M7350/kernel/drivers/misc/pmic8058-pwm.c
2024-09-09 08:52:07 +00:00

1086 lines
25 KiB
C

/* Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/*
* Qualcomm PMIC8058 PWM driver
*
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/pwm.h>
#include <linux/mfd/pm8xxx/core.h>
#include <linux/pmic8058-pwm.h>
#define PM8058_LPG_BANKS 8
#define PM8058_PWM_CHANNELS PM8058_LPG_BANKS /* MAX=8 */
#define PM8058_LPG_CTL_REGS 7
/* PMIC8058 LPG/PWM */
#define SSBI_REG_ADDR_LPG_CTL_BASE 0x13C
#define SSBI_REG_ADDR_LPG_CTL(n) (SSBI_REG_ADDR_LPG_CTL_BASE + (n))
#define SSBI_REG_ADDR_LPG_BANK_SEL 0x143
#define SSBI_REG_ADDR_LPG_BANK_EN 0x144
#define SSBI_REG_ADDR_LPG_LUT_CFG0 0x145
#define SSBI_REG_ADDR_LPG_LUT_CFG1 0x146
#define SSBI_REG_ADDR_LPG_TEST 0x147
/* Control 0 */
#define PM8058_PWM_1KHZ_COUNT_MASK 0xF0
#define PM8058_PWM_1KHZ_COUNT_SHIFT 4
#define PM8058_PWM_1KHZ_COUNT_MAX 15
#define PM8058_PWM_OUTPUT_EN 0x08
#define PM8058_PWM_PWM_EN 0x04
#define PM8058_PWM_RAMP_GEN_EN 0x02
#define PM8058_PWM_RAMP_START 0x01
#define PM8058_PWM_PWM_START (PM8058_PWM_OUTPUT_EN \
| PM8058_PWM_PWM_EN)
#define PM8058_PWM_RAMP_GEN_START (PM8058_PWM_RAMP_GEN_EN \
| PM8058_PWM_RAMP_START)
/* Control 1 */
#define PM8058_PWM_REVERSE_EN 0x80
#define PM8058_PWM_BYPASS_LUT 0x40
#define PM8058_PWM_HIGH_INDEX_MASK 0x3F
/* Control 2 */
#define PM8058_PWM_LOOP_EN 0x80
#define PM8058_PWM_RAMP_UP 0x40
#define PM8058_PWM_LOW_INDEX_MASK 0x3F
/* Control 3 */
#define PM8058_PWM_VALUE_BIT7_0 0xFF
#define PM8058_PWM_VALUE_BIT5_0 0x3F
/* Control 4 */
#define PM8058_PWM_VALUE_BIT8 0x80
#define PM8058_PWM_CLK_SEL_MASK 0x60
#define PM8058_PWM_CLK_SEL_SHIFT 5
#define PM8058_PWM_CLK_SEL_NO 0
#define PM8058_PWM_CLK_SEL_1KHZ 1
#define PM8058_PWM_CLK_SEL_32KHZ 2
#define PM8058_PWM_CLK_SEL_19P2MHZ 3
#define PM8058_PWM_PREDIVIDE_MASK 0x18
#define PM8058_PWM_PREDIVIDE_SHIFT 3
#define PM8058_PWM_PREDIVIDE_2 0
#define PM8058_PWM_PREDIVIDE_3 1
#define PM8058_PWM_PREDIVIDE_5 2
#define PM8058_PWM_PREDIVIDE_6 3
#define PM8058_PWM_M_MASK 0x07
#define PM8058_PWM_M_MIN 0
#define PM8058_PWM_M_MAX 7
/* Control 5 */
#define PM8058_PWM_PAUSE_COUNT_HI_MASK 0xFC
#define PM8058_PWM_PAUSE_COUNT_HI_SHIFT 2
#define PM8058_PWM_PAUSE_ENABLE_HIGH 0x02
#define PM8058_PWM_SIZE_9_BIT 0x01
/* Control 6 */
#define PM8058_PWM_PAUSE_COUNT_LO_MASK 0xFC
#define PM8058_PWM_PAUSE_COUNT_LO_SHIFT 2
#define PM8058_PWM_PAUSE_ENABLE_LOW 0x02
#define PM8058_PWM_RESERVED 0x01
#define PM8058_PWM_PAUSE_COUNT_MAX 56 /* < 2^6 = 64*/
/* LUT_CFG1 */
#define PM8058_PWM_LUT_READ 0x40
/* TEST */
#define PM8058_PWM_DTEST_MASK 0x38
#define PM8058_PWM_DTEST_SHIFT 3
#define PM8058_PWM_DTEST_BANK_MASK 0x07
/* PWM frequency support
*
* PWM Frequency = Clock Frequency / (N * T)
* or
* PWM Period = Clock Period * (N * T)
* where
* N = 2^9 or 2^6 for 9-bit or 6-bit PWM size
* T = Pre-divide * 2^m, m = 0..7 (exponent)
*
* We use this formula to figure out m for the best pre-divide and clock:
* (PWM Period / N) / 2^m = (Pre-divide * Clock Period)
*/
#define NUM_CLOCKS 3
#define NSEC_1000HZ (NSEC_PER_SEC / 1000)
