M7350/kernel/drivers/bluetooth/hci_ath.c
2024-09-09 08:52:07 +00:00

730 lines
15 KiB
C

/*
* Atheros Communication Bluetooth HCIATH3K UART protocol
*
* HCIATH3K (HCI Atheros AR300x Protocol) is a Atheros Communication's
* power management protocol extension to H4 to support AR300x Bluetooth Chip.
*
* Copyright (c) 2009-2010 Atheros Communications Inc.
* Copyright (c) 2012-2013 The Linux Foundation. All rights reserved.
*
* Acknowledgements:
* This file is based on hci_h4.c, which was written
* by Maxim Krasnyansky and Marcel Holtmann.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/tty.h>
#include <linux/errno.h>
#include <linux/ioctl.h>
#include <linux/skbuff.h>
#include <linux/platform_device.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/proc_fs.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include "hci_uart.h"
#ifdef CONFIG_SERIAL_MSM_HS
#include <mach/msm_serial_hs.h>
#endif
static int enableuartsleep = 1;
module_param(enableuartsleep, int, 0644);
MODULE_PARM_DESC(enableuartsleep, "Enable Atheros Sleep Protocol");
/*
* Global variables
*/
/** Device table */
static struct of_device_id bluesleep_match_table[] = {
{ .compatible = "qca,ar3002_bluesleep" },
{}
};
/** Global state flags */
static unsigned long flags;
/** To Check LPM is enabled */
static bool is_lpm_enabled;
/** Workqueue to respond to change in hostwake line */
static void wakeup_host_work(struct work_struct *work);
/** Transmission timer */
static void bluesleep_tx_timer_expire(unsigned long data);
static DEFINE_TIMER(tx_timer, bluesleep_tx_timer_expire, 0, 0);
/** Lock for state transitions */
static spinlock_t rw_lock;
#define PROC_DIR "bluetooth/sleep"
#define POLARITY_LOW 0
#define POLARITY_HIGH 1
struct bluesleep_info {
unsigned host_wake; /* wake up host */
unsigned ext_wake; /* wake up device */
unsigned host_wake_irq;
int irq_polarity;
struct uart_port *uport;
};
struct work_struct ws_sleep;
/* 1 second timeout */
#define TX_TIMER_INTERVAL 1
/* state variable names and bit positions */
#define BT_TXEXPIRED 0x01
#define BT_SLEEPENABLE 0x02
#define BT_SLEEPCMD 0x03
/* global pointer to a single hci device. */
static struct bluesleep_info *bsi;
struct ath_struct {
struct hci_uart *hu;
unsigned int cur_sleep;
struct sk_buff_head txq;
struct work_struct ctxtsw;
};
static void hsuart_serial_clock_on(struct uart_port *port)
{
BT_DBG("");
if (port)
msm_hs_request_clock_on(port);
else
BT_INFO("Uart has not voted for Clock ON");
}
static void hsuart_serial_clock_off(struct uart_port *port)
{
BT_DBG("");
if (port)
msm_hs_request_clock_off(port);
else
BT_INFO("Uart has not voted for Clock OFF");
}
static void modify_timer_task(void)
{
spin_lock(&rw_lock);
mod_timer(&tx_timer, jiffies + (TX_TIMER_INTERVAL * HZ));
clear_bit(BT_TXEXPIRED, &flags);
spin_unlock(&rw_lock);
}
static int ath_wakeup_ar3k(void)
{
int status = 0;
if (test_bit(BT_TXEXPIRED, &flags)) {
hsuart_serial_clock_on(bsi->uport);
BT_DBG("wakeup device\n");
gpio_set_value(bsi->ext_wake, 0);
msleep(20);
gpio_set_value(bsi->ext_wake, 1);
}
if (!is_lpm_enabled)
modify_timer_task();
return status;
}
static void wakeup_host_work(struct work_struct *work)
{
BT_DBG("wake up host");
if (test_bit(BT_SLEEPENABLE, &flags)) {
if (test_bit(BT_TXEXPIRED, &flags))
hsuart_serial_clock_on(bsi->uport);
}
if (!is_lpm_enabled)
modify_timer_task();
}
static void ath_hci_uart_work(struct work_struct *work)
{
int status;
struct ath_struct *ath;
struct hci_uart *hu;
ath = container_of(work, struct ath_struct, ctxtsw);
hu = ath->hu;
/* verify and wake up controller */
if (test_bit(BT_SLEEPENABLE, &flags))
status = ath_wakeup_ar3k();
/* Ready to send Data */
clear_bit(HCI_UART_SENDING, &hu->tx_state);
hci_uart_tx_wakeup(hu);
}
static irqreturn_t bluesleep_hostwake_isr(int irq, void *dev_id)
{
/* schedule a work to global shared workqueue to handle
* the change in the host wake line
*/
schedule_work(&ws_sleep);
return IRQ_HANDLED;
}
static int ath_bluesleep_gpio_config(int on)
{
int ret = 0;
BT_INFO("%s config: %d", __func__, on);
if (!on) {
