M7350/kernel/drivers/input/touchscreen/synaptics_i2c_rmi4.c
2024-09-09 08:52:07 +00:00

2779 lines
72 KiB
C

/*
* Synaptics RMI4 touchscreen driver
*
* Copyright (C) 2012 Synaptics Incorporated
*
* Copyright (C) 2012 Alexandra Chin <alexandra.chin@tw.synaptics.com>
* Copyright (C) 2012 Scott Lin <scott.lin@tw.synaptics.com>
* Copyright (c) 2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/gpio.h>
#include <linux/regulator/consumer.h>
#include <linux/input/synaptics_dsx.h>
#include <linux/of_gpio.h>
#include "synaptics_i2c_rmi4.h"
#include <linux/input/mt.h>
#define DRIVER_NAME "synaptics_rmi4_i2c"
#define INPUT_PHYS_NAME "synaptics_rmi4_i2c/input0"
#define RESET_DELAY 100
#define TYPE_B_PROTOCOL
#define NO_0D_WHILE_2D
/*
#define REPORT_2D_Z
*/
#define REPORT_2D_W
#define RPT_TYPE (1 << 0)
#define RPT_X_LSB (1 << 1)
#define RPT_X_MSB (1 << 2)
#define RPT_Y_LSB (1 << 3)
#define RPT_Y_MSB (1 << 4)
#define RPT_Z (1 << 5)
#define RPT_WX (1 << 6)
#define RPT_WY (1 << 7)
#define RPT_DEFAULT (RPT_TYPE | RPT_X_LSB | RPT_X_MSB | RPT_Y_LSB | RPT_Y_MSB)
#define EXP_FN_DET_INTERVAL 1000 /* ms */
#define POLLING_PERIOD 1 /* ms */
#define SYN_I2C_RETRY_TIMES 10
#define MAX_ABS_MT_TOUCH_MAJOR 15
#define F01_STD_QUERY_LEN 21
#define F01_BUID_ID_OFFSET 18
#define F11_STD_QUERY_LEN 9
#define F11_STD_CTRL_LEN 10
#define F11_STD_DATA_LEN 12
#define NORMAL_OPERATION (0 << 0)
#define SENSOR_SLEEP (1 << 0)
#define NO_SLEEP_OFF (0 << 2)
#define NO_SLEEP_ON (1 << 2)
enum device_status {
STATUS_NO_ERROR = 0x00,
STATUS_RESET_OCCURED = 0x01,
STATUS_INVALID_CONFIG = 0x02,
STATUS_DEVICE_FAILURE = 0x03,
STATUS_CONFIG_CRC_FAILURE = 0x04,
STATUS_FIRMWARE_CRC_FAILURE = 0x05,
STATUS_CRC_IN_PROGRESS = 0x06
};
#define RMI4_VTG_MIN_UV 2700000
#define RMI4_VTG_MAX_UV 3300000
#define RMI4_ACTIVE_LOAD_UA 15000
#define RMI4_LPM_LOAD_UA 10
#define RMI4_I2C_VTG_MIN_UV 1800000
#define RMI4_I2C_VTG_MAX_UV 1800000
#define RMI4_I2C_LOAD_UA 10000
#define RMI4_I2C_LPM_LOAD_UA 10
#define RMI4_GPIO_SLEEP_LOW_US 10000
static int synaptics_rmi4_i2c_read(struct synaptics_rmi4_data *rmi4_data,
unsigned short addr, unsigned char *data,
unsigned short length);
static int synaptics_rmi4_i2c_write(struct synaptics_rmi4_data *rmi4_data,
unsigned short addr, unsigned char *data,
unsigned short length);
static int synaptics_rmi4_reset_device(struct synaptics_rmi4_data *rmi4_data);
#ifdef CONFIG_PM
static int synaptics_rmi4_suspend(struct device *dev);
static int synaptics_rmi4_resume(struct device *dev);
static ssize_t synaptics_rmi4_full_pm_cycle_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_full_pm_cycle_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t synaptics_rmi4_mode_suspend_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t synaptics_rmi4_mode_resume_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
#if defined(CONFIG_FB)
static int fb_notifier_callback(struct notifier_block *self,
unsigned long event, void *data);
#elif defined(CONFIG_HAS_EARLYSUSPEND)
static void synaptics_rmi4_early_suspend(struct early_suspend *h);
static void synaptics_rmi4_late_resume(struct early_suspend *h);
#endif
#endif
static ssize_t synaptics_rmi4_f01_reset_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t synaptics_rmi4_f01_productinfo_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_f01_buildid_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_f01_flashprog_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_0dbutton_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_0dbutton_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t synaptics_rmi4_flipx_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_flipx_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t synaptics_rmi4_flipy_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_flipy_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
struct synaptics_rmi4_f01_device_status {
union {
struct {
unsigned char status_code:4;
unsigned char reserved:2;
unsigned char flash_prog:1;
unsigned char unconfigured:1;
} __packed;
unsigned char data[1];
};
};
struct synaptics_rmi4_f1a_query {
union {
struct {
unsigned char max_button_count:3;
unsigned char reserved:5;
unsigned char has_general_control:1;
unsigned char has_interrupt_enable:1;
unsigned char has_multibutton_select:1;
unsigned char has_tx_rx_map:1;
unsigned char has_perbutton_threshold:1;
unsigned char has_release_threshold:1;
unsigned char has_strongestbtn_hysteresis:1;
unsigned char has_filter_strength:1;
} __packed;
unsigned char data[2];
};
};
struct synaptics_rmi4_f1a_control_0 {
union {
struct {
unsigned char multibutton_report:2;
unsigned char filter_mode:2;
unsigned char reserved:4;
} __packed;
unsigned char data[1];
};
};
struct synaptics_rmi4_f1a_control_3_4 {
unsigned char transmitterbutton;
unsigned char receiverbutton;
};
struct synaptics_rmi4_f1a_control {
struct synaptics_rmi4_f1a_control_0 general_control;
unsigned char *button_int_enable;
unsigned char *multi_button;
struct synaptics_rmi4_f1a_control_3_4 *electrode_map;
unsigned char *button_threshold;
unsigned char button_release_threshold;
unsigned char strongest_button_hysteresis;
unsigned char filter_strength;
};
struct synaptics_rmi4_f1a_handle {
int button_bitmask_size;
unsigned char button_count;
unsigned char valid_button_count;
unsigned char *button_data_buffer;
unsigned char *button_map;
struct synaptics_rmi4_f1a_query button_query;
struct synaptics_rmi4_f1a_control button_control;
};
struct synaptics_rmi4_exp_fn {
enum exp_fn fn_type;
bool inserted;
int (*func_init)(struct synaptics_rmi4_data *rmi4_data);
void (*func_remove)(struct synaptics_rmi4_data *rmi4_data);
void (*func_attn)(struct synaptics_rmi4_data *rmi4_data,
unsigned char intr_mask);
struct list_head link;
};
static struct device_attribute attrs[] = {
#ifdef CONFIG_PM
__ATTR(full_pm_cycle, (S_IRUGO | S_IWUGO),
synaptics_rmi4_full_pm_cycle_show,
synaptics_rmi4_full_pm_cycle_store),
__ATTR(mode_suspend, S_IWUGO,
synaptics_rmi4_show_error,
synaptics_rmi4_mode_suspend_store),
__ATTR(mode_resume, S_IWUGO,
synaptics_rmi4_show_error,
synaptics_rmi4_mode_resume_store),
#endif
__ATTR(reset, S_IWUGO,
synaptics_rmi4_show_error,
synaptics_rmi4_f01_reset_store),
__ATTR(productinfo, S_IRUGO,
synaptics_rmi4_f01_productinfo_show,
synaptics_rmi4_store_error),
__ATTR(buildid, S_IRUGO,
synaptics_rmi4_f01_buildid_show,
synaptics_rmi4_store_error),
__ATTR(flashprog, S_IRUGO,
synaptics_rmi4_f01_flashprog_show,
synaptics_rmi4_store_error),
__ATTR(0dbutton, (S_IRUGO | S_IWUGO),
synaptics_rmi4_0dbutton_show,
synaptics_rmi4_0dbutton_store),
__ATTR(flipx, (S_IRUGO | S_IWUGO),
synaptics_rmi4_flipx_show,
synaptics_rmi4_flipx_store),
__ATTR(flipy, (S_IRUGO | S_IWUGO),
synaptics_rmi4_flipy_show,
synaptics_rmi4_flipy_store),
};
static bool exp_fn_inited;
static struct mutex exp_fn_list_mutex;
static struct list_head exp_fn_list;
#ifdef CONFIG_PM
static ssize_t synaptics_rmi4_full_pm_cycle_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%u\n",
rmi4_data->full_pm_cycle);
}
static ssize_t synaptics_rmi4_full_pm_cycle_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
unsigned int input;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
if (sscanf(buf, "%u", &input) != 1)
return -EINVAL;
rmi4_data->full_pm_cycle = input > 0 ? 1 : 0;
return count;
}
static ssize_t synaptics_rmi4_mode_suspend_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
unsigned int input;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
if (sscanf(buf, "%u", &input) != 1)
return -EINVAL;
synaptics_rmi4_suspend(&(rmi4_data->input_dev->dev));
return count;
}
static ssize_t synaptics_rmi4_mode_resume_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
unsigned int input;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
if (sscanf(buf, "%u", &input) != 1)
return -EINVAL;
synaptics_rmi4_resume(&(rmi4_data->input_dev->dev));
return count;
}
#ifdef CONFIG_FB
static void configure_sleep(struct synaptics_rmi4_data *rmi4_data)
{