#define NSEC_32768HZ (NSEC_PER_SEC / 32768)
#define NSEC_19P2MHZ (NSEC_PER_SEC / 19200000)
#define CLK_PERIOD_MIN NSEC_19P2MHZ
#define CLK_PERIOD_MAX NSEC_1000HZ
#define NUM_PRE_DIVIDE 3 /* No default support for pre-divide = 6 */
#define PRE_DIVIDE_0 2
#define PRE_DIVIDE_1 3
#define PRE_DIVIDE_2 5
#define PRE_DIVIDE_MIN PRE_DIVIDE_0
#define PRE_DIVIDE_MAX PRE_DIVIDE_2
static char *clks[NUM_CLOCKS] = {
"1K", "32768", "19.2M"
};
static unsigned pre_div[NUM_PRE_DIVIDE] = {
PRE_DIVIDE_0, PRE_DIVIDE_1, PRE_DIVIDE_2
};
static unsigned int pt_t[NUM_PRE_DIVIDE][NUM_CLOCKS] = {
{ PRE_DIVIDE_0 * NSEC_1000HZ,
PRE_DIVIDE_0 * NSEC_32768HZ,
PRE_DIVIDE_0 * NSEC_19P2MHZ,
},
{ PRE_DIVIDE_1 * NSEC_1000HZ,
PRE_DIVIDE_1 * NSEC_32768HZ,
PRE_DIVIDE_1 * NSEC_19P2MHZ,
},
{ PRE_DIVIDE_2 * NSEC_1000HZ,
PRE_DIVIDE_2 * NSEC_32768HZ,
PRE_DIVIDE_2 * NSEC_19P2MHZ,
},
};
#define MIN_MPT ((PRE_DIVIDE_MIN * CLK_PERIOD_MIN) << PM8058_PWM_M_MIN)
#define MAX_MPT ((PRE_DIVIDE_MAX * CLK_PERIOD_MAX) << PM8058_PWM_M_MAX)
#define CHAN_LUT_SIZE (PM_PWM_LUT_SIZE / PM8058_PWM_CHANNELS)
/* Private data */
struct pm8058_pwm_chip;
struct pwm_device {
struct device *dev;
int pwm_id; /* = bank/channel id */
int in_use;
const char *label;
struct pm8058_pwm_period period;
int pwm_value;
int pwm_period;
int use_lut; /* Use LUT to output PWM */
u8 pwm_ctl[PM8058_LPG_CTL_REGS];
int irq;
struct pm8058_pwm_chip *chip;
};
struct pm8058_pwm_chip {
struct pwm_device pwm_dev[PM8058_PWM_CHANNELS];
u8 bank_mask;
struct mutex pwm_mutex;
struct pm8058_pwm_pdata *pdata;
};
static struct pm8058_pwm_chip *pwm_chip;
struct pm8058_pwm_lut {
/* LUT parameters */
int lut_duty_ms;
int lut_lo_index;
int lut_hi_index;
int lut_pause_hi;
int lut_pause_lo;
int flags;
};
static u16 duty_msec[PM8058_PWM_1KHZ_COUNT_MAX + 1] = {
0, 1, 2, 3, 4, 6, 8, 16, 18, 24, 32, 36, 64, 128, 256, 512
};
static u16 pause_count[PM8058_PWM_PAUSE_COUNT_MAX + 1] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
23, 28, 31, 42, 47, 56, 63, 83, 94, 111, 125, 167, 188, 222, 250, 333,
375, 500, 667, 750, 800, 900, 1000, 1100,
1200, 1300, 1400, 1500, 1600, 1800, 2000, 2500,
3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500,
7000
};
/* Internal functions */
static void pm8058_pwm_save(u8 *u8p, u8 mask, u8 val)
{
*u8p &= ~mask;
*u8p |= val & mask;
}
static int pm8058_pwm_bank_enable(struct pwm_device *pwm, int enable)
{
int rc;
u8 reg;
struct pm8058_pwm_chip *chip;
chip = pwm->chip;
if (enable)
reg = chip->bank_mask | (1 << pwm->pwm_id);
else
reg = chip->bank_mask & ~(1 << pwm->pwm_id);
rc = pm8xxx_writeb(pwm->dev->parent,
SSBI_REG_ADDR_LPG_BANK_EN, reg);
if (rc) {
pr_err("pm8xxx_write(): rc=%d (Enable LPG Bank)\n", rc);
goto bail_out;
}
chip->bank_mask = reg;
bail_out:
return rc;
}
static int pm8058_pwm_bank_sel(struct pwm_device *pwm)
{
int rc;
u8 reg;
reg = pwm->pwm_id;
rc = pm8xxx_writeb(pwm->dev->parent,
SSBI_REG_ADDR_LPG_BANK_SEL, reg);
if (rc)
pr_err("pm8xxx_write(): rc=%d (Select PWM Bank)\n", rc);
return rc;
}
static int pm8058_pwm_start(struct pwm_device *pwm, int start, int ramp_start)