if (disable_irq_wake(bsi->host_wake_irq))
BT_ERR("Couldn't disable hostwake IRQ wakeup mode\n");
goto free_host_wake_irq;
}
ret = gpio_request(bsi->host_wake, "bt_host_wake");
if (ret < 0) {
BT_ERR("failed to request gpio pin %d, error %d\n",
bsi->host_wake, ret);
goto gpio_config_failed;
}
/* configure host_wake as input */
ret = gpio_direction_input(bsi->host_wake);
if (ret < 0) {
BT_ERR("failed to config GPIO %d as input pin, err %d\n",
bsi->host_wake, ret);
goto gpio_host_wake;
}
ret = gpio_request(bsi->ext_wake, "bt_ext_wake");
if (ret < 0) {
BT_ERR("failed to request gpio pin %d, error %d\n",
bsi->ext_wake, ret);
goto gpio_host_wake;
}
ret = gpio_direction_output(bsi->ext_wake, 1);
if (ret < 0) {
BT_ERR("failed to config GPIO %d as output pin, err %d\n",
bsi->ext_wake, ret);
goto gpio_ext_wake;
}
gpio_set_value(bsi->ext_wake, 1);
/* Initialize spinlock. */
spin_lock_init(&rw_lock);
/* Initialize timer */
init_timer(&tx_timer);
tx_timer.function = bluesleep_tx_timer_expire;
tx_timer.data = 0;
if (bsi->irq_polarity == POLARITY_LOW) {
ret = request_irq(bsi->host_wake_irq, bluesleep_hostwake_isr,
IRQF_DISABLED | IRQF_TRIGGER_FALLING,
"bluetooth hostwake", NULL);
} else {
ret = request_irq(bsi->host_wake_irq, bluesleep_hostwake_isr,
IRQF_DISABLED | IRQF_TRIGGER_RISING,
"bluetooth hostwake", NULL);
}
if (ret < 0) {
BT_ERR("Couldn't acquire BT_HOST_WAKE IRQ");
goto delete_timer;
}
ret = enable_irq_wake(bsi->host_wake_irq);
if (ret < 0) {
BT_ERR("Couldn't enable BT_HOST_WAKE as wakeup interrupt");
goto free_host_wake_irq;
}
return 0;
free_host_wake_irq:
free_irq(bsi->host_wake_irq, NULL);
delete_timer:
del_timer(&tx_timer);
gpio_ext_wake:
gpio_free(bsi->ext_wake);
gpio_host_wake:
gpio_free(bsi->host_wake);
gpio_config_failed:
return ret;
}
static int ath_lpm_start(void)
{
BT_DBG("Start LPM mode");
if (!bsi) {
BT_ERR("HCIATH3K bluesleep info does not exist");
return -EIO;
}
bsi->uport = msm_hs_get_uart_port(0);
if (!bsi->uport) {
BT_ERR("UART Port is not available");
return -ENODEV;
}
INIT_WORK(&ws_sleep, wakeup_host_work);
if (ath_bluesleep_gpio_config(1) < 0) {
BT_ERR("HCIATH3K GPIO Config failed");
return -EIO;
}
return 0;
}
static int ath_lpm_stop(void)
{
BT_DBG("Stop LPM mode");
cancel_work_sync(&ws_sleep);
if (bsi) {
bsi->uport = NULL;
ath_bluesleep_gpio_config(0);
}
return 0;
}
/* Initialize protocol */
static int ath_open(struct hci_uart *hu)
{
struct ath_struct *ath;
struct uart_state *state;
BT_DBG("hu %p, bsi %p", hu, bsi);
if (!bsi) {
BT_ERR("HCIATH3K bluesleep info does not exist");
return -EIO;
}
ath = kzalloc(sizeof(*ath), GFP_ATOMIC);
if (!ath) {
BT_ERR("HCIATH3K Memory not enough to init driver");
return -ENOMEM;
}
skb_queue_head_init(&ath->txq);
hu->priv = ath;
ath->hu = hu;
state = hu->tty->driver_data;
if (!state) {
BT_ERR("HCIATH3K tty driver data does not exist");
return -ENXIO;
}
bsi->uport = state->uart_port;
if (ath_bluesleep_gpio_config(1) < 0) {
BT_ERR("HCIATH3K GPIO Config failed");
hu->priv = NULL;
kfree(ath);
return -EIO;
}
ath->cur_sleep = enableuartsleep;
if (ath->cur_sleep == 1) {
set_bit(BT_SLEEPENABLE, &flags);
modify_timer_task();
}
INIT_WORK(&ath->ctxtsw, ath_hci_uart_work);
INIT_WORK(&ws_sleep, wakeup_host_work);
return 0;
}
/* Flush protocol data */
static int ath_flush(struct hci_uart *hu)
{
struct ath_struct *ath = hu->priv;
BT_DBG("hu %p", hu);
skb_queue_purge(&ath->txq);
return 0;
}
/* Close protocol */
static int ath_close(struct hci_uart *hu)
{
struct ath_struct *ath = hu->priv;
BT_DBG("hu %p", hu);
skb_queue_purge(&ath->txq);
cancel_work_sync(&ath->ctxtsw);
cancel_work_sync(&ws_sleep);
if (bsi)
ath_bluesleep_gpio_config(0);
hu->priv = NULL;
bsi->uport = NULL;
kfree(ath);
return 0;
}
#define HCI_OP_ATH_SLEEP 0xFC04
/* Enqueue frame for transmittion */
static int ath_enqueue(struct hci_uart *hu, struct sk_buff *skb)
{
struct ath_struct *ath = hu->priv;
BT_DBG("");
if (bt_cb(skb)->pkt_type == HCI_SCODATA_PKT) {
kfree_skb(skb);
return 0;
}
/*
* Update power management enable flag with parameters of
* HCI sleep enable vendor specific HCI command.
