&msm_thermal_device_driver);
|
|
}
|
|
|
|
int __init msm_thermal_late_init(void)
|
|
{
|
|
if (num_possible_cpus() > 1)
|
|
msm_thermal_add_cc_nodes();
|
|
msm_thermal_add_psm_nodes();
|
|
msm_thermal_add_vdd_rstr_nodes();
|
|
alarm_init(&thermal_rtc, ANDROID_ALARM_ELAPSED_REALTIME_WAKEUP,
|
|
thermal_rtc_callback);
|
|
INIT_WORK(&timer_work, timer_work_fn);
|
|
msm_thermal_add_timer_nodes();
|
|
|
|
return 0;
|
|
}
|
|
late_initcall(msm_thermal_late_init);
|
|
|