M7350/kernel/drivers/crypto/msm/qcrypto.c
2024-09-09 08:52:07 +00:00

3835 lines
100 KiB
C

/* Qualcomm Crypto driver
*
* Copyright (c) 2010-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/clk.h>
#include <linux/types.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/crypto.h>
#include <linux/kernel.h>
#include <linux/rtnetlink.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/debugfs.h>
#include <crypto/ctr.h>
#include <crypto/des.h>
#include <crypto/aes.h>
#include <crypto/sha.h>
#include <crypto/hash.h>
#include <crypto/algapi.h>
#include <crypto/aead.h>
#include <crypto/authenc.h>
#include <crypto/scatterwalk.h>
#include <crypto/internal/hash.h>
#include <mach/scm.h>
#include <linux/platform_data/qcom_crypto_device.h>
#include <mach/msm_bus.h>
#include <mach/qcrypto.h>
#include "qce.h"
#define DEBUG_MAX_FNAME 16
#define DEBUG_MAX_RW_BUF 1024
struct crypto_stat {
u32 aead_sha1_aes_enc;
u32 aead_sha1_aes_dec;
u32 aead_sha1_des_enc;
u32 aead_sha1_des_dec;
u32 aead_sha1_3des_enc;
u32 aead_sha1_3des_dec;
u32 aead_ccm_aes_enc;
u32 aead_ccm_aes_dec;
u32 aead_op_success;
u32 aead_op_fail;
u32 aead_bad_msg;
u32 ablk_cipher_aes_enc;
u32 ablk_cipher_aes_dec;
u32 ablk_cipher_des_enc;
u32 ablk_cipher_des_dec;
u32 ablk_cipher_3des_enc;
u32 ablk_cipher_3des_dec;
u32 ablk_cipher_op_success;
u32 ablk_cipher_op_fail;
u32 sha1_digest;
u32 sha256_digest;
u32 sha_op_success;
u32 sha_op_fail;
u32 sha1_hmac_digest;
u32 sha256_hmac_digest;
u32 sha_hmac_op_success;
u32 sha_hmac_op_fail;
};
static struct crypto_stat _qcrypto_stat;
static struct dentry *_debug_dent;
static char _debug_read_buf[DEBUG_MAX_RW_BUF];
struct crypto_priv {
/* CE features supported by target device*/
struct msm_ce_hw_support platform_support;
/* CE features/algorithms supported by HW engine*/
struct ce_hw_support ce_support;
uint32_t bus_scale_handle;
/* the lock protects queue and req*/
spinlock_t lock;
/* qce handle */
void *qce;
/* list of registered algorithms */
struct list_head alg_list;
/* platform device */
struct platform_device *pdev;
/* current active request */
struct crypto_async_request *req;
int res;
/* request queue */
struct crypto_queue queue;
uint32_t ce_lock_count;
uint32_t high_bw_req_count;
struct work_struct unlock_ce_ws;
struct tasklet_struct done_tasklet;
};
/*-------------------------------------------------------------------------
* Resource Locking Service
* ------------------------------------------------------------------------*/
#define QCRYPTO_CMD_ID 1
#define QCRYPTO_CE_LOCK_CMD 1
#define QCRYPTO_CE_UNLOCK_CMD 0
#define NUM_RETRY 1000
#define CE_BUSY 55
static DEFINE_MUTEX(qcrypto_sent_bw_req);
static int qcrypto_scm_cmd(int resource, int cmd, int *response)
{
#ifdef CONFIG_MSM_SCM
struct {
int resource;
int cmd;
} cmd_buf;
cmd_buf.resource = resource;
cmd_buf.cmd = cmd;
return scm_call(SCM_SVC_TZ, QCRYPTO_CMD_ID, &cmd_buf,
sizeof(cmd_buf), response, sizeof(*response));
#else
return 0;
#endif
}
static void qcrypto_unlock_ce(struct work_struct *work)
{
int response = 0;
unsigned long flags;
struct crypto_priv *cp = container_of(work, struct crypto_priv,
unlock_ce_ws);
if (cp->ce_lock_count == 1)
BUG_ON(qcrypto_scm_cmd(cp->platform_support.shared_ce_resource,
QCRYPTO_CE_UNLOCK_CMD, &response) != 0);
spin_lock_irqsave(&cp->lock, flags);
cp->ce_lock_count--;
spin_unlock_irqrestore(&cp->lock, flags);
}
static int qcrypto_lock_ce(struct crypto_priv *cp)
{
unsigned long flags;
int response = -CE_BUSY;
int i = 0;
if (cp->ce_lock_count == 0) {
do {
if (qcrypto_scm_cmd(
cp->platform_support.shared_ce_resource,
QCRYPTO_CE_LOCK_CMD, &response)) {
response = -EINVAL;
break;
}
} while ((response == -CE_BUSY) && (i++ < NUM_RETRY));
if ((response == -CE_BUSY) && (i >= NUM_RETRY))
return -EUSERS;
if (response < 0)
return -EINVAL;
}
spin_lock_irqsave(&cp->lock, flags);
cp->ce_lock_count++;
spin_unlock_irqrestore(&cp->lock, flags);
return 0;
}
enum qcrypto_alg_type {
QCRYPTO_ALG_CIPHER = 0,
QCRYPTO_ALG_SHA = 1,
QCRYPTO_ALG_LAST
};
struct qcrypto_alg {
struct list_head entry;
struct crypto_alg cipher_alg;
struct ahash_alg sha_alg;
enum qcrypto_alg_type alg_type;
struct crypto_priv *cp;
};
#define QCRYPTO_MAX_KEY_SIZE 64
/* max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */
#define QCRYPTO_MAX_IV_LENGTH 16
struct qcrypto_cipher_ctx {
u8 auth_key[QCRYPTO_MAX_KEY_SIZE];
u8 iv[QCRYPTO_MAX_IV_LENGTH];
u8 enc_key[QCRYPTO_MAX_KEY_SIZE];
unsigned int enc_key_len;
unsigned int authsize;
unsigned int auth_key_len;
struct crypto_priv *cp;
unsigned int flags;
};
struct qcrypto_cipher_req_ctx {
u8 *iv;
unsigned int ivsize;
int aead;
struct scatterlist asg; /* Formatted associated data sg */
unsigned char *assoc; /* Pointer to formatted assoc data */
unsigned int assoclen; /* Save Unformatted assoc data length */
struct scatterlist *assoc_sg; /* Save Unformatted assoc data sg */
enum qce_cipher_alg_enum alg;
enum qce_cipher_dir_enum dir;
enum qce_cipher_mode_enum mode;
struct scatterlist *orig_src; /* Original src sg ptr */
struct scatterlist *orig_dst; /* Original dst sg ptr */
struct scatterlist dsg; /* Dest Data sg */
struct scatterlist ssg; /* Source Data sg */
unsigned char *data; /* Incoming data pointer*/
};
#define SHA_MAX_BLOCK_SIZE SHA256_BLOCK_SIZE
#define SHA_MAX_STATE_SIZE (SHA256_DIGEST_SIZE / sizeof(u32))
#define SHA_MAX_DIGEST_SIZE SHA256_DIGEST_SIZE
static uint8_t _std_init_vector_sha1_uint8[] = {
0x67, 0x45, 0x23, 0x01, 0xEF, 0xCD, 0xAB, 0x89,
0x98, 0xBA, 0xDC, 0xFE, 0x10, 0x32, 0x54, 0x76,
0xC3, 0xD2, 0xE1, 0xF0
};
/* standard initialization vector for SHA-256, source: FIPS 180-2 */
static uint8_t _std_init_vector_sha256_uint8[] = {
0x6A, 0x09, 0xE6, 0x67, 0xBB, 0x67, 0xAE, 0x85,
0x3C, 0x6E, 0xF3, 0x72, 0xA5, 0x4F, 0xF5, 0x3A,
0x51, 0x0E, 0x52, 0x7F, 0x9B, 0x05, 0x68, 0x8C,
0x1F, 0x83, 0xD9, 0xAB, 0x5B, 0xE0, 0xCD, 0x19
};
struct qcrypto_sha_ctx {
enum qce_hash_alg_enum alg;
uint32_t byte_count[4];
uint8_t digest[SHA_MAX_DIGEST_SIZE];
uint32_t diglen;
uint8_t *tmp_tbuf;
uint8_t *trailing_buf;
uint8_t *in_buf;
uint32_t authkey_in_len;
uint32_t trailing_buf_len;
uint8_t first_blk;
uint8_t last_blk;
uint8_t authkey[SHA_MAX_BLOCK_SIZE];
struct ahash_request *ahash_req;
struct completion ahash_req_complete;
struct scatterlist *sg;
struct scatterlist tmp_sg;
struct crypto_priv *cp;
unsigned int flags;
};
struct qcrypto_sha_req_ctx {
union {
struct sha1_state sha1_state_ctx;
struct sha256_state sha256_state_ctx;
};
struct scatterlist *src;
uint32_t nbytes;
struct scatterlist *orig_src; /* Original src sg ptr */
struct scatterlist dsg; /* Data sg */
unsigned char *data; /* Incoming data pointer*/
unsigned char *data2; /* Updated data pointer*/
};
static void _byte_stream_to_words(uint32_t *iv, unsigned char *b,
unsigned int len)
{
unsigned n;
n = len / sizeof(uint32_t) ;
for (; n > 0; n--) {
*iv = ((*b << 24) & 0xff000000) |
(((*(b+1)) << 16) & 0xff0000) |
(((*(b+2)) << 8) & 0xff00) |
(*(b+3) & 0xff);
b += sizeof(uint32_t);
iv++;
}
n = len % sizeof(uint32_t);
if (n == 3) {
*iv = ((*b << 24) & 0xff000000) |
(((*(b+1)) << 16) & 0xff0000) |
(((*(b+2)) << 8) & 0xff00) ;
} else if (n == 2) {
*iv = ((*b << 24) & 0xff000000) |
(((*(b+1)) << 16) & 0xff0000) ;
} else if (n == 1) {
*iv = ((*b << 24) & 0xff000000) ;
}
}
static void _words_to_byte_stream(uint32_t *iv, unsigned char *b,
unsigned int len)
{
unsigned n = len / sizeof(uint32_t);
for (; n > 0; n--) {
*b++ = (unsigned char) ((*iv >> 24) & 0xff);
*b++ = (unsigned char) ((*iv >> 16) & 0xff);
*b++ = (unsigned char) ((*iv >> 8) & 0xff);
*b++ = (unsigned char) (*iv & 0xff);
iv++;
}
n = len % sizeof(uint32_t);
if (n == 3) {
*b++ = (unsigned char) ((*iv >> 24) & 0xff);
*b++ = (unsigned char) ((*iv >> 16) & 0xff);
*b = (unsigned char) ((*iv >> 8) & 0xff);
} else if (n == 2) {
*b++ = (unsigned char) ((*iv >> 24) & 0xff);
*b = (unsigned char) ((*iv >> 16) & 0xff);
} else if (n == 1) {
*b = (unsigned char) ((*iv >> 24) & 0xff);
}
}
static void qcrypto_ce_high_bw_req(struct crypto_priv *cp, bool high_bw_req)
{
int ret = 0;
mutex_lock(&qcrypto_sent_bw_req);
if (high_bw_req) {
if (cp->high_bw_req_count == 0) {
ret = qce_enable_clk(cp->qce);
if (ret) {
pr_err("%s Unable enable clk\n", __func__);
mutex_unlock(&qcrypto_sent_bw_req);
return;
}
ret = msm_bus_scale_client_update_request(
cp->bus_scale_handle, 1);
if (ret) {
pr_err("%s Unable to set to high bandwidth\n",
__func__);
qce_disable_clk(cp->qce);
mutex_unlock(&qcrypto_sent_bw_req);
return;
}
}
cp->high_bw_req_count++;
} else {
if (cp->high_bw_req_count == 1) {
ret = msm_bus_scale_client_update_request(
cp->bus_scale_handle, 0);
if (ret) {
pr_err("%s Unable to set to low bandwidth\n",
__func__);
mutex_unlock(&qcrypto_sent_bw_req);
return;
}
ret = qce_disable_clk(cp->qce);
if (ret) {
pr_err("%s Unable disable clk\n", __func__);
ret = msm_bus_scale_client_update_request(
cp->bus_scale_handle, 1);
if (ret)
pr_err("%s Unable to set to high bandwidth\n",
__func__);
mutex_unlock(&qcrypto_sent_bw_req);
return;
}
}
cp->high_bw_req_count--;
}
mutex_unlock(&qcrypto_sent_bw_req);
}
static int _start_qcrypto_process(struct crypto_priv *cp);
static int qcrypto_count_sg(struct scatterlist *sg, int nbytes)
{
int i;
for (i = 0; nbytes > 0; i++, sg = scatterwalk_sg_next(sg))
nbytes -= sg->length;
return i;
}
size_t qcrypto_sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
void *buf, size_t buflen)
{
int i;
size_t offset, len;
for (i = 0, offset = 0; i < nents; ++i) {
len = sg_copy_from_buffer(sgl, 1, buf, buflen);
buf += len;
buflen -= len;
offset += len;
sgl = scatterwalk_sg_next(sgl);
}
return offset;
}
size_t qcrypto_sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
void *buf, size_t buflen)
{
int i;
size_t offset, len;
for (i = 0, offset = 0; i < nents; ++i) {
len = sg_copy_to_buffer(sgl, 1, buf, buflen);
buf += len;
buflen -= len;
offset += len;
sgl = scatterwalk_sg_next(sgl);
}
return offset;
}
static struct qcrypto_alg *_qcrypto_sha_alg_alloc(struct crypto_priv *cp,
struct ahash_alg *template)
{
struct qcrypto_alg *q_alg;
q_alg = kzalloc(sizeof(struct qcrypto_alg), GFP_KERNEL);
if (!q_alg) {
pr_err("qcrypto Memory allocation of q_alg FAIL, error %ld\n",
PTR_ERR(q_alg));
return ERR_PTR(-ENOMEM);
}
q_alg->alg_type = QCRYPTO_ALG_SHA;
q_alg->sha_alg = *template;
q_alg->cp = cp;
return q_alg;
};
static struct qcrypto_alg *_qcrypto_cipher_alg_alloc(struct crypto_priv *cp,
struct crypto_alg *template)
{
struct qcrypto_alg *q_alg;
q_alg = kzalloc(sizeof(struct qcrypto_alg), GFP_KERNEL);
if (!q_alg) {
pr_err("qcrypto Memory allocation of q_alg FAIL, error %ld\n",
PTR_ERR(q_alg));
return ERR_PTR(-ENOMEM);