int retval = 0;
rmi4_data->fb_notif.notifier_call = fb_notifier_callback;
retval = fb_register_client(&rmi4_data->fb_notif);
if (retval)
dev_err(&rmi4_data->i2c_client->dev,
"Unable to register fb_notifier: %d\n", retval);
return;
}
#elif defined CONFIG_HAS_EARLYSUSPEND
static void configure_sleep(struct synaptics_rmi4_data *rmi4_data)
{
rmi4_data->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 1;
rmi4_data->early_suspend.suspend = synaptics_rmi4_early_suspend;
rmi4_data->early_suspend.resume = synaptics_rmi4_late_resume;
register_early_suspend(&rmi4_data->early_suspend);
return;
}
#else
static void configure_sleep(struct synaptics_rmi4_data *rmi4_data)
{
return;
}
#endif
#endif
static ssize_t synaptics_rmi4_f01_reset_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned int reset;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
if (sscanf(buf, "%u", &reset) != 1)
return -EINVAL;
if (reset != 1)
return -EINVAL;
retval = synaptics_rmi4_reset_device(rmi4_data);
if (retval < 0) {
dev_err(dev,
"%s: Failed to issue reset command, error = %d\n",
__func__, retval);
return retval;
}
return count;
}
static ssize_t synaptics_rmi4_f01_productinfo_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "0x%02x 0x%02x\n",
(rmi4_data->rmi4_mod_info.product_info[0]),
(rmi4_data->rmi4_mod_info.product_info[1]));
}
static ssize_t synaptics_rmi4_f01_buildid_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned int build_id;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
build_id = (unsigned int)rmi->build_id[0] +
(unsigned int)rmi->build_id[1] * 0x100 +
(unsigned int)rmi->build_id[2] * 0x10000;
return snprintf(buf, PAGE_SIZE, "%u\n",
build_id);
}
static ssize_t synaptics_rmi4_f01_flashprog_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int retval;
struct synaptics_rmi4_f01_device_status device_status;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_data_base_addr,
device_status.data,
sizeof(device_status.data));
if (retval < 0) {
dev_err(dev,
"%s: Failed to read device status, error = %d\n",
__func__, retval);
return retval;
}
return snprintf(buf, PAGE_SIZE, "%u\n",
device_status.flash_prog);
}
static ssize_t synaptics_rmi4_0dbutton_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%u\n",
rmi4_data->button_0d_enabled);
}
static ssize_t synaptics_rmi4_0dbutton_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned int input;
unsigned char ii;
unsigned char intr_enable;
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
if (sscanf(buf, "%u", &input) != 1)
return -EINVAL;
input = input > 0 ? 1 : 0;
if (rmi4_data->button_0d_enabled == input)
return count;
if (!list_empty(&rmi->support_fn_list)) {
list_for_each_entry(fhandler, &rmi->support_fn_list, link) {
if (fhandler->fn_number == SYNAPTICS_RMI4_F1A) {
ii = fhandler->intr_reg_num;
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_ctrl_base_addr +
1 + ii,
&intr_enable,
sizeof(intr_enable));
if (retval < 0)
return retval;
if (input == 1)
intr_enable |= fhandler->intr_mask;
else
intr_enable &= ~fhandler->intr_mask;
retval = synaptics_rmi4_i2c_write(rmi4_data,
rmi4_data->f01_ctrl_base_addr +
1 + ii,
&intr_enable,
sizeof(intr_enable));
if (retval < 0)
return retval;
}
}
}
rmi4_data->button_0d_enabled = input;
return count;
}
static ssize_t synaptics_rmi4_flipx_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%u\n",
rmi4_data->flip_x);
}
static ssize_t synaptics_rmi4_flipx_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
unsigned int input;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
if (sscanf(buf, "%u", &input) != 1)
return -EINVAL;
rmi4_data->flip_x = input > 0 ? 1 : 0;
return count;
}
static ssize_t synaptics_rmi4_flipy_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%u\n",
rmi4_data->flip_y);
}
static ssize_t synaptics_rmi4_flipy_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
unsigned int input;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
if (sscanf(buf, "%u", &input) != 1)
return -EINVAL;
rmi4_data->flip_y = input > 0 ? 1 : 0;
return count;
}
/**
* synaptics_rmi4_set_page()
*
* Called by synaptics_rmi4_i2c_read() and synaptics_rmi4_i2c_write().
*
* This function writes to the page select register to switch to the
* assigned page.
*/
static int synaptics_rmi4_set_page(struct synaptics_rmi4_data *rmi4_data,
unsigned int address)
{
int retval = 0;
unsigned char retry;
unsigned char buf[PAGE_SELECT_LEN];
unsigned char page;
struct i2c_client *i2c = rmi4_data->i2c_client;
page = ((address >> 8) & MASK_8BIT);
if (page != rmi4_data->current_page) {
buf[0] = MASK_8BIT;
buf[1] = page;
for (retry = 0; retry < SYN_I2C_RETRY_TIMES; retry++) {
retval = i2c_master_send(i2c, buf, PAGE_SELECT_LEN);
if (retval != PAGE_SELECT_LEN) {
dev_err(&i2c->dev,
"%s: I2C retry %d\n",
__func__, retry + 1);
msleep(20);
} else {
rmi4_data->current_page = page;
break;
}
}
} else
return PAGE_SELECT_LEN;
return (retval == PAGE_SELECT_LEN) ? retval : -EIO;
}
/**
* synaptics_rmi4_i2c_read()
*
* Called by various functions in this driver, and also exported to
* other expansion Function modules such as rmi_dev.
*
* This function reads data of an arbitrary length from the sensor,
* starting from an assigned register address of the sensor, via I2C
* with a retry mechanism.
*/
static int synaptics_rmi4_i2c_read(struct synaptics_rmi4_data *rmi4_data,
unsigned short addr, unsigned char *data, unsigned short length)
{
int retval;
unsigned char retry;
unsigned char buf;
struct i2c_msg msg[] = {
{
.addr = rmi4_data->i2c_client->addr,
.flags = 0,
.len = 1,
.buf = &buf,
},
{
.addr = rmi4_data->i2c_client->addr,
.flags = I2C_M_RD,
.len = length,
.buf = data,
},
};
buf = addr & MASK_8BIT;
mutex_lock(&(rmi4_data->rmi4_io_ctrl_mutex));
retval = synaptics_rmi4_set_page(rmi4_data, addr);
if (retval != PAGE_SELECT_LEN)
goto exit;
for (retry = 0; retry < SYN_I2C_RETRY_TIMES; retry++) {
if (i2c_transfer(rmi4_data->i2c_client->adapter, msg, 2) == 2) {
retval = length;
break;
}
dev_err(&rmi4_data->i2c_client->dev,
"%s: I2C retry %d\n",
__func__, retry + 1);
msleep(20);
}
if (retry == SYN_I2C_RETRY_TIMES) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: I2C read over retry limit\n",
__func__);
retval = -EIO;
}
exit:
mutex_unlock(&(rmi4_data->rmi4_io_ctrl_mutex));
return retval;
}
/**
* synaptics_rmi4_i2c_write()
*
* Called by various functions in this driver, and also exported to
* other expansion Function modules such as rmi_dev.
*
* This function writes data of an arbitrary length to the sensor,
* starting from an assigned register address of the sensor, via I2C with
* a retry mechanism.
*/
static int synaptics_rmi4_i2c_write(struct synaptics_rmi4_data *rmi4_data,
unsigned short addr, unsigned char *data, unsigned short length)
{
int retval;
unsigned char retry;
unsigned char buf[length + 1];
struct i2c_msg msg[] = {
{
.addr = rmi4_data->i2c_client->addr,
.flags = 0,
.len = length + 1,
.buf = buf,
}
};
mutex_lock(&(rmi4_data->rmi4_io_ctrl_mutex));
retval = synaptics_rmi4_set_page(rmi4_data, addr);
if (retval != PAGE_SELECT_LEN)
goto exit;
buf[0] = addr & MASK_8BIT;
memcpy(&buf[1], &data[0], length);
for (retry = 0; retry < SYN_I2C_RETRY_TIMES; retry++) {
if (i2c_transfer(rmi4_data->i2c_client->adapter, msg, 1) == 1) {
retval = length;
break;
}
dev_err(&rmi4_data->i2c_client->dev,
"%s: I2C retry %d\n",
__func__, retry + 1);
msleep(20);
}
if (retry == SYN_I2C_RETRY_TIMES) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: I2C write over retry limit\n",
__func__);
retval = -EIO;
}
exit:
mutex_unlock(&(rmi4_data->rmi4_io_ctrl_mutex));
return retval;
}
/**
* synaptics_rmi4_f11_abs_report()
*
* Called by synaptics_rmi4_report_touch() when valid Function $11
* finger data has been detected.
*
* This function reads the Function $11 data registers, determines the
* status of each finger supported by the Function, processes any
* necessary coordinate manipulation, reports the finger data to
* the input subsystem, and returns the number of fingers detected.
