M7350/kernel/drivers/input/touchscreen/atmel_mxt_ts.c
2024-09-09 08:52:07 +00:00

3146 lines
75 KiB
C

/*
* Atmel maXTouch Touchscreen driver
*
* Copyright (C) 2010 Samsung Electronics Co.Ltd
* Author: Joonyoung Shim <jy0922.shim@samsung.com>
* Copyright (c) 2011-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <linux/i2c/atmel_mxt_ts.h>
#include <linux/input/mt.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/gpio.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/regulator/consumer.h>
#include <linux/string.h>
#include <linux/of_gpio.h>
#if defined(CONFIG_FB)
#include <linux/notifier.h>
#include <linux/fb.h>
#elif defined(CONFIG_HAS_EARLYSUSPEND)
#include <linux/earlysuspend.h>
/* Early-suspend level */
#define MXT_SUSPEND_LEVEL 1
#endif
#if defined(CONFIG_SECURE_TOUCH)
#include <linux/completion.h>
#include <linux/pm_runtime.h>
#include <linux/errno.h>
#include <asm/system.h>
#include <linux/atomic.h>
#endif
/* Family ID */
#define MXT224_ID 0x80
#define MXT224E_ID 0x81
#define MXT336S_ID 0x82
#define MXT1386_ID 0xA0
#define MXT1664S_ID 0xA2
/* Version */
#define MXT_VER_20 20
#define MXT_VER_21 21
#define MXT_VER_22 22
/* I2C slave address pairs */
struct mxt_address_pair {
int bootloader;
int application;
};
static const struct mxt_address_pair mxt_slave_addresses[] = {
{ 0x24, 0x4a },
{ 0x25, 0x4b },
{ 0x25, 0x4b },
{ 0x26, 0x4c },
{ 0x27, 0x4d },
{ 0x34, 0x5a },
{ 0x35, 0x5b },
{ 0 },
};
enum mxt_device_state { INIT, APPMODE, BOOTLOADER };
/* Firmware */
#define MXT_FW_NAME "maxtouch.fw"
/* Firmware frame size including frame data and CRC */
#define MXT_SINGLE_FW_MAX_FRAME_SIZE 278
#define MXT_CHIPSET_FW_MAX_FRAME_SIZE 534
/* Registers */
#define MXT_FAMILY_ID 0x00
#define MXT_VARIANT_ID 0x01
#define MXT_VERSION 0x02
#define MXT_BUILD 0x03
#define MXT_MATRIX_X_SIZE 0x04
#define MXT_MATRIX_Y_SIZE 0x05
#define MXT_OBJECT_NUM 0x06
#define MXT_OBJECT_START 0x07
#define MXT_OBJECT_SIZE 6
/* Object types */
#define MXT_DEBUG_DIAGNOSTIC_T37 37
#define MXT_GEN_MESSAGE_T5 5
#define MXT_GEN_COMMAND_T6 6
#define MXT_GEN_POWER_T7 7
#define MXT_GEN_ACQUIRE_T8 8
#define MXT_GEN_DATASOURCE_T53 53
#define MXT_TOUCH_MULTI_T9 9
#define MXT_TOUCH_KEYARRAY_T15 15
#define MXT_TOUCH_PROXIMITY_T23 23
#define MXT_TOUCH_PROXKEY_T52 52
#define MXT_PROCI_GRIPFACE_T20 20
#define MXT_PROCG_NOISE_T22 22
#define MXT_PROCG_NOISE_T62 62
#define MXT_PROCI_ONETOUCH_T24 24
#define MXT_PROCI_TWOTOUCH_T27 27
#define MXT_PROCI_GRIP_T40 40
#define MXT_PROCI_PALM_T41 41
#define MXT_PROCI_TOUCHSUPPRESSION_T42 42
#define MXT_PROCI_STYLUS_T47 47
#define MXT_PROCI_ADAPTIVETHRESHOLD_T55 55
#define MXT_PROCI_SHIELDLESS_T56 56
#define MXT_PROCI_EXTRATSDATA_T57 57
#define MXT_PROCG_NOISESUPPRESSION_T48 48
#define MXT_SPT_COMMSCONFIG_T18 18
#define MXT_SPT_GPIOPWM_T19 19
#define MXT_SPT_SELFTEST_T25 25
#define MXT_SPT_CTECONFIG_T28 28
#define MXT_SPT_USERDATA_T38 38
#define MXT_SPT_DIGITIZER_T43 43
#define MXT_SPT_MESSAGECOUNT_T44 44
#define MXT_SPT_CTECONFIG_T46 46
#define MXT_SPT_EXTRANOISESUPCTRLS_T58 58
#define MXT_SPT_TIMER_T61 61
/* MXT_GEN_COMMAND_T6 field */
#define MXT_COMMAND_RESET 0
#define MXT_COMMAND_BACKUPNV 1
#define MXT_COMMAND_CALIBRATE 2
#define MXT_COMMAND_REPORTALL 3
#define MXT_COMMAND_DIAGNOSTIC 5
/* MXT_GEN_POWER_T7 field */
#define MXT_POWER_IDLEACQINT 0
#define MXT_POWER_ACTVACQINT 1
#define MXT_POWER_ACTV2IDLETO 2
/* MXT_GEN_ACQUIRE_T8 field */
#define MXT_ACQUIRE_CHRGTIME 0
#define MXT_ACQUIRE_TCHDRIFT 2
#define MXT_ACQUIRE_DRIFTST 3
#define MXT_ACQUIRE_TCHAUTOCAL 4
#define MXT_ACQUIRE_SYNC 5
#define MXT_ACQUIRE_ATCHCALST 6
#define MXT_ACQUIRE_ATCHCALSTHR 7
/* MXT_TOUCH_MULT_T9 field */
#define MXT_TOUCH_CTRL 0
#define MXT_TOUCH_XORIGIN 1
#define MXT_TOUCH_YORIGIN 2
#define MXT_TOUCH_XSIZE 3
#define MXT_TOUCH_YSIZE 4
#define MXT_TOUCH_BLEN 6
#define MXT_TOUCH_TCHTHR 7
#define MXT_TOUCH_TCHDI 8
#define MXT_TOUCH_ORIENT 9
#define MXT_TOUCH_MOVHYSTI 11
#define MXT_TOUCH_MOVHYSTN 12
#define MXT_TOUCH_NUMTOUCH 14
#define MXT_TOUCH_MRGHYST 15
#define MXT_TOUCH_MRGTHR 16
#define MXT_TOUCH_AMPHYST 17
#define MXT_TOUCH_XRANGE_LSB 18
#define MXT_TOUCH_XRANGE_MSB 19
#define MXT_TOUCH_YRANGE_LSB 20
#define MXT_TOUCH_YRANGE_MSB 21
#define MXT_TOUCH_XLOCLIP 22
#define MXT_TOUCH_XHICLIP 23
#define MXT_TOUCH_YLOCLIP 24
#define MXT_TOUCH_YHICLIP 25
#define MXT_TOUCH_XEDGECTRL 26
#define MXT_TOUCH_XEDGEDIST 27
#define MXT_TOUCH_YEDGECTRL 28
#define MXT_TOUCH_YEDGEDIST 29
#define MXT_TOUCH_JUMPLIMIT 30
/* MXT_PROCI_GRIPFACE_T20 field */
#define MXT_GRIPFACE_CTRL 0
#define MXT_GRIPFACE_XLOGRIP 1
#define MXT_GRIPFACE_XHIGRIP 2
#define MXT_GRIPFACE_YLOGRIP 3
#define MXT_GRIPFACE_YHIGRIP 4
#define MXT_GRIPFACE_MAXTCHS 5
#define MXT_GRIPFACE_SZTHR1 7
#define MXT_GRIPFACE_SZTHR2 8
#define MXT_GRIPFACE_SHPTHR1 9
#define MXT_GRIPFACE_SHPTHR2 10
#define MXT_GRIPFACE_SUPEXTTO 11
/* MXT_PROCI_NOISE field */
#define MXT_NOISE_CTRL 0
#define MXT_NOISE_OUTFLEN 1
#define MXT_NOISE_GCAFUL_LSB 3
#define MXT_NOISE_GCAFUL_MSB 4
#define MXT_NOISE_GCAFLL_LSB 5
#define MXT_NOISE_GCAFLL_MSB 6
#define MXT_NOISE_ACTVGCAFVALID 7
#define MXT_NOISE_NOISETHR 8
#define MXT_NOISE_FREQHOPSCALE 10
#define MXT_NOISE_FREQ0 11
#define MXT_NOISE_FREQ1 12
#define MXT_NOISE_FREQ2 13
#define MXT_NOISE_FREQ3 14
#define MXT_NOISE_FREQ4 15
#define MXT_NOISE_IDLEGCAFVALID 16
/* MXT_SPT_COMMSCONFIG_T18 */
#define MXT_COMMS_CTRL 0
#define MXT_COMMS_CMD 1
/* MXT_SPT_CTECONFIG_T28 field */
#define MXT_CTE_CTRL 0
#define MXT_CTE_CMD 1
#define MXT_CTE_MODE 2
#define MXT_CTE_IDLEGCAFDEPTH 3
#define MXT_CTE_ACTVGCAFDEPTH 4
#define MXT_CTE_VOLTAGE 5
#define MXT_VOLTAGE_DEFAULT 2700000
#define MXT_VOLTAGE_STEP 10000
/* Analog voltage @2.7 V */
#define MXT_VTG_MIN_UV 2700000
#define MXT_VTG_MAX_UV 3300000
#define MXT_ACTIVE_LOAD_UA 15000
#define MXT_LPM_LOAD_UA 10
/* Digital voltage @1.8 V */
#define MXT_VTG_DIG_MIN_UV 1800000
#define MXT_VTG_DIG_MAX_UV 1800000
#define MXT_ACTIVE_LOAD_DIG_UA 10000
#define MXT_LPM_LOAD_DIG_UA 10
#define MXT_I2C_VTG_MIN_UV 1800000
#define MXT_I2C_VTG_MAX_UV 1800000
#define MXT_I2C_LOAD_UA 10000
#define MXT_I2C_LPM_LOAD_UA 10
/* Define for MXT_GEN_COMMAND_T6 */
#define MXT_BOOT_VALUE 0xa5
#define MXT_BACKUP_VALUE 0x55
#define MXT_BACKUP_TIME 25 /* msec */
/* Software reset delay */
#define MXT224_RESET_TIME 64 /* msec */
#define MXT224E_RESET_TIME 21 /* msec */
#define MXT336S_RESET_TIME 25 /* msec */
#define MXT1386_RESET_TIME 250 /* msec */
#define MXT1386E_RESET_TIME 229 /* msec */
#define MXT1664S_RESET_TIME 280 /* msec */
#define MXT_RESET_TIME 250 /* msec */
#define MXT_RESET_NOCHGREAD 400 /* msec */
/* Power on delay */
#define MXT224_POWER_ON_TIME 40 /* msec */
#define MXT224E_POWER_ON_TIME 21 /* msec */
#define MXT336S_POWER_ON_TIME 25 /* msec */
#define MXT1386_POWER_ON_TIME 90 /* msec */
#define MXT1386E_POWER_ON_TIME 81 /* msec */
#define MXT1664S_POWER_ON_TIME 65 /* msec */
#define MXT_POWER_ON_TIME 100 /* msec */
#define MXT_FWRESET_TIME 1000 /* msec */
#define MXT_WAKE_TIME 25
/* Command to unlock bootloader */
#define MXT_UNLOCK_CMD_MSB 0xaa
#define MXT_UNLOCK_CMD_LSB 0xdc
/* Bootloader mode status */
#define MXT_WAITING_BOOTLOAD_CMD 0xc0 /* valid 7 6 bit only */
#define MXT_WAITING_FRAME_DATA 0x80 /* valid 7 6 bit only */
#define MXT_FRAME_CRC_CHECK 0x02
#define MXT_FRAME_CRC_FAIL 0x03
#define MXT_FRAME_CRC_PASS 0x04
#define MXT_APP_CRC_FAIL 0x40 /* valid 7 8 bit only */
#define MXT_BOOT_STATUS_MASK 0x3f
#define MXT_BOOT_EXTENDED_ID (1 << 5)
#define MXT_BOOT_ID_MASK 0x1f
/* Touch status */
#define MXT_SUPPRESS (1 << 1)
#define MXT_AMP (1 << 2)
#define MXT_VECTOR (1 << 3)
#define MXT_MOVE (1 << 4)
#define MXT_RELEASE (1 << 5)
#define MXT_PRESS (1 << 6)
#define MXT_DETECT (1 << 7)
/* Touch orient bits */
#define MXT_XY_SWITCH (1 << 0)
#define MXT_X_INVERT (1 << 1)
#define MXT_Y_INVERT (1 << 2)
/* Touch suppression */
#define MXT_TCHSUP_ACTIVE (1 << 0)
/* Touchscreen absolute values */
#define MXT_MAX_AREA 0xff
#define MXT_MAX_FINGER 10
#define T7_DATA_SIZE 3
#define MXT_MAX_RW_TRIES 3
#define MXT_BLOCK_SIZE 256
#define MXT_CFG_VERSION_LEN 3
#define MXT_CFG_VERSION_EQUAL 0
#define MXT_CFG_VERSION_LESS 1
#define MXT_CFG_VERSION_GREATER 2
#define MXT_COORDS_ARR_SIZE 4
#define MXT_DEBUGFS_DIR "atmel_mxt_ts"
#define MXT_DEBUGFS_FILE "object"
struct mxt_info {
u8 family_id;
u8 variant_id;
u8 version;
u8 build;
u8 matrix_xsize;
u8 matrix_ysize;
u8 object_num;
};
struct mxt_object {
u8 type;
u16 start_address;
u8 size;
u8 instances;
u8 num_report_ids;
/* to map object and message */
u8 max_reportid;
};
struct mxt_message {
u8 reportid;
u8 message[7];
u8 checksum;
};
struct mxt_finger {
int status;
int x;
int y;
int area;
int pressure;
};
/* Each client has this additional data */
struct mxt_data {
struct i2c_client *client;
struct input_dev *input_dev;
const struct mxt_platform_data *pdata;
const struct mxt_config_info *config_info;
enum mxt_device_state state;
struct mxt_object *object_table;
struct mxt_info info;
struct mxt_finger finger[MXT_MAX_FINGER];
unsigned int irq;