}
q_alg->alg_type = QCRYPTO_ALG_CIPHER;
q_alg->cipher_alg = *template;
q_alg->cp = cp;
return q_alg;
};
static int _qcrypto_cipher_cra_init(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct qcrypto_alg *q_alg;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
q_alg = container_of(alg, struct qcrypto_alg, cipher_alg);
/* update context with ptr to cp */
ctx->cp = q_alg->cp;
/* random first IV */
get_random_bytes(ctx->iv, QCRYPTO_MAX_IV_LENGTH);
if (ctx->cp->platform_support.bus_scale_table != NULL)
qcrypto_ce_high_bw_req(ctx->cp, true);
return 0;
};
static int _qcrypto_ahash_cra_init(struct crypto_tfm *tfm)
{
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(tfm);
struct ahash_alg *alg = container_of(crypto_hash_alg_common(ahash),
struct ahash_alg, halg);
struct qcrypto_alg *q_alg = container_of(alg, struct qcrypto_alg,
sha_alg);
crypto_ahash_set_reqsize(ahash, sizeof(struct qcrypto_sha_req_ctx));
/* update context with ptr to cp */
sha_ctx->cp = q_alg->cp;
sha_ctx->sg = NULL;
sha_ctx->tmp_tbuf = kzalloc(SHA_MAX_BLOCK_SIZE +
SHA_MAX_DIGEST_SIZE, GFP_KERNEL);
if (sha_ctx->tmp_tbuf == NULL) {
pr_err("qcrypto Can't Allocate mem: sha_ctx->tmp_tbuf, error %ld\n",
PTR_ERR(sha_ctx->tmp_tbuf));
return -ENOMEM;
}
sha_ctx->trailing_buf = kzalloc(SHA_MAX_BLOCK_SIZE, GFP_KERNEL);
if (sha_ctx->trailing_buf == NULL) {
kfree(sha_ctx->tmp_tbuf);
sha_ctx->tmp_tbuf = NULL;
pr_err("qcrypto Can't Allocate mem: sha_ctx->trailing_buf, error %ld\n",
PTR_ERR(sha_ctx->trailing_buf));
return -ENOMEM;
}
sha_ctx->ahash_req = NULL;
if (sha_ctx->cp->platform_support.bus_scale_table != NULL)
qcrypto_ce_high_bw_req(sha_ctx->cp, true);
return 0;
};
static void _qcrypto_ahash_cra_exit(struct crypto_tfm *tfm)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(tfm);
kfree(sha_ctx->tmp_tbuf);
sha_ctx->tmp_tbuf = NULL;
kfree(sha_ctx->trailing_buf);
sha_ctx->trailing_buf = NULL;
if (sha_ctx->sg != NULL) {
kfree(sha_ctx->sg);
sha_ctx->sg = NULL;
}
if (sha_ctx->ahash_req != NULL) {
ahash_request_free(sha_ctx->ahash_req);
sha_ctx->ahash_req = NULL;
}
if (sha_ctx->cp->platform_support.bus_scale_table != NULL)
qcrypto_ce_high_bw_req(sha_ctx->cp, false);
};
static void _crypto_sha_hmac_ahash_req_complete(
struct crypto_async_request *req, int err);
static int _qcrypto_ahash_hmac_cra_init(struct crypto_tfm *tfm)
{
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(tfm);
int ret = 0;
ret = _qcrypto_ahash_cra_init(tfm);
if (ret)
return ret;
sha_ctx->ahash_req = ahash_request_alloc(ahash, GFP_KERNEL);
if (sha_ctx->ahash_req == NULL) {
_qcrypto_ahash_cra_exit(tfm);
return -ENOMEM;
}
init_completion(&sha_ctx->ahash_req_complete);
ahash_request_set_callback(sha_ctx->ahash_req,
CRYPTO_TFM_REQ_MAY_BACKLOG,
_crypto_sha_hmac_ahash_req_complete,
&sha_ctx->ahash_req_complete);
crypto_ahash_clear_flags(ahash, ~0);
return 0;
};
static int _qcrypto_cra_ablkcipher_init(struct crypto_tfm *tfm)
{
tfm->crt_ablkcipher.reqsize = sizeof(struct qcrypto_cipher_req_ctx);
return _qcrypto_cipher_cra_init(tfm);
};
static int _qcrypto_cra_aead_init(struct crypto_tfm *tfm)
{
tfm->crt_aead.reqsize = sizeof(struct qcrypto_cipher_req_ctx);
return _qcrypto_cipher_cra_init(tfm);
};
static void _qcrypto_cra_ablkcipher_exit(struct crypto_tfm *tfm)
{
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
if (ctx->cp->platform_support.bus_scale_table != NULL)
qcrypto_ce_high_bw_req(ctx->cp, false);
};
static void _qcrypto_cra_aead_exit(struct crypto_tfm *tfm)
{
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
if (ctx->cp->platform_support.bus_scale_table != NULL)
qcrypto_ce_high_bw_req(ctx->cp, false);
};
static int _disp_stats(int id)
{
struct crypto_stat *pstat;
int len = 0;
pstat = &_qcrypto_stat;
len = snprintf(_debug_read_buf, DEBUG_MAX_RW_BUF - 1,
"\nQualcomm crypto accelerator %d Statistics:\n",
id + 1);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" ABLK AES CIPHER encryption : %d\n",
pstat->ablk_cipher_aes_enc);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" ABLK AES CIPHER decryption : %d\n",
pstat->ablk_cipher_aes_dec);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" ABLK DES CIPHER encryption : %d\n",
pstat->ablk_cipher_des_enc);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" ABLK DES CIPHER decryption : %d\n",
pstat->ablk_cipher_des_dec);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" ABLK 3DES CIPHER encryption : %d\n",
pstat->ablk_cipher_3des_enc);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" ABLK 3DES CIPHER decryption : %d\n",
pstat->ablk_cipher_3des_dec);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" ABLK CIPHER operation success: %d\n",
pstat->ablk_cipher_op_success);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" ABLK CIPHER operation fail : %d\n",
pstat->ablk_cipher_op_fail);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD SHA1-AES encryption : %d\n",
pstat->aead_sha1_aes_enc);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD SHA1-AES decryption : %d\n",
pstat->aead_sha1_aes_dec);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD SHA1-DES encryption : %d\n",
pstat->aead_sha1_des_enc);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD SHA1-DES decryption : %d\n",
pstat->aead_sha1_des_dec);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD SHA1-3DES encryption : %d\n",
pstat->aead_sha1_3des_enc);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD SHA1-3DES decryption : %d\n",
pstat->aead_sha1_3des_dec);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD CCM-AES encryption : %d\n",
pstat->aead_ccm_aes_enc);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD CCM-AES decryption : %d\n",
pstat->aead_ccm_aes_dec);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD operation success : %d\n",
pstat->aead_op_success);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD operation fail : %d\n",
pstat->aead_op_fail);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" AEAD bad message : %d\n",
pstat->aead_bad_msg);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" SHA1 digest : %d\n",
pstat->sha1_digest);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" SHA256 digest : %d\n",
pstat->sha256_digest);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" SHA operation fail : %d\n",
pstat->sha_op_fail);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" SHA operation success : %d\n",
pstat->sha_op_success);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" SHA1 HMAC digest : %d\n",
pstat->sha1_hmac_digest);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" SHA256 HMAC digest : %d\n",
pstat->sha256_hmac_digest);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" SHA HMAC operation fail : %d\n",
pstat->sha_hmac_op_fail);
len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" SHA HMAC operation success : %d\n",
pstat->sha_hmac_op_success);
return len;
}
static int _qcrypto_remove(struct platform_device *pdev)
{
struct crypto_priv *cp;
struct qcrypto_alg *q_alg;
struct qcrypto_alg *n;
cp = platform_get_drvdata(pdev);
if (!cp)
return 0;
if (cp->platform_support.bus_scale_table != NULL)
msm_bus_scale_unregister_client(cp->bus_scale_handle);
list_for_each_entry_safe(q_alg, n, &cp->alg_list, entry) {
if (q_alg->alg_type == QCRYPTO_ALG_CIPHER)
crypto_unregister_alg(&q_alg->cipher_alg);
if (q_alg->alg_type == QCRYPTO_ALG_SHA)
crypto_unregister_ahash(&q_alg->sha_alg);
list_del(&q_alg->entry);
kfree(q_alg);
}
if (cp->qce)
qce_close(cp->qce);
tasklet_kill(&cp->done_tasklet);
kfree(cp);
return 0;
};
static int _qcrypto_check_aes_keylen(struct crypto_ablkcipher *cipher,
struct crypto_priv *cp, unsigned int len)
{
switch (len) {
case AES_KEYSIZE_128:
case AES_KEYSIZE_256:
break;
case AES_KEYSIZE_192:
if (cp->ce_support.aes_key_192)
break;
default:
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
};
return 0;
}
static int _qcrypto_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
unsigned int len)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_priv *cp = ctx->cp;
if ((ctx->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY)
return 0;
if (_qcrypto_check_aes_keylen(cipher, cp, len)) {
return -EINVAL;
} else {
ctx->enc_key_len = len;
if (!(ctx->flags & QCRYPTO_CTX_USE_PIPE_KEY)) {
if (key != NULL) {
memcpy(ctx->enc_key, key, len);
} else {
pr_err("%s Inavlid key pointer\n", __func__);
return -EINVAL;
}
}
}
return 0;
};
static int _qcrypto_setkey_aes_xts(struct crypto_ablkcipher *cipher,
const u8 *key, unsigned int len)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_priv *cp = ctx->cp;
if ((ctx->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY)
return 0;
if (_qcrypto_check_aes_keylen(cipher, cp, len/2)) {
return -EINVAL;
} else {
ctx->enc_key_len = len;
if (!(ctx->flags & QCRYPTO_CTX_USE_PIPE_KEY)) {
if (key != NULL) {
memcpy(ctx->enc_key, key, len);
} else {
pr_err("%s Inavlid key pointer\n", __func__);
return -EINVAL;
}
}
}
return 0;
};
static int _qcrypto_setkey_des(struct crypto_ablkcipher *cipher, const u8 *key,
unsigned int len)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
u32 tmp[DES_EXPKEY_WORDS];
int ret = des_ekey(tmp, key);
if ((ctx->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) {
pr_err("%s HW KEY usage not supported for DES algorithm\n",
__func__);
return 0;
};
if (len != DES_KEY_SIZE) {
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
};
if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
return -EINVAL;
}
ctx->enc_key_len = len;
if (!(ctx->flags & QCRYPTO_CTX_USE_PIPE_KEY)) {
if (key != NULL) {
memcpy(ctx->enc_key, key, len);
} else {
pr_err("%s Inavlid key pointer\n", __func__);
return -EINVAL;
}
}
return 0;
};
static int _qcrypto_setkey_3des(struct crypto_ablkcipher *cipher, const u8 *key,
unsigned int len)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
if ((ctx->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) {
pr_err("%s HW KEY usage not supported for 3DES algorithm\n",
__func__);
return 0;
};
if (len != DES3_EDE_KEY_SIZE) {
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
};
ctx->enc_key_len = len;
if (!(ctx->flags & QCRYPTO_CTX_USE_PIPE_KEY)) {
if (key != NULL) {
memcpy(ctx->enc_key, key, len);
} else {
pr_err("%s Inavlid key pointer\n", __func__);
return -EINVAL;
}
}
return 0;
};
static void req_done(unsigned long data)
{
struct crypto_async_request *areq;
struct crypto_priv *cp = (struct crypto_priv *)data;
unsigned long flags;
spin_lock_irqsave(&cp->lock, flags);
areq = cp->req;
cp->req = NULL;
spin_unlock_irqrestore(&cp->lock, flags);
if (areq)
areq->complete(areq, cp->res);
_start_qcrypto_process(cp);
};