*/
static int synaptics_rmi4_f11_abs_report(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
int retval;
unsigned char touch_count = 0; /* number of touch points */
unsigned char reg_index;
unsigned char finger;
unsigned char fingers_supported;
unsigned char num_of_finger_status_regs;
unsigned char finger_shift;
unsigned char finger_status;
unsigned char data_reg_blk_size;
unsigned char finger_status_reg[3];
unsigned char data[F11_STD_DATA_LEN];
unsigned short data_addr;
unsigned short data_offset;
int x;
int y;
int wx;
int wy;
int z;
/*
* The number of finger status registers is determined by the
* maximum number of fingers supported - 2 bits per finger. So
* the number of finger status registers to read is:
* register_count = ceil(max_num_of_fingers / 4)
*/
fingers_supported = fhandler->num_of_data_points;
num_of_finger_status_regs = (fingers_supported + 3) / 4;
data_addr = fhandler->full_addr.data_base;
data_reg_blk_size = fhandler->size_of_data_register_block;
retval = synaptics_rmi4_i2c_read(rmi4_data,
data_addr,
finger_status_reg,
num_of_finger_status_regs);
if (retval < 0)
return 0;
for (finger = 0; finger < fingers_supported; finger++) {
reg_index = finger / 4;
finger_shift = (finger % 4) * 2;
finger_status = (finger_status_reg[reg_index] >> finger_shift)
& MASK_2BIT;
/*
* Each 2-bit finger status field represents the following:
* 00 = finger not present
* 01 = finger present and data accurate
* 10 = finger present but data may be inaccurate
* 11 = reserved
*/
#ifdef TYPE_B_PROTOCOL
input_mt_slot(rmi4_data->input_dev, finger);
input_mt_report_slot_state(rmi4_data->input_dev,
MT_TOOL_FINGER, finger_status != 0);
#endif
if (finger_status) {
data_offset = data_addr +
num_of_finger_status_regs +
(finger * data_reg_blk_size);
retval = synaptics_rmi4_i2c_read(rmi4_data,
data_offset,
data,
data_reg_blk_size);
if (retval < 0)
return 0;
x = (data[0] << 4) | (data[2] & MASK_4BIT);
y = (data[1] << 4) | ((data[2] >> 4) & MASK_4BIT);
wx = (data[3] & MASK_4BIT);
wy = (data[3] >> 4) & MASK_4BIT;
z = data[4];
if (rmi4_data->flip_x)
x = rmi4_data->sensor_max_x - x;
if (rmi4_data->flip_y)
y = rmi4_data->sensor_max_y - y;
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Finger %d:\n"
"status = 0x%02x\n"
"x = %d\n"
"y = %d\n"
"wx = %d\n"
"wy = %d\n",
__func__, finger,
finger_status,
x, y, wx, wy);
input_report_abs(rmi4_data->input_dev,
ABS_MT_POSITION_X, x);
input_report_abs(rmi4_data->input_dev,
ABS_MT_POSITION_Y, y);
input_report_abs(rmi4_data->input_dev,
ABS_MT_PRESSURE, z);
#ifdef REPORT_2D_W
input_report_abs(rmi4_data->input_dev,
ABS_MT_TOUCH_MAJOR, max(wx, wy));
input_report_abs(rmi4_data->input_dev,
ABS_MT_TOUCH_MINOR, min(wx, wy));
#endif
#ifndef TYPE_B_PROTOCOL
input_mt_sync(rmi4_data->input_dev);
#endif
touch_count++;
}
}
input_report_key(rmi4_data->input_dev, BTN_TOUCH, touch_count > 0);
input_report_key(rmi4_data->input_dev,
BTN_TOOL_FINGER, touch_count > 0);
#ifndef TYPE_B_PROTOCOL
if (!touch_count)
input_mt_sync(rmi4_data->input_dev);
#else
/* sync after groups of events */
#ifdef KERNEL_ABOVE_3_7
input_mt_sync_frame(rmi4_data->input_dev);
#endif
#endif
input_sync(rmi4_data->input_dev);
return touch_count;
}
static void synaptics_rmi4_f1a_report(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
int retval;
unsigned char button;
unsigned char index;
unsigned char shift;
unsigned char status;
unsigned char *data;
unsigned short data_addr = fhandler->full_addr.data_base;
struct synaptics_rmi4_f1a_handle *f1a = fhandler->data;
static unsigned char do_once = 1;
static bool current_status[MAX_NUMBER_OF_BUTTONS];
#ifdef NO_0D_WHILE_2D
static bool before_2d_status[MAX_NUMBER_OF_BUTTONS];
static bool while_2d_status[MAX_NUMBER_OF_BUTTONS];
#endif
if (do_once) {
memset(current_status, 0, sizeof(current_status));
#ifdef NO_0D_WHILE_2D
memset(before_2d_status, 0, sizeof(before_2d_status));
memset(while_2d_status, 0, sizeof(while_2d_status));
#endif
do_once = 0;
}
retval = synaptics_rmi4_i2c_read(rmi4_data,
data_addr,
f1a->button_data_buffer,
f1a->button_bitmask_size);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to read button data registers\n",
__func__);
return;
}
data = f1a->button_data_buffer;
for (button = 0; button < f1a->valid_button_count; button++) {
index = button / 8;
shift = button % 8;
status = ((data[index] >> shift) & MASK_1BIT);
if (current_status[button] == status)
continue;
else
current_status[button] = status;
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Button %d (code %d) ->%d\n",
__func__, button,
f1a->button_map[button],
status);
#ifdef NO_0D_WHILE_2D
if (rmi4_data->fingers_on_2d == false) {
if (status == 1) {
before_2d_status[button] = 1;
} else {
if (while_2d_status[button] == 1) {
while_2d_status[button] = 0;
continue;
} else {
before_2d_status[button] = 0;
}
}
input_report_key(rmi4_data->input_dev,
f1a->button_map[button],
status);
} else {
if (before_2d_status[button] == 1) {
before_2d_status[button] = 0;
input_report_key(rmi4_data->input_dev,
f1a->button_map[button],
status);
} else {
if (status == 1)
while_2d_status[button] = 1;
else
while_2d_status[button] = 0;
}
}
#else
input_report_key(rmi4_data->input_dev,
f1a->button_map[button],
status);
#endif
}
input_sync(rmi4_data->input_dev);
return;
}
/**
* synaptics_rmi4_report_touch()
*
* Called by synaptics_rmi4_sensor_report().
*
* This function calls the appropriate finger data reporting function
* based on the function handler it receives and returns the number of
* fingers detected.
*/
static void synaptics_rmi4_report_touch(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler,
unsigned char *touch_count)
{
unsigned char touch_count_2d;
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Function %02x reporting\n",
__func__, fhandler->fn_number);
switch (fhandler->fn_number) {
case SYNAPTICS_RMI4_F11:
touch_count_2d = synaptics_rmi4_f11_abs_report(rmi4_data,
fhandler);
*touch_count += touch_count_2d;
if (touch_count_2d)
rmi4_data->fingers_on_2d = true;
else
rmi4_data->fingers_on_2d = false;
break;
case SYNAPTICS_RMI4_F1A:
synaptics_rmi4_f1a_report(rmi4_data, fhandler);
break;
default:
break;
}
return;
}
/**
* synaptics_rmi4_sensor_report()
*
* Called by synaptics_rmi4_irq().
*
* This function determines the interrupt source(s) from the sensor
* and calls synaptics_rmi4_report_touch() with the appropriate
* function handler for each function with valid data inputs.
*/
static int synaptics_rmi4_sensor_report(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char touch_count = 0;
unsigned char intr[MAX_INTR_REGISTERS];
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_exp_fn *exp_fhandler;
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
/*
* Get interrupt status information from F01 Data1 register to
* determine the source(s) that are flagging the interrupt.
*/
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_data_base_addr + 1,
intr,
rmi4_data->num_of_intr_regs);
if (retval < 0)
return retval;
/*
* Traverse the function handler list and service the source(s)
* of the interrupt accordingly.
*/
if (!list_empty(&rmi->support_fn_list)) {
list_for_each_entry(fhandler, &rmi->support_fn_list, link) {
if (fhandler->num_of_data_sources) {
if (fhandler->intr_mask &
intr[fhandler->intr_reg_num]) {
synaptics_rmi4_report_touch(rmi4_data,
fhandler, &touch_count);
}
}
}
}
mutex_lock(&exp_fn_list_mutex);
if (!list_empty(&exp_fn_list)) {
list_for_each_entry(exp_fhandler, &exp_fn_list, link) {
if (exp_fhandler->inserted &&
(exp_fhandler->func_attn != NULL))
exp_fhandler->func_attn(rmi4_data, intr[0]);
}
}
mutex_unlock(&exp_fn_list_mutex);
return touch_count;
}
/**
* synaptics_rmi4_irq()
*
* Called by the kernel when an interrupt occurs (when the sensor
* asserts the attention irq).
*
* This function is the ISR thread and handles the acquisition
* and the reporting of finger data when the presence of fingers
* is detected.
*/
static irqreturn_t synaptics_rmi4_irq(int irq, void *data)
{
struct synaptics_rmi4_data *rmi4_data = data;
synaptics_rmi4_sensor_report(rmi4_data);
return IRQ_HANDLED;
}
static int synaptics_rmi4_parse_dt(struct device *dev,
struct synaptics_rmi4_platform_data *rmi4_pdata)
{
struct device_node *np = dev->of_node;
struct property *prop;
u32 temp_val, num_buttons;
u32 button_map[MAX_NUMBER_OF_BUTTONS];
int rc, i;
rmi4_pdata->i2c_pull_up = of_property_read_bool(np,
"synaptics,i2c-pull-up");
rmi4_pdata->x_flip = of_property_read_bool(np, "synaptics,x-flip");
rmi4_pdata->y_flip = of_property_read_bool(np, "synaptics,y-flip");
rc = of_property_read_u32(np, "synaptics,panel-x", &temp_val);
if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read panel X dimension\n");
return rc;
} else {
rmi4_pdata->panel_x = temp_val;
}
rc = of_property_read_u32(np, "synaptics,panel-y", &temp_val);
if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read panel Y dimension\n");
return rc;
} else {
rmi4_pdata->panel_y = temp_val;
}
rc = of_property_read_string(np, "synaptics,fw-image-name",
&rmi4_pdata->fw_image_name);
if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read fw image name\n");
return rc;
}
/* reset, irq gpio info */
rmi4_pdata->reset_gpio = of_get_named_gpio_flags(np,
"synaptics,reset-gpio", 0, &rmi4_pdata->reset_flags);
rmi4_pdata->irq_gpio = of_get_named_gpio_flags(np,
"synaptics,irq-gpio", 0, &rmi4_pdata->irq_flags);
prop = of_find_property(np, "synaptics,button-map", NULL);
if (prop) {
num_buttons = prop->length / sizeof(temp_val);
rmi4_pdata->capacitance_button_map = devm_kzalloc(dev,
sizeof(*rmi4_pdata->capacitance_button_map),
GFP_KERNEL);
if (!rmi4_pdata->capacitance_button_map)
return -ENOMEM;
rmi4_pdata->capacitance_button_map->map = devm_kzalloc(dev,
sizeof(*rmi4_pdata->capacitance_button_map->map) *
MAX_NUMBER_OF_BUTTONS, GFP_KERNEL);
if (!rmi4_pdata->capacitance_button_map->map)
return -ENOMEM;
if (num_buttons <= MAX_NUMBER_OF_BUTTONS) {
rc = of_property_read_u32_array(np,
"synaptics,button-map", button_map,
num_buttons);
if (rc) {
dev_err(dev, "Unable to read key codes\n");
return rc;
}
for (i = 0; i < num_buttons; i++)
rmi4_pdata->capacitance_button_map->map[i] =
button_map[i];
rmi4_pdata->capacitance_button_map->nbuttons =
num_buttons;
} else {
return -EINVAL;
}
}
return 0;
}
/**
* synaptics_rmi4_irq_enable()
*
* Called by synaptics_rmi4_probe() and the power management functions
* in this driver and also exported to other expansion Function modules
* such as rmi_dev.