{
int rc;
u8 reg;
if (start) {
reg = pwm->pwm_ctl[0] | PM8058_PWM_PWM_START;
if (ramp_start)
reg |= PM8058_PWM_RAMP_GEN_START;
else
reg &= ~PM8058_PWM_RAMP_GEN_START;
} else {
reg = pwm->pwm_ctl[0] & ~PM8058_PWM_PWM_START;
reg &= ~PM8058_PWM_RAMP_GEN_START;
}
rc = pm8xxx_writeb(pwm->dev->parent, SSBI_REG_ADDR_LPG_CTL(0),
reg);
if (rc)
pr_err("pm8xxx_write(): rc=%d (Enable PWM Ctl 0)\n", rc);
else
pwm->pwm_ctl[0] = reg;
return rc;
}
static void pm8058_pwm_calc_period(unsigned int period_us,
struct pm8058_pwm_period *period)
{
int n, m, clk, div;
int best_m, best_div, best_clk;
int last_err, cur_err, better_err, better_m;
unsigned int tmp_p, last_p, min_err, period_n;
/* PWM Period / N : handle underflow or overflow */
if (period_us < (PM_PWM_PERIOD_MAX / NSEC_PER_USEC))
period_n = (period_us * NSEC_PER_USEC) >> 6;
else
period_n = (period_us >> 6) * NSEC_PER_USEC;
if (period_n >= MAX_MPT) {
n = 9;
period_n >>= 3;
} else
n = 6;
min_err = MAX_MPT;
best_m = 0;
best_clk = 0;
best_div = 0;
for (clk = 0; clk < NUM_CLOCKS; clk++) {
for (div = 0; div < NUM_PRE_DIVIDE; div++) {
tmp_p = period_n;
last_p = tmp_p;
for (m = 0; m <= PM8058_PWM_M_MAX; m++) {
if (tmp_p <= pt_t[div][clk]) {
/* Found local best */
if (!m) {
better_err = pt_t[div][clk] -
tmp_p;
better_m = m;
} else {
last_err = last_p -
pt_t[div][clk];
cur_err = pt_t[div][clk] -
tmp_p;
if (cur_err < last_err) {
better_err = cur_err;
better_m = m;
} else {
better_err = last_err;
better_m = m - 1;
}
}
if (better_err < min_err) {
min_err = better_err;
best_m = better_m;
best_clk = clk;
best_div = div;
}
break;
} else {
last_p = tmp_p;
tmp_p >>= 1;
}
}
}
}
/* Use higher resolution */
if (best_m >= 3 && n == 6) {
n += 3;
best_m -= 3;
}
period->pwm_size = n;
period->clk = best_clk;
period->pre_div = best_div;
period->pre_div_exp = best_m;
pr_debug("period=%u: n=%d, m=%d, clk[%d]=%s, div[%d]=%d\n",
(unsigned)period_us, n, best_m,
best_clk, clks[best_clk], best_div, pre_div[best_div]);
}
static void pm8058_pwm_calc_pwm_value(struct pwm_device *pwm,
unsigned int period_us,
unsigned int duty_us)
{
unsigned int max_pwm_value, tmp;
/* Figure out pwm_value with overflow handling */
tmp = 1 << (sizeof(tmp) * 8 - pwm->period.pwm_size);
if (duty_us < tmp) {
tmp = duty_us << pwm->period.pwm_size;
pwm->pwm_value = tmp / period_us;
} else {
tmp = period_us >> pwm->period.pwm_size;
pwm->pwm_value = duty_us / tmp;
}
max_pwm_value = (1 << pwm->period.pwm_size) - 1;
if (pwm->pwm_value > max_pwm_value)
pwm->pwm_value = max_pwm_value;
}
static int pm8058_pwm_change_table(struct pwm_device *pwm, int duty_pct[],
int start_idx, int len, int raw_value)
{
unsigned int pwm_value, max_pwm_value;
u8 cfg0, cfg1;
int i, pwm_size;
int rc = 0;
pwm_size = (pwm->pwm_ctl[5] & PM8058_PWM_SIZE_9_BIT) ? 9 : 6;
max_pwm_value = (1 << pwm_size) - 1;
for (i = 0; i < len; i++) {
if (raw_value)
pwm_value = duty_pct[i];
else
pwm_value = (duty_pct[i] << pwm_size) / 100;
if (pwm_value > max_pwm_value)
pwm_value = max_pwm_value;
cfg0 = pwm_value;
cfg1 = (pwm_value >> 1) & 0x80;
cfg1 |= start_idx + i;