*/
if (bt_cb(skb)->pkt_type == HCI_COMMAND_PKT) {
struct hci_command_hdr *hdr = (void *)skb->data;
if (__le16_to_cpu(hdr->opcode) == HCI_OP_ATH_SLEEP) {
set_bit(BT_SLEEPCMD, &flags);
ath->cur_sleep = skb->data[HCI_COMMAND_HDR_SIZE];
}
}
BT_DBG("hu %p skb %p", hu, skb);
/* Prepend skb with frame type */
memcpy(skb_push(skb, 1), &bt_cb(skb)->pkt_type, 1);
skb_queue_tail(&ath->txq, skb);
set_bit(HCI_UART_SENDING, &hu->tx_state);
schedule_work(&ath->ctxtsw);
return 0;
}
static struct sk_buff *ath_dequeue(struct hci_uart *hu)
{
struct ath_struct *ath = hu->priv;
return skb_dequeue(&ath->txq);
}
/* Recv data */
static int ath_recv(struct hci_uart *hu, void *data, int count)
{
struct ath_struct *ath = hu->priv;
unsigned int type;
BT_DBG("");
if (hci_recv_stream_fragment(hu->hdev, data, count) < 0)
BT_ERR("Frame Reassembly Failed");
if (count & test_bit(BT_SLEEPCMD, &flags)) {
struct sk_buff *skb = hu->hdev->reassembly[0];
if (!skb) {
struct { char type; } *pkt;
/* Start of the frame */
pkt = data;
type = pkt->type;
} else
type = bt_cb(skb)->pkt_type;
if (type == HCI_EVENT_PKT) {
clear_bit(BT_SLEEPCMD, &flags);
BT_INFO("cur_sleep:%d\n", ath->cur_sleep);
if (ath->cur_sleep == 1)
set_bit(BT_SLEEPENABLE, &flags);
else
clear_bit(BT_SLEEPENABLE, &flags);
}
if (test_bit(BT_SLEEPENABLE, &flags))
modify_timer_task();
}
return count;
}
static void bluesleep_tx_timer_expire(unsigned long data)
{
if (!test_bit(BT_SLEEPENABLE, &flags))
return;
BT_INFO("Tx timer expired\n");
set_bit(BT_TXEXPIRED, &flags);
hsuart_serial_clock_off(bsi->uport);
}
static struct hci_uart_proto athp = {
.id = HCI_UART_ATH3K,
.open = ath_open,
.close = ath_close,
.recv = ath_recv,
.enqueue = ath_enqueue,
.dequeue = ath_dequeue,
.flush = ath_flush,
};
static int lpm_enabled;
static int bluesleep_lpm_set(const char *val, const struct kernel_param *kp)
{
int ret;
ret = param_set_int(val, kp);
if (ret) {
BT_ERR("HCIATH3K: lpm enable parameter set failed");
return ret;
}
BT_DBG("lpm : %d", lpm_enabled);
if ((lpm_enabled == 0) && is_lpm_enabled) {
ath_lpm_stop();
clear_bit(BT_SLEEPENABLE, &flags);
is_lpm_enabled = false;
} else if ((lpm_enabled == 1) && !is_lpm_enabled) {
if (ath_lpm_start() < 0) {
BT_ERR("HCIATH3K LPM mode failed");
return -EIO;
}
set_bit(BT_SLEEPENABLE, &flags);
is_lpm_enabled = true;
} else {
BT_ERR("HCIATH3K invalid lpm value");
return -EINVAL;
}
return 0;
}
static struct kernel_param_ops bluesleep_lpm_ops = {
.set = bluesleep_lpm_set,
.get = param_get_int,
};
module_param_cb(ath_lpm, &bluesleep_lpm_ops,
&lpm_enabled, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(ath_lpm, "Enable Atheros LPM sleep Protocol");
static int lpm_btwrite;
static int bluesleep_lpm_btwrite(const char *val, const struct kernel_param *kp)
{
int ret;
ret = param_set_int(val, kp);
if (ret) {
BT_ERR("HCIATH3K: lpm btwrite parameter set failed");
return ret;
}
BT_DBG("btwrite : %d", lpm_btwrite);
if (is_lpm_enabled) {
if (lpm_btwrite == 0) {
/*Setting TXEXPIRED bit to make it
compatible with current solution*/