static void _update_sha1_ctx(struct ahash_request *req)
{
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
struct sha1_state *sha_state_ctx = &rctx->sha1_state_ctx;
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
if (sha_ctx->last_blk == 1)
memset(sha_state_ctx, 0x00, sizeof(struct sha1_state));
else {
memset(sha_state_ctx->buffer, 0x00, SHA1_BLOCK_SIZE);
memcpy(sha_state_ctx->buffer, sha_ctx->trailing_buf,
sha_ctx->trailing_buf_len);
_byte_stream_to_words(sha_state_ctx->state , sha_ctx->digest,
SHA1_DIGEST_SIZE);
}
return;
}
static void _update_sha256_ctx(struct ahash_request *req)
{
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
struct sha256_state *sha_state_ctx = &rctx->sha256_state_ctx;
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
if (sha_ctx->last_blk == 1)
memset(sha_state_ctx, 0x00, sizeof(struct sha256_state));
else {
memset(sha_state_ctx->buf, 0x00, SHA256_BLOCK_SIZE);
memcpy(sha_state_ctx->buf, sha_ctx->trailing_buf,
sha_ctx->trailing_buf_len);
_byte_stream_to_words(sha_state_ctx->state, sha_ctx->digest,
SHA256_DIGEST_SIZE);
}
return;
}
static void _qce_ahash_complete(void *cookie, unsigned char *digest,
unsigned char *authdata, int ret)
{
struct ahash_request *areq = (struct ahash_request *) cookie;
struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(areq->base.tfm);
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(areq);
struct crypto_priv *cp = sha_ctx->cp;
struct crypto_stat *pstat;
uint32_t diglen = crypto_ahash_digestsize(ahash);
uint32_t *auth32 = (uint32_t *)authdata;
pstat = &_qcrypto_stat;
#ifdef QCRYPTO_DEBUG
dev_info(&cp->pdev->dev, "_qce_ahash_complete: %p ret %d\n",
areq, ret);
#endif
if (digest) {
memcpy(sha_ctx->digest, digest, diglen);
memcpy(areq->result, digest, diglen);
}
if (authdata) {
sha_ctx->byte_count[0] = auth32[0];
sha_ctx->byte_count[1] = auth32[1];
sha_ctx->byte_count[2] = auth32[2];
sha_ctx->byte_count[3] = auth32[3];
}
areq->src = rctx->src;
areq->nbytes = rctx->nbytes;
if (sha_ctx->sg != NULL) {
kfree(sha_ctx->sg);
sha_ctx->sg = NULL;
}
if (sha_ctx->alg == QCE_HASH_SHA1)
_update_sha1_ctx(areq);
if (sha_ctx->alg == QCE_HASH_SHA256)
_update_sha256_ctx(areq);
sha_ctx->last_blk = 0;
sha_ctx->first_blk = 0;
if (ret) {
cp->res = -ENXIO;
pstat->sha_op_fail++;
} else {
cp->res = 0;
pstat->sha_op_success++;
}
if (cp->ce_support.aligned_only) {
areq->src = rctx->orig_src;
kfree(rctx->data);
}
if (cp->platform_support.ce_shared)
schedule_work(&cp->unlock_ce_ws);
tasklet_schedule(&cp->done_tasklet);
};
static void _qce_ablk_cipher_complete(void *cookie, unsigned char *icb,
unsigned char *iv, int ret)
{
struct ablkcipher_request *areq = (struct ablkcipher_request *) cookie;
struct crypto_ablkcipher *ablk = crypto_ablkcipher_reqtfm(areq);
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(areq->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
#ifdef QCRYPTO_DEBUG
dev_info(&cp->pdev->dev, "_qce_ablk_cipher_complete: %p ret %d\n",
areq, ret);
#endif
if (iv)
memcpy(ctx->iv, iv, crypto_ablkcipher_ivsize(ablk));
if (ret) {
cp->res = -ENXIO;
pstat->ablk_cipher_op_fail++;
} else {
cp->res = 0;
pstat->ablk_cipher_op_success++;
}
if (cp->ce_support.aligned_only) {
struct qcrypto_cipher_req_ctx *rctx;
uint32_t num_sg = 0;
uint32_t bytes = 0;
rctx = ablkcipher_request_ctx(areq);
areq->src = rctx->orig_src;
areq->dst = rctx->orig_dst;
num_sg = qcrypto_count_sg(areq->dst, areq->nbytes);
bytes = qcrypto_sg_copy_from_buffer(areq->dst, num_sg,
rctx->data, areq->nbytes);
if (bytes != areq->nbytes)
pr_warn("bytes copied=0x%x bytes to copy= 0x%x", bytes,
areq->nbytes);
kfree(rctx->data);
}
if (cp->platform_support.ce_shared)
schedule_work(&cp->unlock_ce_ws);
tasklet_schedule(&cp->done_tasklet);
};
static void _qce_aead_complete(void *cookie, unsigned char *icv,
unsigned char *iv, int ret)
{
struct aead_request *areq = (struct aead_request *) cookie;
struct crypto_aead *aead = crypto_aead_reqtfm(areq);
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(areq->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct qcrypto_cipher_req_ctx *rctx;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
rctx = aead_request_ctx(areq);
if (rctx->mode == QCE_MODE_CCM) {
if (cp->ce_support.aligned_only) {
struct qcrypto_cipher_req_ctx *rctx;
uint32_t bytes = 0;
uint32_t nbytes = 0;
uint32_t num_sg = 0;
rctx = aead_request_ctx(areq);
areq->src = rctx->orig_src;
areq->dst = rctx->orig_dst;
if (rctx->dir == QCE_ENCRYPT)
nbytes = areq->cryptlen +
crypto_aead_authsize(aead);
else
nbytes = areq->cryptlen -
crypto_aead_authsize(aead);
num_sg = qcrypto_count_sg(areq->dst, nbytes);
bytes = qcrypto_sg_copy_from_buffer(areq->dst, num_sg,
((char *)rctx->data + areq->assoclen),
nbytes);
if (bytes != nbytes)
pr_warn("bytes copied=0x%x bytes to copy= 0x%x",
bytes, nbytes);
kfree(rctx->data);
}
kzfree(rctx->assoc);
areq->assoc = rctx->assoc_sg;
areq->assoclen = rctx->assoclen;
} else {
if (ret == 0) {
if (rctx->dir == QCE_ENCRYPT) {
/* copy the icv to dst */
scatterwalk_map_and_copy(icv, areq->dst,
areq->cryptlen,
ctx->authsize, 1);
} else {
unsigned char tmp[SHA256_DIGESTSIZE] = {0};
/* compare icv from src */
scatterwalk_map_and_copy(tmp,
areq->src, areq->cryptlen -
ctx->authsize, ctx->authsize, 0);
ret = memcmp(icv, tmp, ctx->authsize);
if (ret != 0)
ret = -EBADMSG;
}
} else {
ret = -ENXIO;
}
if (iv)
memcpy(ctx->iv, iv, crypto_aead_ivsize(aead));
}
if (ret == (-EBADMSG))
pstat->aead_bad_msg++;
else if (ret)
pstat->aead_op_fail++;
else
pstat->aead_op_success++;
cp->res = ret;
if (cp->platform_support.ce_shared)
schedule_work(&cp->unlock_ce_ws);
tasklet_schedule(&cp->done_tasklet);
}
static int aead_ccm_set_msg_len(u8 *block, unsigned int msglen, int csize)
{
__be32 data;
memset(block, 0, csize);
block += csize;
if (csize >= 4)
csize = 4;
else if (msglen > (1 << (8 * csize)))
return -EOVERFLOW;
data = cpu_to_be32(msglen);
memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
return 0;
}
static int qccrypto_set_aead_ccm_nonce(struct qce_req *qreq)
{
struct aead_request *areq = (struct aead_request *) qreq->areq;
unsigned int i = ((unsigned int)qreq->iv[0]) + 1;
memcpy(&qreq->nonce[0] , qreq->iv, qreq->ivsize);
/*
* Format control info per RFC 3610 and
* NIST Special Publication 800-38C
*/
qreq->nonce[0] |= (8 * ((qreq->authsize - 2) / 2));
if (areq->assoclen)
qreq->nonce[0] |= 64;
if (i > MAX_NONCE)
return -EINVAL;
return aead_ccm_set_msg_len(qreq->nonce + 16 - i, qreq->cryptlen, i);
}
static int qcrypto_aead_ccm_format_adata(struct qce_req *qreq, uint32_t alen,
struct scatterlist *sg)
{
unsigned char *adata;
uint32_t len;
uint32_t bytes = 0;
uint32_t num_sg = 0;
qreq->assoc = kzalloc((alen + 0x64), (GFP_KERNEL | __GFP_DMA));
if (!qreq->assoc) {
pr_err("qcrypto Memory allocation of adata FAIL, error %ld\n",
PTR_ERR(qreq->assoc));
return -ENOMEM;
}
adata = qreq->assoc;
/*
* Add control info for associated data
* RFC 3610 and NIST Special Publication 800-38C
*/
if (alen < 65280) {
*(__be16 *)adata = cpu_to_be16(alen);
len = 2;
} else {
if ((alen >= 65280) && (alen <= 0xffffffff)) {
*(__be16 *)adata = cpu_to_be16(0xfffe);
*(__be32 *)&adata[2] = cpu_to_be32(alen);
len = 6;
} else {
*(__be16 *)adata = cpu_to_be16(0xffff);
*(__be32 *)&adata[6] = cpu_to_be32(alen);
len = 10;
}
}
adata += len;
qreq->assoclen = ALIGN((alen + len), 16);
num_sg = qcrypto_count_sg(sg, alen);
bytes = qcrypto_sg_copy_to_buffer(sg, num_sg, adata, alen);
if (bytes != alen)
pr_warn("bytes copied=0x%x bytes to copy= 0x%x", bytes, alen);
return 0;
}
static int _qcrypto_process_ablkcipher(struct crypto_priv *cp,
struct crypto_async_request *async_req)
{
struct qce_req qreq;
int ret;
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *cipher_ctx;
struct ablkcipher_request *req;
struct crypto_ablkcipher *tfm;
req = container_of(async_req, struct ablkcipher_request, base);
cipher_ctx = crypto_tfm_ctx(async_req->tfm);
rctx = ablkcipher_request_ctx(req);
tfm = crypto_ablkcipher_reqtfm(req);
if (cp->ce_support.aligned_only) {
uint32_t bytes = 0;
uint32_t num_sg = 0;
rctx->orig_src = req->src;
rctx->orig_dst = req->dst;
rctx->data = kzalloc((req->nbytes + 64), GFP_ATOMIC);
if (rctx->data == NULL) {
pr_err("Mem Alloc fail rctx->data, err %ld for 0x%x\n",
PTR_ERR(rctx->data), (req->nbytes + 64));
return -ENOMEM;
}
num_sg = qcrypto_count_sg(req->src, req->nbytes);
bytes = qcrypto_sg_copy_to_buffer(req->src, num_sg, rctx->data,
req->nbytes);
if (bytes != req->nbytes)
pr_warn("bytes copied=0x%x bytes to copy= 0x%x", bytes,
req->nbytes);
sg_set_buf(&rctx->dsg, rctx->data, req->nbytes);
sg_mark_end(&rctx->dsg);
rctx->iv = req->info;
req->src = &rctx->dsg;
req->dst = &rctx->dsg;
}
qreq.op = QCE_REQ_ABLK_CIPHER;
qreq.qce_cb = _qce_ablk_cipher_complete;
qreq.areq = req;
qreq.alg = rctx->alg;
qreq.dir = rctx->dir;
qreq.mode = rctx->mode;
qreq.enckey = cipher_ctx->enc_key;
qreq.encklen = cipher_ctx->enc_key_len;
qreq.iv = req->info;
qreq.ivsize = crypto_ablkcipher_ivsize(tfm);
qreq.cryptlen = req->nbytes;
qreq.use_pmem = 0;
qreq.flags = cipher_ctx->flags;
if ((cipher_ctx->enc_key_len == 0) &&
(cp->platform_support.hw_key_support == 0))
ret = -EINVAL;
else
ret = qce_ablk_cipher_req(cp->qce, &qreq);
return ret;
}
static int _qcrypto_process_ahash(struct crypto_priv *cp,
struct crypto_async_request *async_req)
{
struct ahash_request *req;
struct qce_sha_req sreq;
struct qcrypto_sha_ctx *sha_ctx;
int ret = 0;
req = container_of(async_req,
struct ahash_request, base);
sha_ctx = crypto_tfm_ctx(async_req->tfm);
sreq.qce_cb = _qce_ahash_complete;
sreq.digest = &sha_ctx->digest[0];
sreq.src = req->src;
sreq.auth_data[0] = sha_ctx->byte_count[0];
sreq.auth_data[1] = sha_ctx->byte_count[1];
sreq.auth_data[2] = sha_ctx->byte_count[2];
sreq.auth_data[3] = sha_ctx->byte_count[3];
sreq.first_blk = sha_ctx->first_blk;
sreq.last_blk = sha_ctx->last_blk;
sreq.size = req->nbytes;
sreq.areq = req;
sreq.flags = sha_ctx->flags;
switch (sha_ctx->alg) {
case QCE_HASH_SHA1:
sreq.alg = QCE_HASH_SHA1;
sreq.authkey = NULL;
break;
case QCE_HASH_SHA256:
sreq.alg = QCE_HASH_SHA256;
sreq.authkey = NULL;
break;
case QCE_HASH_SHA1_HMAC:
sreq.alg = QCE_HASH_SHA1_HMAC;
sreq.authkey = &sha_ctx->authkey[0];
sreq.authklen = SHA_HMAC_KEY_SIZE;
break;
case QCE_HASH_SHA256_HMAC:
sreq.alg = QCE_HASH_SHA256_HMAC;
sreq.authkey = &sha_ctx->authkey[0];
sreq.authklen = SHA_HMAC_KEY_SIZE;
break;
default:
pr_err("Algorithm %d not supported, exiting", sha_ctx->alg);
ret = -1;
break;
};
ret = qce_process_sha_req(cp->qce, &sreq);
return ret;
}
static int _qcrypto_process_aead(struct crypto_priv *cp,
struct crypto_async_request *async_req)
{
struct qce_req qreq;