rc = pm8xxx_writeb(pwm->dev->parent,
SSBI_REG_ADDR_LPG_LUT_CFG0, cfg0);
if (rc)
break;
rc = pm8xxx_writeb(pwm->dev->parent,
SSBI_REG_ADDR_LPG_LUT_CFG1, cfg1);
if (rc)
break;
}
return rc;
}
static void pm8058_pwm_save_index(struct pwm_device *pwm,
int low_idx, int high_idx, int flags)
{
pwm->pwm_ctl[1] = high_idx & PM8058_PWM_HIGH_INDEX_MASK;
pwm->pwm_ctl[2] = low_idx & PM8058_PWM_LOW_INDEX_MASK;
if (flags & PM_PWM_LUT_REVERSE)
pwm->pwm_ctl[1] |= PM8058_PWM_REVERSE_EN;
if (flags & PM_PWM_LUT_RAMP_UP)
pwm->pwm_ctl[2] |= PM8058_PWM_RAMP_UP;
if (flags & PM_PWM_LUT_LOOP)
pwm->pwm_ctl[2] |= PM8058_PWM_LOOP_EN;
}
static void pm8058_pwm_save_period(struct pwm_device *pwm)
{
u8 mask, val;
val = ((pwm->period.clk + 1) << PM8058_PWM_CLK_SEL_SHIFT)
& PM8058_PWM_CLK_SEL_MASK;
val |= (pwm->period.pre_div << PM8058_PWM_PREDIVIDE_SHIFT)
& PM8058_PWM_PREDIVIDE_MASK;
val |= pwm->period.pre_div_exp & PM8058_PWM_M_MASK;
mask = PM8058_PWM_CLK_SEL_MASK | PM8058_PWM_PREDIVIDE_MASK |
PM8058_PWM_M_MASK;
pm8058_pwm_save(&pwm->pwm_ctl[4], mask, val);
val = (pwm->period.pwm_size > 6) ? PM8058_PWM_SIZE_9_BIT : 0;
mask = PM8058_PWM_SIZE_9_BIT;
pm8058_pwm_save(&pwm->pwm_ctl[5], mask, val);
}
static void pm8058_pwm_save_pwm_value(struct pwm_device *pwm)
{
u8 mask, val;
pwm->pwm_ctl[3] = pwm->pwm_value;
val = (pwm->period.pwm_size > 6) ? (pwm->pwm_value >> 1) : 0;
mask = PM8058_PWM_VALUE_BIT8;
pm8058_pwm_save(&pwm->pwm_ctl[4], mask, val);
}
static void pm8058_pwm_save_duty_time(struct pwm_device *pwm,
struct pm8058_pwm_lut *lut)
{
int i;
u8 mask, val;
/* Linear search for duty time */
for (i = 0; i < PM8058_PWM_1KHZ_COUNT_MAX; i++) {
if (duty_msec[i] >= lut->lut_duty_ms)
break;
}
val = i << PM8058_PWM_1KHZ_COUNT_SHIFT;
mask = PM8058_PWM_1KHZ_COUNT_MASK;
pm8058_pwm_save(&pwm->pwm_ctl[0], mask, val);
}
static void pm8058_pwm_save_pause(struct pwm_device *pwm,
struct pm8058_pwm_lut *lut)
{
int i, pause_cnt, time_cnt;
u8 mask, val;
time_cnt = (pwm->pwm_ctl[0] & PM8058_PWM_1KHZ_COUNT_MASK)
>> PM8058_PWM_1KHZ_COUNT_SHIFT;
if (lut->flags & PM_PWM_LUT_PAUSE_HI_EN) {
pause_cnt = (lut->lut_pause_hi + duty_msec[time_cnt] / 2)
/ duty_msec[time_cnt];
/* Linear search for pause time */
for (i = 0; i < PM8058_PWM_PAUSE_COUNT_MAX; i++) {
if (pause_count[i] >= pause_cnt)
break;
}
val = (i << PM8058_PWM_PAUSE_COUNT_HI_SHIFT) &
PM8058_PWM_PAUSE_COUNT_HI_MASK;
val |= PM8058_PWM_PAUSE_ENABLE_HIGH;
} else
val = 0;
mask = PM8058_PWM_PAUSE_COUNT_HI_MASK | PM8058_PWM_PAUSE_ENABLE_HIGH;
pm8058_pwm_save(&pwm->pwm_ctl[5], mask, val);
if (lut->flags & PM_PWM_LUT_PAUSE_LO_EN) {
/* Linear search for pause time */
pause_cnt = (lut->lut_pause_lo + duty_msec[time_cnt] / 2)
/ duty_msec[time_cnt];
for (i = 0; i < PM8058_PWM_PAUSE_COUNT_MAX; i++) {
if (pause_count[i] >= pause_cnt)
break;
}
val = (i << PM8058_PWM_PAUSE_COUNT_LO_SHIFT) &
PM8058_PWM_PAUSE_COUNT_LO_MASK;
val |= PM8058_PWM_PAUSE_ENABLE_LOW;
} else
val = 0;
mask = PM8058_PWM_PAUSE_COUNT_LO_MASK | PM8058_PWM_PAUSE_ENABLE_LOW;
pm8058_pwm_save(&pwm->pwm_ctl[6], mask, val);
}