*
* This function handles the enabling and disabling of the attention
* irq including the setting up of the ISR thread.
*/
static int synaptics_rmi4_irq_enable(struct synaptics_rmi4_data *rmi4_data,
bool enable)
{
int retval = 0;
unsigned char *intr_status;
if (enable) {
if (rmi4_data->irq_enabled)
return retval;
intr_status = kzalloc(rmi4_data->num_of_intr_regs, GFP_KERNEL);
if (!intr_status) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc memory\n",
__func__);
return -ENOMEM;
}
/* Clear interrupts first */
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_data_base_addr + 1,
intr_status,
rmi4_data->num_of_intr_regs);
kfree(intr_status);
if (retval < 0)
return retval;
enable_irq(rmi4_data->irq);
rmi4_data->irq_enabled = true;
} else {
if (rmi4_data->irq_enabled) {
disable_irq(rmi4_data->irq);
rmi4_data->irq_enabled = false;
}
}
return retval;
}
/**
* synaptics_rmi4_f11_init()
*
* Called by synaptics_rmi4_query_device().
*
* This funtion parses information from the Function 11 registers
* and determines the number of fingers supported, x and y data ranges,
* offset to the associated interrupt status register, interrupt bit
* mask, and gathers finger data acquisition capabilities from the query
* registers.
*/
static int synaptics_rmi4_f11_init(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler,
struct synaptics_rmi4_fn_desc *fd,
unsigned int intr_count)
{
int retval;
unsigned char ii;
unsigned char intr_offset;
unsigned char abs_data_size;
unsigned char abs_data_blk_size;
unsigned char query[F11_STD_QUERY_LEN];
unsigned char control[F11_STD_CTRL_LEN];
fhandler->fn_number = fd->fn_number;
fhandler->num_of_data_sources = fd->intr_src_count;
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.query_base,
query,
sizeof(query));
if (retval < 0)
return retval;
/* Maximum number of fingers supported */
if ((query[1] & MASK_3BIT) <= 4)
fhandler->num_of_data_points = (query[1] & MASK_3BIT) + 1;
else if ((query[1] & MASK_3BIT) == 5)
fhandler->num_of_data_points = 10;
rmi4_data->num_of_fingers = fhandler->num_of_data_points;
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.ctrl_base,
control,
sizeof(control));
if (retval < 0)
return retval;
/* Maximum x and y */
rmi4_data->sensor_max_x = ((control[6] & MASK_8BIT) << 0) |
((control[7] & MASK_4BIT) << 8);
rmi4_data->sensor_max_y = ((control[8] & MASK_8BIT) << 0) |
((control[9] & MASK_4BIT) << 8);
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Function %02x max x = %d max y = %d\n",
__func__, fhandler->fn_number,
rmi4_data->sensor_max_x,
rmi4_data->sensor_max_y);
fhandler->intr_reg_num = (intr_count + 7) / 8;
if (fhandler->intr_reg_num != 0)
fhandler->intr_reg_num -= 1;
/* Set an enable bit for each data source */
intr_offset = intr_count % 8;
fhandler->intr_mask = 0;
for (ii = intr_offset;
ii < ((fd->intr_src_count & MASK_3BIT) +
intr_offset);
ii++)
fhandler->intr_mask |= 1 << ii;
abs_data_size = query[5] & MASK_2BIT;
abs_data_blk_size = 3 + (2 * (abs_data_size == 0 ? 1 : 0));
fhandler->size_of_data_register_block = abs_data_blk_size;
return retval;
}
static int synaptics_rmi4_f1a_alloc_mem(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
int retval;
struct synaptics_rmi4_f1a_handle *f1a;
f1a = kzalloc(sizeof(*f1a), GFP_KERNEL);
if (!f1a) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for function handle\n",
__func__);
return -ENOMEM;
}
fhandler->data = (void *)f1a;
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.query_base,
f1a->button_query.data,
sizeof(f1a->button_query.data));
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to read query registers\n",
__func__);
return retval;
}
f1a->button_count = f1a->button_query.max_button_count + 1;
f1a->button_bitmask_size = (f1a->button_count + 7) / 8;
f1a->button_data_buffer = kcalloc(f1a->button_bitmask_size,
sizeof(*(f1a->button_data_buffer)), GFP_KERNEL);
if (!f1a->button_data_buffer) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for data buffer\n",
__func__);
return -ENOMEM;
}
f1a->button_map = kcalloc(f1a->button_count,
sizeof(*(f1a->button_map)), GFP_KERNEL);
if (!f1a->button_map) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for button map\n",
__func__);
return -ENOMEM;
}
return 0;
}
static int synaptics_rmi4_capacitance_button_map(
struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
unsigned char ii;
struct synaptics_rmi4_f1a_handle *f1a = fhandler->data;
const struct synaptics_rmi4_platform_data *pdata = rmi4_data->board;
if (!pdata->capacitance_button_map) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: capacitance_button_map is" \
"NULL in board file\n",
__func__);
return -ENODEV;
} else if (!pdata->capacitance_button_map->map) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Button map is missing in board file\n",
__func__);
return -ENODEV;
} else {
if (pdata->capacitance_button_map->nbuttons !=
f1a->button_count) {
f1a->valid_button_count = min(f1a->button_count,
pdata->capacitance_button_map->nbuttons);
} else {
f1a->valid_button_count = f1a->button_count;
}
for (ii = 0; ii < f1a->valid_button_count; ii++)
f1a->button_map[ii] =
pdata->capacitance_button_map->map[ii];
}
return 0;
}
static void synaptics_rmi4_f1a_kfree(struct synaptics_rmi4_fn *fhandler)
{
struct synaptics_rmi4_f1a_handle *f1a = fhandler->data;
if (f1a) {
kfree(f1a->button_data_buffer);
kfree(f1a->button_map);
kfree(f1a);
fhandler->data = NULL;
}
return;
}
static int synaptics_rmi4_f1a_init(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler,
struct synaptics_rmi4_fn_desc *fd,
unsigned int intr_count)
{
int retval;
unsigned char ii;
unsigned short intr_offset;
fhandler->fn_number = fd->fn_number;
fhandler->num_of_data_sources = fd->intr_src_count;
fhandler->intr_reg_num = (intr_count + 7) / 8;
if (fhandler->intr_reg_num != 0)
fhandler->intr_reg_num -= 1;
/* Set an enable bit for each data source */
intr_offset = intr_count % 8;
fhandler->intr_mask = 0;
for (ii = intr_offset;
ii < ((fd->intr_src_count & MASK_3BIT) +
intr_offset);
ii++)
fhandler->intr_mask |= 1 << ii;
retval = synaptics_rmi4_f1a_alloc_mem(rmi4_data, fhandler);
if (retval < 0)
goto error_exit;
retval = synaptics_rmi4_capacitance_button_map(rmi4_data, fhandler);
if (retval < 0)
goto error_exit;
rmi4_data->button_0d_enabled = 1;
return 0;
error_exit:
synaptics_rmi4_f1a_kfree(fhandler);
return retval;
}
static int synaptics_rmi4_alloc_fh(struct synaptics_rmi4_fn **fhandler,
struct synaptics_rmi4_fn_desc *rmi_fd, int page_number)
{
*fhandler = kzalloc(sizeof(**fhandler), GFP_KERNEL);
if (!(*fhandler))
return -ENOMEM;
(*fhandler)->full_addr.data_base =
(rmi_fd->data_base_addr |
(page_number << 8));
(*fhandler)->full_addr.ctrl_base =
(rmi_fd->ctrl_base_addr |
(page_number << 8));
(*fhandler)->full_addr.cmd_base =
(rmi_fd->cmd_base_addr |
(page_number << 8));
(*fhandler)->full_addr.query_base =
(rmi_fd->query_base_addr |
(page_number << 8));
(*fhandler)->fn_number = rmi_fd->fn_number;
return 0;
}
/**
* synaptics_rmi4_query_device_info()
*
* Called by synaptics_rmi4_query_device().