int ret = 0;
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *cipher_ctx;
struct aead_request *req = container_of(async_req,
struct aead_request, base);
struct crypto_aead *aead = crypto_aead_reqtfm(req);
rctx = aead_request_ctx(req);
cipher_ctx = crypto_tfm_ctx(async_req->tfm);
qreq.op = QCE_REQ_AEAD;
qreq.qce_cb = _qce_aead_complete;
qreq.areq = req;
qreq.alg = rctx->alg;
qreq.dir = rctx->dir;
qreq.mode = rctx->mode;
qreq.iv = rctx->iv;
qreq.enckey = cipher_ctx->enc_key;
qreq.encklen = cipher_ctx->enc_key_len;
qreq.authkey = cipher_ctx->auth_key;
qreq.authklen = cipher_ctx->auth_key_len;
qreq.authsize = crypto_aead_authsize(aead);
qreq.ivsize = crypto_aead_ivsize(aead);
qreq.flags = cipher_ctx->flags;
if (qreq.mode == QCE_MODE_CCM) {
if (qreq.dir == QCE_ENCRYPT)
qreq.cryptlen = req->cryptlen;
else
qreq.cryptlen = req->cryptlen -
qreq.authsize;
/* Get NONCE */
ret = qccrypto_set_aead_ccm_nonce(&qreq);
if (ret)
return ret;
/* Format Associated data */
ret = qcrypto_aead_ccm_format_adata(&qreq,
req->assoclen,
req->assoc);
if (ret)
return ret;
if (cp->ce_support.aligned_only) {
uint32_t bytes = 0;
uint32_t num_sg = 0;
rctx->orig_src = req->src;
rctx->orig_dst = req->dst;
rctx->data = kzalloc((req->cryptlen + qreq.assoclen +
qreq.authsize + 64*2), GFP_ATOMIC);
if (rctx->data == NULL) {
pr_err("Mem Alloc fail rctx->data, err %ld\n",
PTR_ERR(rctx->data));
kzfree(qreq.assoc);
return -ENOMEM;
}
memcpy((char *)rctx->data, qreq.assoc, qreq.assoclen);
num_sg = qcrypto_count_sg(req->src, req->cryptlen);
bytes = qcrypto_sg_copy_to_buffer(req->src, num_sg,
rctx->data + qreq.assoclen , req->cryptlen);
if (bytes != req->cryptlen)
pr_warn("bytes copied=0x%x bytes to copy= 0x%x",
bytes, req->cryptlen);
sg_set_buf(&rctx->ssg, rctx->data, req->cryptlen +
qreq.assoclen);
sg_mark_end(&rctx->ssg);
if (qreq.dir == QCE_ENCRYPT)
sg_set_buf(&rctx->dsg, rctx->data,
qreq.assoclen + qreq.cryptlen +
ALIGN(qreq.authsize, 64));
else
sg_set_buf(&rctx->dsg, rctx->data,
qreq.assoclen + req->cryptlen +
qreq.authsize);
sg_mark_end(&rctx->dsg);
req->src = &rctx->ssg;
req->dst = &rctx->dsg;
}
/*
* Save the original associated data
* length and sg
*/
rctx->assoc_sg = req->assoc;
rctx->assoclen = req->assoclen;
rctx->assoc = qreq.assoc;
/*
* update req with new formatted associated
* data info
*/
req->assoc = &rctx->asg;
req->assoclen = qreq.assoclen;
sg_set_buf(req->assoc, qreq.assoc,
req->assoclen);
sg_mark_end(req->assoc);
}
ret = qce_aead_req(cp->qce, &qreq);
return ret;
}
static int _start_qcrypto_process(struct crypto_priv *cp)
{
struct crypto_async_request *async_req = NULL;
struct crypto_async_request *backlog = NULL;
unsigned long flags;
u32 type;
int ret = 0;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
again:
spin_lock_irqsave(&cp->lock, flags);
if (cp->req == NULL) {
backlog = crypto_get_backlog(&cp->queue);
async_req = crypto_dequeue_request(&cp->queue);
cp->req = async_req;
}
spin_unlock_irqrestore(&cp->lock, flags);
if (!async_req)
return ret;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
type = crypto_tfm_alg_type(async_req->tfm);
switch (type) {
case CRYPTO_ALG_TYPE_ABLKCIPHER:
ret = _qcrypto_process_ablkcipher(cp, async_req);
break;
case CRYPTO_ALG_TYPE_AHASH:
ret = _qcrypto_process_ahash(cp, async_req);
break;
case CRYPTO_ALG_TYPE_AEAD:
ret = _qcrypto_process_aead(cp, async_req);
break;
default:
ret = -EINVAL;
};
if (ret) {
spin_lock_irqsave(&cp->lock, flags);
cp->req = NULL;
spin_unlock_irqrestore(&cp->lock, flags);
if (type == CRYPTO_ALG_TYPE_ABLKCIPHER)
pstat->ablk_cipher_op_fail++;
else
if (type == CRYPTO_ALG_TYPE_AHASH)
pstat->sha_op_fail++;
else
pstat->aead_op_fail++;
async_req->complete(async_req, ret);
goto again;
};
return ret;
};
static int _qcrypto_queue_req(struct crypto_priv *cp,
struct crypto_async_request *req)
{
int ret;
unsigned long flags;
if (cp->platform_support.ce_shared) {
ret = qcrypto_lock_ce(cp);
if (ret)
return ret;
}
spin_lock_irqsave(&cp->lock, flags);
ret = crypto_enqueue_request(&cp->queue, req);
spin_unlock_irqrestore(&cp->lock, flags);
_start_qcrypto_process(cp);
return ret;
}
static int _qcrypto_enc_aes_ecb(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
BUG_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
#ifdef QCRYPTO_DEBUG
dev_info(&cp->pdev->dev, "_qcrypto_enc_aes_ecb: %p\n", req);
#endif
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_ECB;
pstat->ablk_cipher_aes_enc++;
return _qcrypto_queue_req(cp, &req->base);
};
static int _qcrypto_enc_aes_cbc(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
BUG_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
#ifdef QCRYPTO_DEBUG
dev_info(&cp->pdev->dev, "_qcrypto_enc_aes_cbc: %p\n", req);
#endif
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CBC;
pstat->ablk_cipher_aes_enc++;
return _qcrypto_queue_req(cp, &req->base);
};
static int _qcrypto_enc_aes_ctr(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
BUG_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
#ifdef QCRYPTO_DEBUG
dev_info(&cp->pdev->dev, "_qcrypto_enc_aes_ctr: %p\n", req);
#endif
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CTR;
pstat->ablk_cipher_aes_enc++;
return _qcrypto_queue_req(cp, &req->base);
};
static int _qcrypto_enc_aes_xts(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
BUG_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_XTS;
pstat->ablk_cipher_aes_enc++;
return _qcrypto_queue_req(cp, &req->base);
};
static int _qcrypto_aead_encrypt_aes_ccm(struct aead_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
if ((ctx->authsize > 16) || (ctx->authsize < 4) || (ctx->authsize & 1))
return -EINVAL;
if ((ctx->auth_key_len != AES_KEYSIZE_128) &&
(ctx->auth_key_len != AES_KEYSIZE_256))
return -EINVAL;
pstat = &_qcrypto_stat;
rctx = aead_request_ctx(req);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CCM;
rctx->iv = req->iv;
pstat->aead_ccm_aes_enc++;
return _qcrypto_queue_req(cp, &req->base);
}
static int _qcrypto_enc_des_ecb(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
BUG_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_DES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_ECB;
pstat->ablk_cipher_des_enc++;
return _qcrypto_queue_req(cp, &req->base);
};
static int _qcrypto_enc_des_cbc(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
BUG_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_DES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CBC;
pstat->ablk_cipher_des_enc++;
return _qcrypto_queue_req(cp, &req->base);
};
static int _qcrypto_enc_3des_ecb(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
BUG_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_3DES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_ECB;
pstat->ablk_cipher_3des_enc++;
return _qcrypto_queue_req(cp, &req->base);
};
static int _qcrypto_enc_3des_cbc(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
BUG_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_3DES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CBC;
pstat->ablk_cipher_3des_enc++;
return _qcrypto_queue_req(cp, &req->base);
};
static int _qcrypto_dec_aes_ecb(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
BUG_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
#ifdef QCRYPTO_DEBUG
dev_info(&cp->pdev->dev, "_qcrypto_dec_aes_ecb: %p\n", req);
#endif
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_DECRYPT;
rctx->mode = QCE_MODE_ECB;
pstat->ablk_cipher_aes_dec++;
return _qcrypto_queue_req(cp, &req->base);
};
static int _qcrypto_dec_aes_cbc(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
BUG_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
#ifdef QCRYPTO_DEBUG
dev_info(&cp->pdev->dev, "_qcrypto_dec_aes_cbc: %p\n", req);
#endif
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_DECRYPT;
rctx->mode = QCE_MODE_CBC;
pstat->ablk_cipher_aes_dec++;
return _qcrypto_queue_req(cp, &req->base);
};
static int _qcrypto_dec_aes_ctr(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
BUG_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
#ifdef QCRYPTO_DEBUG
dev_info(&cp->pdev->dev, "_qcrypto_dec_aes_ctr: %p\n", req);
#endif
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_AES;
rctx->mode = QCE_MODE_CTR;
/* Note. There is no such thing as aes/counter mode, decrypt */
rctx->dir = QCE_ENCRYPT;
pstat->ablk_cipher_aes_dec++;
return _qcrypto_queue_req(cp, &req->base);
};
static int _qcrypto_dec_des_ecb(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
BUG_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_DES;
rctx->dir = QCE_DECRYPT;
rctx->mode = QCE_MODE_ECB;
pstat->ablk_cipher_des_dec++;
return _qcrypto_queue_req(cp, &req->base);
};
static int _qcrypto_dec_des_cbc(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
BUG_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_DES;
rctx->dir = QCE_DECRYPT;
rctx->mode = QCE_MODE_CBC;
pstat->ablk_cipher_des_dec++;
return _qcrypto_queue_req(cp, &req->base);
};
static int _qcrypto_dec_3des_ecb(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
BUG_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_3DES;
rctx->dir = QCE_DECRYPT;
rctx->mode = QCE_MODE_ECB;
pstat->ablk_cipher_3des_dec++;
return _qcrypto_queue_req(cp, &req->base);
};
static int _qcrypto_dec_3des_cbc(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
BUG_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_3DES;
rctx->dir = QCE_DECRYPT;
rctx->mode = QCE_MODE_CBC;
pstat->ablk_cipher_3des_dec++;
return _qcrypto_queue_req(cp, &req->base);
};
static int _qcrypto_dec_aes_xts(struct ablkcipher_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
BUG_ON(crypto_tfm_alg_type(req->base.tfm) !=
CRYPTO_ALG_TYPE_ABLKCIPHER);
rctx = ablkcipher_request_ctx(req);
rctx->aead = 0;
rctx->alg = CIPHER_ALG_AES;
rctx->mode = QCE_MODE_XTS;
rctx->dir = QCE_DECRYPT;
pstat->ablk_cipher_aes_dec++;
return _qcrypto_queue_req(cp, &req->base);
};
static int _qcrypto_aead_decrypt_aes_ccm(struct aead_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
if ((ctx->authsize > 16) || (ctx->authsize < 4) || (ctx->authsize & 1))
return -EINVAL;
if ((ctx->auth_key_len != AES_KEYSIZE_128) &&
(ctx->auth_key_len != AES_KEYSIZE_256))
return -EINVAL;
pstat = &_qcrypto_stat;
rctx = aead_request_ctx(req);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_DECRYPT;
rctx->mode = QCE_MODE_CCM;
rctx->iv = req->iv;
pstat->aead_ccm_aes_dec++;
return _qcrypto_queue_req(cp, &req->base);
}
static int _qcrypto_aead_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(authenc);
ctx->authsize = authsize;
return 0;
}
static int _qcrypto_aead_ccm_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(authenc);