static int pm8058_pwm_write(struct pwm_device *pwm, int start, int end)
{
int i, rc;
/* Write in reverse way so 0 would be the last */
for (i = end - 1; i >= start; i--) {
rc = pm8xxx_writeb(pwm->dev->parent,
SSBI_REG_ADDR_LPG_CTL(i),
pwm->pwm_ctl[i]);
if (rc) {
pr_err("pm8xxx_write(): rc=%d (PWM Ctl[%d])\n", rc, i);
return rc;
}
}
return 0;
}
static int pm8058_pwm_change_lut(struct pwm_device *pwm,
struct pm8058_pwm_lut *lut)
{
int rc;
pm8058_pwm_save_index(pwm, lut->lut_lo_index,
lut->lut_hi_index, lut->flags);
pm8058_pwm_save_duty_time(pwm, lut);
pm8058_pwm_save_pause(pwm, lut);
pm8058_pwm_save(&pwm->pwm_ctl[1], PM8058_PWM_BYPASS_LUT, 0);
pm8058_pwm_bank_sel(pwm);
rc = pm8058_pwm_write(pwm, 0, 7);
return rc;
}
/* APIs */
/*
* pwm_request - request a PWM device
*/
struct pwm_device *pwm_request(int pwm_id, const char *label)
{
struct pwm_device *pwm;
if (pwm_id > PM8058_PWM_CHANNELS || pwm_id < 0)
return ERR_PTR(-EINVAL);
if (pwm_chip == NULL)
return ERR_PTR(-ENODEV);
mutex_lock(&pwm_chip->pwm_mutex);
pwm = &pwm_chip->pwm_dev[pwm_id];
if (!pwm->in_use) {
pwm->in_use = 1;
pwm->label = label;
pwm->use_lut = 0;
if (pwm_chip->pdata && pwm_chip->pdata->config)
pwm_chip->pdata->config(pwm, pwm_id, 1);
} else
pwm = ERR_PTR(-EBUSY);
mutex_unlock(&pwm_chip->pwm_mutex);
return pwm;
}
EXPORT_SYMBOL(pwm_request);
/*
* pwm_free - free a PWM device
*/
void pwm_free(struct pwm_device *pwm)
{
if (pwm == NULL || IS_ERR(pwm) || pwm->chip == NULL)
return;
mutex_lock(&pwm->chip->pwm_mutex);
if (pwm->in_use) {
pm8058_pwm_bank_sel(pwm);
pm8058_pwm_start(pwm, 0, 0);
if (pwm->chip->pdata && pwm->chip->pdata->config)
pwm->chip->pdata->config(pwm, pwm->pwm_id, 0);
pwm->in_use = 0;
pwm->label = NULL;
}
pm8058_pwm_bank_enable(pwm, 0);
mutex_unlock(&pwm->chip->pwm_mutex);
}
EXPORT_SYMBOL(pwm_free);
/*
* pwm_config - change a PWM device configuration
*
* @pwm: the PWM device
* @period_us: period in micro second
* @duty_us: duty cycle in micro second
*/
int pwm_config(struct pwm_device *pwm, int duty_us, int period_us)
{
int rc;
if (pwm == NULL || IS_ERR(pwm) ||
duty_us > period_us ||
(unsigned)period_us > PM_PWM_PERIOD_MAX ||
(unsigned)period_us < PM_PWM_PERIOD_MIN)
return -EINVAL;
if (pwm->chip == NULL)
return -ENODEV;
mutex_lock(&pwm->chip->pwm_mutex);
if (!pwm->in_use) {
rc = -EINVAL;
goto out_unlock;
}
if (pwm->pwm_period != period_us) {
pm8058_pwm_calc_period(period_us, &pwm->period);
pm8058_pwm_save_period(pwm);
pwm->pwm_period = period_us;
}
pm8058_pwm_calc_pwm_value(pwm, period_us, duty_us);
pm8058_pwm_save_pwm_value(pwm);
pm8058_pwm_save(&pwm->pwm_ctl[1],
PM8058_PWM_BYPASS_LUT, PM8058_PWM_BYPASS_LUT);
pm8058_pwm_bank_sel(pwm);
rc = pm8058_pwm_write(pwm, 1, 6);
pr_debug("duty/period=%u/%u usec: pwm_value=%d (of %d)\n",
(unsigned)duty_us, (unsigned)period_us,
pwm->pwm_value, 1 << pwm->period.pwm_size);
out_unlock:
mutex_unlock(&pwm->chip->pwm_mutex);
return rc;
}
EXPORT_SYMBOL(pwm_config);
/*
* pwm_enable - start a PWM output toggling
*/
int pwm_enable(struct pwm_device *pwm)
{
int rc;
if (pwm == NULL || IS_ERR(pwm))
return -EINVAL;
if (pwm->chip == NULL)