struct regulator *vcc_ana;
struct regulator *vcc_dig;
struct regulator *vcc_i2c;
struct mxt_address_pair addr_pair;
#if defined(CONFIG_FB)
struct notifier_block fb_notif;
#elif defined(CONFIG_HAS_EARLYSUSPEND)
struct early_suspend early_suspend;
#endif
u8 t7_data[T7_DATA_SIZE];
u16 t7_start_addr;
u32 keyarray_old;
u32 keyarray_new;
u8 t9_max_reportid;
u8 t9_min_reportid;
u8 t15_max_reportid;
u8 t15_min_reportid;
u8 t42_max_reportid;
u8 t42_min_reportid;
u8 cfg_version[MXT_CFG_VERSION_LEN];
int cfg_version_idx;
int t38_start_addr;
bool update_cfg;
const char *fw_name;
bool no_force_update;
#if defined(CONFIG_SECURE_TOUCH)
atomic_t st_enabled;
atomic_t st_pending_irqs;
struct completion st_completion;
struct completion st_powerdown;
#endif
};
static struct dentry *debug_base;
static bool mxt_object_readable(unsigned int type)
{
switch (type) {
case MXT_GEN_MESSAGE_T5:
case MXT_GEN_COMMAND_T6:
case MXT_GEN_POWER_T7:
case MXT_GEN_ACQUIRE_T8:
case MXT_GEN_DATASOURCE_T53:
case MXT_TOUCH_MULTI_T9:
case MXT_TOUCH_KEYARRAY_T15:
case MXT_TOUCH_PROXIMITY_T23:
case MXT_TOUCH_PROXKEY_T52:
case MXT_PROCI_GRIPFACE_T20:
case MXT_PROCG_NOISE_T22:
case MXT_PROCG_NOISE_T62:
case MXT_PROCI_ONETOUCH_T24:
case MXT_PROCI_TWOTOUCH_T27:
case MXT_PROCI_GRIP_T40:
case MXT_PROCI_PALM_T41:
case MXT_PROCI_TOUCHSUPPRESSION_T42:
case MXT_PROCI_STYLUS_T47:
case MXT_PROCI_SHIELDLESS_T56:
case MXT_PROCI_EXTRATSDATA_T57:
case MXT_PROCG_NOISESUPPRESSION_T48:
case MXT_SPT_COMMSCONFIG_T18:
case MXT_SPT_GPIOPWM_T19:
case MXT_SPT_SELFTEST_T25:
case MXT_SPT_CTECONFIG_T28:
case MXT_SPT_USERDATA_T38:
case MXT_SPT_DIGITIZER_T43:
case MXT_SPT_CTECONFIG_T46:
case MXT_SPT_EXTRANOISESUPCTRLS_T58:
case MXT_SPT_TIMER_T61:
case MXT_PROCI_ADAPTIVETHRESHOLD_T55:
return true;
default:
return false;
}
}
static bool mxt_object_writable(unsigned int type)
{
switch (type) {
case MXT_GEN_COMMAND_T6:
case MXT_GEN_POWER_T7:
case MXT_GEN_ACQUIRE_T8:
case MXT_TOUCH_MULTI_T9:
case MXT_TOUCH_KEYARRAY_T15:
case MXT_TOUCH_PROXIMITY_T23:
case MXT_TOUCH_PROXKEY_T52:
case MXT_PROCI_GRIPFACE_T20:
case MXT_PROCG_NOISE_T22:
case MXT_PROCG_NOISE_T62:
case MXT_PROCI_ONETOUCH_T24:
case MXT_PROCI_TWOTOUCH_T27:
case MXT_PROCI_GRIP_T40:
case MXT_PROCI_PALM_T41:
case MXT_PROCI_TOUCHSUPPRESSION_T42:
case MXT_PROCI_STYLUS_T47:
case MXT_PROCI_SHIELDLESS_T56:
case MXT_PROCI_EXTRATSDATA_T57:
case MXT_PROCG_NOISESUPPRESSION_T48:
case MXT_SPT_COMMSCONFIG_T18:
case MXT_SPT_GPIOPWM_T19:
case MXT_SPT_SELFTEST_T25:
case MXT_SPT_CTECONFIG_T28:
case MXT_SPT_USERDATA_T38:
case MXT_SPT_DIGITIZER_T43:
case MXT_SPT_CTECONFIG_T46:
case MXT_SPT_EXTRANOISESUPCTRLS_T58:
case MXT_SPT_TIMER_T61:
case MXT_PROCI_ADAPTIVETHRESHOLD_T55:
return true;
default:
return false;
}
}
static void mxt_dump_message(struct device *dev,
struct mxt_message *message)
{
dev_dbg(dev, "reportid:\t0x%x\n", message->reportid);
dev_dbg(dev, "message1:\t0x%x\n", message->message[0]);
dev_dbg(dev, "message2:\t0x%x\n", message->message[1]);
dev_dbg(dev, "message3:\t0x%x\n", message->message[2]);
dev_dbg(dev, "message4:\t0x%x\n", message->message[3]);
dev_dbg(dev, "message5:\t0x%x\n", message->message[4]);
dev_dbg(dev, "message6:\t0x%x\n", message->message[5]);
dev_dbg(dev, "message7:\t0x%x\n", message->message[6]);
dev_dbg(dev, "checksum:\t0x%x\n", message->checksum);
}
static int mxt_lookup_bootloader_address(struct mxt_data *data)
{
int i;
for (i = 0; mxt_slave_addresses[i].application != 0; i++) {
if (mxt_slave_addresses[i].application ==
data->client->addr) {
data->addr_pair.bootloader =
mxt_slave_addresses[i].bootloader;
return 0;
}
}
dev_err(&data->client->dev, "Address 0x%02x not found in address table",
data->client->addr);
return -EINVAL;
};
static int mxt_switch_to_bootloader_address(struct mxt_data *data)
{
struct i2c_client *client = data->client;
if (data->state == BOOTLOADER) {
dev_err(&client->dev, "Already in BOOTLOADER state\n");
return -EINVAL;
}
dev_info(&client->dev, "Changing to bootloader address: 0x%02x -> 0x%02x",
client->addr, data->addr_pair.bootloader);
client->addr = data->addr_pair.bootloader;
data->state = BOOTLOADER;
return 0;
}
static int mxt_switch_to_appmode_address(struct mxt_data *data)
{
struct i2c_client *client = data->client;
if (data->state == APPMODE) {
dev_err(&client->dev, "Already in APPMODE state\n");
return -EINVAL;
}
dev_info(&client->dev, "Changing to application mode address: " \
"0x%02x -> 0x%02x", client->addr,
data->addr_pair.application);
client->addr = data->addr_pair.application;
data->state = APPMODE;
return 0;
}
static int mxt_get_bootloader_version(struct i2c_client *client, u8 val)
{
u8 buf[3];
if (val | MXT_BOOT_EXTENDED_ID) {
dev_dbg(&client->dev,
"Retrieving extended mode ID information");
if (i2c_master_recv(client, &buf[0], 3) != 3) {
dev_err(&client->dev, "%s: i2c recv failed\n",
__func__);
return -EIO;
}
dev_info(&client->dev, "Bootloader ID:%d Version:%d",
buf[1], buf[2]);
return buf[0];
} else {
dev_info(&client->dev, "Bootloader ID:%d",
val & MXT_BOOT_ID_MASK);
return val;
}
}
static int mxt_get_bootloader_id(struct i2c_client *client)
{
u8 val;
u8 buf[3];
if (i2c_master_recv(client, &val, 1) != 1) {
dev_err(&client->dev, "%s: i2c recv failed\n", __func__);
return -EIO;
}
if (val | MXT_BOOT_EXTENDED_ID) {
if (i2c_master_recv(client, &buf[0], 3) != 3) {
dev_err(&client->dev, "%s: i2c recv failed\n",
__func__);
return -EIO;
}
return buf[1];
} else {
dev_info(&client->dev, "Bootloader ID:%d",
val & MXT_BOOT_ID_MASK);
return val & MXT_BOOT_ID_MASK;
}
}
static int mxt_check_bootloader(struct i2c_client *client,
unsigned int state)
{
u8 val;
recheck:
if (i2c_master_recv(client, &val, 1) != 1) {
dev_err(&client->dev, "%s: i2c recv failed\n", __func__);
return -EIO;
}
switch (state) {
case MXT_WAITING_BOOTLOAD_CMD:
val = mxt_get_bootloader_version(client, val);
val &= ~MXT_BOOT_STATUS_MASK;
break;
case MXT_WAITING_FRAME_DATA:
case MXT_APP_CRC_FAIL:
val &= ~MXT_BOOT_STATUS_MASK;
break;
case MXT_FRAME_CRC_PASS:
if (val == MXT_FRAME_CRC_CHECK)
goto recheck;
if (val == MXT_FRAME_CRC_FAIL) {
dev_err(&client->dev, "Bootloader CRC fail\n");
return -EINVAL;
}
break;
default:
return -EINVAL;
}
if (val != state) {
dev_err(&client->dev, "Invalid bootloader mode state %X\n",
val);
return -EINVAL;
}
return 0;
}
static int mxt_unlock_bootloader(struct i2c_client *client)
{
u8 buf[2];
buf[0] = MXT_UNLOCK_CMD_LSB;
buf[1] = MXT_UNLOCK_CMD_MSB;
if (i2c_master_send(client, buf, 2) != 2) {
dev_err(&client->dev, "%s: i2c send failed\n", __func__);
return -EIO;
}
return 0;
}
static int mxt_fw_write(struct i2c_client *client,
const u8 *data, unsigned int frame_size)
{
if (i2c_master_send(client, data, frame_size) != frame_size) {
dev_err(&client->dev, "%s: i2c send failed\n", __func__);
return -EIO;
}
return 0;
}
static int __mxt_read_reg(struct i2c_client *client,
u16 reg, u16 len, void *val)
{
struct i2c_msg xfer[2];
u8 buf[2];
int i = 0;
buf[0] = reg & 0xff;
buf[1] = (reg >> 8) & 0xff;
/* Write register */
xfer[0].addr = client->addr;
xfer[0].flags = 0;
xfer[0].len = 2;
xfer[0].buf = buf;
/* Read data */
xfer[1].addr = client->addr;
xfer[1].flags = I2C_M_RD;
xfer[1].len = len;
xfer[1].buf = val;
do {
if (i2c_transfer(client->adapter, xfer, 2) == 2)
return 0;
msleep(MXT_WAKE_TIME);
} while (++i < MXT_MAX_RW_TRIES);
dev_err(&client->dev, "%s: i2c transfer failed\n", __func__);
return -EIO;
}
static int mxt_read_reg(struct i2c_client *client, u16 reg, u8 *val)
{
return __mxt_read_reg(client, reg, 1, val);
}
static int __mxt_write_reg(struct i2c_client *client,
u16 addr, u16 length, u8 *value)
{
u8 buf[MXT_BLOCK_SIZE + 2];
int i, tries = 0;
if (length > MXT_BLOCK_SIZE)
return -EINVAL;
buf[0] = addr & 0xff;
buf[1] = (addr >> 8) & 0xff;
for (i = 0; i < length; i++)
buf[i + 2] = *value++;
do {
if (i2c_master_send(client, buf, length + 2) == (length + 2))
return 0;
msleep(MXT_WAKE_TIME);
} while (++tries < MXT_MAX_RW_TRIES);
dev_err(&client->dev, "%s: i2c send failed\n", __func__);
return -EIO;
}
static int mxt_write_reg(struct i2c_client *client, u16 reg, u8 val)
{
return __mxt_write_reg(client, reg, 1, &val);
}
static int mxt_read_object_table(struct i2c_client *client,
u16 reg, u8 *object_buf)
{
return __mxt_read_reg(client, reg, MXT_OBJECT_SIZE,
object_buf);
}
static struct mxt_object *
mxt_get_object(struct mxt_data *data, u8 type)
{
struct mxt_object *object;
int i;
for (i = 0; i < data->info.object_num; i++) {
object = data->object_table + i;
if (object->type == type)
return object;
}
dev_err(&data->client->dev, "Invalid object type\n");
return NULL;
}
static int mxt_read_message(struct mxt_data *data,
struct mxt_message *message)
{
struct mxt_object *object;
u16 reg;
object = mxt_get_object(data, MXT_GEN_MESSAGE_T5);
if (!object)
return -EINVAL;
reg = object->start_address;
return __mxt_read_reg(data->client, reg,
sizeof(struct mxt_message), message);
}
static int mxt_read_object(struct mxt_data *data,
u8 type, u8 offset, u8 *val)
{
struct mxt_object *object;
u16 reg;
object = mxt_get_object(data, type);
if (!object)
return -EINVAL;