switch (authsize) {
case 4:
case 6:
case 8:
case 10:
case 12:
case 14:
case 16:
break;
default:
return -EINVAL;
}
ctx->authsize = authsize;
return 0;
}
static int _qcrypto_aead_setkey(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
struct qcrypto_cipher_ctx *ctx = crypto_aead_ctx(tfm);
struct rtattr *rta = (struct rtattr *)key;
struct crypto_authenc_key_param *param;
if (!RTA_OK(rta, keylen))
goto badkey;
if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
goto badkey;
if (RTA_PAYLOAD(rta) < sizeof(*param))
goto badkey;
param = RTA_DATA(rta);
ctx->enc_key_len = be32_to_cpu(param->enckeylen);
key += RTA_ALIGN(rta->rta_len);
keylen -= RTA_ALIGN(rta->rta_len);
if (keylen < ctx->enc_key_len)
goto badkey;
ctx->auth_key_len = keylen - ctx->enc_key_len;
if (ctx->enc_key_len >= QCRYPTO_MAX_KEY_SIZE ||
ctx->auth_key_len >= QCRYPTO_MAX_KEY_SIZE)
goto badkey;
memset(ctx->auth_key, 0, QCRYPTO_MAX_KEY_SIZE);
memcpy(ctx->enc_key, key + ctx->auth_key_len, ctx->enc_key_len);
memcpy(ctx->auth_key, key, ctx->auth_key_len);
return 0;
badkey:
ctx->enc_key_len = 0;
crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
static int _qcrypto_aead_ccm_setkey(struct crypto_aead *aead, const u8 *key,
unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_aead_tfm(aead);
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_priv *cp = ctx->cp;
switch (keylen) {
case AES_KEYSIZE_128:
case AES_KEYSIZE_256:
break;
case AES_KEYSIZE_192:
if (cp->ce_support.aes_key_192)
break;
default:
ctx->enc_key_len = 0;
crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
};
ctx->enc_key_len = keylen;
memcpy(ctx->enc_key, key, keylen);
ctx->auth_key_len = keylen;
memcpy(ctx->auth_key, key, keylen);
return 0;
}
static int _qcrypto_aead_encrypt_aes_cbc(struct aead_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
#ifdef QCRYPTO_DEBUG
dev_info(&cp->pdev->dev, "_qcrypto_aead_encrypt_aes_cbc: %p\n", req);
#endif
rctx = aead_request_ctx(req);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CBC;
rctx->iv = req->iv;
pstat->aead_sha1_aes_enc++;
return _qcrypto_queue_req(cp, &req->base);
}
static int _qcrypto_aead_decrypt_aes_cbc(struct aead_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
#ifdef QCRYPTO_DEBUG
dev_info(&cp->pdev->dev, "_qcrypto_aead_decrypt_aes_cbc: %p\n", req);
#endif
rctx = aead_request_ctx(req);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_DECRYPT;
rctx->mode = QCE_MODE_CBC;
rctx->iv = req->iv;
pstat->aead_sha1_aes_dec++;
return _qcrypto_queue_req(cp, &req->base);
}
static int _qcrypto_aead_givencrypt_aes_cbc(struct aead_givcrypt_request *req)
{
struct aead_request *areq = &req->areq;
struct crypto_aead *authenc = crypto_aead_reqtfm(areq);
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(areq->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct qcrypto_cipher_req_ctx *rctx;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
rctx = aead_request_ctx(areq);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CBC;
rctx->iv = req->giv; /* generated iv */
memcpy(req->giv, ctx->iv, crypto_aead_ivsize(authenc));
/* avoid consecutive packets going out with same IV */
*(__be64 *)req->giv ^= cpu_to_be64(req->seq);
pstat->aead_sha1_aes_enc++;
return _qcrypto_queue_req(cp, &areq->base);
}
#ifdef QCRYPTO_AEAD_AES_CTR
static int _qcrypto_aead_encrypt_aes_ctr(struct aead_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
rctx = aead_request_ctx(req);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CTR;
rctx->iv = req->iv;
pstat->aead_sha1_aes_enc++;
return _qcrypto_queue_req(cp, &req->base);
}
static int _qcrypto_aead_decrypt_aes_ctr(struct aead_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
rctx = aead_request_ctx(req);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_AES;
/* Note. There is no such thing as aes/counter mode, decrypt */
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CTR;
rctx->iv = req->iv;
pstat->aead_sha1_aes_dec++;
return _qcrypto_queue_req(cp, &req->base);
}
static int _qcrypto_aead_givencrypt_aes_ctr(struct aead_givcrypt_request *req)
{
struct aead_request *areq = &req->areq;
struct crypto_aead *authenc = crypto_aead_reqtfm(areq);
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(areq->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct qcrypto_cipher_req_ctx *rctx;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
rctx = aead_request_ctx(areq);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_AES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CTR;
rctx->iv = req->giv; /* generated iv */
memcpy(req->giv, ctx->iv, crypto_aead_ivsize(authenc));
/* avoid consecutive packets going out with same IV */
*(__be64 *)req->giv ^= cpu_to_be64(req->seq);
pstat->aead_sha1_aes_enc++;
return _qcrypto_queue_req(cp, &areq->base);
};
#endif /* QCRYPTO_AEAD_AES_CTR */
static int _qcrypto_aead_encrypt_des_cbc(struct aead_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
rctx = aead_request_ctx(req);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_DES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CBC;
rctx->iv = req->iv;
pstat->aead_sha1_des_enc++;
return _qcrypto_queue_req(cp, &req->base);
}
static int _qcrypto_aead_decrypt_des_cbc(struct aead_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
rctx = aead_request_ctx(req);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_DES;
rctx->dir = QCE_DECRYPT;
rctx->mode = QCE_MODE_CBC;
rctx->iv = req->iv;
pstat->aead_sha1_des_dec++;
return _qcrypto_queue_req(cp, &req->base);
}
static int _qcrypto_aead_givencrypt_des_cbc(struct aead_givcrypt_request *req)
{
struct aead_request *areq = &req->areq;
struct crypto_aead *authenc = crypto_aead_reqtfm(areq);
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(areq->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct qcrypto_cipher_req_ctx *rctx;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
rctx = aead_request_ctx(areq);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_DES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CBC;
rctx->iv = req->giv; /* generated iv */
memcpy(req->giv, ctx->iv, crypto_aead_ivsize(authenc));
/* avoid consecutive packets going out with same IV */
*(__be64 *)req->giv ^= cpu_to_be64(req->seq);
pstat->aead_sha1_des_enc++;
return _qcrypto_queue_req(cp, &areq->base);
}
static int _qcrypto_aead_encrypt_3des_cbc(struct aead_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
rctx = aead_request_ctx(req);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_3DES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CBC;
rctx->iv = req->iv;
pstat->aead_sha1_3des_enc++;
return _qcrypto_queue_req(cp, &req->base);
}
static int _qcrypto_aead_decrypt_3des_cbc(struct aead_request *req)
{
struct qcrypto_cipher_req_ctx *rctx;
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
rctx = aead_request_ctx(req);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_3DES;
rctx->dir = QCE_DECRYPT;
rctx->mode = QCE_MODE_CBC;
rctx->iv = req->iv;
pstat->aead_sha1_3des_dec++;
return _qcrypto_queue_req(cp, &req->base);
}
static int _qcrypto_aead_givencrypt_3des_cbc(struct aead_givcrypt_request *req)
{
struct aead_request *areq = &req->areq;
struct crypto_aead *authenc = crypto_aead_reqtfm(areq);
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(areq->base.tfm);
struct crypto_priv *cp = ctx->cp;
struct qcrypto_cipher_req_ctx *rctx;
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
rctx = aead_request_ctx(areq);
rctx->aead = 1;
rctx->alg = CIPHER_ALG_3DES;
rctx->dir = QCE_ENCRYPT;
rctx->mode = QCE_MODE_CBC;
rctx->iv = req->giv; /* generated iv */
memcpy(req->giv, ctx->iv, crypto_aead_ivsize(authenc));
/* avoid consecutive packets going out with same IV */
*(__be64 *)req->giv ^= cpu_to_be64(req->seq);
pstat->aead_sha1_3des_enc++;
return _qcrypto_queue_req(cp, &areq->base);
}
static int _sha_init(struct qcrypto_sha_ctx *ctx)
{
ctx->first_blk = 1;
ctx->last_blk = 0;
ctx->byte_count[0] = 0;
ctx->byte_count[1] = 0;
ctx->byte_count[2] = 0;
ctx->byte_count[3] = 0;
ctx->trailing_buf_len = 0;
return 0;
};
static int _sha1_init(struct ahash_request *req)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
_sha_init(sha_ctx);
sha_ctx->alg = QCE_HASH_SHA1;
memset(&sha_ctx->trailing_buf[0], 0x00, SHA1_BLOCK_SIZE);
memcpy(&sha_ctx->digest[0], &_std_init_vector_sha1_uint8[0],
SHA1_DIGEST_SIZE);
sha_ctx->diglen = SHA1_DIGEST_SIZE;
_update_sha1_ctx(req);
pstat->sha1_digest++;
return 0;
};
static int _sha256_init(struct ahash_request *req)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
_sha_init(sha_ctx);
sha_ctx->alg = QCE_HASH_SHA256;
memset(&sha_ctx->trailing_buf[0], 0x00, SHA256_BLOCK_SIZE);
memcpy(&sha_ctx->digest[0], &_std_init_vector_sha256_uint8[0],
SHA256_DIGEST_SIZE);
sha_ctx->diglen = SHA256_DIGEST_SIZE;
_update_sha256_ctx(req);
pstat->sha256_digest++;
return 0;
};
static int _sha1_export(struct ahash_request *req, void *out)
{
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
struct sha1_state *sha_state_ctx = &rctx->sha1_state_ctx;
struct sha1_state *out_ctx = (struct sha1_state *)out;
out_ctx->count = sha_state_ctx->count;
memcpy(out_ctx->state, sha_state_ctx->state, sizeof(out_ctx->state));
memcpy(out_ctx->buffer, sha_state_ctx->buffer, SHA1_BLOCK_SIZE);
return 0;
};
static int _sha1_import(struct ahash_request *req, const void *in)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
struct sha1_state *sha_state_ctx = &rctx->sha1_state_ctx;
struct sha1_state *in_ctx = (struct sha1_state *)in;
sha_state_ctx->count = in_ctx->count;
memcpy(sha_state_ctx->state, in_ctx->state, sizeof(in_ctx->state));
memcpy(sha_state_ctx->buffer, in_ctx->buffer, SHA1_BLOCK_SIZE);
memcpy(sha_ctx->trailing_buf, in_ctx->buffer, SHA1_BLOCK_SIZE);
sha_ctx->byte_count[0] = (uint32_t)(in_ctx->count & 0xFFFFFFC0);
sha_ctx->byte_count[1] = (uint32_t)(in_ctx->count >> 32);
_words_to_byte_stream(in_ctx->state, sha_ctx->digest, sha_ctx->diglen);
sha_ctx->trailing_buf_len = (uint32_t)(in_ctx->count &
(SHA1_BLOCK_SIZE-1));
if (!(in_ctx->count))
sha_ctx->first_blk = 1;
else
sha_ctx->first_blk = 0;
return 0;
}
static int _sha256_export(struct ahash_request *req, void *out)
{
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
struct sha256_state *sha_state_ctx = &rctx->sha256_state_ctx;
struct sha256_state *out_ctx = (struct sha256_state *)out;
out_ctx->count = sha_state_ctx->count;
memcpy(out_ctx->state, sha_state_ctx->state, sizeof(out_ctx->state));
memcpy(out_ctx->buf, sha_state_ctx->buf, SHA256_BLOCK_SIZE);
return 0;
};
static int _sha256_import(struct ahash_request *req, const void *in)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