return -ENODEV;
mutex_lock(&pwm->chip->pwm_mutex);
if (!pwm->in_use)
rc = -EINVAL;
else {
if (pwm->chip->pdata && pwm->chip->pdata->enable)
pwm->chip->pdata->enable(pwm, pwm->pwm_id, 1);
rc = pm8058_pwm_bank_enable(pwm, 1);
pm8058_pwm_bank_sel(pwm);
pm8058_pwm_start(pwm, 1, 0);
}
mutex_unlock(&pwm->chip->pwm_mutex);
return rc;
}
EXPORT_SYMBOL(pwm_enable);
/*
* pwm_disable - stop a PWM output toggling
*/
void pwm_disable(struct pwm_device *pwm)
{
if (pwm == NULL || IS_ERR(pwm) || pwm->chip == NULL)
return;
mutex_lock(&pwm->chip->pwm_mutex);
if (pwm->in_use) {
pm8058_pwm_bank_sel(pwm);
pm8058_pwm_start(pwm, 0, 0);
pm8058_pwm_bank_enable(pwm, 0);
if (pwm->chip->pdata && pwm->chip->pdata->enable)
pwm->chip->pdata->enable(pwm, pwm->pwm_id, 0);
}
mutex_unlock(&pwm->chip->pwm_mutex);
}
EXPORT_SYMBOL(pwm_disable);
/**
* pm8058_pwm_config_period - change PWM period
*
* @pwm: the PWM device
* @pwm_p: period in struct pm8058_pwm_period
*/
int pm8058_pwm_config_period(struct pwm_device *pwm,
struct pm8058_pwm_period *period)
{
int rc;
if (pwm == NULL || IS_ERR(pwm) || period == NULL)
return -EINVAL;
if (pwm->chip == NULL)
return -ENODEV;
mutex_lock(&pwm->chip->pwm_mutex);
if (!pwm->in_use) {
rc = -EINVAL;
goto out_unlock;
}
pwm->period.pwm_size = period->pwm_size;
pwm->period.clk = period->clk;
pwm->period.pre_div = period->pre_div;
pwm->period.pre_div_exp = period->pre_div_exp;
pm8058_pwm_save_period(pwm);
pm8058_pwm_bank_sel(pwm);
rc = pm8058_pwm_write(pwm, 4, 6);
out_unlock:
mutex_unlock(&pwm->chip->pwm_mutex);
return rc;
}
EXPORT_SYMBOL(pm8058_pwm_config_period);
/**
* pm8058_pwm_config_duty_cycle - change PWM duty cycle
*
* @pwm: the PWM device
* @pwm_value: the duty cycle in raw PWM value (< 2^pwm_size)
*/
int pm8058_pwm_config_duty_cycle(struct pwm_device *pwm, int pwm_value)
{
struct pm8058_pwm_lut lut;
int flags, start_idx;
int rc = 0;
if (pwm == NULL || IS_ERR(pwm))
return -EINVAL;
if (pwm->chip == NULL)
return -ENODEV;
mutex_lock(&pwm->chip->pwm_mutex);
if (!pwm->in_use || !pwm->pwm_period) {
rc = -EINVAL;
goto out_unlock;
}
if (pwm->pwm_value == pwm_value)
goto out_unlock;
pwm->pwm_value = pwm_value;
flags = PM_PWM_LUT_RAMP_UP;
start_idx = pwm->pwm_id * CHAN_LUT_SIZE;
pm8058_pwm_change_table(pwm, &pwm_value, start_idx, 1, 1);
if (!pwm->use_lut) {
pwm->use_lut = 1;
lut.lut_duty_ms = 1;
lut.lut_lo_index = start_idx;
lut.lut_hi_index = start_idx;
lut.lut_pause_lo = 0;
lut.lut_pause_hi = 0;
lut.flags = flags;
rc = pm8058_pwm_change_lut(pwm, &lut);
} else {
pm8058_pwm_save_index(pwm, start_idx, start_idx, flags);
pm8058_pwm_save(&pwm->pwm_ctl[1], PM8058_PWM_BYPASS_LUT, 0);
pm8058_pwm_bank_sel(pwm);
rc = pm8058_pwm_write(pwm, 0, 3);
}
if (rc)
pr_err("[%d]: pm8058_pwm_write: rc=%d\n", pwm->pwm_id, rc);
out_unlock:
mutex_unlock(&pwm->chip->pwm_mutex);
return rc;
}
EXPORT_SYMBOL(pm8058_pwm_config_duty_cycle);
/**
* pm8058_pwm_lut_config - change a PWM device configuration to use LUT
*
* @pwm: the PWM device
* @period_us: period in micro second
* @duty_pct: arrary of duty cycles in percent, like 20, 50.