reg = object->start_address;
return __mxt_read_reg(data->client, reg + offset, 1, val);
}
static int mxt_get_object_address(struct device *dev, u8 type)
{
struct mxt_data *data = dev_get_drvdata(dev);
u8 obj_num, obj_buf[MXT_OBJECT_SIZE];
u16 reg;
int i, error;
error = mxt_read_reg(data->client, MXT_OBJECT_NUM, &obj_num);
if (error) {
dev_err(dev, "reading number of objects failed\n");
return -EINVAL;
}
for (i = 0; i < obj_num; i++) {
reg = MXT_OBJECT_START + MXT_OBJECT_SIZE * i;
error = mxt_read_object_table(data->client,
reg, obj_buf);
if (error)
return error;
if (obj_buf[0] == type)
return obj_buf[2] << 8 | obj_buf[1];
}
/* If control reaches here, i = obj_num and object not found */
dev_err(dev, "Requested object %d not found.\n", type);
return -EINVAL;
}
static int mxt_write_object(struct mxt_data *data,
u8 type, u8 offset, u8 val)
{
struct mxt_object *object;
u16 reg;
object = mxt_get_object(data, type);
if (!object)
return -EINVAL;
reg = object->start_address;
return mxt_write_reg(data->client, reg + offset, val);
}
static void mxt_input_report(struct mxt_data *data, int single_id)
{
struct mxt_finger *finger = data->finger;
struct input_dev *input_dev = data->input_dev;
int status = finger[single_id].status;
int finger_num = 0;
int id;
for (id = 0; id < MXT_MAX_FINGER; id++) {
if (!finger[id].status)
continue;
input_mt_slot(input_dev, id);
/* Firmware reports min/max values when the touch is
* outside screen area. Send a release event in
* such cases to avoid unwanted touches.
*/
if (finger[id].x <= data->pdata->panel_minx ||
finger[id].x >= data->pdata->panel_maxx ||
finger[id].y <= data->pdata->panel_miny ||
finger[id].y >= data->pdata->panel_maxy) {
finger[id].status = MXT_RELEASE;
}
input_mt_report_slot_state(input_dev, MT_TOOL_FINGER,
finger[id].status != MXT_RELEASE);
if (finger[id].status != MXT_RELEASE) {
finger_num++;
input_report_abs(input_dev, ABS_MT_TOUCH_MAJOR,
finger[id].area);
input_report_abs(input_dev, ABS_MT_POSITION_X,
finger[id].x);
input_report_abs(input_dev, ABS_MT_POSITION_Y,
finger[id].y);
input_report_abs(input_dev, ABS_MT_PRESSURE,
finger[id].pressure);
} else {
finger[id].status = 0;
}
}
input_report_key(input_dev, BTN_TOUCH, finger_num > 0);
if (finger[single_id].x <= data->pdata->panel_minx ||
finger[single_id].x >= data->pdata->panel_maxx ||
finger[single_id].y <= data->pdata->panel_miny ||
finger[single_id].y >= data->pdata->panel_maxy) {
status = MXT_RELEASE;
}
if (status != MXT_RELEASE) {
input_report_abs(input_dev, ABS_X, finger[single_id].x);
input_report_abs(input_dev, ABS_Y, finger[single_id].y);
input_report_abs(input_dev,
ABS_PRESSURE, finger[single_id].pressure);
}
input_sync(input_dev);
}
static void mxt_release_all(struct mxt_data *data)
{
int id;
for (id = 0; id < MXT_MAX_FINGER; id++)
if (data->finger[id].status)
data->finger[id].status = MXT_RELEASE;
mxt_input_report(data, 0);
}
static void mxt_input_touchevent(struct mxt_data *data,
struct mxt_message *message, int id)
{
struct mxt_finger *finger = data->finger;
struct device *dev = &data->client->dev;
u8 status = message->message[0];
int x;
int y;
int area;
int pressure;
if (status & MXT_SUPPRESS) {
mxt_release_all(data);
return;
}
/* Check the touch is present on the screen */
if (!(status & MXT_DETECT)) {
if (status & MXT_RELEASE) {
dev_dbg(dev, "[%d] released\n", id);
finger[id].status = MXT_RELEASE;
mxt_input_report(data, id);
}
return;
}
/* Check only AMP detection */
if (!(status & (MXT_PRESS | MXT_MOVE)))
return;
x = (message->message[1] << 4) | ((message->message[3] >> 4) & 0xf);
y = (message->message[2] << 4) | ((message->message[3] & 0xf));
if (data->pdata->panel_maxx < 1024)
x = x >> 2;
if (data->pdata->panel_maxy < 1024)
y = y >> 2;
area = message->message[4];
pressure = message->message[5];
dev_dbg(dev, "[%d] %s x: %d, y: %d, area: %d\n", id,
status & MXT_MOVE ? "moved" : "pressed",
x, y, area);
finger[id].status = status & MXT_MOVE ?
MXT_MOVE : MXT_PRESS;
finger[id].x = x;
finger[id].y = y;
finger[id].area = area;
finger[id].pressure = pressure;
mxt_input_report(data, id);
}
static void mxt_handle_key_array(struct mxt_data *data,
struct mxt_message *message)
{
u32 keys_changed;
int i;
if (!data->pdata->key_codes) {
dev_err(&data->client->dev, "keyarray is not supported\n");
return;
}
data->keyarray_new = message->message[1] |
(message->message[2] << 8) |
(message->message[3] << 16) |
(message->message[4] << 24);
keys_changed = data->keyarray_old ^ data->keyarray_new;
if (!keys_changed) {
dev_dbg(&data->client->dev, "no keys changed\n");
return;
}
for (i = 0; i < MXT_KEYARRAY_MAX_KEYS; i++) {
if (!(keys_changed & (1 << i)))
continue;
input_report_key(data->input_dev, data->pdata->key_codes[i],
(data->keyarray_new & (1 << i)));
input_sync(data->input_dev);
}
data->keyarray_old = data->keyarray_new;
}
static void mxt_handle_touch_suppression(struct mxt_data *data, u8 status)
{
dev_dbg(&data->client->dev, "touch suppression\n");
/* release all touches */
if (status & MXT_TCHSUP_ACTIVE)
mxt_release_all(data);
}
#if defined(CONFIG_SECURE_TOUCH)
static irqreturn_t mxt_filter_interrupt(struct mxt_data *data)
{
if (atomic_read(&data->st_enabled)) {
if (atomic_cmpxchg(&data->st_pending_irqs, 0, 1) == 0)
complete(&data->st_completion);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
#else
static irqreturn_t mxt_filter_interrupt(struct mxt_data *data)
{
return IRQ_NONE;
}
#endif
static irqreturn_t mxt_interrupt(int irq, void *dev_id)
{
struct mxt_data *data = dev_id;
struct mxt_message message;
struct device *dev = &data->client->dev;
int id;
u8 reportid;
if (data->state != APPMODE) {
dev_err(dev, "Ignoring IRQ - not in APPMODE state\n");
return IRQ_HANDLED;
}
if (IRQ_HANDLED == mxt_filter_interrupt(data))
goto end;
do {
if (mxt_read_message(data, &message)) {
dev_err(dev, "Failed to read message\n");
goto end;
}
reportid = message.reportid;
if (!reportid) {
dev_dbg(dev, "Report id 0 is reserved\n");
continue;
}
id = reportid - data->t9_min_reportid;
/* check whether report id is part of T9, T15 or T42 */
if (reportid >= data->t9_min_reportid &&
reportid <= data->t9_max_reportid)
mxt_input_touchevent(data, &message, id);
else if (reportid >= data->t15_min_reportid &&
reportid <= data->t15_max_reportid)
mxt_handle_key_array(data, &message);
else if (reportid >= data->t42_min_reportid &&
reportid <= data->t42_max_reportid)
mxt_handle_touch_suppression(data,
message.message[0]);
else
mxt_dump_message(dev, &message);
} while (reportid != 0xff);
end:
return IRQ_HANDLED;
}
static int mxt_check_reg_init(struct mxt_data *data)
{
const struct mxt_config_info *config_info = data->config_info;
struct mxt_object *object;
struct device *dev = &data->client->dev;
int index = 0;
int i, j, config_offset;
if (!config_info) {
dev_dbg(dev, "No cfg data defined, skipping reg init\n");
return 0;
}
for (i = 0; i < data->info.object_num; i++) {
object = data->object_table + i;
if (!mxt_object_writable(object->type))
continue;
for (j = 0; j < object->size + 1; j++) {
config_offset = index + j;
if (config_offset > config_info->config_length) {
dev_err(dev, "Not enough config data!\n");
return -EINVAL;
}
mxt_write_object(data, object->type, j,
config_info->config[config_offset]);
}
index += object->size + 1;
}
return 0;
}
static int mxt_make_highchg(struct mxt_data *data)
{
struct device *dev = &data->client->dev;
struct mxt_message message;
int count = 10;
int error;
/* Read dummy message to make high CHG pin */
do {
error = mxt_read_message(data, &message);
if (error)
return error;
} while (message.reportid != 0xff && --count);
if (!count) {
dev_err(dev, "CHG pin isn't cleared\n");
return -EBUSY;
}
return 0;
}
static int mxt_get_info(struct mxt_data *data)
{
struct i2c_client *client = data->client;
struct mxt_info *info = &data->info;
int error;
u8 val;
error = mxt_read_reg(client, MXT_FAMILY_ID, &val);
if (error)
return error;
info->family_id = val;
error = mxt_read_reg(client, MXT_VARIANT_ID, &val);
if (error)
return error;
info->variant_id = val;
error = mxt_read_reg(client, MXT_VERSION, &val);
if (error)
return error;
info->version = val;
error = mxt_read_reg(client, MXT_BUILD, &val);
if (error)
return error;
info->build = val;
error = mxt_read_reg(client, MXT_OBJECT_NUM, &val);
if (error)
return error;
info->object_num = val;
return 0;
}
static int mxt_get_object_table(struct mxt_data *data)
{
int error;
int i;
u16 reg;
u8 reportid = 0;
u8 buf[MXT_OBJECT_SIZE];
bool found_t38 = false;
for (i = 0; i < data->info.object_num; i++) {
struct mxt_object *object = data->object_table + i;
reg = MXT_OBJECT_START + MXT_OBJECT_SIZE * i;
error = mxt_read_object_table(data->client, reg, buf);
if (error)
return error;
object->type = buf[0];
object->start_address = (buf[2] << 8) | buf[1];
object->size = buf[3];
object->instances = buf[4];
object->num_report_ids = buf[5];
if (object->num_report_ids) {
reportid += object->num_report_ids *
(object->instances + 1);
object->max_reportid = reportid;
}
/* Calculate index for config major version in config array.