struct sha256_state *sha_state_ctx = &rctx->sha256_state_ctx;
struct sha256_state *in_ctx = (struct sha256_state *)in;
sha_state_ctx->count = in_ctx->count;
memcpy(sha_state_ctx->state, in_ctx->state, sizeof(in_ctx->state));
memcpy(sha_state_ctx->buf, in_ctx->buf, SHA256_BLOCK_SIZE);
memcpy(sha_ctx->trailing_buf, in_ctx->buf, SHA256_BLOCK_SIZE);
sha_ctx->byte_count[0] = (uint32_t)(in_ctx->count & 0xFFFFFFC0);
sha_ctx->byte_count[1] = (uint32_t)(in_ctx->count >> 32);
_words_to_byte_stream(in_ctx->state, sha_ctx->digest, sha_ctx->diglen);
sha_ctx->trailing_buf_len = (uint32_t)(in_ctx->count &
(SHA256_BLOCK_SIZE-1));
if (!(in_ctx->count))
sha_ctx->first_blk = 1;
else
sha_ctx->first_blk = 0;
return 0;
}
static int _copy_source(struct ahash_request *req)
{
struct qcrypto_sha_req_ctx *srctx = NULL;
uint32_t bytes = 0;
uint32_t num_sg = 0;
srctx = ahash_request_ctx(req);
srctx->orig_src = req->src;
srctx->data = kzalloc((req->nbytes + 64), GFP_ATOMIC);
if (srctx->data == NULL) {
pr_err("Mem Alloc fail rctx->data, err %ld for 0x%x\n",
PTR_ERR(srctx->data), (req->nbytes + 64));
return -ENOMEM;
}
num_sg = qcrypto_count_sg(req->src, req->nbytes);
bytes = qcrypto_sg_copy_to_buffer(req->src, num_sg, srctx->data,
req->nbytes);
if (bytes != req->nbytes)
pr_warn("bytes copied=0x%x bytes to copy= 0x%x", bytes,
req->nbytes);
sg_set_buf(&srctx->dsg, srctx->data,
req->nbytes);
sg_mark_end(&srctx->dsg);
req->src = &srctx->dsg;
return 0;
}
static int _sha_update(struct ahash_request *req, uint32_t sha_block_size)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = sha_ctx->cp;
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
uint32_t total, len, num_sg;
struct scatterlist *sg_last;
uint8_t *k_src = NULL;
uint32_t sha_pad_len = 0;
uint32_t trailing_buf_len = 0;
uint32_t nbytes;
uint32_t offset = 0;
uint32_t bytes = 0;
int ret = 0;
/* check for trailing buffer from previous updates and append it */
total = req->nbytes + sha_ctx->trailing_buf_len;
len = req->nbytes;
if (total <= sha_block_size) {
k_src = &sha_ctx->trailing_buf[sha_ctx->trailing_buf_len];
num_sg = qcrypto_count_sg(req->src, len);
bytes = qcrypto_sg_copy_to_buffer(req->src, num_sg, k_src, len);
sha_ctx->trailing_buf_len = total;
if (sha_ctx->alg == QCE_HASH_SHA1)
_update_sha1_ctx(req);
if (sha_ctx->alg == QCE_HASH_SHA256)
_update_sha256_ctx(req);
return 0;
}
/* save the original req structure fields*/
rctx->src = req->src;
rctx->nbytes = req->nbytes;
memcpy(sha_ctx->tmp_tbuf, sha_ctx->trailing_buf,
sha_ctx->trailing_buf_len);
k_src = &sha_ctx->trailing_buf[0];
/* get new trailing buffer */
sha_pad_len = ALIGN(total, sha_block_size) - total;
trailing_buf_len = sha_block_size - sha_pad_len;
offset = req->nbytes - trailing_buf_len;
if (offset != req->nbytes)
scatterwalk_map_and_copy(k_src, req->src, offset,
trailing_buf_len, 0);
nbytes = total - trailing_buf_len;
num_sg = qcrypto_count_sg(req->src, req->nbytes);
len = sha_ctx->trailing_buf_len;
sg_last = req->src;
while (len < nbytes) {
if ((len + sg_last->length) > nbytes)
break;
len += sg_last->length;
sg_last = scatterwalk_sg_next(sg_last);
}
if (sha_ctx->trailing_buf_len) {
if (cp->ce_support.aligned_only) {
sha_ctx->sg = kzalloc(sizeof(struct scatterlist),
GFP_ATOMIC);
if (sha_ctx->sg == NULL) {
pr_err("MemAlloc fail sha_ctx->sg, error %ld\n",
PTR_ERR(sha_ctx->sg));
return -ENOMEM;
}
rctx->data2 = kzalloc((req->nbytes + 64), GFP_ATOMIC);
if (rctx->data2 == NULL) {
pr_err("Mem Alloc fail srctx->data2, err %ld\n",
PTR_ERR(rctx->data2));
kfree(sha_ctx->sg);
return -ENOMEM;
}
memcpy(rctx->data2, sha_ctx->tmp_tbuf,
sha_ctx->trailing_buf_len);
memcpy((rctx->data2 + sha_ctx->trailing_buf_len),
rctx->data, req->src->length);
kfree(rctx->data);
rctx->data = rctx->data2;
sg_set_buf(&sha_ctx->sg[0], rctx->data,
(sha_ctx->trailing_buf_len +
req->src->length));
req->src = sha_ctx->sg;
sg_mark_end(&sha_ctx->sg[0]);
} else {
sg_mark_end(sg_last);
sha_ctx->sg = kzalloc(2 * (sizeof(struct scatterlist)),
GFP_ATOMIC);
if (sha_ctx->sg == NULL) {
pr_err("MEMalloc fail sha_ctx->sg, error %ld\n",
PTR_ERR(sha_ctx->sg));
return -ENOMEM;
}
sg_set_buf(&sha_ctx->sg[0], sha_ctx->tmp_tbuf,
sha_ctx->trailing_buf_len);
sg_mark_end(&sha_ctx->sg[1]);
sg_chain(sha_ctx->sg, 2, req->src);
req->src = sha_ctx->sg;
}
} else
sg_mark_end(sg_last);
req->nbytes = nbytes;
sha_ctx->trailing_buf_len = trailing_buf_len;
ret = _qcrypto_queue_req(cp, &req->base);
return ret;
};
static int _sha1_update(struct ahash_request *req)
{
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
struct sha1_state *sha_state_ctx = &rctx->sha1_state_ctx;
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = sha_ctx->cp;
if (cp->ce_support.aligned_only) {
if (_copy_source(req))
return -ENOMEM;
}
sha_state_ctx->count += req->nbytes;
return _sha_update(req, SHA1_BLOCK_SIZE);
}
static int _sha256_update(struct ahash_request *req)
{
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
struct sha256_state *sha_state_ctx = &rctx->sha256_state_ctx;
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = sha_ctx->cp;
if (cp->ce_support.aligned_only) {
if (_copy_source(req))
return -ENOMEM;
}
sha_state_ctx->count += req->nbytes;
return _sha_update(req, SHA256_BLOCK_SIZE);
}
static int _sha_final(struct ahash_request *req, uint32_t sha_block_size)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = sha_ctx->cp;
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
int ret = 0;
if (cp->ce_support.aligned_only) {
if (_copy_source(req))
return -ENOMEM;
}
sha_ctx->last_blk = 1;
/* save the original req structure fields*/
rctx->src = req->src;
rctx->nbytes = req->nbytes;
sg_set_buf(&sha_ctx->tmp_sg, sha_ctx->trailing_buf,
sha_ctx->trailing_buf_len);
sg_mark_end(&sha_ctx->tmp_sg);
req->src = &sha_ctx->tmp_sg;
req->nbytes = sha_ctx->trailing_buf_len;
ret = _qcrypto_queue_req(cp, &req->base);
return ret;
};
static int _sha1_final(struct ahash_request *req)
{
return _sha_final(req, SHA1_BLOCK_SIZE);
}
static int _sha256_final(struct ahash_request *req)
{
return _sha_final(req, SHA256_BLOCK_SIZE);
}
static int _sha_digest(struct ahash_request *req)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
struct crypto_priv *cp = sha_ctx->cp;
int ret = 0;
if (cp->ce_support.aligned_only) {
if (_copy_source(req))
return -ENOMEM;
}
/* save the original req structure fields*/
rctx->src = req->src;
rctx->nbytes = req->nbytes;
sha_ctx->first_blk = 1;
sha_ctx->last_blk = 1;
ret = _qcrypto_queue_req(cp, &req->base);
return ret;
}
static int _sha1_digest(struct ahash_request *req)
{
_sha1_init(req);
return _sha_digest(req);
}
static int _sha256_digest(struct ahash_request *req)
{
_sha256_init(req);
return _sha_digest(req);
}
static void _crypto_sha_hmac_ahash_req_complete(
struct crypto_async_request *req, int err)
{
struct completion *ahash_req_complete = req->data;
if (err == -EINPROGRESS)
return;
complete(ahash_req_complete);
}
static int _sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int len)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(&tfm->base);
int ret = 0;
sha_ctx->in_buf = kzalloc(len + 64, GFP_KERNEL);
if (sha_ctx->in_buf == NULL) {
pr_err("qcrypto Can't Allocate mem: sha_ctx->in_buf, error %ld\n",
PTR_ERR(sha_ctx->in_buf));
return -ENOMEM;
}
memcpy(sha_ctx->in_buf, key, len);
sg_set_buf(&sha_ctx->tmp_sg, sha_ctx->in_buf, len);
sg_mark_end(&sha_ctx->tmp_sg);
ahash_request_set_crypt(sha_ctx->ahash_req, &sha_ctx->tmp_sg,
&sha_ctx->authkey[0], len);
ret = _sha_digest(sha_ctx->ahash_req);
if (ret == -EINPROGRESS || ret == -EBUSY) {
ret =
wait_for_completion_interruptible(
&sha_ctx->ahash_req_complete);
INIT_COMPLETION(sha_ctx->ahash_req_complete);
}
sha_ctx->authkey_in_len = len;
kfree(sha_ctx->in_buf);
sha_ctx->in_buf = NULL;
return ret;
}
static int _sha1_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int len)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(&tfm->base);
if (len <= SHA1_BLOCK_SIZE)
memcpy(&sha_ctx->authkey[0], key, len);
else {
_sha_init(sha_ctx);
sha_ctx->alg = QCE_HASH_SHA1;
memcpy(&sha_ctx->digest[0], &_std_init_vector_sha1_uint8[0],
SHA1_DIGEST_SIZE);
sha_ctx->diglen = SHA1_DIGEST_SIZE;
_sha_hmac_setkey(tfm, key, len);
}
return 0;
}
static int _sha256_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int len)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(&tfm->base);
if (len <= SHA256_BLOCK_SIZE)
memcpy(&sha_ctx->authkey[0], key, len);
else {
_sha_init(sha_ctx);
sha_ctx->alg = QCE_HASH_SHA256;
memcpy(&sha_ctx->digest[0], &_std_init_vector_sha256_uint8[0],
SHA256_DIGEST_SIZE);
sha_ctx->diglen = SHA256_DIGEST_SIZE;
_sha_hmac_setkey(tfm, key, len);
}
return 0;
}
static int _sha_hmac_init_ihash(struct ahash_request *req,
uint32_t sha_block_size)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
int i;
for (i = 0; i < sha_block_size; i++)
sha_ctx->trailing_buf[i] = sha_ctx->authkey[i] ^ 0x36;
sha_ctx->trailing_buf_len = sha_block_size;
return 0;
}
static int _sha1_hmac_init(struct ahash_request *req)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = sha_ctx->cp;
struct crypto_stat *pstat;
int ret = 0;
pstat = &_qcrypto_stat;
pstat->sha1_hmac_digest++;
_sha_init(sha_ctx);
memset(&sha_ctx->trailing_buf[0], 0x00, SHA1_BLOCK_SIZE);
memcpy(&sha_ctx->digest[0], &_std_init_vector_sha1_uint8[0],
SHA1_DIGEST_SIZE);
sha_ctx->diglen = SHA1_DIGEST_SIZE;
_update_sha1_ctx(req);
if (cp->ce_support.sha_hmac)
sha_ctx->alg = QCE_HASH_SHA1_HMAC;
else {
sha_ctx->alg = QCE_HASH_SHA1;
ret = _sha_hmac_init_ihash(req, SHA1_BLOCK_SIZE);
}
return ret;
}
static int _sha256_hmac_init(struct ahash_request *req)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = sha_ctx->cp;
struct crypto_stat *pstat;
int ret = 0;
pstat = &_qcrypto_stat;
pstat->sha256_hmac_digest++;
_sha_init(sha_ctx);
memset(&sha_ctx->trailing_buf[0], 0x00, SHA256_BLOCK_SIZE);
memcpy(&sha_ctx->digest[0], &_std_init_vector_sha256_uint8[0],
SHA256_DIGEST_SIZE);
sha_ctx->diglen = SHA256_DIGEST_SIZE;
_update_sha256_ctx(req);
if (cp->ce_support.sha_hmac)
sha_ctx->alg = QCE_HASH_SHA256_HMAC;
else {
sha_ctx->alg = QCE_HASH_SHA256;
ret = _sha_hmac_init_ihash(req, SHA256_BLOCK_SIZE);
}
return ret;
}
static int _sha1_hmac_update(struct ahash_request *req)
{
return _sha1_update(req);
}
static int _sha256_hmac_update(struct ahash_request *req)
{
return _sha256_update(req);
}
static int _sha_hmac_outer_hash(struct ahash_request *req,
uint32_t sha_digest_size, uint32_t sha_block_size)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct qcrypto_sha_req_ctx *rctx = ahash_request_ctx(req);
struct crypto_priv *cp = sha_ctx->cp;
int i;