*
*/
static int synaptics_rmi4_query_device_info(
struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char f01_query[F01_STD_QUERY_LEN];
struct synaptics_rmi4_device_info *rmi = &(rmi4_data->rmi4_mod_info);
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_query_base_addr,
f01_query,
sizeof(f01_query));
if (retval < 0)
return retval;
/* RMI Version 4.0 currently supported */
rmi->version_major = 4;
rmi->version_minor = 0;
rmi->manufacturer_id = f01_query[0];
rmi->product_props = f01_query[1];
rmi->product_info[0] = f01_query[2] & MASK_7BIT;
rmi->product_info[1] = f01_query[3] & MASK_7BIT;
rmi->date_code[0] = f01_query[4] & MASK_5BIT;
rmi->date_code[1] = f01_query[5] & MASK_4BIT;
rmi->date_code[2] = f01_query[6] & MASK_5BIT;
rmi->tester_id = ((f01_query[7] & MASK_7BIT) << 8) |
(f01_query[8] & MASK_7BIT);
rmi->serial_number = ((f01_query[9] & MASK_7BIT) << 8) |
(f01_query[10] & MASK_7BIT);
memcpy(rmi->product_id_string, &f01_query[11], 10);
if (rmi->manufacturer_id != 1) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Non-Synaptics device found, manufacturer ID = %d\n",
__func__, rmi->manufacturer_id);
}
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_query_base_addr + F01_BUID_ID_OFFSET,
rmi->build_id,
sizeof(rmi->build_id));
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to read firmware build id (code %d)\n",
__func__, retval);
return retval;
}
return 0;
}
/**
* synaptics_rmi4_query_device()
*
* Called by synaptics_rmi4_probe().
*
* This funtion scans the page description table, records the offsets
* to the register types of Function $01, sets up the function handlers
* for Function $11 and Function $12, determines the number of interrupt
* sources from the sensor, adds valid Functions with data inputs to the
* Function linked list, parses information from the query registers of
* Function $01, and enables the interrupt sources from the valid Functions
* with data inputs.
*/
static int synaptics_rmi4_query_device(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char ii;
unsigned char page_number;
unsigned char intr_count = 0;
unsigned char data_sources = 0;
unsigned short pdt_entry_addr;
unsigned short intr_addr;
struct synaptics_rmi4_f01_device_status status;
struct synaptics_rmi4_fn_desc rmi_fd;
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
INIT_LIST_HEAD(&rmi->support_fn_list);
/* Scan the page description tables of the pages to service */
for (page_number = 0; page_number < PAGES_TO_SERVICE; page_number++) {
for (pdt_entry_addr = PDT_START; pdt_entry_addr > PDT_END;
pdt_entry_addr -= PDT_ENTRY_SIZE) {
pdt_entry_addr |= (page_number << 8);
retval = synaptics_rmi4_i2c_read(rmi4_data,
pdt_entry_addr,
(unsigned char *)&rmi_fd,
sizeof(rmi_fd));
if (retval < 0)
return retval;
fhandler = NULL;
if (rmi_fd.fn_number == 0) {
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Reached end of PDT\n",
__func__);
break;
}
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: F%02x found (page %d)\n",
__func__, rmi_fd.fn_number,
page_number);
switch (rmi_fd.fn_number) {
case SYNAPTICS_RMI4_F01:
rmi4_data->f01_query_base_addr =
rmi_fd.query_base_addr;
rmi4_data->f01_ctrl_base_addr =
rmi_fd.ctrl_base_addr;
rmi4_data->f01_data_base_addr =
rmi_fd.data_base_addr;
rmi4_data->f01_cmd_base_addr =
rmi_fd.cmd_base_addr;
retval =
synaptics_rmi4_query_device_info(rmi4_data);
if (retval < 0)
return retval;
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_data_base_addr,
status.data,
sizeof(status.data));
if (retval < 0)
return retval;
while (status.status_code == STATUS_CRC_IN_PROGRESS) {
msleep(1);
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_data_base_addr,
status.data,
sizeof(status.data));
if (retval < 0)
return retval;
}
if (status.flash_prog == 1) {
pr_notice("%s: In flash prog mode, status = 0x%02x\n",
__func__,
status.status_code);
goto flash_prog_mode;
}
break;
case SYNAPTICS_RMI4_F11:
if (rmi_fd.intr_src_count == 0)
break;
retval = synaptics_rmi4_alloc_fh(&fhandler,
&rmi_fd, page_number);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc for F%d\n",
__func__,
rmi_fd.fn_number);
return retval;
}
retval = synaptics_rmi4_f11_init(rmi4_data,
fhandler, &rmi_fd, intr_count);
if (retval < 0)
return retval;
break;
case SYNAPTICS_RMI4_F1A:
if (rmi_fd.intr_src_count == 0)
break;
retval = synaptics_rmi4_alloc_fh(&fhandler,
&rmi_fd, page_number);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc for F%d\n",
__func__,
rmi_fd.fn_number);
return retval;
}
retval = synaptics_rmi4_f1a_init(rmi4_data,
fhandler, &rmi_fd, intr_count);
if (retval < 0)
return retval;
break;
}
/* Accumulate the interrupt count */
intr_count += (rmi_fd.intr_src_count & MASK_3BIT);
if (fhandler && rmi_fd.intr_src_count) {
list_add_tail(&fhandler->link,
&rmi->support_fn_list);
}
}
}
flash_prog_mode:
rmi4_data->num_of_intr_regs = (intr_count + 7) / 8;
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Number of interrupt registers = %d\n",
__func__, rmi4_data->num_of_intr_regs);
memset(rmi4_data->intr_mask, 0x00, sizeof(rmi4_data->intr_mask));
/*
* Map out the interrupt bit masks for the interrupt sources
* from the registered function handlers.
*/
if (!list_empty(&rmi->support_fn_list)) {
list_for_each_entry(fhandler, &rmi->support_fn_list, link)
data_sources += fhandler->num_of_data_sources;
}
if (data_sources) {
if (!list_empty(&rmi->support_fn_list)) {
list_for_each_entry(fhandler,
&rmi->support_fn_list, link) {
if (fhandler->num_of_data_sources) {
rmi4_data->intr_mask[fhandler->intr_reg_num] |=
fhandler->intr_mask;
}
}
}
}
/* Enable the interrupt sources */
for (ii = 0; ii < rmi4_data->num_of_intr_regs; ii++) {
if (rmi4_data->intr_mask[ii] != 0x00) {
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Interrupt enable mask %d = 0x%02x\n",
__func__, ii, rmi4_data->intr_mask[ii]);
intr_addr = rmi4_data->f01_ctrl_base_addr + 1 + ii;
retval = synaptics_rmi4_i2c_write(rmi4_data,
intr_addr,
&(rmi4_data->intr_mask[ii]),
sizeof(rmi4_data->intr_mask[ii]));
if (retval < 0)
return retval;
}
}
return 0;
}
static int synaptics_rmi4_reset_command(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
int page_number;
unsigned char command = 0x01;
unsigned short pdt_entry_addr;
struct synaptics_rmi4_fn_desc rmi_fd;
bool done = false;
/* Scan the page description tables of the pages to service */
for (page_number = 0; page_number < PAGES_TO_SERVICE; page_number++) {
for (pdt_entry_addr = PDT_START; pdt_entry_addr > PDT_END;
pdt_entry_addr -= PDT_ENTRY_SIZE) {
retval = synaptics_rmi4_i2c_read(rmi4_data,
pdt_entry_addr,
(unsigned char *)&rmi_fd,
sizeof(rmi_fd));
if (retval < 0)
return retval;
if (rmi_fd.fn_number == 0)
break;
switch (rmi_fd.fn_number) {
case SYNAPTICS_RMI4_F01:
rmi4_data->f01_cmd_base_addr =
rmi_fd.cmd_base_addr;
done = true;
break;
}
}
if (done) {
dev_info(&rmi4_data->i2c_client->dev,
"%s: Find F01 in page description table 0x%x\n",
__func__, rmi4_data->f01_cmd_base_addr);
break;
}
}
if (!done) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Cannot find F01 in page description table\n",
__func__);
return -EINVAL;
}
retval = synaptics_rmi4_i2c_write(rmi4_data,
rmi4_data->f01_cmd_base_addr,
&command,
sizeof(command));
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to issue reset command, error = %d\n",
__func__, retval);
return retval;
}
msleep(RESET_DELAY);
return retval;
};
static int synaptics_rmi4_reset_device(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
retval = synaptics_rmi4_reset_command(rmi4_data);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to send command reset\n",
__func__);
return retval;
}
if (!list_empty(&rmi->support_fn_list)) {
list_for_each_entry(fhandler, &rmi->support_fn_list, link) {
if (fhandler->fn_number == SYNAPTICS_RMI4_F1A)
synaptics_rmi4_f1a_kfree(fhandler);
else
kfree(fhandler->data);
kfree(fhandler);
}
}
retval = synaptics_rmi4_query_device(rmi4_data);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to query device\n",
__func__);
return retval;
}
return 0;
}
/**
* synaptics_rmi4_detection_work()
*
* Called by the kernel at the scheduled time.
*
* This function is a self-rearming work thread that checks for the
* insertion and removal of other expansion Function modules such as
* rmi_dev and calls their initialization and removal callback functions
* accordingly.
*/
static void synaptics_rmi4_detection_work(struct work_struct *work)
{
struct synaptics_rmi4_exp_fn *exp_fhandler, *next_list_entry;
struct synaptics_rmi4_data *rmi4_data =
container_of(work, struct synaptics_rmi4_data,
det_work.work);
mutex_lock(&exp_fn_list_mutex);
if (!list_empty(&exp_fn_list)) {
list_for_each_entry_safe(exp_fhandler,
next_list_entry,
&exp_fn_list,
link) {
if ((exp_fhandler->func_init != NULL) &&
(exp_fhandler->inserted == false)) {
exp_fhandler->func_init(rmi4_data);
exp_fhandler->inserted = true;
} else if ((exp_fhandler->func_init == NULL) &&
(exp_fhandler->inserted == true)) {
exp_fhandler->func_remove(rmi4_data);
list_del(&exp_fhandler->link);
kfree(exp_fhandler);
}
}
}
mutex_unlock(&exp_fn_list_mutex);
return;
}
/**
* synaptics_rmi4_new_function()
*
* Called by other expansion Function modules in their module init and
* module exit functions.
*
* This function is used by other expansion Function modules such as
* rmi_dev to register themselves with the driver by providing their
* initialization and removal callback function pointers so that they
* can be inserted or removed dynamically at module init and exit times,
* respectively.