* Major version is the first byte in object T38.
*/
if (object->type == MXT_SPT_USERDATA_T38) {
data->t38_start_addr = object->start_address;
found_t38 = true;
}
if (!found_t38 && mxt_object_writable(object->type))
data->cfg_version_idx += object->size + 1;
}
return 0;
}
static int compare_versions(const u8 *v1, const u8 *v2)
{
int i;
if (!v1 || !v2)
return -EINVAL;
/* The major version number stays the same across different versions for
* a particular controller on a target. The minor and sub-minor version
* numbers indicate which version is newer.
*/
if (v1[0] != v2[0])
return -EINVAL;
for (i = 1; i < MXT_CFG_VERSION_LEN; i++) {
if (v1[i] > v2[i])
return MXT_CFG_VERSION_LESS; /* v2 is older */
if (v1[i] < v2[i])
return MXT_CFG_VERSION_GREATER; /* v2 is newer */
}
return MXT_CFG_VERSION_EQUAL; /* v1 and v2 are equal */
}
static void mxt_check_config_version(struct mxt_data *data,
const struct mxt_config_info *cfg_info,
bool match_major,
const u8 **cfg_version_found,
bool *found_cfg_major_match)
{
const u8 *cfg_version;
int result = -EINVAL;
cfg_version = cfg_info->config + data->cfg_version_idx;
if (*cfg_version_found)
result = compare_versions(*cfg_version_found, cfg_version);
if (match_major) {
if (result >= MXT_CFG_VERSION_EQUAL)
*found_cfg_major_match = true;
if (result == MXT_CFG_VERSION_EQUAL ||
result == MXT_CFG_VERSION_GREATER) {
data->config_info = cfg_info;
data->fw_name = cfg_info->fw_name;
*cfg_version_found = cfg_version;
}
if (result == MXT_CFG_VERSION_GREATER)
data->update_cfg = true;
} else if (!*cfg_version_found || result == MXT_CFG_VERSION_GREATER) {
data->config_info = cfg_info;
data->fw_name = cfg_info->fw_name;
data->update_cfg = true;
*cfg_version_found = cfg_version;
}
}
/* If the controller's config version has a non-zero major number, call this
* function with match_major = true to look for the latest config present in
* the pdata based on matching family id, variant id, f/w version, build, and
* config major number. If the controller is programmed with wrong config data
* previously, call this function with match_major = false to look for latest
* config based on based on matching family id, variant id, f/w version and
* build only.
*/
static int mxt_search_config_array(struct mxt_data *data, bool match_major)
{
const struct mxt_platform_data *pdata = data->pdata;
const struct mxt_config_info *cfg_info;
const struct mxt_info *info = &data->info;
const u8 *cfg_version_found;
bool found_cfg_major_match = false;
int i;
cfg_version_found = match_major ? data->cfg_version : NULL;
for (i = 0; i < pdata->config_array_size; i++) {
cfg_info = &pdata->config_array[i];
if (!cfg_info->config || !cfg_info->config_length)
continue;
if (info->family_id == cfg_info->family_id &&
info->variant_id == cfg_info->variant_id &&
info->version == cfg_info->version &&
info->build == cfg_info->build) {
mxt_check_config_version(data, cfg_info, match_major,
&cfg_version_found, &found_cfg_major_match);
}
}
if (data->config_info || found_cfg_major_match)
return 0;
data->config_info = NULL;
data->fw_name = NULL;
return -EINVAL;
}
static int mxt_get_config(struct mxt_data *data)
{
const struct mxt_platform_data *pdata = data->pdata;
struct device *dev = &data->client->dev;
struct mxt_object *object;
int error;
if (!pdata->config_array || !pdata->config_array_size) {
dev_dbg(dev, "No cfg data provided by platform data\n");
return 0;
}
/* Get current config version */
object = mxt_get_object(data, MXT_SPT_USERDATA_T38);
if (!object) {
dev_err(dev, "Unable to obtain USERDATA object\n");
return -EINVAL;
}
error = __mxt_read_reg(data->client, object->start_address,
sizeof(data->cfg_version), data->cfg_version);
if (error) {
dev_err(dev, "Unable to read config version\n");
return error;
}
dev_info(dev, "Current config version on the controller is %d.%d.%d\n",
data->cfg_version[0], data->cfg_version[1],
data->cfg_version[2]);
/* configuration update requires major match */
error = mxt_search_config_array(data, true);
/* if no_force_update is false , try again with false
as the second parameter to mxt_search_config_array */
if (error && (data->no_force_update == false))
error = mxt_search_config_array(data, false);
if (error) {
dev_err(dev,
"Unable to find matching config in pdata\n");
return error;
}
return 0;
}
static void mxt_power_on_delay(struct mxt_data *data)
{
const struct mxt_platform_data *pdata = data->pdata;
const struct mxt_config_info *cfg_info;
u32 delay = 0;
int i;
for (i = 0; i < pdata->config_array_size; i++) {
cfg_info = &pdata->config_array[i];
switch (cfg_info->family_id) {
case MXT224_ID:
delay = max_t(u32, delay, MXT224_POWER_ON_TIME);
break;
case MXT224E_ID:
delay = max_t(u32, delay, MXT224E_POWER_ON_TIME);
break;
case MXT336S_ID:
delay = max_t(u32, delay, MXT336S_POWER_ON_TIME);
break;
case MXT1386_ID:
delay = max_t(u32, delay,
max_t(u32, MXT1386_POWER_ON_TIME,
MXT1386E_POWER_ON_TIME));
break;
case MXT1664S_ID:
delay = max_t(u32, delay, MXT1664S_POWER_ON_TIME);
break;
default:
delay = max_t(u32, delay, MXT_POWER_ON_TIME);
}
}
msleep(delay);
}
static void mxt_reset_delay(struct mxt_data *data)
{
struct mxt_info *info = &data->info;
switch (info->family_id) {
case MXT224_ID:
msleep(MXT224_RESET_TIME);
break;
case MXT224E_ID:
msleep(MXT224E_RESET_TIME);
break;
case MXT336S_ID:
msleep(MXT336S_RESET_TIME);
break;
case MXT1386_ID:
msleep(max_t(u32, MXT1386_RESET_TIME, MXT1386E_RESET_TIME));
break;
case MXT1664S_ID:
msleep(MXT1664S_RESET_TIME);
break;
default:
msleep(MXT_RESET_TIME);
}
}
static int mxt_backup_nv(struct mxt_data *data)
{
int error;
u8 command_register;
int timeout_counter = 0;
/* Backup to memory */
mxt_write_object(data, MXT_GEN_COMMAND_T6,
MXT_COMMAND_BACKUPNV,
MXT_BACKUP_VALUE);
msleep(MXT_BACKUP_TIME);
do {
error = mxt_read_object(data, MXT_GEN_COMMAND_T6,
MXT_COMMAND_BACKUPNV,
&command_register);
if (error)
return error;
usleep_range(1000, 2000);
} while ((command_register != 0) && (++timeout_counter <= 100));
if (timeout_counter > 100) {
dev_err(&data->client->dev, "No response after backup!\n");
return -EIO;
}
/* Soft reset */
mxt_write_object(data, MXT_GEN_COMMAND_T6, MXT_COMMAND_RESET, 1);
mxt_reset_delay(data);
return 0;
}
static int mxt_save_objects(struct mxt_data *data)
{
struct i2c_client *client = data->client;
struct mxt_object *t7_object;
struct mxt_object *t9_object;
struct mxt_object *t15_object;
struct mxt_object *t42_object;
int error;
/* Store T7 and T9 locally, used in suspend/resume operations */
t7_object = mxt_get_object(data, MXT_GEN_POWER_T7);
if (!t7_object) {
dev_err(&client->dev, "Failed to get T7 object\n");
return -EINVAL;
}
data->t7_start_addr = t7_object->start_address;
error = __mxt_read_reg(client, data->t7_start_addr,
T7_DATA_SIZE, data->t7_data);
if (error < 0) {
dev_err(&client->dev,
"Failed to save current power state\n");
return error;
}
/* Store T9, T15's min and max report ids */
t9_object = mxt_get_object(data, MXT_TOUCH_MULTI_T9);
if (!t9_object) {
dev_err(&client->dev, "Failed to get T9 object\n");
return -EINVAL;
}
data->t9_max_reportid = t9_object->max_reportid;
data->t9_min_reportid = t9_object->max_reportid -
(t9_object->num_report_ids *
(t9_object->instances + 1)) + 1;
if (data->pdata->key_codes) {
t15_object = mxt_get_object(data, MXT_TOUCH_KEYARRAY_T15);
if (!t15_object)
dev_dbg(&client->dev, "T15 object is not available\n");
else {
data->t15_max_reportid = t15_object->max_reportid;
data->t15_min_reportid = t15_object->max_reportid -
(t15_object->num_report_ids *
(t15_object->instances + 1)) + 1;
}
}
/* Store T42 min and max report ids */
t42_object = mxt_get_object(data, MXT_PROCI_TOUCHSUPPRESSION_T42);
if (!t42_object)
dev_dbg(&client->dev, "T42 object is not available\n");
else {
data->t42_max_reportid = t42_object->max_reportid;
data->t42_min_reportid = t42_object->max_reportid -
(t42_object->num_report_ids *
(t42_object->instances + 1)) + 1;
}
return 0;
}
static int mxt_update_cfg(struct mxt_data *data)
{
int error;
const u8 *cfg_ver;
/* Get config data from platform data */
error = mxt_get_config(data);
if (error)
dev_dbg(&data->client->dev, "Config info not found.\n");
/* Check register init values */
if (data->config_info && data->config_info->config) {
if (data->update_cfg) {
error = mxt_check_reg_init(data);
if (error) {
dev_err(&data->client->dev,
"Failed to check reg init value\n");
return error;
}
error = mxt_backup_nv(data);
if (error) {
dev_err(&data->client->dev, "Failed to back up NV\n");
return error;
}
cfg_ver = data->config_info->config +
data->cfg_version_idx;
dev_info(&data->client->dev,
"Config updated from %d.%d.%d to %d.%d.%d\n",
data->cfg_version[0], data->cfg_version[1],
data->cfg_version[2],
cfg_ver[0], cfg_ver[1], cfg_ver[2]);
memcpy(data->cfg_version, cfg_ver, MXT_CFG_VERSION_LEN);