for (i = 0; i < sha_block_size; i++)
sha_ctx->tmp_tbuf[i] = sha_ctx->authkey[i] ^ 0x5c;
/* save the original req structure fields*/
rctx->src = req->src;
rctx->nbytes = req->nbytes;
memcpy(&sha_ctx->tmp_tbuf[sha_block_size], &sha_ctx->digest[0],
sha_digest_size);
sg_set_buf(&sha_ctx->tmp_sg, sha_ctx->tmp_tbuf, sha_block_size +
sha_digest_size);
sg_mark_end(&sha_ctx->tmp_sg);
req->src = &sha_ctx->tmp_sg;
req->nbytes = sha_block_size + sha_digest_size;
_sha_init(sha_ctx);
if (sha_ctx->alg == QCE_HASH_SHA1) {
memcpy(&sha_ctx->digest[0], &_std_init_vector_sha1_uint8[0],
SHA1_DIGEST_SIZE);
sha_ctx->diglen = SHA1_DIGEST_SIZE;
} else {
memcpy(&sha_ctx->digest[0], &_std_init_vector_sha256_uint8[0],
SHA256_DIGEST_SIZE);
sha_ctx->diglen = SHA256_DIGEST_SIZE;
}
sha_ctx->last_blk = 1;
return _qcrypto_queue_req(cp, &req->base);
}
static int _sha_hmac_inner_hash(struct ahash_request *req,
uint32_t sha_digest_size, uint32_t sha_block_size)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct ahash_request *areq = sha_ctx->ahash_req;
struct crypto_priv *cp = sha_ctx->cp;
int ret = 0;
sha_ctx->last_blk = 1;
sg_set_buf(&sha_ctx->tmp_sg, sha_ctx->trailing_buf,
sha_ctx->trailing_buf_len);
sg_mark_end(&sha_ctx->tmp_sg);
ahash_request_set_crypt(areq, &sha_ctx->tmp_sg, &sha_ctx->digest[0],
sha_ctx->trailing_buf_len);
sha_ctx->last_blk = 1;
ret = _qcrypto_queue_req(cp, &areq->base);
if (ret == -EINPROGRESS || ret == -EBUSY) {
ret =
wait_for_completion_interruptible(&sha_ctx->ahash_req_complete);
INIT_COMPLETION(sha_ctx->ahash_req_complete);
}
return ret;
}
static int _sha1_hmac_final(struct ahash_request *req)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = sha_ctx->cp;
int ret = 0;
if (cp->ce_support.sha_hmac)
return _sha_final(req, SHA1_BLOCK_SIZE);
else {
ret = _sha_hmac_inner_hash(req, SHA1_DIGEST_SIZE,
SHA1_BLOCK_SIZE);
if (ret)
return ret;
return _sha_hmac_outer_hash(req, SHA1_DIGEST_SIZE,
SHA1_BLOCK_SIZE);
}
}
static int _sha256_hmac_final(struct ahash_request *req)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = sha_ctx->cp;
int ret = 0;
if (cp->ce_support.sha_hmac)
return _sha_final(req, SHA256_BLOCK_SIZE);
else {
ret = _sha_hmac_inner_hash(req, SHA256_DIGEST_SIZE,
SHA256_BLOCK_SIZE);
if (ret)
return ret;
return _sha_hmac_outer_hash(req, SHA256_DIGEST_SIZE,
SHA256_BLOCK_SIZE);
}
return 0;
}
static int _sha1_hmac_digest(struct ahash_request *req)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
pstat->sha1_hmac_digest++;
_sha_init(sha_ctx);
memcpy(&sha_ctx->digest[0], &_std_init_vector_sha1_uint8[0],
SHA1_DIGEST_SIZE);
sha_ctx->diglen = SHA1_DIGEST_SIZE;
sha_ctx->alg = QCE_HASH_SHA1_HMAC;
return _sha_digest(req);
}
static int _sha256_hmac_digest(struct ahash_request *req)
{
struct qcrypto_sha_ctx *sha_ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_stat *pstat;
pstat = &_qcrypto_stat;
pstat->sha256_hmac_digest++;
_sha_init(sha_ctx);
memcpy(&sha_ctx->digest[0], &_std_init_vector_sha256_uint8[0],
SHA256_DIGEST_SIZE);
sha_ctx->diglen = SHA256_DIGEST_SIZE;
sha_ctx->alg = QCE_HASH_SHA256_HMAC;
return _sha_digest(req);
}
int qcrypto_cipher_set_flag(struct ablkcipher_request *req, unsigned int flags)
{
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
if ((flags & QCRYPTO_CTX_USE_HW_KEY) &&
(cp->platform_support.hw_key_support == false)) {
pr_err("%s HW key usage not supported\n", __func__);
return -EINVAL;
}
if (((flags | ctx->flags) & QCRYPTO_CTX_KEY_MASK) ==
QCRYPTO_CTX_KEY_MASK) {
pr_err("%s Cannot set all key flags\n", __func__);
return -EINVAL;
}
ctx->flags |= flags;
return 0;
};
EXPORT_SYMBOL(qcrypto_cipher_set_flag);
int qcrypto_aead_set_flag(struct aead_request *req, unsigned int flags)
{
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
if ((flags & QCRYPTO_CTX_USE_HW_KEY) &&
(cp->platform_support.hw_key_support == false)) {
pr_err("%s HW key usage not supported\n", __func__);
return -EINVAL;
}
if (((flags | ctx->flags) & QCRYPTO_CTX_KEY_MASK) ==
QCRYPTO_CTX_KEY_MASK) {
pr_err("%s Cannot set all key flags\n", __func__);
return -EINVAL;
}
ctx->flags |= flags;
return 0;
};
EXPORT_SYMBOL(qcrypto_aead_set_flag);
int qcrypto_ahash_set_flag(struct ahash_request *req, unsigned int flags)
{
struct qcrypto_sha_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_priv *cp = ctx->cp;
if ((flags & QCRYPTO_CTX_USE_HW_KEY) &&
(cp->platform_support.hw_key_support == false)) {
pr_err("%s HW key usage not supported\n", __func__);
return -EINVAL;
}
if (((flags | ctx->flags) & QCRYPTO_CTX_KEY_MASK) ==
QCRYPTO_CTX_KEY_MASK) {
pr_err("%s Cannot set all key flags\n", __func__);
return -EINVAL;
}
ctx->flags |= flags;
return 0;
};
EXPORT_SYMBOL(qcrypto_ahash_set_flag);
int qcrypto_cipher_clear_flag(struct ablkcipher_request *req,
unsigned int flags)
{
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
ctx->flags &= ~flags;
return 0;
};
EXPORT_SYMBOL(qcrypto_cipher_clear_flag);
int qcrypto_aead_clear_flag(struct aead_request *req, unsigned int flags)
{
struct qcrypto_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
ctx->flags &= ~flags;
return 0;
};
EXPORT_SYMBOL(qcrypto_aead_clear_flag);
int qcrypto_ahash_clear_flag(struct ahash_request *req, unsigned int flags)
{
struct qcrypto_sha_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
ctx->flags &= ~flags;
return 0;
};
EXPORT_SYMBOL(qcrypto_ahash_clear_flag);
static struct ahash_alg _qcrypto_ahash_algos[] = {
{
.init = _sha1_init,
.update = _sha1_update,
.final = _sha1_final,
.export = _sha1_export,
.import = _sha1_import,
.digest = _sha1_digest,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "qcrypto-sha1",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize =
sizeof(struct qcrypto_sha_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ahash_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_ahash_cra_init,
.cra_exit = _qcrypto_ahash_cra_exit,
},
},
},
{
.init = _sha256_init,
.update = _sha256_update,
.final = _sha256_final,
.export = _sha256_export,
.import = _sha256_import,
.digest = _sha256_digest,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha256",
.cra_driver_name = "qcrypto-sha256",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize =
sizeof(struct qcrypto_sha_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ahash_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_ahash_cra_init,
.cra_exit = _qcrypto_ahash_cra_exit,
},
},
},
};
static struct ahash_alg _qcrypto_sha_hmac_algos[] = {
{
.init = _sha1_hmac_init,
.update = _sha1_hmac_update,
.final = _sha1_hmac_final,
.export = _sha1_export,
.import = _sha1_import,
.digest = _sha1_hmac_digest,
.setkey = _sha1_hmac_setkey,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct sha1_state),
.base = {
.cra_name = "hmac(sha1)",
.cra_driver_name = "qcrypto-hmac-sha1",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize =
sizeof(struct qcrypto_sha_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ahash_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_ahash_hmac_cra_init,
.cra_exit = _qcrypto_ahash_cra_exit,
},
},
},
{
.init = _sha256_hmac_init,
.update = _sha256_hmac_update,
.final = _sha256_hmac_final,
.export = _sha256_export,
.import = _sha256_import,
.digest = _sha256_hmac_digest,
.setkey = _sha256_hmac_setkey,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "hmac(sha256)",
.cra_driver_name = "qcrypto-hmac-sha256",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize =
sizeof(struct qcrypto_sha_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ahash_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_ahash_hmac_cra_init,
.cra_exit = _qcrypto_ahash_cra_exit,
},
},
},
};
static struct crypto_alg _qcrypto_ablk_cipher_algos[] = {
{
.cra_name = "ecb(aes)",
.cra_driver_name = "qcrypto-ecb-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_cra_ablkcipher_init,
.cra_exit = _qcrypto_cra_ablkcipher_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = _qcrypto_setkey_aes,
.encrypt = _qcrypto_enc_aes_ecb,
.decrypt = _qcrypto_dec_aes_ecb,
},
},
},
{
.cra_name = "cbc(aes)",
.cra_driver_name = "qcrypto-cbc-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_cra_ablkcipher_init,
.cra_exit = _qcrypto_cra_ablkcipher_exit,
.cra_u = {
.ablkcipher = {
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = _qcrypto_setkey_aes,
.encrypt = _qcrypto_enc_aes_cbc,
.decrypt = _qcrypto_dec_aes_cbc,
},
},
},
{
.cra_name = "ctr(aes)",
.cra_driver_name = "qcrypto-ctr-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_cra_ablkcipher_init,
.cra_exit = _qcrypto_cra_ablkcipher_exit,
.cra_u = {
.ablkcipher = {
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = _qcrypto_setkey_aes,
.encrypt = _qcrypto_enc_aes_ctr,
.decrypt = _qcrypto_dec_aes_ctr,
},
},
},
{
.cra_name = "ecb(des)",
.cra_driver_name = "qcrypto-ecb-des",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_cra_ablkcipher_init,
.cra_exit = _qcrypto_cra_ablkcipher_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = _qcrypto_setkey_des,
.encrypt = _qcrypto_enc_des_ecb,
.decrypt = _qcrypto_dec_des_ecb,
},
},
},
{
.cra_name = "cbc(des)",
.cra_driver_name = "qcrypto-cbc-des",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_cra_ablkcipher_init,
.cra_exit = _qcrypto_cra_ablkcipher_exit,
.cra_u = {
.ablkcipher = {
.ivsize = DES_BLOCK_SIZE,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = _qcrypto_setkey_des,
.encrypt = _qcrypto_enc_des_cbc,
.decrypt = _qcrypto_dec_des_cbc,
},
},
},
{
.cra_name = "ecb(des3_ede)",
.cra_driver_name = "qcrypto-ecb-3des",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_cra_ablkcipher_init,
.cra_exit = _qcrypto_cra_ablkcipher_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = _qcrypto_setkey_3des,
.encrypt = _qcrypto_enc_3des_ecb,
.decrypt = _qcrypto_dec_3des_ecb,
},
},
},
{
.cra_name = "cbc(des3_ede)",
.cra_driver_name = "qcrypto-cbc-3des",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_cra_ablkcipher_init,
.cra_exit = _qcrypto_cra_ablkcipher_exit,
.cra_u = {
.ablkcipher = {
.ivsize = DES3_EDE_BLOCK_SIZE,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = _qcrypto_setkey_3des,
.encrypt = _qcrypto_enc_3des_cbc,
.decrypt = _qcrypto_dec_3des_cbc,
},
},
},
};
static struct crypto_alg _qcrypto_ablk_cipher_xts_algo = {
.cra_name = "xts(aes)",
.cra_driver_name = "qcrypto-xts-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_cra_ablkcipher_init,
.cra_exit = _qcrypto_cra_ablkcipher_exit,
.cra_u = {
.ablkcipher = {
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = _qcrypto_setkey_aes_xts,
.encrypt = _qcrypto_enc_aes_xts,
.decrypt = _qcrypto_dec_aes_xts,
},
},
};
static struct crypto_alg _qcrypto_aead_sha1_hmac_algos[] = {