*/
void synaptics_rmi4_new_function(enum exp_fn fn_type, bool insert,
int (*func_init)(struct synaptics_rmi4_data *rmi4_data),
void (*func_remove)(struct synaptics_rmi4_data *rmi4_data),
void (*func_attn)(struct synaptics_rmi4_data *rmi4_data,
unsigned char intr_mask))
{
struct synaptics_rmi4_exp_fn *exp_fhandler;
if (!exp_fn_inited) {
mutex_init(&exp_fn_list_mutex);
INIT_LIST_HEAD(&exp_fn_list);
exp_fn_inited = 1;
}
mutex_lock(&exp_fn_list_mutex);
if (insert) {
exp_fhandler = kzalloc(sizeof(*exp_fhandler), GFP_KERNEL);
if (!exp_fhandler) {
pr_err("%s: Failed to alloc mem for expansion function\n",
__func__);
goto exit;
}
exp_fhandler->fn_type = fn_type;
exp_fhandler->func_init = func_init;
exp_fhandler->func_attn = func_attn;
exp_fhandler->func_remove = func_remove;
exp_fhandler->inserted = false;
list_add_tail(&exp_fhandler->link, &exp_fn_list);
} else {
if (!list_empty(&exp_fn_list)) {
list_for_each_entry(exp_fhandler, &exp_fn_list, link) {
if (exp_fhandler->func_init == func_init) {
exp_fhandler->inserted = false;
exp_fhandler->func_init = NULL;
exp_fhandler->func_attn = NULL;
goto exit;
}
}
}
}
exit:
mutex_unlock(&exp_fn_list_mutex);
return;
}
EXPORT_SYMBOL(synaptics_rmi4_new_function);
static int reg_set_optimum_mode_check(struct regulator *reg, int load_uA)
{
return (regulator_count_voltages(reg) > 0) ?
regulator_set_optimum_mode(reg, load_uA) : 0;
}
static int synaptics_rmi4_regulator_configure(struct synaptics_rmi4_data
*rmi4_data, bool on)
{
int retval;
if (on == false)
goto hw_shutdown;
rmi4_data->vdd = regulator_get(&rmi4_data->i2c_client->dev,
"vdd");
if (IS_ERR(rmi4_data->vdd)) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to get vdd regulator\n",
__func__);
return PTR_ERR(rmi4_data->vdd);
}
if (regulator_count_voltages(rmi4_data->vdd) > 0) {
retval = regulator_set_voltage(rmi4_data->vdd,
RMI4_VTG_MIN_UV, RMI4_VTG_MAX_UV);
if (retval) {
dev_err(&rmi4_data->i2c_client->dev,
"regulator set_vtg failed retval =%d\n",
retval);
goto err_set_vtg_vdd;
}
}
if (rmi4_data->board->i2c_pull_up) {
rmi4_data->vcc_i2c = regulator_get(&rmi4_data->i2c_client->dev,
"vcc_i2c");
if (IS_ERR(rmi4_data->vcc_i2c)) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to get i2c regulator\n",
__func__);
retval = PTR_ERR(rmi4_data->vcc_i2c);
goto err_get_vtg_i2c;
}
if (regulator_count_voltages(rmi4_data->vcc_i2c) > 0) {
retval = regulator_set_voltage(rmi4_data->vcc_i2c,
RMI4_I2C_VTG_MIN_UV, RMI4_I2C_VTG_MAX_UV);
if (retval) {
dev_err(&rmi4_data->i2c_client->dev,
"reg set i2c vtg failed retval =%d\n",
retval);
goto err_set_vtg_i2c;
}
}
}
return 0;
err_set_vtg_i2c:
if (rmi4_data->board->i2c_pull_up)
regulator_put(rmi4_data->vcc_i2c);
err_get_vtg_i2c:
if (regulator_count_voltages(rmi4_data->vdd) > 0)
regulator_set_voltage(rmi4_data->vdd, 0,
RMI4_VTG_MAX_UV);
err_set_vtg_vdd:
regulator_put(rmi4_data->vdd);
return retval;
hw_shutdown:
if (regulator_count_voltages(rmi4_data->vdd) > 0)
regulator_set_voltage(rmi4_data->vdd, 0,
RMI4_VTG_MAX_UV);
regulator_put(rmi4_data->vdd);
if (rmi4_data->board->i2c_pull_up) {
if (regulator_count_voltages(rmi4_data->vcc_i2c) > 0)
regulator_set_voltage(rmi4_data->vcc_i2c, 0,
RMI4_I2C_VTG_MAX_UV);
regulator_put(rmi4_data->vcc_i2c);
}
return 0;
};
static int synaptics_rmi4_power_on(struct synaptics_rmi4_data *rmi4_data,
bool on) {
int retval;
if (on == false)
goto power_off;
retval = reg_set_optimum_mode_check(rmi4_data->vdd,
RMI4_ACTIVE_LOAD_UA);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"Regulator vdd set_opt failed rc=%d\n",
retval);
return retval;
}
retval = regulator_enable(rmi4_data->vdd);
if (retval) {
dev_err(&rmi4_data->i2c_client->dev,
"Regulator vdd enable failed rc=%d\n",
retval);
goto error_reg_en_vdd;
}
if (rmi4_data->board->i2c_pull_up) {
retval = reg_set_optimum_mode_check(rmi4_data->vcc_i2c,
RMI4_I2C_LOAD_UA);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"Regulator vcc_i2c set_opt failed rc=%d\n",
retval);
goto error_reg_opt_i2c;
}
retval = regulator_enable(rmi4_data->vcc_i2c);
if (retval) {
dev_err(&rmi4_data->i2c_client->dev,
"Regulator vcc_i2c enable failed rc=%d\n",
retval);
goto error_reg_en_vcc_i2c;
}
}
return 0;
error_reg_en_vcc_i2c:
if (rmi4_data->board->i2c_pull_up)
reg_set_optimum_mode_check(rmi4_data->vdd, 0);
error_reg_opt_i2c:
regulator_disable(rmi4_data->vdd);
error_reg_en_vdd:
reg_set_optimum_mode_check(rmi4_data->vdd, 0);
return retval;
power_off:
reg_set_optimum_mode_check(rmi4_data->vdd, 0);
regulator_disable(rmi4_data->vdd);
if (rmi4_data->board->i2c_pull_up) {
reg_set_optimum_mode_check(rmi4_data->vcc_i2c, 0);
regulator_disable(rmi4_data->vcc_i2c);
}
return 0;
}
/**
* synaptics_rmi4_probe()
*
* Called by the kernel when an association with an I2C device of the
* same name is made (after doing i2c_add_driver).
*
* This funtion allocates and initializes the resources for the driver
* as an input driver, turns on the power to the sensor, queries the
* sensor for its supported Functions and characteristics, registers
* the driver to the input subsystem, sets up the interrupt, handles
* the registration of the early_suspend and late_resume functions,
* and creates a work queue for detection of other expansion Function
* modules.