}
} else {
dev_info(&data->client->dev,
"No cfg data defined, skipping check reg init\n");
}
error = mxt_save_objects(data);
if (error)
return error;
return 0;
}
static int mxt_initialize(struct mxt_data *data)
{
struct i2c_client *client = data->client;
struct mxt_info *info = &data->info;
int error;
u8 val;
error = mxt_get_info(data);
if (error) {
/* Try bootloader mode */
error = mxt_switch_to_bootloader_address(data);
if (error)
return error;
error = mxt_check_bootloader(client, MXT_APP_CRC_FAIL);
if (error)
return error;
dev_err(&client->dev, "Application CRC failure\n");
data->state = BOOTLOADER;
return 0;
}
dev_info(&client->dev,
"Family ID: %d Variant ID: %d Version: %d.%d "
"Build: 0x%02X Object Num: %d\n",
info->family_id, info->variant_id,
info->version >> 4, info->version & 0xf,
info->build, info->object_num);
data->state = APPMODE;
data->object_table = kcalloc(info->object_num,
sizeof(struct mxt_object),
GFP_KERNEL);
if (!data->object_table) {
dev_err(&client->dev, "Failed to allocate memory\n");
return -ENOMEM;
}
/* Get object table information */
error = mxt_get_object_table(data);
if (error)
goto free_object_table;
error = mxt_update_cfg(data);
if (error)
goto free_object_table;
/* Update matrix size at info struct */
error = mxt_read_reg(client, MXT_MATRIX_X_SIZE, &val);
if (error)
goto free_object_table;
info->matrix_xsize = val;
error = mxt_read_reg(client, MXT_MATRIX_Y_SIZE, &val);
if (error)
goto free_object_table;
info->matrix_ysize = val;
dev_info(&client->dev,
"Matrix X Size: %d Matrix Y Size: %d\n",
info->matrix_xsize, info->matrix_ysize);
return 0;
free_object_table:
kfree(data->object_table);
return error;
}
static ssize_t mxt_object_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mxt_data *data = dev_get_drvdata(dev);
struct mxt_object *object;
int count = 0;
int i, j;
int error;
u8 val;
for (i = 0; i < data->info.object_num; i++) {
object = data->object_table + i;
count += snprintf(buf + count, PAGE_SIZE - count,
"Object[%d] (Type %d)\n",
i + 1, object->type);
if (count >= PAGE_SIZE)
return PAGE_SIZE - 1;
if (!mxt_object_readable(object->type)) {
count += snprintf(buf + count, PAGE_SIZE - count,
"\n");
if (count >= PAGE_SIZE)
return PAGE_SIZE - 1;
continue;
}
for (j = 0; j < object->size + 1; j++) {
error = mxt_read_object(data,
object->type, j, &val);
if (error)
return error;
count += snprintf(buf + count, PAGE_SIZE - count,
"\t[%2d]: %02x (%d)\n", j, val, val);
if (count >= PAGE_SIZE)
return PAGE_SIZE - 1;
}
count += snprintf(buf + count, PAGE_SIZE - count, "\n");
if (count >= PAGE_SIZE)
return PAGE_SIZE - 1;
}
return count;
}
static int strtobyte(const char *data, u8 *value)
{
char str[3];
str[0] = data[0];
str[1] = data[1];
str[2] = '\0';
return kstrtou8(str, 16, value);
}
static int mxt_load_fw(struct device *dev, const char *fn)
{
struct mxt_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
const struct firmware *fw = NULL;
unsigned int frame_size;
unsigned int retry = 0;
unsigned int pos = 0;
int ret, i, max_frame_size;
u8 *frame;
switch (data->info.family_id) {
case MXT224_ID:
case MXT224E_ID:
case MXT336S_ID:
max_frame_size = MXT_SINGLE_FW_MAX_FRAME_SIZE;
break;
case MXT1386_ID:
case MXT1664S_ID:
max_frame_size = MXT_CHIPSET_FW_MAX_FRAME_SIZE;
break;
default:
return -EINVAL;
}
frame = kmalloc(max_frame_size, GFP_KERNEL);
if (!frame) {
dev_err(dev, "Unable to allocate memory for frame data\n");
return -ENOMEM;
}
ret = request_firmware(&fw, fn, dev);
if (ret < 0) {
dev_err(dev, "Unable to open firmware %s\n", fn);
goto free_frame;
}
if (data->state != BOOTLOADER) {
/* Change to the bootloader mode */
mxt_write_object(data, MXT_GEN_COMMAND_T6,
MXT_COMMAND_RESET, MXT_BOOT_VALUE);
mxt_reset_delay(data);
ret = mxt_switch_to_bootloader_address(data);
if (ret)
goto release_firmware;
}
ret = mxt_check_bootloader(client, MXT_WAITING_BOOTLOAD_CMD);
if (ret) {
/* Bootloader may still be unlocked from previous update
* attempt */
ret = mxt_check_bootloader(client,
MXT_WAITING_FRAME_DATA);
if (ret)
goto return_to_app_mode;
} else {
dev_info(dev, "Unlocking bootloader\n");
/* Unlock bootloader */
mxt_unlock_bootloader(client);
}
while (pos < fw->size) {
ret = mxt_check_bootloader(client,
MXT_WAITING_FRAME_DATA);
if (ret)
goto release_firmware;
/* Get frame length MSB */
ret = strtobyte(fw->data + pos, frame);
if (ret)
goto release_firmware;
/* Get frame length LSB */
ret = strtobyte(fw->data + pos + 2, frame + 1);
if (ret)
goto release_firmware;
frame_size = ((*frame << 8) | *(frame + 1));
/* We should add 2 at frame size as the the firmware data is not
* included the CRC bytes.
*/
frame_size += 2;
if (frame_size > max_frame_size) {
dev_err(dev, "Invalid frame size - %d\n", frame_size);
ret = -EINVAL;
goto release_firmware;
}
/* Convert frame data and CRC from hex to binary */
for (i = 2; i < frame_size; i++) {
ret = strtobyte(fw->data + pos + i * 2, frame + i);
if (ret)
goto release_firmware;
}
/* Write one frame to device */
mxt_fw_write(client, frame, frame_size);
ret = mxt_check_bootloader(client,
MXT_FRAME_CRC_PASS);
if (ret) {
retry++;
/* Back off by 20ms per retry */
msleep(retry * 20);
if (retry > 20)
goto release_firmware;
} else {
retry = 0;
pos += frame_size * 2;
dev_dbg(dev, "Updated %d/%zd bytes\n", pos, fw->size);
}
}
return_to_app_mode:
mxt_switch_to_appmode_address(data);
release_firmware:
release_firmware(fw);
free_frame:
kfree(frame);
return ret;
}
static const char *
mxt_search_fw_name(struct mxt_data *data, u8 bootldr_id)
{
const struct mxt_platform_data *pdata = data->pdata;
const struct mxt_config_info *cfg_info;
const char *fw_name = NULL;
int i;
for (i = 0; i < pdata->config_array_size; i++) {
cfg_info = &pdata->config_array[i];
if (bootldr_id == cfg_info->bootldr_id && cfg_info->fw_name) {
data->config_info = cfg_info;
data->info.family_id = cfg_info->family_id;
fw_name = cfg_info->fw_name;
}
}
return fw_name;
}
static ssize_t mxt_force_cfg_update_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct mxt_data *data = dev_get_drvdata(dev);
int flag = buf[0]-'0';
int error;
data->no_force_update = !flag;
if (data->state == APPMODE) {
disable_irq(data->irq);
error = mxt_update_cfg(data);
enable_irq(data->irq);
if (error)
return error;
} else {
dev_err(dev,
"Not in APPMODE, Unable to force cfg update\n");
return -EINVAL;
}
return count;
}
static ssize_t mxt_update_fw_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct mxt_data *data = dev_get_drvdata(dev);
int error, address;
const char *fw_name;
u8 bootldr_id;
u8 cfg_version[MXT_CFG_VERSION_LEN] = {0};
data->no_force_update = false;
/* If fw_name is set, then the existing firmware has an upgrade */
if (!data->fw_name) {
/*
* If the device boots up in the bootloader mode, check if
* there is a firmware to upgrade.
*/
if (data->state == BOOTLOADER) {
bootldr_id = mxt_get_bootloader_id(data->client);
if (bootldr_id <= 0) {
dev_err(dev,
"Unable to retrieve bootloader id\n");
return -EINVAL;
}
fw_name = mxt_search_fw_name(data, bootldr_id);
if (fw_name == NULL) {
dev_err(dev,
"Unable to find fw from bootloader id\n");
return -EINVAL;
}
} else {
/* In APPMODE, if the f/w name does not exist, quit */
dev_err(dev,
"Firmware name not specified in platform data\n");
return -EINVAL;
}
} else {
fw_name = data->fw_name;
}
dev_info(dev, "Upgrading the firmware file to %s\n", fw_name);
disable_irq(data->irq);
error = mxt_load_fw(dev, fw_name);
if (error) {
dev_err(dev, "The firmware update failed(%d)\n", error);
count = error;
} else {
dev_info(dev, "The firmware update succeeded\n");
/* Wait for reset */
msleep(MXT_FWRESET_TIME);
data->state = INIT;
kfree(data->object_table);
data->object_table = NULL;
data->cfg_version_idx = 0;
data->config_info = NULL;
data->update_cfg = false;
/* T38 object address might have changed, read it from
touch controller */
address = mxt_get_object_address(dev, MXT_SPT_USERDATA_T38);
if (address < 0) {
dev_err(dev, "T38 required for touch operation\n");
return -EINVAL;
}
data->t38_start_addr = address;
error = __mxt_write_reg(data->client, data->t38_start_addr,
sizeof(cfg_version), cfg_version);
if (error)
dev_err(dev,
"Unable to zero out config version after fw upgrade\n");
mxt_initialize(data);
}
if (data->state == APPMODE) {
enable_irq(data->irq);
error = mxt_make_highchg(data);
if (error)
return error;
}
return count;
}
#if defined(CONFIG_SECURE_TOUCH)
static ssize_t mxt_secure_touch_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mxt_data *data = dev_get_drvdata(dev);
return scnprintf(buf, PAGE_SIZE, "%d", atomic_read(&data->st_enabled));
}
/*
* Accept only "0" and "1" valid values.
* "0" will reset the st_enabled flag, then wake up the reading process.
* The bus driver is notified via pm_runtime that it is not required to stay
* awake anymore.