{
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name = "qcrypto-aead-hmac-sha1-cbc-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_aead_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_cra_aead_init,
.cra_exit = _qcrypto_cra_aead_exit,
.cra_u = {
.aead = {
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.setkey = _qcrypto_aead_setkey,
.setauthsize = _qcrypto_aead_setauthsize,
.encrypt = _qcrypto_aead_encrypt_aes_cbc,
.decrypt = _qcrypto_aead_decrypt_aes_cbc,
.givencrypt = _qcrypto_aead_givencrypt_aes_cbc,
.geniv = "<built-in>",
}
}
},
#ifdef QCRYPTO_AEAD_AES_CTR
{
.cra_name = "authenc(hmac(sha1),ctr(aes))",
.cra_driver_name = "qcrypto-aead-hmac-sha1-ctr-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_aead_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_cra_aead_init,
.cra_exit = _qcrypto_cra_aead_exit,
.cra_u = {
.aead = {
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.setkey = _qcrypto_aead_setkey,
.setauthsize = _qcrypto_aead_setauthsize,
.encrypt = _qcrypto_aead_encrypt_aes_ctr,
.decrypt = _qcrypto_aead_decrypt_aes_ctr,
.givencrypt = _qcrypto_aead_givencrypt_aes_ctr,
.geniv = "<built-in>",
}
}
},
#endif /* QCRYPTO_AEAD_AES_CTR */
{
.cra_name = "authenc(hmac(sha1),cbc(des))",
.cra_driver_name = "qcrypto-aead-hmac-sha1-cbc-des",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_aead_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_cra_aead_init,
.cra_exit = _qcrypto_cra_aead_exit,
.cra_u = {
.aead = {
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.setkey = _qcrypto_aead_setkey,
.setauthsize = _qcrypto_aead_setauthsize,
.encrypt = _qcrypto_aead_encrypt_des_cbc,
.decrypt = _qcrypto_aead_decrypt_des_cbc,
.givencrypt = _qcrypto_aead_givencrypt_des_cbc,
.geniv = "<built-in>",
}
}
},
{
.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
.cra_driver_name = "qcrypto-aead-hmac-sha1-cbc-3des",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_aead_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_cra_aead_init,
.cra_exit = _qcrypto_cra_aead_exit,
.cra_u = {
.aead = {
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.setkey = _qcrypto_aead_setkey,
.setauthsize = _qcrypto_aead_setauthsize,
.encrypt = _qcrypto_aead_encrypt_3des_cbc,
.decrypt = _qcrypto_aead_decrypt_3des_cbc,
.givencrypt = _qcrypto_aead_givencrypt_3des_cbc,
.geniv = "<built-in>",
}
}
},
};
static struct crypto_alg _qcrypto_aead_ccm_algo = {
.cra_name = "ccm(aes)",
.cra_driver_name = "qcrypto-aes-ccm",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct qcrypto_cipher_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_aead_type,
.cra_module = THIS_MODULE,
.cra_init = _qcrypto_cra_aead_init,
.cra_exit = _qcrypto_cra_aead_exit,
.cra_u = {
.aead = {
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.setkey = _qcrypto_aead_ccm_setkey,
.setauthsize = _qcrypto_aead_ccm_setauthsize,
.encrypt = _qcrypto_aead_encrypt_aes_ccm,
.decrypt = _qcrypto_aead_decrypt_aes_ccm,
.geniv = "<built-in>",
}
}
};
static int _qcrypto_probe(struct platform_device *pdev)
{
int rc = 0;
void *handle;
struct crypto_priv *cp;
int i;
struct msm_ce_hw_support *platform_support;
cp = kzalloc(sizeof(*cp), GFP_KERNEL);
if (!cp) {
pr_err("qcrypto Memory allocation of q_alg FAIL, error %ld\n",
PTR_ERR(cp));
return -ENOMEM;
}
/* open qce */
handle = qce_open(pdev, &rc);
if (handle == NULL) {
kfree(cp);
platform_set_drvdata(pdev, NULL);
return rc;
}
INIT_LIST_HEAD(&cp->alg_list);
platform_set_drvdata(pdev, cp);
spin_lock_init(&cp->lock);
tasklet_init(&cp->done_tasklet, req_done, (unsigned long)cp);
crypto_init_queue(&cp->queue, 50);
cp->qce = handle;
cp->pdev = pdev;
qce_hw_support(cp->qce, &cp->ce_support);
if (cp->ce_support.bam) {
cp->platform_support.ce_shared = cp->ce_support.is_shared;
cp->platform_support.shared_ce_resource = 0;
cp->platform_support.hw_key_support = cp->ce_support.hw_key;
cp->platform_support.bus_scale_table = NULL;
cp->platform_support.sha_hmac = 1;
cp->platform_support.bus_scale_table =
(struct msm_bus_scale_pdata *)
msm_bus_cl_get_pdata(pdev);
if (!cp->platform_support.bus_scale_table)
pr_warn("bus_scale_table is NULL\n");
} else {
platform_support =
(struct msm_ce_hw_support *)pdev->dev.platform_data;
cp->platform_support.ce_shared = platform_support->ce_shared;
cp->platform_support.shared_ce_resource =
platform_support->shared_ce_resource;
cp->platform_support.hw_key_support =
platform_support->hw_key_support;
cp->platform_support.bus_scale_table =
platform_support->bus_scale_table;
cp->platform_support.sha_hmac = platform_support->sha_hmac;
}
cp->high_bw_req_count = 0;
cp->ce_lock_count = 0;
if (cp->platform_support.ce_shared)
INIT_WORK(&cp->unlock_ce_ws, qcrypto_unlock_ce);
if (cp->platform_support.bus_scale_table != NULL) {
cp->bus_scale_handle =
msm_bus_scale_register_client(
(struct msm_bus_scale_pdata *)
cp->platform_support.bus_scale_table);
if (!cp->bus_scale_handle) {
printk(KERN_ERR "%s not able to get bus scale\n",
__func__);
rc = -ENOMEM;
goto err;
}
}
/* register crypto cipher algorithms the device supports */
for (i = 0; i < ARRAY_SIZE(_qcrypto_ablk_cipher_algos); i++) {
struct qcrypto_alg *q_alg;
q_alg = _qcrypto_cipher_alg_alloc(cp,
&_qcrypto_ablk_cipher_algos[i]);
if (IS_ERR(q_alg)) {
rc = PTR_ERR(q_alg);
goto err;
}
rc = crypto_register_alg(&q_alg->cipher_alg);
if (rc) {
dev_err(&pdev->dev, "%s alg registration failed\n",
q_alg->cipher_alg.cra_driver_name);
kfree(q_alg);
} else {
list_add_tail(&q_alg->entry, &cp->alg_list);
dev_info(&pdev->dev, "%s\n",
q_alg->cipher_alg.cra_driver_name);
}
}
/* register crypto cipher algorithms the device supports */
if (cp->ce_support.aes_xts) {
struct qcrypto_alg *q_alg;
q_alg = _qcrypto_cipher_alg_alloc(cp,
&_qcrypto_ablk_cipher_xts_algo);
if (IS_ERR(q_alg)) {
rc = PTR_ERR(q_alg);
goto err;
}
rc = crypto_register_alg(&q_alg->cipher_alg);
if (rc) {
dev_err(&pdev->dev, "%s alg registration failed\n",
q_alg->cipher_alg.cra_driver_name);
kfree(q_alg);
} else {
list_add_tail(&q_alg->entry, &cp->alg_list);
dev_info(&pdev->dev, "%s\n",
q_alg->cipher_alg.cra_driver_name);
}
}
/*
* Register crypto hash (sha1 and sha256) algorithms the
* device supports
*/
for (i = 0; i < ARRAY_SIZE(_qcrypto_ahash_algos); i++) {
struct qcrypto_alg *q_alg = NULL;
q_alg = _qcrypto_sha_alg_alloc(cp, &_qcrypto_ahash_algos[i]);
if (IS_ERR(q_alg)) {
rc = PTR_ERR(q_alg);
goto err;
}
rc = crypto_register_ahash(&q_alg->sha_alg);
if (rc) {
dev_err(&pdev->dev, "%s alg registration failed\n",
q_alg->sha_alg.halg.base.cra_driver_name);
kfree(q_alg);
} else {
list_add_tail(&q_alg->entry, &cp->alg_list);
dev_info(&pdev->dev, "%s\n",
q_alg->sha_alg.halg.base.cra_driver_name);
}
}
/* register crypto aead (hmac-sha1) algorithms the device supports */
if (cp->ce_support.sha1_hmac_20 || cp->ce_support.sha1_hmac) {
for (i = 0; i < ARRAY_SIZE(_qcrypto_aead_sha1_hmac_algos);
i++) {
struct qcrypto_alg *q_alg;
q_alg = _qcrypto_cipher_alg_alloc(cp,
&_qcrypto_aead_sha1_hmac_algos[i]);
if (IS_ERR(q_alg)) {
rc = PTR_ERR(q_alg);
goto err;
}
rc = crypto_register_alg(&q_alg->cipher_alg);
if (rc) {
dev_err(&pdev->dev,
"%s alg registration failed\n",
q_alg->cipher_alg.cra_driver_name);
kfree(q_alg);
} else {
list_add_tail(&q_alg->entry, &cp->alg_list);
dev_info(&pdev->dev, "%s\n",
q_alg->cipher_alg.cra_driver_name);
}
}
}
if ((cp->ce_support.sha_hmac) || (cp->platform_support.sha_hmac)) {
/* register crypto hmac algorithms the device supports */
for (i = 0; i < ARRAY_SIZE(_qcrypto_sha_hmac_algos); i++) {
struct qcrypto_alg *q_alg = NULL;
q_alg = _qcrypto_sha_alg_alloc(cp,
&_qcrypto_sha_hmac_algos[i]);
if (IS_ERR(q_alg)) {
rc = PTR_ERR(q_alg);
goto err;
}
rc = crypto_register_ahash(&q_alg->sha_alg);
if (rc) {
dev_err(&pdev->dev,
"%s alg registration failed\n",
q_alg->sha_alg.halg.base.cra_driver_name);
kfree(q_alg);
} else {
list_add_tail(&q_alg->entry, &cp->alg_list);
dev_info(&pdev->dev, "%s\n",
q_alg->sha_alg.halg.base.cra_driver_name);
}
}
}
/*
* Register crypto cipher (aes-ccm) algorithms the
* device supports
*/
if (cp->ce_support.aes_ccm) {
struct qcrypto_alg *q_alg;
q_alg = _qcrypto_cipher_alg_alloc(cp, &_qcrypto_aead_ccm_algo);
if (IS_ERR(q_alg)) {
rc = PTR_ERR(q_alg);
goto err;
}
rc = crypto_register_alg(&q_alg->cipher_alg);
if (rc) {
dev_err(&pdev->dev, "%s alg registration failed\n",
q_alg->cipher_alg.cra_driver_name);
kfree(q_alg);
} else {
list_add_tail(&q_alg->entry, &cp->alg_list);
dev_info(&pdev->dev, "%s\n",
q_alg->cipher_alg.cra_driver_name);
}
}
return 0;
err:
_qcrypto_remove(pdev);
return rc;
};
static struct of_device_id qcrypto_match[] = {
{ .compatible = "qcom,qcrypto",
},
{}
};
static struct platform_driver _qualcomm_crypto = {
.probe = _qcrypto_probe,
.remove = _qcrypto_remove,
.driver = {
.owner = THIS_MODULE,
.name = "qcrypto",
.of_match_table = qcrypto_match,
},
};
static int _debug_qcrypto;
static int _debug_stats_open(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
static ssize_t _debug_stats_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
int rc = -EINVAL;
int qcrypto = *((int *) file->private_data);
int len;
len = _disp_stats(qcrypto);
rc = simple_read_from_buffer((void __user *) buf, len,
ppos, (void *) _debug_read_buf, len);
return rc;
}
static ssize_t _debug_stats_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
memset((char *)&_qcrypto_stat, 0, sizeof(struct crypto_stat));
return count;
};
static const struct file_operations _debug_stats_ops = {
.open = _debug_stats_open,
.read = _debug_stats_read,
.write = _debug_stats_write,
};
static int _qcrypto_debug_init(void)
{
int rc;
char name[DEBUG_MAX_FNAME];
struct dentry *dent;
_debug_dent = debugfs_create_dir("qcrypto", NULL);
if (IS_ERR(_debug_dent)) {
pr_err("qcrypto debugfs_create_dir fail, error %ld\n",
PTR_ERR(_debug_dent));
return PTR_ERR(_debug_dent);
}
snprintf(name, DEBUG_MAX_FNAME-1, "stats-%d", 1);
_debug_qcrypto = 0;
dent = debugfs_create_file(name, 0644, _debug_dent,
&_debug_qcrypto, &_debug_stats_ops);
if (dent == NULL) {
pr_err("qcrypto debugfs_create_file fail, error %ld\n",
PTR_ERR(dent));
rc = PTR_ERR(dent);
goto err;
}
return 0;
err:
debugfs_remove_recursive(_debug_dent);
return rc;
}
static int __init _qcrypto_init(void)
{
int rc;
rc = _qcrypto_debug_init();
if (rc)
return rc;
return platform_driver_register(&_qualcomm_crypto);
}
static void __exit _qcrypto_exit(void)
{
pr_debug("%s Unregister QCRYPTO\n", __func__);
debugfs_remove_recursive(_debug_dent);
platform_driver_unregister(&_qualcomm_crypto);
}
module_init(_qcrypto_init);
module_exit(_qcrypto_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Qualcomm Crypto driver");