*/
static int __devinit synaptics_rmi4_probe(struct i2c_client *client,
const struct i2c_device_id *dev_id)
{
int retval = 0;
unsigned char ii;
unsigned char attr_count;
struct synaptics_rmi4_f1a_handle *f1a;
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_data *rmi4_data;
struct synaptics_rmi4_device_info *rmi;
struct synaptics_rmi4_platform_data *platform_data =
client->dev.platform_data;
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_BYTE_DATA)) {
dev_err(&client->dev,
"%s: SMBus byte data not supported\n",
__func__);
return -EIO;
}
if (client->dev.of_node) {
platform_data = devm_kzalloc(&client->dev,
sizeof(*platform_data),
GFP_KERNEL);
if (!platform_data) {
dev_err(&client->dev, "Failed to allocate memory\n");
return -ENOMEM;
}
retval = synaptics_rmi4_parse_dt(&client->dev, platform_data);
if (retval)
return retval;
} else {
platform_data = client->dev.platform_data;
}
if (!platform_data) {
dev_err(&client->dev,
"%s: No platform data found\n",
__func__);
return -EINVAL;
}
rmi4_data = kzalloc(sizeof(*rmi4_data) * 2, GFP_KERNEL);
if (!rmi4_data) {
dev_err(&client->dev,
"%s: Failed to alloc mem for rmi4_data\n",
__func__);
return -ENOMEM;
}
rmi = &(rmi4_data->rmi4_mod_info);
rmi4_data->input_dev = input_allocate_device();
if (rmi4_data->input_dev == NULL) {
dev_err(&client->dev,
"%s: Failed to allocate input device\n",
__func__);
retval = -ENOMEM;
goto err_input_device;
}
rmi4_data->i2c_client = client;
rmi4_data->current_page = MASK_8BIT;
rmi4_data->board = platform_data;
rmi4_data->touch_stopped = false;
rmi4_data->sensor_sleep = false;
rmi4_data->irq_enabled = false;
rmi4_data->i2c_read = synaptics_rmi4_i2c_read;
rmi4_data->i2c_write = synaptics_rmi4_i2c_write;
rmi4_data->irq_enable = synaptics_rmi4_irq_enable;
rmi4_data->reset_device = synaptics_rmi4_reset_device;
rmi4_data->flip_x = rmi4_data->board->x_flip;
rmi4_data->flip_y = rmi4_data->board->y_flip;
rmi4_data->fw_image_name = rmi4_data->board->fw_image_name;
rmi4_data->input_dev->name = DRIVER_NAME;
rmi4_data->input_dev->phys = INPUT_PHYS_NAME;
rmi4_data->input_dev->id.bustype = BUS_I2C;
rmi4_data->input_dev->id.product = SYNAPTICS_DSX_DRIVER_PRODUCT;
rmi4_data->input_dev->id.version = SYNAPTICS_DSX_DRIVER_VERSION;
rmi4_data->input_dev->dev.parent = &client->dev;
input_set_drvdata(rmi4_data->input_dev, rmi4_data);
set_bit(EV_SYN, rmi4_data->input_dev->evbit);
set_bit(EV_KEY, rmi4_data->input_dev->evbit);
set_bit(EV_ABS, rmi4_data->input_dev->evbit);
set_bit(BTN_TOUCH, rmi4_data->input_dev->keybit);
set_bit(BTN_TOOL_FINGER, rmi4_data->input_dev->keybit);
#ifdef INPUT_PROP_DIRECT
set_bit(INPUT_PROP_DIRECT, rmi4_data->input_dev->propbit);
#endif
retval = synaptics_rmi4_regulator_configure(rmi4_data, true);
if (retval < 0) {
dev_err(&client->dev, "Failed to configure regulators\n");
goto err_reg_configure;
}
retval = synaptics_rmi4_power_on(rmi4_data, true);
if (retval < 0) {
dev_err(&client->dev, "Failed to power on\n");
goto err_power_device;
}
if (gpio_is_valid(platform_data->irq_gpio)) {
/* configure touchscreen irq gpio */
retval = gpio_request(platform_data->irq_gpio, "rmi4_irq_gpio");
if (retval) {
dev_err(&client->dev, "unable to request gpio [%d]\n",
platform_data->irq_gpio);
goto err_irq_gpio_req;
}
retval = gpio_direction_input(platform_data->irq_gpio);
if (retval) {
dev_err(&client->dev,
"unable to set direction for gpio [%d]\n",
platform_data->irq_gpio);
goto err_irq_gpio_dir;
}
} else {
dev_err(&client->dev, "irq gpio not provided\n");
goto err_irq_gpio_req;
}
if (gpio_is_valid(platform_data->reset_gpio)) {
/* configure touchscreen reset out gpio */
retval = gpio_request(platform_data->reset_gpio,
"rmi4_reset_gpio");
if (retval) {
dev_err(&client->dev, "unable to request gpio [%d]\n",
platform_data->reset_gpio);
goto err_irq_gpio_dir;
}
retval = gpio_direction_output(platform_data->reset_gpio, 1);
if (retval) {
dev_err(&client->dev,
"unable to set direction for gpio [%d]\n",
platform_data->reset_gpio);
goto err_reset_gpio_dir;
}
gpio_set_value(platform_data->reset_gpio, 0);
usleep(RMI4_GPIO_SLEEP_LOW_US);
gpio_set_value(platform_data->reset_gpio, 1);
msleep(RESET_DELAY);
} else
synaptics_rmi4_reset_command(rmi4_data);
init_waitqueue_head(&rmi4_data->wait);
mutex_init(&(rmi4_data->rmi4_io_ctrl_mutex));
retval = synaptics_rmi4_query_device(rmi4_data);
if (retval < 0) {
dev_err(&client->dev,
"%s: Failed to query device\n",
__func__);
goto err_reset_gpio_dir;
}
input_set_abs_params(rmi4_data->input_dev,
ABS_MT_POSITION_X, 0,
rmi4_data->sensor_max_x, 0, 0);
input_set_abs_params(rmi4_data->input_dev,
ABS_MT_POSITION_Y, 0,
rmi4_data->sensor_max_y, 0, 0);
input_set_abs_params(rmi4_data->input_dev,
ABS_PRESSURE, 0, 255, 0, 0);
#ifdef REPORT_2D_W
input_set_abs_params(rmi4_data->input_dev,
ABS_MT_TOUCH_MAJOR, 0,
MAX_ABS_MT_TOUCH_MAJOR, 0, 0);
#endif
#ifdef TYPE_B_PROTOCOL
input_mt_init_slots(rmi4_data->input_dev,
rmi4_data->num_of_fingers);
#endif
i2c_set_clientdata(client, rmi4_data);
f1a = NULL;
if (!list_empty(&rmi->support_fn_list)) {
list_for_each_entry(fhandler, &rmi->support_fn_list, link) {
if (fhandler->fn_number == SYNAPTICS_RMI4_F1A)
f1a = fhandler->data;
}
}
if (f1a) {
for (ii = 0; ii < f1a->valid_button_count; ii++) {
set_bit(f1a->button_map[ii],
rmi4_data->input_dev->keybit);
input_set_capability(rmi4_data->input_dev,
EV_KEY, f1a->button_map[ii]);
}
}
retval = input_register_device(rmi4_data->input_dev);
if (retval) {
dev_err(&client->dev,
"%s: Failed to register input device\n",
__func__);
goto err_register_input;
}
configure_sleep(rmi4_data);
if (!exp_fn_inited) {
mutex_init(&exp_fn_list_mutex);
INIT_LIST_HEAD(&exp_fn_list);
exp_fn_inited = 1;
}
rmi4_data->det_workqueue =
create_singlethread_workqueue("rmi_det_workqueue");
INIT_DELAYED_WORK(&rmi4_data->det_work,
synaptics_rmi4_detection_work);
queue_delayed_work(rmi4_data->det_workqueue,
&rmi4_data->det_work,
msecs_to_jiffies(EXP_FN_DET_INTERVAL));
rmi4_data->irq = gpio_to_irq(platform_data->irq_gpio);
retval = request_threaded_irq(rmi4_data->irq, NULL,
synaptics_rmi4_irq, platform_data->irq_flags,
DRIVER_NAME, rmi4_data);
rmi4_data->irq_enabled = true;
if (retval < 0) {
dev_err(&client->dev,
"%s: Failed to create irq thread\n",
__func__);
goto err_enable_irq;
}
for (attr_count = 0; attr_count < ARRAY_SIZE(attrs); attr_count++) {
retval = sysfs_create_file(&rmi4_data->input_dev->dev.kobj,
&attrs[attr_count].attr);
if (retval < 0) {
dev_err(&client->dev,
"%s: Failed to create sysfs attributes\n",
__func__);
goto err_sysfs;
}
}
retval = synaptics_rmi4_irq_enable(rmi4_data, true);
if (retval < 0) {
dev_err(&client->dev,
"%s: Failed to enable attention interrupt\n",
__func__);
goto err_sysfs;
}
return retval;
err_sysfs:
for (attr_count--; attr_count >= 0; attr_count--) {
sysfs_remove_file(&rmi4_data->input_dev->dev.kobj,
&attrs[attr_count].attr);
}
err_enable_irq:
cancel_delayed_work_sync(&rmi4_data->det_work);
flush_workqueue(rmi4_data->det_workqueue);
destroy_workqueue(rmi4_data->det_workqueue);
input_unregister_device(rmi4_data->input_dev);
err_register_input:
if (!list_empty(&rmi->support_fn_list)) {
list_for_each_entry(fhandler, &rmi->support_fn_list, link) {
if (fhandler->fn_number == SYNAPTICS_RMI4_F1A)
synaptics_rmi4_f1a_kfree(fhandler);
else
kfree(fhandler->data);
kfree(fhandler);
}
}
err_reset_gpio_dir:
if (gpio_is_valid(platform_data->reset_gpio))
gpio_free(platform_data->reset_gpio);
err_irq_gpio_dir:
if (gpio_is_valid(platform_data->irq_gpio))
gpio_free(platform_data->irq_gpio);
err_irq_gpio_req:
synaptics_rmi4_power_on(rmi4_data, false);
err_power_device:
synaptics_rmi4_regulator_configure(rmi4_data, false);
err_reg_configure:
input_free_device(rmi4_data->input_dev);
rmi4_data->input_dev = NULL;
err_input_device:
kfree(rmi4_data);
return retval;
}
/**
* synaptics_rmi4_remove()
*
* Called by the kernel when the association with an I2C device of the
* same name is broken (when the driver is unloaded).
*
* This funtion terminates the work queue, stops sensor data acquisition,
* frees the interrupt, unregisters the driver from the input subsystem,
* turns off the power to the sensor, and frees other allocated resources.
*/
static int __devexit synaptics_rmi4_remove(struct i2c_client *client)
{
unsigned char attr_count;
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_data *rmi4_data = i2c_get_clientdata(client);
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
cancel_delayed_work_sync(&rmi4_data->det_work);
flush_workqueue(rmi4_data->det_workqueue);
destroy_workqueue(rmi4_data->det_workqueue);
rmi4_data->touch_stopped = true;
wake_up(&rmi4_data->wait);
free_irq(rmi4_data->irq, rmi4_data);
for (attr_count = 0; attr_count < ARRAY_SIZE(attrs); attr_count++) {
sysfs_remove_file(&rmi4_data->input_dev->dev.kobj,
&attrs[attr_count].attr);
}
input_unregister_device(rmi4_data->input_dev);
if (!list_empty(&rmi->support_fn_list)) {
list_for_each_entry(fhandler, &rmi->support_fn_list, link) {
if (fhandler->fn_number == SYNAPTICS_RMI4_F1A)
synaptics_rmi4_f1a_kfree(fhandler);
else
kfree(fhandler->data);
kfree(fhandler);
}
}
if (gpio_is_valid(rmi4_data->board->reset_gpio))
gpio_free(rmi4_data->board->reset_gpio);
if (gpio_is_valid(rmi4_data->board->irq_gpio))
gpio_free(rmi4_data->board->irq_gpio);
synaptics_rmi4_power_on(rmi4_data, false);
synaptics_rmi4_regulator_configure(rmi4_data, false);
kfree(rmi4_data);
return 0;
}
#ifdef CONFIG_PM
/**
* synaptics_rmi4_sensor_sleep()
*
* Called by synaptics_rmi4_early_suspend() and synaptics_rmi4_suspend().
*
* This function stops finger data acquisition and puts the sensor to sleep.