set_bit(BT_TXEXPIRED, &flags);
hsuart_serial_clock_off(bsi->uport);
} else if (lpm_btwrite == 1) {
ath_wakeup_ar3k();
clear_bit(BT_TXEXPIRED, &flags);
} else {
BT_ERR("HCIATH3K invalid btwrite value");
return -EINVAL;
}
}
return 0;
}
static struct kernel_param_ops bluesleep_lpm_btwrite_ops = {
.set = bluesleep_lpm_btwrite,
.get = param_get_int,
};
module_param_cb(ath_btwrite, &bluesleep_lpm_btwrite_ops,
&lpm_btwrite, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(ath_lpm, "Assert/Deassert the sleep");
static int bluesleep_populate_dt_pinfo(struct platform_device *pdev)
{
BT_DBG("");
if (!bsi)
return -ENOMEM;
bsi->host_wake = of_get_named_gpio(pdev->dev.of_node,
"host-wake-gpio", 0);
if (bsi->host_wake < 0) {
BT_ERR("couldn't find host_wake gpio\n");
return -ENODEV;
}
bsi->ext_wake = of_get_named_gpio(pdev->dev.of_node,
"ext-wake-gpio", 0);
if (bsi->ext_wake < 0) {
BT_ERR("couldn't find ext_wake gpio\n");
return -ENODEV;
}
return 0;
}
static int bluesleep_populate_pinfo(struct platform_device *pdev)
{
struct resource *res;
BT_DBG("");
res = platform_get_resource_byname(pdev, IORESOURCE_IO,
"gpio_host_wake");
if (!res) {
BT_ERR("couldn't find host_wake gpio\n");
return -ENODEV;
}
bsi->host_wake = res->start;
res = platform_get_resource_byname(pdev, IORESOURCE_IO,
"gpio_ext_wake");
if (!res) {
BT_ERR("couldn't find ext_wake gpio\n");
return -ENODEV;
}
bsi->ext_wake = res->start;
return 0;
}
static int __devinit bluesleep_probe(struct platform_device *pdev)
{
int ret;
BT_DBG("");
bsi = kzalloc(sizeof(struct bluesleep_info), GFP_KERNEL);
if (!bsi) {
ret = -ENOMEM;
goto failed;
}
if (pdev->dev.of_node) {
ret = bluesleep_populate_dt_pinfo(pdev);
if (ret < 0) {
BT_ERR("Failed to populate device tree info");
goto free_bsi;
}
} else {
ret = bluesleep_populate_pinfo(pdev);
if (ret < 0) {
BT_ERR("Failed to populate device info");
goto free_bsi;
}
}
BT_DBG("host_wake_gpio: %d ext_wake_gpio: %d",
bsi->host_wake, bsi->ext_wake);
bsi->host_wake_irq = platform_get_irq_byname(pdev, "host_wake");
if (bsi->host_wake_irq < 0) {
BT_ERR("couldn't find host_wake irq\n");
ret = -ENODEV;
goto free_bsi;
}
bsi->irq_polarity = POLARITY_LOW; /* low edge (falling edge) */
return 0;
free_bsi:
kfree(bsi);
bsi = NULL;
failed:
return ret;
}
static int bluesleep_remove(struct platform_device *pdev)
{
kfree(bsi);
return 0;
}
static struct platform_driver bluesleep_driver = {
.probe = bluesleep_probe,
.remove = bluesleep_remove,
.driver = {
.name = "bluesleep",
.owner = THIS_MODULE,
.of_match_table = bluesleep_match_table,
},
};
int __init ath_init(void)
{
int ret;
ret = hci_uart_register_proto(&athp);
if (!ret)
BT_INFO("HCIATH3K protocol initialized");
else {
BT_ERR("HCIATH3K protocol registration failed");
return ret;
}
ret = platform_driver_register(&bluesleep_driver);
if (ret) {
BT_ERR("Failed to register bluesleep driver");
return ret;
}
return 0;
}
int __exit ath_deinit(void)
{
platform_driver_unregister(&bluesleep_driver);
return hci_uart_unregister_proto(&athp);
}