* @duty_time_ms: time for each duty cycle in millisecond
* @start_idx: start index in lookup table from 0 to MAX-1
* @idx_len: number of index
* @pause_lo: pause time in millisecond at low index
* @pause_hi: pause time in millisecond at high index
* @flags: control flags
*/
int pm8058_pwm_lut_config(struct pwm_device *pwm, int period_us,
int duty_pct[], int duty_time_ms, int start_idx,
int idx_len, int pause_lo, int pause_hi, int flags)
{
struct pm8058_pwm_lut lut;
int len;
int rc;
if (pwm == NULL || IS_ERR(pwm) || !idx_len)
return -EINVAL;
if (duty_pct == NULL && !(flags & PM_PWM_LUT_NO_TABLE))
return -EINVAL;
if (pwm->chip == NULL)
return -ENODEV;
if (idx_len >= PM_PWM_LUT_SIZE && start_idx)
return -EINVAL;
if ((start_idx + idx_len) > PM_PWM_LUT_SIZE)
return -EINVAL;
if ((unsigned)period_us > PM_PWM_PERIOD_MAX ||
(unsigned)period_us < PM_PWM_PERIOD_MIN)
return -EINVAL;
mutex_lock(&pwm->chip->pwm_mutex);
if (!pwm->in_use) {
rc = -EINVAL;
goto out_unlock;
}
if (pwm->pwm_period != period_us) {
pm8058_pwm_calc_period(period_us, &pwm->period);
pm8058_pwm_save_period(pwm);
pwm->pwm_period = period_us;
}
len = (idx_len > PM_PWM_LUT_SIZE) ? PM_PWM_LUT_SIZE : idx_len;
if (flags & PM_PWM_LUT_NO_TABLE)
goto after_table_write;
rc = pm8058_pwm_change_table(pwm, duty_pct, start_idx, len, 0);
if (rc) {
pr_err("pm8058_pwm_change_table: rc=%d\n", rc);
goto out_unlock;
}
after_table_write:
lut.lut_duty_ms = duty_time_ms;
lut.lut_lo_index = start_idx;
lut.lut_hi_index = start_idx + len - 1;
lut.lut_pause_lo = pause_lo;
lut.lut_pause_hi = pause_hi;
lut.flags = flags;
rc = pm8058_pwm_change_lut(pwm, &lut);
out_unlock:
mutex_unlock(&pwm->chip->pwm_mutex);
return rc;
}
EXPORT_SYMBOL(pm8058_pwm_lut_config);
/**
* pm8058_pwm_lut_enable - control a PWM device to start/stop LUT ramp
*
* @pwm: the PWM device
* @start: to start (1), or stop (0)
*/
int pm8058_pwm_lut_enable(struct pwm_device *pwm, int start)
{
if (pwm == NULL || IS_ERR(pwm))
return -EINVAL;
if (pwm->chip == NULL)
return -ENODEV;
mutex_lock(&pwm->chip->pwm_mutex);
if (start) {
pm8058_pwm_bank_enable(pwm, 1);
pm8058_pwm_bank_sel(pwm);
pm8058_pwm_start(pwm, 1, 1);
} else {
pm8058_pwm_bank_sel(pwm);
pm8058_pwm_start(pwm, 0, 0);
pm8058_pwm_bank_enable(pwm, 0);
}
mutex_unlock(&pwm->chip->pwm_mutex);
return 0;
}
EXPORT_SYMBOL(pm8058_pwm_lut_enable);
#define SSBI_REG_ADDR_LED_BASE 0x131
#define SSBI_REG_ADDR_LED(n) (SSBI_REG_ADDR_LED_BASE + (n))
#define SSBI_REG_ADDR_FLASH_BASE 0x48
#define SSBI_REG_ADDR_FLASH_DRV_1 0xFB
#define SSBI_REG_ADDR_FLASH(n) (((n) < 2 ? \
SSBI_REG_ADDR_FLASH_BASE + (n) : \
SSBI_REG_ADDR_FLASH_DRV_1))
#define PM8058_LED_CURRENT_SHIFT 3
#define PM8058_LED_MODE_MASK 0x07
#define PM8058_FLASH_CURRENT_SHIFT 4
#define PM8058_FLASH_MODE_MASK 0x03
#define PM8058_FLASH_MODE_NONE 0
#define PM8058_FLASH_MODE_DTEST1 1