*/
static void synaptics_rmi4_sensor_sleep(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char device_ctrl;
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_ctrl_base_addr,
&device_ctrl,
sizeof(device_ctrl));
if (retval < 0) {
dev_err(&(rmi4_data->input_dev->dev),
"%s: Failed to enter sleep mode\n",
__func__);
rmi4_data->sensor_sleep = false;
return;
}
device_ctrl = (device_ctrl & ~MASK_3BIT);
device_ctrl = (device_ctrl | NO_SLEEP_OFF | SENSOR_SLEEP);
retval = synaptics_rmi4_i2c_write(rmi4_data,
rmi4_data->f01_ctrl_base_addr,
&device_ctrl,
sizeof(device_ctrl));
if (retval < 0) {
dev_err(&(rmi4_data->input_dev->dev),
"%s: Failed to enter sleep mode\n",
__func__);
rmi4_data->sensor_sleep = false;
return;
} else {
rmi4_data->sensor_sleep = true;
}
return;
}
/**
* synaptics_rmi4_sensor_wake()
*
* Called by synaptics_rmi4_resume() and synaptics_rmi4_late_resume().
*
* This function wakes the sensor from sleep.
*/
static void synaptics_rmi4_sensor_wake(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char device_ctrl;
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_ctrl_base_addr,
&device_ctrl,
sizeof(device_ctrl));
if (retval < 0) {
dev_err(&(rmi4_data->input_dev->dev),
"%s: Failed to wake from sleep mode\n",
__func__);
rmi4_data->sensor_sleep = true;
return;
}
device_ctrl = (device_ctrl & ~MASK_3BIT);
device_ctrl = (device_ctrl | NO_SLEEP_OFF | NORMAL_OPERATION);
retval = synaptics_rmi4_i2c_write(rmi4_data,
rmi4_data->f01_ctrl_base_addr,
&device_ctrl,
sizeof(device_ctrl));
if (retval < 0) {
dev_err(&(rmi4_data->input_dev->dev),
"%s: Failed to wake from sleep mode\n",
__func__);
rmi4_data->sensor_sleep = true;
return;
} else {
rmi4_data->sensor_sleep = false;
}
return;
}
#if defined(CONFIG_FB)
static int fb_notifier_callback(struct notifier_block *self,
unsigned long event, void *data)
{
struct fb_event *evdata = data;
int *blank;
struct synaptics_rmi4_data *rmi4_data =
container_of(self, struct synaptics_rmi4_data, fb_notif);
if (evdata && evdata->data && event == FB_EVENT_BLANK &&
rmi4_data && rmi4_data->i2c_client) {
blank = evdata->data;
if (*blank == FB_BLANK_UNBLANK)
synaptics_rmi4_resume(&(rmi4_data->input_dev->dev));
else if (*blank == FB_BLANK_POWERDOWN)
synaptics_rmi4_suspend(&(rmi4_data->input_dev->dev));
}
return 0;
}
#elif defined(CONFIG_HAS_EARLYSUSPEND)
/**
* synaptics_rmi4_early_suspend()
*
* Called by the kernel during the early suspend phase when the system
* enters suspend.
*
* This function calls synaptics_rmi4_sensor_sleep() to stop finger
* data acquisition and put the sensor to sleep.
*/
static void synaptics_rmi4_early_suspend(struct early_suspend *h)
{
struct synaptics_rmi4_data *rmi4_data =
container_of(h, struct synaptics_rmi4_data,
early_suspend);
rmi4_data->touch_stopped = true;
wake_up(&rmi4_data->wait);
synaptics_rmi4_irq_enable(rmi4_data, false);
synaptics_rmi4_sensor_sleep(rmi4_data);
if (rmi4_data->full_pm_cycle)
synaptics_rmi4_suspend(&(rmi4_data->input_dev->dev));
return;
}
/**
* synaptics_rmi4_late_resume()
*
* Called by the kernel during the late resume phase when the system
* wakes up from suspend.
*
* This function goes through the sensor wake process if the system wakes
* up from early suspend (without going into suspend).
*/
static void synaptics_rmi4_late_resume(struct early_suspend *h)
{
struct synaptics_rmi4_data *rmi4_data =
container_of(h, struct synaptics_rmi4_data,
early_suspend);
if (rmi4_data->full_pm_cycle)
synaptics_rmi4_resume(&(rmi4_data->input_dev->dev));
if (rmi4_data->sensor_sleep == true) {
synaptics_rmi4_sensor_wake(rmi4_data);
rmi4_data->touch_stopped = false;
synaptics_rmi4_irq_enable(rmi4_data, true);
}
return;
}
#endif
static int synaptics_rmi4_regulator_lpm(struct synaptics_rmi4_data *rmi4_data,
bool on)
{
int retval;
if (on == false)
goto regulator_hpm;
retval = reg_set_optimum_mode_check(rmi4_data->vdd, RMI4_LPM_LOAD_UA);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"Regulator vcc_ana set_opt failed rc=%d\n",
retval);
goto fail_regulator_lpm;
}
if (rmi4_data->board->i2c_pull_up) {
retval = reg_set_optimum_mode_check(rmi4_data->vcc_i2c,
RMI4_I2C_LPM_LOAD_UA);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"Regulator vcc_i2c set_opt failed rc=%d\n",
retval);
goto fail_regulator_lpm;
}
}
return 0;
regulator_hpm:
retval = reg_set_optimum_mode_check(rmi4_data->vdd,
RMI4_ACTIVE_LOAD_UA);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"Regulator vcc_ana set_opt failed rc=%d\n",
retval);
goto fail_regulator_hpm;
}
if (rmi4_data->board->i2c_pull_up) {
retval = reg_set_optimum_mode_check(rmi4_data->vcc_i2c,
RMI4_I2C_LOAD_UA);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"Regulator vcc_i2c set_opt failed rc=%d\n",
retval);
goto fail_regulator_hpm;
}
}
return 0;
fail_regulator_lpm:
reg_set_optimum_mode_check(rmi4_data->vdd, RMI4_ACTIVE_LOAD_UA);
if (rmi4_data->board->i2c_pull_up)
reg_set_optimum_mode_check(rmi4_data->vcc_i2c,
RMI4_I2C_LOAD_UA);
return retval;
fail_regulator_hpm:
reg_set_optimum_mode_check(rmi4_data->vdd, RMI4_LPM_LOAD_UA);
if (rmi4_data->board->i2c_pull_up)
reg_set_optimum_mode_check(rmi4_data->vcc_i2c,
RMI4_I2C_LPM_LOAD_UA);
return retval;
}
/**
* synaptics_rmi4_suspend()
*
* Called by the kernel during the suspend phase when the system
* enters suspend.
*
* This function stops finger data acquisition and puts the sensor to
* sleep (if not already done so during the early suspend phase),
* disables the interrupt, and turns off the power to the sensor.
*/
static int synaptics_rmi4_suspend(struct device *dev)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
int retval;
if (!rmi4_data->sensor_sleep) {
rmi4_data->touch_stopped = true;
wake_up(&rmi4_data->wait);
synaptics_rmi4_irq_enable(rmi4_data, false);
synaptics_rmi4_sensor_sleep(rmi4_data);
}
retval = synaptics_rmi4_regulator_lpm(rmi4_data, true);
if (retval < 0) {
dev_err(dev, "failed to enter low power mode\n");
return retval;
}
return 0;
}
/**
* synaptics_rmi4_resume()
*
* Called by the kernel during the resume phase when the system
* wakes up from suspend.
*
* This function turns on the power to the sensor, wakes the sensor
* from sleep, enables the interrupt, and starts finger data
* acquisition.
*/
static int synaptics_rmi4_resume(struct device *dev)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
int retval;
retval = synaptics_rmi4_regulator_lpm(rmi4_data, false);
if (retval < 0) {
dev_err(dev, "failed to enter active power mode\n");
return retval;
}
synaptics_rmi4_sensor_wake(rmi4_data);
rmi4_data->touch_stopped = false;
synaptics_rmi4_irq_enable(rmi4_data, true);
return 0;
}
#if (!defined(CONFIG_FB) && !defined(CONFIG_HAS_EARLYSUSPEND))
static const struct dev_pm_ops synaptics_rmi4_dev_pm_ops = {
.suspend = synaptics_rmi4_suspend,
.resume = synaptics_rmi4_resume,
};
#else
static const struct dev_pm_ops synaptics_rmi4_dev_pm_ops = {
};
#endif
#endif
static const struct i2c_device_id synaptics_rmi4_id_table[] = {
{DRIVER_NAME, 0},
{},
};
MODULE_DEVICE_TABLE(i2c, synaptics_rmi4_id_table);
#ifdef CONFIG_OF
static struct of_device_id rmi4_match_table[] = {
{ .compatible = "synaptics,rmi4",},
{ },
};
#else
#define rmi4_match_table NULL
#endif
static struct i2c_driver synaptics_rmi4_driver = {
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
.of_match_table = rmi4_match_table,
#ifdef CONFIG_PM
.pm = &synaptics_rmi4_dev_pm_ops,
#endif
},
.probe = synaptics_rmi4_probe,
.remove = __devexit_p(synaptics_rmi4_remove),
.id_table = synaptics_rmi4_id_table,
};
/**
* synaptics_rmi4_init()
*
* Called by the kernel during do_initcalls (if built-in)
* or when the driver is loaded (if a module).
*
* This function registers the driver to the I2C subsystem.
*
*/
static int __init synaptics_rmi4_init(void)
{
return i2c_add_driver(&synaptics_rmi4_driver);
}
/**
* synaptics_rmi4_exit()
*
* Called by the kernel when the driver is unloaded.
*
* This funtion unregisters the driver from the I2C subsystem.
*
*/
static void __exit synaptics_rmi4_exit(void)
{
i2c_del_driver(&synaptics_rmi4_driver);
}
module_init(synaptics_rmi4_init);
module_exit(synaptics_rmi4_exit);
MODULE_AUTHOR("Synaptics, Inc.");
MODULE_DESCRIPTION("Synaptics RMI4 I2C Touch Driver");
MODULE_LICENSE("GPL v2");