* It will also make sure the queue of events is emptied in the controller,
* in case a touch happened in between the secure touch being disabled and
* the local ISR being ungated.
* "1" will set the st_enabled flag and clear the st_pending_irqs flag.
* The bus driver is requested via pm_runtime to stay awake.
*/
static ssize_t mxt_secure_touch_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct mxt_data *data = dev_get_drvdata(dev);
unsigned long value;
int err = 0;
if (count > 2)
return -EINVAL;
err = kstrtoul(buf, 10, &value);
if (err != 0)
return err;
err = count;
switch (value) {
case 0:
if (atomic_read(&data->st_enabled) == 0)
break;
pm_runtime_put(&data->client->adapter->dev);
atomic_set(&data->st_enabled, 0);
complete(&data->st_completion);
mxt_interrupt(data->client->irq, data);
complete(&data->st_powerdown);
break;
case 1:
if (atomic_read(&data->st_enabled)) {
err = -EBUSY;
break;
}
if (pm_runtime_get(data->client->adapter->dev.parent) < 0) {
dev_err(&data->client->dev, "pm_runtime_get failed\n");
err = -EIO;
break;
}
INIT_COMPLETION(data->st_completion);
INIT_COMPLETION(data->st_powerdown);
atomic_set(&data->st_pending_irqs, 0);
atomic_set(&data->st_enabled, 1);
break;
default:
dev_err(&data->client->dev, "unsupported value: %lu\n", value);
err = -EINVAL;
break;
}
return err;
}
static ssize_t mxt_secure_touch_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mxt_data *data = dev_get_drvdata(dev);
int err;
if (atomic_read(&data->st_enabled) == 0)
return -EBADF;
err = wait_for_completion_interruptible(&data->st_completion);
if (err)
return err;
if (atomic_cmpxchg(&data->st_pending_irqs, 1, 0) != 1)
return -EINVAL;
return scnprintf(buf, PAGE_SIZE, "%u", 1);
}
static DEVICE_ATTR(secure_touch_enable, 0666, mxt_secure_touch_enable_show,
mxt_secure_touch_enable_store);
static DEVICE_ATTR(secure_touch, 0444, mxt_secure_touch_show, NULL);
#endif
static DEVICE_ATTR(object, 0444, mxt_object_show, NULL);
static DEVICE_ATTR(update_fw, 0664, NULL, mxt_update_fw_store);
static DEVICE_ATTR(force_cfg_update, 0664, NULL, mxt_force_cfg_update_store);
static struct attribute *mxt_attrs[] = {
&dev_attr_object.attr,
&dev_attr_update_fw.attr,
&dev_attr_force_cfg_update.attr,
#if defined(CONFIG_SECURE_TOUCH)
&dev_attr_secure_touch_enable.attr,
&dev_attr_secure_touch.attr,
#endif
NULL
};
static const struct attribute_group mxt_attr_group = {
.attrs = mxt_attrs,
};
#if defined(CONFIG_SECURE_TOUCH)
static void mxt_secure_touch_stop(struct mxt_data *data)
{
if (atomic_read(&data->st_enabled)) {
complete(&data->st_completion);
wait_for_completion_interruptible(&data->st_powerdown);
}
}
#else
static void mxt_secure_touch_stop(struct mxt_data *data)
{
}
#endif
static int mxt_start(struct mxt_data *data)
{
int error;
mxt_secure_touch_stop(data);
/* restore the old power state values and reenable touch */
error = __mxt_write_reg(data->client, data->t7_start_addr,
T7_DATA_SIZE, data->t7_data);
if (error < 0) {
dev_err(&data->client->dev,
"failed to restore old power state\n");
return error;
}
return 0;
}
static int mxt_stop(struct mxt_data *data)
{
int error;
u8 t7_data[T7_DATA_SIZE] = {0};
mxt_secure_touch_stop(data);
error = __mxt_write_reg(data->client, data->t7_start_addr,
T7_DATA_SIZE, t7_data);
if (error < 0) {
dev_err(&data->client->dev,
"failed to configure deep sleep mode\n");
return error;
}
return 0;
}
static int mxt_input_open(struct input_dev *dev)
{
struct mxt_data *data = input_get_drvdata(dev);
int error;
if (data->state == APPMODE) {
error = mxt_start(data);
if (error < 0) {
dev_err(&data->client->dev, "mxt_start failed in input_open\n");
return error;
}
}
return 0;
}
static void mxt_input_close(struct input_dev *dev)
{
struct mxt_data *data = input_get_drvdata(dev);
int error;
if (data->state == APPMODE) {
error = mxt_stop(data);
if (error < 0)
dev_err(&data->client->dev, "mxt_stop failed in input_close\n");
}
}
static int reg_set_optimum_mode_check(struct regulator *reg, int load_uA)
{
return (regulator_count_voltages(reg) > 0) ?
regulator_set_optimum_mode(reg, load_uA) : 0;
}
static int mxt_power_on(struct mxt_data *data, bool on)
{
int rc;
if (on == false)
goto power_off;
rc = reg_set_optimum_mode_check(data->vcc_ana, MXT_ACTIVE_LOAD_UA);
if (rc < 0) {
dev_err(&data->client->dev,
"Regulator vcc_ana set_opt failed rc=%d\n", rc);
return rc;
}
rc = regulator_enable(data->vcc_ana);
if (rc) {
dev_err(&data->client->dev,
"Regulator vcc_ana enable failed rc=%d\n", rc);
goto error_reg_en_vcc_ana;
}
if (data->pdata->digital_pwr_regulator) {
rc = reg_set_optimum_mode_check(data->vcc_dig,
MXT_ACTIVE_LOAD_DIG_UA);
if (rc < 0) {
dev_err(&data->client->dev,
"Regulator vcc_dig set_opt failed rc=%d\n",
rc);
goto error_reg_opt_vcc_dig;
}
rc = regulator_enable(data->vcc_dig);
if (rc) {
dev_err(&data->client->dev,
"Regulator vcc_dig enable failed rc=%d\n", rc);
goto error_reg_en_vcc_dig;
}
}
if (data->pdata->i2c_pull_up) {
rc = reg_set_optimum_mode_check(data->vcc_i2c, MXT_I2C_LOAD_UA);
if (rc < 0) {
dev_err(&data->client->dev,
"Regulator vcc_i2c set_opt failed rc=%d\n", rc);
goto error_reg_opt_i2c;
}
rc = regulator_enable(data->vcc_i2c);
if (rc) {
dev_err(&data->client->dev,
"Regulator vcc_i2c enable failed rc=%d\n", rc);
goto error_reg_en_vcc_i2c;
}
}
msleep(130);
return 0;
error_reg_en_vcc_i2c:
if (data->pdata->i2c_pull_up)
reg_set_optimum_mode_check(data->vcc_i2c, 0);
error_reg_opt_i2c:
if (data->pdata->digital_pwr_regulator)
regulator_disable(data->vcc_dig);
error_reg_en_vcc_dig:
if (data->pdata->digital_pwr_regulator)
reg_set_optimum_mode_check(data->vcc_dig, 0);
error_reg_opt_vcc_dig:
regulator_disable(data->vcc_ana);
error_reg_en_vcc_ana:
reg_set_optimum_mode_check(data->vcc_ana, 0);
return rc;
power_off:
reg_set_optimum_mode_check(data->vcc_ana, 0);
regulator_disable(data->vcc_ana);
if (data->pdata->digital_pwr_regulator) {
reg_set_optimum_mode_check(data->vcc_dig, 0);
regulator_disable(data->vcc_dig);
}
if (data->pdata->i2c_pull_up) {
reg_set_optimum_mode_check(data->vcc_i2c, 0);
regulator_disable(data->vcc_i2c);
}
msleep(50);
return 0;
}
static int mxt_regulator_configure(struct mxt_data *data, bool on)
{
int rc;
if (on == false)
goto hw_shutdown;
data->vcc_ana = regulator_get(&data->client->dev, "vdd_ana");
if (IS_ERR(data->vcc_ana)) {
rc = PTR_ERR(data->vcc_ana);
dev_err(&data->client->dev,
"Regulator get failed vcc_ana rc=%d\n", rc);
return rc;
}
if (regulator_count_voltages(data->vcc_ana) > 0) {
rc = regulator_set_voltage(data->vcc_ana, MXT_VTG_MIN_UV,
MXT_VTG_MAX_UV);
if (rc) {
dev_err(&data->client->dev,
"regulator set_vtg failed rc=%d\n", rc);
goto error_set_vtg_vcc_ana;
}
}
if (data->pdata->digital_pwr_regulator) {
data->vcc_dig = regulator_get(&data->client->dev, "vdd_dig");
if (IS_ERR(data->vcc_dig)) {
rc = PTR_ERR(data->vcc_dig);
dev_err(&data->client->dev,
"Regulator get dig failed rc=%d\n", rc);
goto error_get_vtg_vcc_dig;
}
if (regulator_count_voltages(data->vcc_dig) > 0) {
rc = regulator_set_voltage(data->vcc_dig,
MXT_VTG_DIG_MIN_UV, MXT_VTG_DIG_MAX_UV);
if (rc) {
dev_err(&data->client->dev,
"regulator set_vtg failed rc=%d\n", rc);
goto error_set_vtg_vcc_dig;
}
}
}
if (data->pdata->i2c_pull_up) {
data->vcc_i2c = regulator_get(&data->client->dev, "vcc_i2c");
if (IS_ERR(data->vcc_i2c)) {
rc = PTR_ERR(data->vcc_i2c);
dev_err(&data->client->dev,
"Regulator get failed rc=%d\n", rc);
goto error_get_vtg_i2c;
}
if (regulator_count_voltages(data->vcc_i2c) > 0) {
rc = regulator_set_voltage(data->vcc_i2c,
MXT_I2C_VTG_MIN_UV, MXT_I2C_VTG_MAX_UV);
if (rc) {
dev_err(&data->client->dev,
"regulator set_vtg failed rc=%d\n", rc);
goto error_set_vtg_i2c;
}
}
}
return 0;
error_set_vtg_i2c:
regulator_put(data->vcc_i2c);
error_get_vtg_i2c:
if (data->pdata->digital_pwr_regulator)
if (regulator_count_voltages(data->vcc_dig) > 0)
regulator_set_voltage(data->vcc_dig, 0,
MXT_VTG_DIG_MAX_UV);
error_set_vtg_vcc_dig:
if (data->pdata->digital_pwr_regulator)
regulator_put(data->vcc_dig);
error_get_vtg_vcc_dig:
if (regulator_count_voltages(data->vcc_ana) > 0)
regulator_set_voltage(data->vcc_ana, 0, MXT_VTG_MAX_UV);
error_set_vtg_vcc_ana:
regulator_put(data->vcc_ana);
return rc;
hw_shutdown:
if (regulator_count_voltages(data->vcc_ana) > 0)
regulator_set_voltage(data->vcc_ana, 0, MXT_VTG_MAX_UV);
regulator_put(data->vcc_ana);
if (data->pdata->digital_pwr_regulator) {
if (regulator_count_voltages(data->vcc_dig) > 0)
regulator_set_voltage(data->vcc_dig, 0,
MXT_VTG_DIG_MAX_UV);
regulator_put(data->vcc_dig);
}
if (data->pdata->i2c_pull_up) {
if (regulator_count_voltages(data->vcc_i2c) > 0)
regulator_set_voltage(data->vcc_i2c, 0,
MXT_I2C_VTG_MAX_UV);
regulator_put(data->vcc_i2c);
}
return 0;
}
#ifdef CONFIG_PM
static int mxt_regulator_lpm(struct mxt_data *data, bool on)
{
int rc;
if (on == false)
goto regulator_hpm;
rc = reg_set_optimum_mode_check(data->vcc_ana, MXT_LPM_LOAD_UA);
if (rc < 0) {
dev_err(&data->client->dev,
"Regulator vcc_ana set_opt failed rc=%d\n", rc);
goto fail_regulator_lpm;
}
if (data->pdata->digital_pwr_regulator) {
rc = reg_set_optimum_mode_check(data->vcc_dig,
MXT_LPM_LOAD_DIG_UA);
if (rc < 0) {
dev_err(&data->client->dev,