#define PM8058_FLASH_MODE_DTEST2 2
#define PM8058_FLASH_MODE_PWM 3
int pm8058_pwm_config_led(struct pwm_device *pwm, int id,
int mode, int max_current)
{
int rc;
u8 conf;
switch (id) {
case PM_PWM_LED_0:
case PM_PWM_LED_1:
case PM_PWM_LED_2:
conf = mode & PM8058_LED_MODE_MASK;
conf |= (max_current / 2) << PM8058_LED_CURRENT_SHIFT;
rc = pm8xxx_writeb(pwm->dev->parent,
SSBI_REG_ADDR_LED(id), conf);
break;
case PM_PWM_LED_KPD:
case PM_PWM_LED_FLASH:
case PM_PWM_LED_FLASH1:
switch (mode) {
case PM_PWM_CONF_PWM1:
case PM_PWM_CONF_PWM2:
case PM_PWM_CONF_PWM3:
conf = PM8058_FLASH_MODE_PWM;
break;
case PM_PWM_CONF_DTEST1:
conf = PM8058_FLASH_MODE_DTEST1;
break;
case PM_PWM_CONF_DTEST2:
conf = PM8058_FLASH_MODE_DTEST2;
break;
default:
conf = PM8058_FLASH_MODE_NONE;
break;
}
conf |= (max_current / 20) << PM8058_FLASH_CURRENT_SHIFT;
id -= PM_PWM_LED_KPD;
rc = pm8xxx_writeb(pwm->dev->parent,
SSBI_REG_ADDR_FLASH(id), conf);
break;
default:
rc = -EINVAL;
break;
}
return rc;
}
EXPORT_SYMBOL(pm8058_pwm_config_led);
int pm8058_pwm_set_dtest(struct pwm_device *pwm, int enable)
{
int rc;
u8 reg;
if (pwm == NULL || IS_ERR(pwm))
return -EINVAL;
if (pwm->chip == NULL)
return -ENODEV;
if (!pwm->in_use)
rc = -EINVAL;
else {
reg = pwm->pwm_id & PM8058_PWM_DTEST_BANK_MASK;
if (enable)
/* Only Test 1 available */
reg |= (1 << PM8058_PWM_DTEST_SHIFT) &
PM8058_PWM_DTEST_MASK;
rc = pm8xxx_writeb(pwm->dev->parent,
SSBI_REG_ADDR_LPG_TEST, reg);
if (rc)
pr_err("pm8xxx_write(DTEST=0x%x): rc=%d\n", reg, rc);
}
return rc;
}
EXPORT_SYMBOL(pm8058_pwm_set_dtest);
static int __devinit pmic8058_pwm_probe(struct platform_device *pdev)
{
struct pm8058_pwm_chip *chip;
int i;
chip = kzalloc(sizeof *chip, GFP_KERNEL);
if (chip == NULL) {
pr_err("kzalloc() failed.\n");
return -ENOMEM;
}
for (i = 0; i < PM8058_PWM_CHANNELS; i++) {
chip->pwm_dev[i].pwm_id = i;
chip->pwm_dev[i].chip = chip;
chip->pwm_dev[i].dev = &pdev->dev;
}
mutex_init(&chip->pwm_mutex);
chip->pdata = pdev->dev.platform_data;
pwm_chip = chip;
platform_set_drvdata(pdev, chip);
pr_notice("OK\n");
return 0;
}
static int __devexit pmic8058_pwm_remove(struct platform_device *pdev)
{
struct pm8058_pwm_chip *chip = platform_get_drvdata(pdev);
platform_set_drvdata(pdev, NULL);
kfree(chip);
return 0;
}
static struct platform_driver pmic8058_pwm_driver = {
.probe = pmic8058_pwm_probe,
.remove = __devexit_p(pmic8058_pwm_remove),
.driver = {
.name = "pm8058-pwm",
.owner = THIS_MODULE,
},
};
static int __init pm8058_pwm_init(void)
{
return platform_driver_register(&pmic8058_pwm_driver);
}
static void __exit pm8058_pwm_exit(void)
{
platform_driver_unregister(&pmic8058_pwm_driver);
}
subsys_initcall(pm8058_pwm_init);
module_exit(pm8058_pwm_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("PMIC8058 PWM driver");
MODULE_VERSION("1.0");
MODULE_ALIAS("platform:pmic8058_pwm");