"Regulator vcc_dig set_opt failed rc=%d\n", rc);
goto fail_regulator_lpm;
}
}
if (data->pdata->i2c_pull_up) {
rc = reg_set_optimum_mode_check(data->vcc_i2c,
MXT_I2C_LPM_LOAD_UA);
if (rc < 0) {
dev_err(&data->client->dev,
"Regulator vcc_i2c set_opt failed rc=%d\n", rc);
goto fail_regulator_lpm;
}
}
return 0;
regulator_hpm:
rc = reg_set_optimum_mode_check(data->vcc_ana, MXT_ACTIVE_LOAD_UA);
if (rc < 0) {
dev_err(&data->client->dev,
"Regulator vcc_ana set_opt failed rc=%d\n", rc);
goto fail_regulator_hpm;
}
if (data->pdata->digital_pwr_regulator) {
rc = reg_set_optimum_mode_check(data->vcc_dig,
MXT_ACTIVE_LOAD_DIG_UA);
if (rc < 0) {
dev_err(&data->client->dev,
"Regulator vcc_dig set_opt failed rc=%d\n", rc);
goto fail_regulator_hpm;
}
}
if (data->pdata->i2c_pull_up) {
rc = reg_set_optimum_mode_check(data->vcc_i2c, MXT_I2C_LOAD_UA);
if (rc < 0) {
dev_err(&data->client->dev,
"Regulator vcc_i2c set_opt failed rc=%d\n", rc);
goto fail_regulator_hpm;
}
}
return 0;
fail_regulator_lpm:
reg_set_optimum_mode_check(data->vcc_ana, MXT_ACTIVE_LOAD_UA);
if (data->pdata->digital_pwr_regulator)
reg_set_optimum_mode_check(data->vcc_dig,
MXT_ACTIVE_LOAD_DIG_UA);
if (data->pdata->i2c_pull_up)
reg_set_optimum_mode_check(data->vcc_i2c, MXT_I2C_LOAD_UA);
return rc;
fail_regulator_hpm:
reg_set_optimum_mode_check(data->vcc_ana, MXT_LPM_LOAD_UA);
if (data->pdata->digital_pwr_regulator)
reg_set_optimum_mode_check(data->vcc_dig, MXT_LPM_LOAD_DIG_UA);
if (data->pdata->i2c_pull_up)
reg_set_optimum_mode_check(data->vcc_i2c, MXT_I2C_LPM_LOAD_UA);
return rc;
}
static int mxt_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct mxt_data *data = i2c_get_clientdata(client);
struct input_dev *input_dev = data->input_dev;
int error;
mutex_lock(&input_dev->mutex);
if (input_dev->users) {
error = mxt_stop(data);
if (error < 0) {
dev_err(dev, "mxt_stop failed in suspend\n");
mutex_unlock(&input_dev->mutex);
return error;
}
}
mutex_unlock(&input_dev->mutex);
/* put regulators in low power mode */
error = mxt_regulator_lpm(data, true);
if (error < 0) {
dev_err(dev, "failed to enter low power mode\n");
return error;
}
return 0;
}
static int mxt_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct mxt_data *data = i2c_get_clientdata(client);
struct input_dev *input_dev = data->input_dev;
int error;
/* put regulators in high power mode */
error = mxt_regulator_lpm(data, false);
if (error < 0) {
dev_err(dev, "failed to enter high power mode\n");
return error;
}
mutex_lock(&input_dev->mutex);
if (input_dev->users) {
error = mxt_start(data);
if (error < 0) {
dev_err(dev, "mxt_start failed in resume\n");
mutex_unlock(&input_dev->mutex);
return error;
}
}
/* calibrate */
if (data->pdata->need_calibration) {
mxt_secure_touch_stop(data);
error = mxt_write_object(data, MXT_GEN_COMMAND_T6,
MXT_COMMAND_CALIBRATE, 1);
if (error < 0)
dev_dbg(dev, "sending calibration command failed\n");
}
mutex_unlock(&input_dev->mutex);
return 0;
}
static const struct dev_pm_ops mxt_pm_ops = {
#if (!defined(CONFIG_FB) && !defined(CONFIG_HAS_EARLYSUSPEND))
.suspend = mxt_suspend,
.resume = mxt_resume,
#endif
};
#endif
static int mxt_debugfs_object_show(struct seq_file *m, void *v)
{
struct mxt_data *data = m->private;
struct mxt_object *object;
struct device *dev = &data->client->dev;
int i, j, k;
int error;
int obj_size;
u8 val;
for (i = 0; i < data->info.object_num; i++) {
object = data->object_table + i;
obj_size = object->size + 1;
seq_printf(m, "Object[%d] (Type %d)\n", i + 1, object->type);
for (j = 0; j < object->instances + 1; j++) {
seq_printf(m, "[Instance %d]\n", j);
for (k = 0; k < obj_size; k++) {
error = mxt_read_object(data, object->type,
j * obj_size + k, &val);
if (error) {
dev_err(dev,
"Failed to read object %d "
"instance %d at offset %d\n",
object->type, j, k);
return error;
}
seq_printf(m, "Byte %d: 0x%02x (%d)\n",
k, val, val);
}
}
}
return 0;
}
static int mxt_debugfs_object_open(struct inode *inode, struct file *file)
{
return single_open(file, mxt_debugfs_object_show, inode->i_private);
}
static const struct file_operations mxt_object_fops = {
.owner = THIS_MODULE,
.open = mxt_debugfs_object_open,
.read = seq_read,
.release = single_release,
};
static void __devinit mxt_debugfs_init(struct mxt_data *data)
{
debug_base = debugfs_create_dir(MXT_DEBUGFS_DIR, NULL);
if (IS_ERR_OR_NULL(debug_base))
pr_err("atmel_mxt_ts: Failed to create debugfs dir\n");
if (IS_ERR_OR_NULL(debugfs_create_file(MXT_DEBUGFS_FILE,
0444,
debug_base,
data,
&mxt_object_fops))) {
pr_err("atmel_mxt_ts: Failed to create object file\n");
debugfs_remove_recursive(debug_base);
}
}
#ifdef CONFIG_OF
static int mxt_get_dt_coords(struct device *dev, char *name,
struct mxt_platform_data *pdata)
{
u32 coords[MXT_COORDS_ARR_SIZE];
struct property *prop;
struct device_node *np = dev->of_node;
int coords_size, rc;
prop = of_find_property(np, name, NULL);
if (!prop)
return -EINVAL;
if (!prop->value)
return -ENODATA;
coords_size = prop->length / sizeof(u32);
if (coords_size != MXT_COORDS_ARR_SIZE) {
dev_err(dev, "invalid %s\n", name);
return -EINVAL;
}
rc = of_property_read_u32_array(np, name, coords, coords_size);
if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read %s\n", name);
return rc;
}
if (strncmp(name, "atmel,panel-coords",
sizeof("atmel,panel-coords")) == 0) {
pdata->panel_minx = coords[0];
pdata->panel_miny = coords[1];
pdata->panel_maxx = coords[2];
pdata->panel_maxy = coords[3];
} else if (strncmp(name, "atmel,display-coords",
sizeof("atmel,display-coords")) == 0) {
pdata->disp_minx = coords[0];
pdata->disp_miny = coords[1];
pdata->disp_maxx = coords[2];
pdata->disp_maxy = coords[3];
} else {
dev_err(dev, "unsupported property %s\n", name);
return -EINVAL;
}
return 0;
}
static int mxt_parse_config(struct device *dev, struct device_node *np,
struct mxt_config_info *info)
{
struct property *prop;
u8 *temp_cfg;
prop = of_find_property(np, "atmel,config", &info->config_length);
if (!prop) {
dev_err(dev, "Looking up %s property in node %s failed",
"atmel,config", np->full_name);
return -ENODEV;
} else if (!info->config_length) {
dev_err(dev, "Invalid length of configuration data\n");
return -EINVAL;
}
temp_cfg = devm_kzalloc(dev,
info->config_length * sizeof(u8), GFP_KERNEL);
if (!temp_cfg) {
dev_err(dev, "Unable to allocate memory to store cfg\n");
return -ENOMEM;
}
memcpy(temp_cfg, prop->value, info->config_length);
info->config = temp_cfg;
return 0;
}
static int mxt_parse_dt(struct device *dev, struct mxt_platform_data *pdata)
{
int rc;
struct mxt_config_info *info;
struct device_node *temp, *np = dev->of_node;
struct property *prop;
u32 temp_val;
rc = mxt_get_dt_coords(dev, "atmel,panel-coords", pdata);
if (rc)
return rc;
rc = mxt_get_dt_coords(dev, "atmel,display-coords", pdata);
if (rc)
return rc;
/* regulator info */
pdata->i2c_pull_up = of_property_read_bool(np, "atmel,i2c-pull-up");
pdata->digital_pwr_regulator = of_property_read_bool(np,
"atmel,dig-reg-support");
pdata->no_force_update = of_property_read_bool(np,
"atmel,no-force-update");
/* reset, irq gpio info */
pdata->reset_gpio = of_get_named_gpio_flags(np, "atmel,reset-gpio",
0, &pdata->reset_gpio_flags);
pdata->irq_gpio = of_get_named_gpio_flags(np, "atmel,irq-gpio",
0, &pdata->irq_gpio_flags);
/* keycodes for keyarray object*/
prop = of_find_property(np, "atmel,key-codes", NULL);
if (prop) {
pdata->key_codes = devm_kzalloc(dev,
sizeof(int) * MXT_KEYARRAY_MAX_KEYS,
GFP_KERNEL);
if (!pdata->key_codes)
return -ENOMEM;
if ((prop->length/sizeof(u32)) == MXT_KEYARRAY_MAX_KEYS) {
rc = of_property_read_u32_array(np, "atmel,key-codes",
pdata->key_codes, MXT_KEYARRAY_MAX_KEYS);
if (rc) {
dev_err(dev, "Unable to read key codes\n");
return rc;
}
} else
return -EINVAL;
}
/* need calibration during wakeup? */
pdata->need_calibration = of_property_read_bool(np,
"atmel,need-calibration");
/* config array size */
pdata->config_array_size = 0;
temp = NULL;
while ((temp = of_get_next_child(np, temp)))
pdata->config_array_size++;
if (!pdata->config_array_size)
return 0;
info = devm_kzalloc(dev, pdata->config_array_size *
sizeof(struct mxt_config_info), GFP_KERNEL);
if (!info) {
dev_err(dev, "Unable to allocate memory\n");
return -ENOMEM;
}
rc = of_property_read_u32(np, "atmel,bl-addr", &temp_val);
if (rc && (rc != -EINVAL))
dev_err(dev, "Unable to read bootloader address\n");
else if (rc != -EINVAL)
pdata->bl_addr = (u8) temp_val;
pdata->config_array = info;
for_each_child_of_node(np, temp) {
rc = of_property_read_string(temp, "atmel,fw-name",
&info->fw_name);
if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read fw name\n");
return rc;
}
rc = of_property_read_u32(temp, "atmel,family-id", &temp_val);
if (rc) {
dev_err(dev, "Unable to read family id\n");
return rc;
} else
info->family_id = (u8) temp_val;
rc = of_property_read_u32(temp, "atmel,variant-id", &temp_val);
if (rc) {
dev_err(dev, "Unable to read variant id\n");
return rc;
} else
info->variant_id = (u8) temp_val;
rc = of_property_read_u32(temp, "atmel,version", &temp_val);
if (rc) {
dev_err(dev, "Unable to read controller version\n");
return rc;
} else
info->version = (u8) temp_val;
rc = of_property_read_u32(temp, "atmel,build", &temp_val);
if (rc) {
dev_err(dev, "Unable to read build id\n");
return rc;
} else
info->build = (u8) temp_val;
rc = of_property_read_u32(temp,
"atmel,bootldr-id", &temp_val);
if (rc && (rc != -EINVAL))
dev_err(dev, "Unable to read bootldr-id\n");
else if (rc != -EINVAL)
info->bootldr_id = (u8) temp_val;
rc = mxt_parse_config(dev, temp, info);
if (rc) {
dev_err(dev, "Unable to parse config data\n");
return rc;
}
info++;
}
return 0;
}
#else
static int mxt_parse_dt(struct device *dev, struct mxt_platform_data *pdata)
{
return -ENODEV;
}
#endif
#if defined(CONFIG_FB)
static int fb_notifier_callback(struct notifier_block *self,
unsigned long event, void *data)
{
struct fb_event *evdata = data;
int *blank;
struct mxt_data *mxt_dev_data =
container_of(self, struct mxt_data, fb_notif);
if (evdata && evdata->data && event == FB_EVENT_BLANK && mxt_dev_data &&
mxt_dev_data->client) {
blank = evdata->data;
if (*blank == FB_BLANK_UNBLANK)
mxt_resume(&mxt_dev_data->client->dev);
else if (*blank == FB_BLANK_POWERDOWN)
mxt_suspend(&mxt_dev_data->client->dev);
}
return 0;
}
#elif defined(CONFIG_HAS_EARLYSUSPEND)
static void mxt_early_suspend(struct early_suspend *h)
{
struct mxt_data *data = container_of(h, struct mxt_data,
early_suspend);
mxt_suspend(&data->client->dev);
}
static void mxt_late_resume(struct early_suspend *h)
{
struct mxt_data *data = container_of(h, struct mxt_data,
early_suspend);
mxt_resume(&data->client->dev);
}
#endif
#if defined(CONFIG_SECURE_TOUCH)
static void __devinit mxt_secure_touch_init(struct mxt_data *data)
{
init_completion(&data->st_completion);
init_completion(&data->st_powerdown);
}
#else
static void __devinit mxt_secure_touch_init(struct mxt_data *data)
{
}
#endif
static int __devinit mxt_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct mxt_platform_data *pdata;
struct mxt_data *data;
struct input_dev *input_dev;
int error, i;
if (client->dev.of_node) {
pdata = devm_kzalloc(&client->dev,
sizeof(struct mxt_platform_data), GFP_KERNEL);
if (!pdata) {
dev_err(&client->dev, "Failed to allocate memory\n");
return -ENOMEM;
}
error = mxt_parse_dt(&client->dev, pdata);
if (error)
return error;
} else
pdata = client->dev.platform_data;
if (!pdata)
return -EINVAL;
data = kzalloc(sizeof(struct mxt_data), GFP_KERNEL);
input_dev = input_allocate_device();
if (!data || !input_dev) {
dev_err(&client->dev, "Failed to allocate memory\n");
error = -ENOMEM;
goto err_free_mem;
}
data->state = INIT;
input_dev->name = "atmel_mxt_ts";
input_dev->id.bustype = BUS_I2C;
input_dev->dev.parent = &client->dev;
input_dev->open = mxt_input_open;
input_dev->close = mxt_input_close;
data->client = client;
data->input_dev = input_dev;
data->pdata = pdata;
data->no_force_update = pdata->no_force_update;
__set_bit(EV_ABS, input_dev->evbit);
__set_bit(EV_KEY, input_dev->evbit);
__set_bit(BTN_TOUCH, input_dev->keybit);
__set_bit(INPUT_PROP_DIRECT, input_dev->propbit);
/* For single touch */
input_set_abs_params(input_dev, ABS_X,
pdata->disp_minx, pdata->disp_maxx, 0, 0);
input_set_abs_params(input_dev, ABS_Y,
pdata->disp_miny, pdata->disp_maxy, 0, 0);
input_set_abs_params(input_dev, ABS_PRESSURE,
0, 255, 0, 0);
/* For multi touch */
input_mt_init_slots(input_dev, MXT_MAX_FINGER);
input_set_abs_params(input_dev, ABS_MT_TOUCH_MAJOR,
0, MXT_MAX_AREA, 0, 0);
input_set_abs_params(input_dev, ABS_MT_POSITION_X,
pdata->disp_minx, pdata->disp_maxx, 0, 0);
input_set_abs_params(input_dev, ABS_MT_POSITION_Y,
pdata->disp_miny, pdata->disp_maxy, 0, 0);
input_set_abs_params(input_dev, ABS_MT_PRESSURE,
0, 255, 0, 0);
/* set key array supported keys */
if (pdata->key_codes) {
for (i = 0; i < MXT_KEYARRAY_MAX_KEYS; i++) {
if (pdata->key_codes[i])
input_set_capability(input_dev, EV_KEY,
pdata->key_codes[i]);
}
}
input_set_drvdata(input_dev, data);
i2c_set_clientdata(client, data);
if (pdata->init_hw)
error = pdata->init_hw(true);
else
error = mxt_regulator_configure(data, true);
if (error) {
dev_err(&client->dev, "Failed to intialize hardware\n");
goto err_free_mem;
}
if (gpio_is_valid(pdata->reset_gpio)) {
/* configure touchscreen reset out gpio */
error = gpio_request(pdata->reset_gpio, "mxt_reset_gpio");
if (error) {
dev_err(&client->dev, "unable to request gpio [%d]\n",
pdata->reset_gpio);
goto err_regulator_on;
}
error = gpio_direction_output(pdata->reset_gpio, 0);
if (error) {
dev_err(&client->dev,
"unable to set direction for gpio [%d]\n",
pdata->reset_gpio);
goto err_reset_gpio_req;
}
mxt_reset_delay(data);
}
if (pdata->power_on)
error = pdata->power_on(true);
else
error = mxt_power_on(data, true);
if (error) {
dev_err(&client->dev, "Failed to power on hardware\n");
goto err_reset_gpio_req;
}
if (gpio_is_valid(pdata->irq_gpio)) {
/* configure touchscreen irq gpio */
error = gpio_request(pdata->irq_gpio, "mxt_irq_gpio");
if (error) {
dev_err(&client->dev, "unable to request gpio [%d]\n",
pdata->irq_gpio);
goto err_power_on;
}
error = gpio_direction_input(pdata->irq_gpio);
if (error) {
dev_err(&client->dev,
"unable to set direction for gpio [%d]\n",
pdata->irq_gpio);
goto err_irq_gpio_req;
}
data->irq = client->irq = gpio_to_irq(pdata->irq_gpio);
} else {
dev_err(&client->dev, "irq gpio not provided\n");
goto err_power_on;
}
if (gpio_is_valid(pdata->reset_gpio)) {
error = gpio_direction_output(pdata->reset_gpio, 1);
if (error) {
dev_err(&client->dev,
"unable to set direction for gpio [%d]\n",
pdata->reset_gpio);
goto err_irq_gpio_req;
}
}
mxt_power_on_delay(data);
data->addr_pair.application = data->client->addr;
if (pdata->bl_addr)
data->addr_pair.bootloader = pdata->bl_addr;
else
mxt_lookup_bootloader_address(data);
error = mxt_initialize(data);
if (error)
goto err_irq_gpio_req;
error = request_threaded_irq(client->irq, NULL, mxt_interrupt,
pdata->irqflags, client->dev.driver->name, data);
if (error) {
dev_err(&client->dev, "Failed to register interrupt\n");
goto err_free_object;
}
if (data->state == APPMODE) {
error = mxt_make_highchg(data);
if (error) {
dev_err(&client->dev, "Failed to make high CHG\n");
goto err_free_irq;
}
}
error = input_register_device(input_dev);
if (error)
goto err_free_irq;
error = sysfs_create_group(&client->dev.kobj, &mxt_attr_group);
if (error)
goto err_unregister_device;
#if defined(CONFIG_FB)
data->fb_notif.notifier_call = fb_notifier_callback;
error = fb_register_client(&data->fb_notif);
if (error)
dev_err(&client->dev, "Unable to register fb_notifier: %d\n",
error);
#elif defined(CONFIG_HAS_EARLYSUSPEND)
data->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN +
MXT_SUSPEND_LEVEL;
data->early_suspend.suspend = mxt_early_suspend;
data->early_suspend.resume = mxt_late_resume;
register_early_suspend(&data->early_suspend);
#endif
mxt_debugfs_init(data);
mxt_secure_touch_init(data);
return 0;
err_unregister_device:
input_unregister_device(input_dev);
input_dev = NULL;
err_free_irq:
free_irq(client->irq, data);
err_free_object:
kfree(data->object_table);
err_irq_gpio_req:
if (gpio_is_valid(pdata->irq_gpio))
gpio_free(pdata->irq_gpio);
err_power_on:
if (pdata->power_on)
pdata->power_on(false);
else
mxt_power_on(data, false);
err_reset_gpio_req:
if (gpio_is_valid(pdata->reset_gpio))
gpio_free(pdata->reset_gpio);
err_regulator_on:
if (pdata->init_hw)
pdata->init_hw(false);
else
mxt_regulator_configure(data, false);
err_free_mem:
input_free_device(input_dev);
kfree(data);
return error;
}
static int __devexit mxt_remove(struct i2c_client *client)
{
struct mxt_data *data = i2c_get_clientdata(client);
sysfs_remove_group(&client->dev.kobj, &mxt_attr_group);
free_irq(data->irq, data);
input_unregister_device(data->input_dev);
#if defined(CONFIG_FB)
if (fb_unregister_client(&data->fb_notif))
dev_err(&client->dev, "Error occurred while unregistering fb_notifier.\n");
#elif defined(CONFIG_HAS_EARLYSUSPEND)
unregister_early_suspend(&data->early_suspend);
#endif
if (data->pdata->power_on)
data->pdata->power_on(false);
else
mxt_power_on(data, false);
if (data->pdata->init_hw)
data->pdata->init_hw(false);
else
mxt_regulator_configure(data, false);
if (gpio_is_valid(data->pdata->reset_gpio))
gpio_free(data->pdata->reset_gpio);
if (gpio_is_valid(data->pdata->irq_gpio))
gpio_free(data->pdata->irq_gpio);
kfree(data->object_table);
kfree(data);
debugfs_remove_recursive(debug_base);
return 0;
}
static const struct i2c_device_id mxt_id[] = {
{ "qt602240_ts", 0 },
{ "atmel_mxt_ts", 0 },
{ "mXT224", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, mxt_id);
#ifdef CONFIG_OF
static struct of_device_id mxt_match_table[] = {
{ .compatible = "atmel,mxt-ts",},
{ },
};
#else
#define mxt_match_table NULL
#endif
static struct i2c_driver mxt_driver = {
.driver = {
.name = "atmel_mxt_ts",
.owner = THIS_MODULE,
.of_match_table = mxt_match_table,
#ifdef CONFIG_PM
.pm = &mxt_pm_ops,
#endif
},
.probe = mxt_probe,
.remove = __devexit_p(mxt_remove),
.id_table = mxt_id,
};
module_i2c_driver(mxt_driver);
/* Module information */
MODULE_AUTHOR("Joonyoung Shim <jy0922.shim@samsung.com>");
MODULE_DESCRIPTION("Atmel maXTouch Touchscreen driver");
MODULE_LICENSE("GPL");